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Abstract

Goal Recognition (GR) techniques aim to infer the intentions of an autonomous agent
according to the observed actions of that agent. We introduce the evidence-based GR
framework, regarded as the primary contribution of this thesis, which is designed to address
goal recognition problems in both static and dynamic environments. Furthermore, we
leverage the proposed framework to develop GR techniques aimed at addressing challenges
in the transhumeral prosthesis scenario.

The evidence-based GR technique learns knowledge models using process discovery
techniques. It then constructs conformance diagnostics between the learned models and a new
observed action sequence executed by an agent. These diagnostics are then used to formulate
a probability distribution over a range of possible goals of the agent, where the probabilities
indicate the likelihood of the observed action sequence for achieving each possible goal
candidate. The evaluation results confirm that the evidence-based GR approach grounded in
process discovery and conformance checking techniques studied in process mining achieves
comparable recognition accuracy to other state-of-the-art GR approaches and reacts faster.
Notably, distinguishing itself from other GR approaches that rely on handcrafted domain
knowledge, the evidence-based GR approach can automatically learn knowledge, making it
applicable across diverse real-world scenarios. Additionally, the learned knowledge models
are explainable, compared to models used in deep learning-based GR approaches.

This thesis emphasizes the challenge of GR in non-stationary environments, where the
GR system is required to continuously solve GR tasks over time, during which the underlying
environment may change. An adaptive GR framework is proposed as an extension of the
evidence-based GR framework for static environments. This adaptive framework can detect
changes in the behaviors of the observed agents and adapt the learned knowledge models
accordingly. An evaluation of three specific solutions to the adaptive GR problem that are
implemented as different control strategies of a GR system is presented and discussed. The
evaluation is based on a collection of adaptive GR problem instances generated by the tool
we designed and implemented, Goal Recognition Amidst Changing Environments (GRACE).
The results demonstrate a trade-off between the GR performance over time and the effort
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invested in adaptations of the learned knowledge models, showing that few well-planned
adaptations can lead to a consistently high GR performance.

To verify the usefulness of the proposed GR techniques in real-world scenarios, their
applicability in a powered transhumeral prosthetic scenario is assessed, where it is required
to detect a person’s intended movements based on electromyography and kinematic signals
collected from their body. A powered transhumeral prosthesis aims to restore missing
anatomical segments below the shoulder, including the hand, and is designed to assist patients
with disabilities. It analyzes continuous, real-valued data from sensors to recognize patient
target poses, or goals, and proactively move the artificial limb. Our GR techniques were
evaluated using offline datasets and online human-in-the-loop experiments, comparing the
results with state-of-the-art techniques such as linear discriminant analysis (LDA)-based and
neural network-based approaches. The results demonstrate that the proposed GR techniques
grounded in process mining achieve superior performance.
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Chapter 1

Introduction

Goal Recognition (GR), as a key aspect of the Theory of Mind [30, 15], has been extensively
explored in the field of Artificial Intelligence [108, 117]. Its objective is to mimic, to
some extent, the human ability to comprehend and interpret the intentions of others. The
first formalized concept of GR is often attributed to Kautz and Allen [63], stating that GR
techniques aim to deduce the intentions of autonomous agents by observing and analyzing
their behaviors. Understanding GR is centered on three core concepts: A plan is composed
of a series of actions that have been or should be executed to achieve a certain goal; An agent,
such as a robot or a human, follows such plans to fulfill goals; A GR system refers to software
implementing a GR technique capable of deducing agents’ goals based on partial knowledge
about the observed plans executed by these agents. When a GR system analyzes the actions
executed by an agent, it aims to recognize the plan being pursued by the agent. Consequently,
the system can also recognize the goal that will be achieved upon the completion of that plan.

In the contemporary era, tasks traditionally designated for humans are now carried out
by robots or software, encompassing domains such as smart houses and autonomously
driving cars. The core of achieving effective human-machine interaction and performing
intelligent behavior in agents relies on understanding other agents’ objectives. For instance,
in the context of an autonomous driving system, the capability to discern the intentions or
anticipated actions of other vehicles is crucial for ensuring safety. Similarly, a smart house
needs to interpret whether the residents are engaged in cooking, watching a movie, or sleeping
to provide relevant assistance. GR techniques play a pivotal role in these scenarios and various
other domains, including support for adversarial reasoning [116, 66], trajectory/maneuver
prediction [74, 36, 64], and human-computer collaboration [77].
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1.1 Background

The majority of existing GR algorithms are designed to solve a single GR task at a specific
time point, focusing on accurately inferring the most likely goal an observed agent is pursuing
within a static environment. These approaches, which dominate the current research in the
GR field, do not account for the continuous resolution of multiple GR tasks over time.
Therefore, we refer to these methods as conventional GR and classify them as “single-
shot” GR algorithms, as they address only one GR task without considering multiple GR
problems that need to be solved over time in a dynamic environment. Expanding the scope of
conventional GR involves enabling it to address multiple “single-shot” recognition challenges
over an extended period, during which the environment may change. Importantly, as the
environment changes, the GR system must adapt to these shifts to maintain accurate goal
recognition performance. This problem setup is referred to as adaptive goal recognition
(adaptive GR).

