Process mining (PM)-based goal recognition (GR) techniques, which infer goals or targets based on sequences of observed actions, have shown efficacy in real-world engineering applications. This study explores the applicability of PM-based GR in identifying target poses for users employing powered transhumeral prosthetics. These prosthetics are designed to restore missing anatomical segments below the shoulder, including the hand. In this article, we aim to apply the GR techniques to identify the intended movements of users, enabling the motors on the powered transhumeral prosthesis to execute the desired motions precisely. In this way, a powered transhumeral prosthesis can assist individuals with disabilities in completing movement tasks.