1.1.1 Conventional Goal Recognition

The objective of a “single-shot” GR task is to infer likely goal(s) from a set of goal candidates
based on the currently observed action sequence executed by the agent. The existing
conventional GR techniques can be broadly categorized into the following three groups: (I)
The observed actions of an agent are "matched" to a plan (the one judged to be executed
by the agent) in a pre-defined plan library that encodes the standard operational procedures
of the domain [19, 63, 28]. This category is commonly known as plan library-based GR
approaches. (II) By invoking the principle of rational behavior, an agent is assumed to adopt
the “optimal” plan leading to the goal: the higher the perceived rationality of the behavior
in achieving a goal, the more likely it is that the goal is the agent’s objective. Ramirez and
Geffner [101, 102] have initiated numerous approaches that do not require a pre-defined set
of plans. Instead, these approaches perform GR by leveraging planning systems to generate
plans automatically based on a domain theory. This category is commonly referred to as
planning-based GR approaches. (III) Learning-based goal recognition approaches constitute
a category of techniques capable of learning domain models or prediction models from
data. These learned models can take various forms, such as Q-value functions, inferring
probabilities towards goal candidates for each legal action at each state [6, 7]. Alternatively,
models can be Long Short-Term Memory (LSTM) neural networks operating as classifiers.
These models receive sequences of actions as input and subsequently identify the possible
goals [88].
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The challenge with plan library-based approaches lies in the necessity of obtaining
or hand-coding a set of standard plans for achieving candidate goals. Furthermore, these
approaches cannot accommodate uncertainty, as they often struggle to generalize to observa-
tions that are not pre-stored in the plan library. In planning-based approaches, even though
the capability to recognize an unseen plan is a notable strength, and the process of specifying
domain models can be less demanding than manually coding plans, the acquisition of domain
models remains a non-trivial task. This difficulty arises from challenges associated with
defining models using standard declarative languages, as highlighted in the work by Haslum
et al. [51]. Furthermore, acquiring domain models for real-world environments, especially
those prone to continuous changes, poses a significant challenge. Therefore, the application
of planning-based approaches becomes notably challenging in real-world scenarios. One
of the primary challenges linked to learning-based approaches is delineating the scope and
acquiring a sufficient volume of data crucial for training effective knowledge models for
goal recognition. Finally, these learned models are essentially deep neural networks, a
characteristic that is often criticized for its lack of explainability.

1.1.2 Adaptive Goal Recognition

As mentioned above, the conventional GR focuses on solving a "single-shot" GR problem.
However, in the real world, there is a need to address multiple GR problems over an extended
period, during which the environment may change (also referred to as a non-stationary
environment). Notably, when such environmental changes occur, the behavior of agents
aiming to achieve their goals generally adapts as well [112]. For instance, in a navigational
scenario, the emergence of new roadblocks or the creation of new shortcuts may prompt
intelligent agents to take different routes to reach their destination locations. In turn, a smart
home system performs goal recognition on the households to support their daily activities, and
their behaviors may vary depending on the season. While people use heaters in winter to get
comfortable temperatures, they tend to use cooling systems in summer instead (for the same
goal). The behavior of the households is also expected to change upon changes in the house
configuration (e.g., changing the location of the TV to another room). This phenomenon
is also observed in business processes when the behavior of process participants changes
to address new regulations, compliance rules, and innovative ways of doing business [140].
In all those cases, we would first like a GR system to recognize the changes in (observed)
behavior and then adapt accordingly to maintain its recognition performance. We refer to the
problem of solving multiple GR problems over a time interval during which the environment
in which the agent operates may change as the adaptive GR problem.
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Only a limited number of works are, to some extent, relevant to adaptive GR. Bryce et al.
[17] proposed a technique for updating knowledge models through query-issued updates. This
approach involves analyzing query answers to adapt models; however, instead of updating the
models automatically, this technique relies on human-provided query answers. Chakraborti
et al. [22] introduced a model reconciliation algorithm in which the reconciliation process
modifies one of two models to achieve a single optimal plan for the same goal when different
models result in distinct optimal plans.

1.2 Research Questions and Contributions

The main contribution of this thesis is the development of a GR approach that integrates
the strengths of planning-based, plan library-based, and learning-based GR methodologies.
Specifically, the proposed approach inherits the explainability of planning-based and plan
library-based methods, as the models in the proposed GR approach are interpretable. How-
ever, conventional approaches require significant manual effort to design and craft these
models. In contrast, the proposed GR approach also incorporates the advantages of learning-
based methods by enabling automatic model learning, thus eliminating the need for manual
model crafting. Unlike traditional learning-based approaches, which often rely on deep
neural networks that lack explainability and require large amounts of training data, the
proposed approach addresses these drawbacks by producing explainable learned models and
reducing the dependence on extensive datasets. We refer to this approach as Evidence-Based
Goal Recognition because the learned model is constructed from historical evidence, and the
approach is capable of tracking interpretable evidence to infer potential goals. Experimental
results illustrate that this approach is applicable in real-world scenarios, can perform well
with limited training data, and can be extended to an adaptive GR system for handling
environmental changes. The three research questions addressed in this thesis are presented
as follows:

Research Question 1. How to do goal recognition in the absence of domain knowledge?

To answer Research Question 1 (RQ1), we propose a framework that leverages process
mining techniques [123] to automatically acquire process models from event logs and analyze
discrepancies between process models and event logs. These event logs keep records of
historical observations of agents, encoding the skills required for accomplishing a range of
goals within the environment. Subsequently, the framework infers the possible goal(s) by
analyzing deviations in the observed agent’s behavior from the skill models learned from the
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event logs. Hence, this framework addresses the challenge of requiring pre-defined models
and it avoids relying on non-explainable techniques such as reinforcement learning or deep
neural networks. In this thesis, a process, skill, or behavior model is represented as a Petri
net [104], whose executions encode action sequences (plans) executed by an agent to achieve
a specific goal. The event logs do not function as plan libraries but as historical evidence.
The learned skill models serve as instances of executions, revealing the underlying “hidden”
standard operational procedures of the domain. Note that in this thesis, we will use similar
terms such as GR framework, GR technique, and GR approach, each with slightly different
meanings. The GR framework refers to the foundational structure of the system design,
which can be used to implement or customize a concrete GR system. The GR approach
refers to the specific method used to implement such a system. Meanwhile, a GR technique
is a broader term that includes both specific GR approaches and higher-level frameworks that
can be employed to develop concrete systems.

In contrast to learning-based approaches, the proposed GR approach acquires models
only from sequences of actions. This ability distinguishes it from other GR techniques that
require additional information, such as the environment states before and after the executed
actions [6, 7] or the transition functions for every observed action [111]. The agent is assumed
to operate within an unknown environment, which can be described, for instance, through
a PDDL [51] or STRIPS [34] model (these models specify the dynamics and states of the
environment). The learned process models, in the format of Petri nets, describe a subset of
goal-relevant action sequences, commonly known as plans, within the environment. Note
that Petri nets are not used to represent the underlying dynamic domain; therefore, the states
in Petri nets cannot be considered as the states in the domain. We argue that our GR approach
falls between planning-based approaches (which base reasoning on cost differences between
optimal and observed plans) and plan-library-based approaches (which rely on exemplary
plans for reasoning).

The evaluation results illustrate that our GR approach exhibits fast goal recognition,
and its accuracy is comparable to the state-of-the-art GR techniques. The fast speed of
inference provides advantages for time-sensitive applications. For example, to provide a
seamless user experience, a smart house system may be required to anticipate household
goals efficiently [138].

Specifically, this thesis makes these contributions to address RQ1:

• It proposes a GR framework that describes the fundamental mechanisms for performing
GR without pre-defined models;
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• It discusses an implementation of a concrete GR approach based on process mining
techniques that follows the proposed GR framework and relies on four parameters to
construct a probability distribution over possible goals and to infer the most likely
goal. The four parameters are a “smoothening” constant (φ ) that flattens the proba-
bility distribution over possible goals, a consecutive mismatch suffix factor (λ ) that
detects whether the agent is deviating from a candidate goal, a discount factor (δ ) that
emphasizes the recently observed actions to have more impact on the goal inferences,
and a decision threshold (θ ) that determines which goals should be inferred as likely
goals;

• It presents results of a sensitivity analysis over 15 IPC domains1 and ten real-world
domains that confirm that all four parameters (φ , λ , δ , and θ ) have a significant impact
on the performance of our GR approach;

• It presents a scenario discovery method for identifying parameters that lead to better
performance of our GR approach;

• It summarizes the insights of a comprehensive comparison of the performance of
our GR approach with the state-of-the-art techniques, which show that our approach
achieves a comparable performance and is often faster;

• It demonstrates that our GR approach is applicable in real-world scenarios.

Research Question 2. How to do goal recognition in non-stationary environments?

In Research Question 2 (RQ2), we propose a process mining-based adaptive GR frame-
work that can automatically learn and relearn knowledge models based on data generated
while observing the behavior of the agent of interest. According to the framework, we instan-
tiate three concrete adaptive GR systems to address the adaptive GR problem. Specifically,
the “single-shot” GR system is controlled based on its performance to, for instance, request
to relearn its knowledge base if the recognition accuracy drops. The three proposed con-
crete solutions are designed as open- and closed-loop control strategies applied to standard
“single-shot” GR systems.

The research on the problem of GR is impeded by the lack of benchmarks for evaluating
candidate solutions. Thus, we present a data-generating tool called the Goal Recognition
Amidst Changing Environments (GRACE), which can modify the environments where agents

1The International Planning Competition (IPC) domains used in this thesis are the same as the domains in
the paper by Pereira et al. [95].
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work towards various goals and generate different behaviors under different environments.
For the seed environments in which observed agents operate, we use the static IPC domains,
which are widely used to evaluate conventional GR approaches. These environments are
provided as input to GRACE, which subsequently generates problem instances in which the
seed environments change over time according to the parameters supplied to the tool. The
GRACE tool uses two aspects to characterize a change in an environment. Firstly, a change
is characterized by the components of the environment that change. For example, such
components are the initial and goal states of the agents and actions the agents can perform in
the environment. Secondly, by interpreting an environment as a signal and, consequently,
a change in the original environment as a change in the original signal, we characterize
changes in the environment based on the different types of concept drift [140]. For example,
a change in an environment can be sudden or such that it progresses gradually over time.
Note that the GRACE tool incorporates a measure of the significance of environmental
change, ensuring that the generated problem instances are defined over an environment that
undergoes significant changes.

We use GRACE to generate synthetic adaptive GR problem instances and formulate
real-world problem instances using BPI challenge event logs.2 We conduct experiments
using both synthetic and real-world problem instances to evaluate how well our GR systems
address adaptive GR problems. The results show that, compared to a conventional GR system,
adaptive GR systems recognize goals more accurately over time.

To achieve high recognition accuracy in solving the adaptive GR problem, the GR system
needs to detect environmental changes or changes in the agent’s behavior and determine
the optimal timing for updating its knowledge models based on new evidence. We conduct
experiments using synthetic and real-world datasets to illustrate the intrinsic trade-offs
between the effort of updating the knowledge base and the recognition accuracy of adaptive
GR systems.

This thesis makes the following contributions to address RQ2:

• It formally defines the adaptive GR problem, which can be seen as an optimization
problem that balances the cost of adapting knowledge models with the accuracy of
GR;

• It introduces a tool called GRACE, capable of simulating significant changes in the
environment in which agents strive to achieve goals and can generate problem instances
for evaluating adaptive GR systems;

2https://www.tf-pm.org/resources/logs
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• It introduces an adaptive GR framework as a control mechanism over a conventional
“single-shot” GR system and presents three concrete adaptive GR systems instantiated
from this framework;

• It uses synthetic and real-world datasets to evaluate three instantiated adaptive GR
systems. The evaluation results confirm the effectiveness of these GR systems for
solving adaptive GR problems.

Note that, to address RQ1, we propose a GR framework that employs process mining
techniques to learn explainable models, and we refer to it as the Process Mining (PM-)based
GR framework. For RQ2, derived from the PM-based GR approach, we introduce the
adaptive GR framework that can adapt to environmental changes, namely, the adaptive GR
framework. However, as both the PM-based GR and the adaptive GR can learn explainable
models from historical evidence and track the evidence behind the system’s inference of a
specific goal, collectively, they fall within the scope of Evidence-Based Goal Recognition.

Research Question 3. Are evidence-based goal recognition techniques practically useful?

To answer Research Question 3 (RQ3), we conduct a case study to validate the efficacy
of the evidence-based GR paradigm in addressing real-world challenges. Specifically, we
explore the feasibility and potential of applying PM-based GR techniques to a powered
transhumeral prosthesis scenario. A transhumeral prosthesis is designed to replace the
missing anatomical parts of an arm below the patient’s shoulder. A powered prosthesis is
equipped with sensors and motors designed to recognize the user’s intentions and provide
assistance. The PM-based GR technique shows potential for recognizing the intended
movements (goals) of subjects with disabilities by analyzing continuous, real-valued sensor
measurements, such as surface electromyography (sEMG) and kinematic sensors. Therefore,
this study contributes to the development of a powered transhumeral prosthesis, guided by
PM-based GR techniques, to enhance the efficiency of prosthetic use for individuals with
upper limb disabilities [75, 142, 141]. Note that the aim of this study is specifically focused
on recognizing intended movements and identifying the target prosthetic pose that is desired
to be reached. The aspect where actuators drive the prosthesis to complete movements relies
on mechanical engineering and robotic techniques, which fall outside the scope of this thesis.
Note that this case study focuses on the process mining-based GR framework for stationary
environments, without considering the adaptive variant of the framework.
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We implement two target pose recognition approaches using PM-based GR techniques
and verify through experiments that these PM-based approaches can autonomously guide the
artificial limb towards the targeted prosthetic pose, effectively achieving the intended goal.3

As PM-based GR techniques are designed to recognize goals from sequences of discrete
events, the challenge arises since the sensor signals are continuous, real-valued measure-
ments. Thus, PM-based target pose recognition approaches first require the transformation
of continuous, real-valued sensor measurements into discrete events and then follow steps
similar to the PM-based GR framework demonstrated in RQ1. The two data transformation
methods we propose involve clustering algorithms and a classifier. We compare the PM-based
target pose recognition approaches to three state-of-the-art baselines. One of the baseline
approaches uses a linear discriminant analysis (LDA) classifier to identify target poses [142].
However, this classifier is trained with signals collected when the arm reaches the target
pose and is held statically at that particular position. We refer to this baseline approach as
static LDA. Additionally, we refined the static LDA baseline [141] by training it with signals
collected during arm movements. This enhanced baseline is referred to as dynamic LDA.
Another baseline for comparison is the LSTM neural network-based target pose recognition
approach [57], referred to as LSTM.

The approaches including baselines (static LDA, dynamic LDA, and LSTM) were eval-
uated through two experimental settings: the offline experiment and the online human-in-
the-loop (HITL) experiment. In the offline experiment, we used an existing dataset collected
for the development of powered transhumeral prostheses. The dataset comprises data from
ten non-disabled subjects in a virtual reality (VR) environment designed to emulate the
behavior of patients using transhumeral prostheses [142]. Each subject was instructed to
perform forward-reaching tasks involving three distinct elbow poses. They were required to
extend their sound upper limb forward in a series of 30 iterations for each goal. The reaching
targets were positioned along the parasagittal plane. A small sphere in the VR environment
communicated a reaching target to the subject, and the subject had to reach it with their hand.
The subjects were requested to stay still for approximately one second after reaching the goal.
During each iteration towards a goal, 47 features were extracted at regular intervals from the
measurements of kinematic and surface electromyography (sEMG) sensors attached to the
subject. These sequences of features constitute time series of continuous, real-valued data
that characterize the behavior of the subject in achieving the goal. We invited another six
non-disabled subjects to participate in a human-in-the-loop (HITL) experiment, instructing
them to perform the Refined Clothespin Relocation Task (RCRT), as documented in [58, 75].
This task involves eight distinct moving trajectories, with 59 features recorded for each

3In this study, we use the terms “goal” and “target pose” interchangeably.
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trajectory. The HITL experiment is divided into two phases. During the first phase, we
instructed the subjects to conduct the RCRT tasks for 10 iterations and collected sequences
of induced signals. These signals were then used to train the GR system. In the second
phase, the VR environment was used to simulate scenarios for patients with disabilities by
deactivating two trackers (positioned at the upper arm and forearm). The participants were
then supported by the trained GR system, which allowed them to interact with the prosthesis,
when completing the RCRT tasks. The users were asked to perform the same RCRT tasks
for five iterations. Subsequently, we assessed the performance based on how effectively the
subjects could use the prosthesis device to execute the tasks. Thus, the HITL experiments
serve as a robust measure for testing the effectiveness of the developed GR system. In the
HITL experiments, we evaluated the two most effective GR approaches identified in the
offline experiments.

The offline experiments reveal that two techniques stand out as the most effective:
dynamic LDA and PM-based GR with a classifier. Specifically, the PM-based GR with
classifier achieves the highest balanced accuracy, while dynamic LDA achieves the highest F1

score. Human-in-the-loop (HITL) experiments assess the practicality of the two top offline
techniques in real-time target identification. In these online HITL experiments, our PM-based
GR with classifier achieves significantly higher F1 score and balanced accuracy than the
dynamic LDA approach. The results confirm that the target pose recognition approach,
using process mining techniques (including discovered models and alignments between new
observations and the models), performs effectively in the field of transhumeral prostheses.
This finding can benefit further developments in powered transhumeral prostheses.

Concretely, this study makes the following contributions:

• It applies the PM-based GR framework to develop target pose recognition techniques
for powered transhumeral prostheses, aiming to assist the daily activities of people
with disabilities. The proposed techniques adapt the PM-based GR approach to operate
with multi-dimensional, real-valued, continuous measurements that characterize the
observed behavior of interest;

• It evaluates the proposed PM-based target pose recognition techniques by comparing
them with state-of-the-art baselines, including static LDA, dynamic LDA, and LSTM,
through an offline experiment;

• It conducts a human-in-the-Loop (HITL) experiment to assess the two best-performing
approaches identified in the offline setting, the PM-based GR with a classifier and the
dynamic LDA baseline, verifying that the PM-based approach outperforms the baseline,
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thereby supporting the claim that the evidence-based GR framework is practically
useful in real-world scenarios.

1.3 Thesis Outline

The remaining chapters of this thesis are arranged as follows. Chapter 2 provides a compre-
hensive literature review where we present key publications in the field of goal recognition.
We discuss relevant techniques in the process mining field, including process discovery
and conformance checking. These techniques are applied to implement evidence-based
goal recognition systems. We review works related to adaptive goal recognition, including
techniques such as model reconciliation, process model repair, and concept drift detection.
Given that this thesis includes a case study involving the application of the evidence-based
GR framework to guide the movement of a powered transhumeral prosthesis, we review
state-of-the-art works in this robotic prostheses field. Finally, we introduce all the relevant
tools used for implementing the GR systems and evaluating their performance. Chapter 3
addresses RQ1 by presenting the evidence-based GR framework and illustrating it with
examples of how process mining techniques are used to implement a concrete GR system
based on the framework. We evaluate the GR performance of the implemented GR system
grounded in process mining techniques and compare it with other state-of-the-art GR ap-
proaches. To address RQ2, Chapter 4 introduces the concept of the adaptive GR problem
and defines it as an extension of the conventional single-shot GR problem. We propose the
adaptive GR framework, an extension of the evidence-based GR framework, by adding two
additional steps for collecting feedback and updating the model. We evaluate the adaptive
GR systems instantiated from the framework using both synthetic and real-world problem
instances. The evaluation results confirm that GR systems with adaptive mechanisms are
effective in solving adaptive GR problems. Chapter 5 presents the transhumeral prosthetic
study, which corresponds to addressing RQ3. It describes the experimental settings of the
project, which aims to develop a powered transhumeral prosthesis to assist people with
disabilities. We demonstrate how to apply our evidence-based GR technique to guide the
movement of the prosthesis with detailed running examples. We conduct both offline and
human-in-the-loop experiments to validate the effectiveness of our proposed approach com-
pared to the state-of-the-art baselines. The results confirm that our proposed GR technique
can provide better performance than existing baselines. Chapter 6 provides a summary of the
thesis, including some final discussions on limitations and future work directions.
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Literature Review

In this chapter, we review the relevant literature across five key aspects. First, we discuss
the key publications in the field of goal recognition (GR), evaluating their strengths and
limitations. Second, since we propose an evidence-based GR framework that uses process
mining techniques, we outline the relevant methods from the process mining field that are
used or potentially applicable to our framework. Third, we expand the discussion of the
literature that studies the conventional GR problem defined in a static environment to the
approaches that tackle the adaptive GR problem, which focuses on enhancing the robustness
of GR performance over time and accounts for changes in the underlying environment. Fourth,
as this thesis includes a case study that demonstrates the applicability of the evidence-based
GR approach to a powered transhumeral prosthesis, we review the existing state-of-the-art
approaches in this area. Lastly, we introduce the various tools used in this research.

2.1 Goal Recognition

Goal recognition is a sub-area of research in the field of artificial intelligence (AI), aiming
to identify the goals of an autonomous agent by observing and analyzing the sequence of
actions executed by that agent. The term autonomous agent (or agent), as used in this thesis,
refers to entities that can think and act intelligently to achieve specific goals. Examples of
such agents can be humans, robots, or even software. In existing literature, the concept of
plan recognition (PR) also appears frequently and shares a similar meaning with GR. A key
difference between PR and GR lies in their objectives: while both disciplines aim to identify
an agent’s final goal, PR additionally attempts to forecast the specific actions that the agent
will execute to achieve that goal [89]. The evidence-based GR techniques proposed in this
thesis are primarily designed to identify the final goal, but they can also be used to infer the
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actions needed to achieve the intended goal, as discussed in Chapter 3. In this thesis, we treat
the terms PR and GR as equivalent.

The term AI was arguably first formally proposed during the 1956 Dartmouth Conference,
which is commonly regarded as the starting point of the AI research field. Afterwards, key
early research works related to plan and goal recognition began to emerge, including: the
introduction of the General Problem-Solver by Newell et al. [91] in 1959, which aimed to
solve a wide range of problems, including plan and goal recognition; the STRIPS model
proposed by Fikes and Nilsson [34] in 1971, which became one of the foundational works in
the planning and plan recognition research area; and, in 1978, Schmidt et al. [108] introduced
the psychologically-based BELIEVER system, which initiated further research aimed at
formalizing the plan and goal recognition problem. During those early years, researchers
were attempting to identify, define, and formalize the GR problem, until 1986, when the
work by Kautz and Allen [63] provided the first formal definition of the plan recognition
problem in the field. This work involves encoding a set of plans into a hierarchical action
graph, often known as a plan library, to represent knowledge. Given that many subsequent
studies adopt a similar method for encoding such plan libraries, we refer to this class of GR
approaches as the plan library-based approach, which will be discussed in the next section.

2.1.1 Plan Library-Based Goal Recognition

Kautz and Allen [63] introduced a plan recognition theory that uses circumscription to
handle uncertainties and disjunctive information, enabling the interpretation of complex
actions from observed behaviors. Their plan recognition approach uses an action taxonomy
to logically deduce and predict future actions, making it possible to recognize plans from
simultaneous and shared actions. They encode the standard plan library into a hierarchical
action graph, where high-level actions can be composed into lower-level actions. For example,
in Figure 2.1, the action “Prepare Meal” is decomposed into actions such as “Make Pasta
Dish” and “Make Meat Dish.” By avoiding premature commitment to a single plan and
allowing for multiple interpretations, this work significantly enhances the flexibility and
applicability of plan recognition in dynamic, real-world environments. Additionally, it is
arguably the first to formalize plan recognition as a logic-based (non-monotonic) deductive
reasoning task, mapped over an encoded action taxonomy.

Vilain [134] explored the computational similarities between plan recognition and text
parsing, highlighting their shared formal structures. This work mapped Kautz’s plan recogni-
tion formalism onto established grammatical frameworks, such as context-free grammars, to
enhance the efficiency of plan parsing using well-known parsing techniques. Vilain assumed
that with tailored constraints on plan hierarchies and specific observation types, plan recog-
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Figure 2.1 Action hierarchy for preparing a meal, illustrated by Kautz and Allen [63]

nition could be streamlined as a parsing challenge, thereby rendering some complex plan
recognition tasks computationally manageable. Despite these advances, Vilain acknowledged
a significant limitation: the finite nature of plan libraries, which lacked generativity and only
encoded a limited array of possible plans, thus constraining the scope of recognizable plans.

The work by Geib and Goldman [46] introduced the PHATT algorithm, which used
probabilistic grammars to model plan execution dynamics, similar to Vilain’s approach in
using formal grammars to represent plan libraries. Unlike conventional pattern matching,
PHATT adeptly managed complex scenarios with multiple interleaved goals and actions
that were partially observed or unobserved. This made it highly suitable for applications
ranging from security monitoring to interactive systems. By incorporating temporal and
parametric constraints, PHATT enhanced its ability to interpret the sequence and timing of
actions accurately, as evidenced by robust theoretical analysis and empirical testing.

Charniak and Goldman [23] stated that plan recognition—the process of deducing an
agent’s plan from observations—primarily involves inference amidst uncertainty. To address
this, they introduced a Bayesian network composed of a series of probabilistic grammars,
which facilitated the modeling of various potential plans. This approach defined potential
explanations for the observed behaviors, often focusing on the most promising ones, and
structured these into a Bayesian network for plan recognition. This network represents
the probability distribution across these explanations, and through Bayesian updating, the
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method determines the most probable interpretation of the observed actions. This approach
is specifically designed for understanding stories in natural language.

Avrahami-Zilberbrand and Kaminka [10], in turn, used the so-called Feature Decision
Tree (FDT) to encode their plan library, effectively tackling the complexities of matching
multi-featured observations to a hierarchical plan library. They introduced a machine-
learning decision-tree that efficiently mapped observations to relevant plan steps, significantly
reducing computational load. Furthermore, they developed lazy-commitment recognition
algorithms that managed and updated recognition hypotheses incrementally, as needed,
thus avoiding the inefficiencies of constant recalculations with each new observation. The
algorithms distinguished between the agent’s current state and its history of selected states,
thereby enhancing efficiency and scalability. Through empirical testing with synthetic data,
their approach proved to enhance efficiency and capabilities for applications in real-time
monitoring and interactive systems. Many other works tackle goal recognition challenges by
employing similar logic to propose various forms of plan library-like models. These include
using probabilistic models for goal recognition [100, 45], employing Markov logic networks
to infer players’ goals in video game scenarios [48], and focusing on improving interactive
systems by recognizing user goals and plans through dialogue interactions [18, 19]. We have
listed several typical works that address the goal recognition problem using pre-defined plan
library-like models, while there remains a vast number of studies that we cannot exhaustively
introduce in this section.

Early works on plan library-based approaches demonstrated the potential of these GR
techniques to address real-world problems. However, these approaches generally require
knowledge encoding, which involves encoding the known “operational plans” of the domain
into models (e.g., a hierarchical tree or network of goals and actions). These plan libraries
are then parsed and “matched” against observed sequences of actions. The fact is that, in
many domains, crafting these libraries can be costly or simply not feasible. Furthermore,
GR approaches that rely on the specification of plan libraries may struggle to adequately
handle behavior that falls outside the provided plans. With improvements in computational
speed and power, some later studies attempt to address goal recognition from the reverse side
of the planning problem, referred to as planning-based GR. We review key publications on
planning-based GR in the following section.

2.1.2 Planning-Based Goal Recognition

Possibly the first step towards plan-library-“free” GR was Hong’s proposal [56], in which the
so-called Goal Graph is constructed from the specification of a set of primitive actions and
then analyzed against the observed actions to extract consistent goals and valid plans. It was
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then the work of Ramírez and Geffner [101, 102] that provided an elegant GR approach by
leveraging on the representational and algorithmic techniques in AI model-based automated
planning, often referred to as “plan recognition as planning.”

The 2009 work by Ramírez and Geffner [101] introduced a method that uses planning
algorithms to infer goals from observed actions, eliminating the need for a traditional plan
library. In 2010, they further advanced this concept by incorporating a probabilistic model
that accounts for the cost differences in achieving goals, either with or without conforming
to the observed actions [102]. This probabilistic extension allows the method to handle
non-optimal and noisy behaviors of agents. Intuitively, the authors drew from the insight that
a rational agent is expected to be taking the optimal, or close to optimal, plan to its (hidden)
goal, an idea also noted elsewhere [11, 94], so the probability of a plan can be linked to
its cost. The main ingredient is that the relevant costs can be computed by automatically
synthesizing adequate plans relative to the observations seen using planning technology [47].
By doing this, pre-defined plans are abandoned and replaced by – hopefully, less onerous –
declarative models of the world dynamics, which are well-studied in the automated planning
and reasoning about action and change communities. The declarative models are typically as
formulated PDDL [51] or STRIPS [34] models and are used to synthesize possible planning
goals.

Planning-based GR approaches rely on planners, which require the domain model as a
prerequisite input. Below, we provide an example that explicitly illustrates the components
and structure of a domain model. Figure 2.2 presents a simple example of a Sokoban
problem, which is a widely studied puzzle that requires moving boxes within a constrained
grid environment to achieve specific goal states. In this example, the grid consists of 3×3
cells. The robot starts at cell (0,0), a box is initially located at cell (1,1), and the goal is to
move the box to the target location at cell (2,2).

0 1 2

0

1

2 target
location

box

robot

Figure 2.2 A Sokoban problem in 3 by 3 grid.

Below is an example of using the Planning Domain Definition Language (PDDL) to
represent the Sokoban problem in Figure 2.2. The PDDL domain model contains a domain
definition and a problem definition (specific problem instance). Listing 2.1 illustrates the
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1 (define (domain sokoban)
2 (: requirements :typing)
3 (:types LOC DIR BOX)
4 (: predicates
5 (at -robot ?l - LOC)
6 (at ?o - BOX ?l - LOC)
7 (adjacent ?l1 - LOC ?l2 - LOC ?d - DIR)
8 (clear ?l - LOC)
9 )

10 (: action move
11 :parameters (?from - LOC ?to - LOC ?dir - DIR)
12 :precondition (and (clear ?to) (at-robot ?from) (adjacent ?from ?to ?dir))
13 :effect (and (at-robot ?to) (not (at -robot ?from)))
14 )
15 (: action push
16 :parameters (?rloc - LOC ?bloc - LOC ?floc - LOC ?dir - DIR ?b - BOX)
17 :precondition (and (at -robot ?rloc) (at ?b ?bloc) (clear ?floc) (adjacent ?rloc ?

bloc ?dir) (adjacent ?bloc ?floc ?dir))
18 :effect (and (at-robot ?bloc) (at ?b ?floc) (clear ?bloc) (not (at-robot ?rloc))

(not (at ?b ?bloc)) (not (clear floc)))
19 )
20 )

Listing 2.1 Domain definition

domain definition for Sokoban, capturing the overarching rules, fundamental actions, and
constraints of the puzzle. It specifies object types: LOC for grid locations, DIR for directional
movements (e.g., up, down, left, and right), and BOX for movable boxes. Additionally, it
defines four predicates relevant to this domain. The symbol ? indicates a parameter that
can be replaced by concrete values to form a valid predicate. The predicate (at-robot
?l - LOC) has one parameter, specifying the robot’s exact location. The predicate (at
?o - BOX ?l - LOC) uses two parameters to denote which box is located at which cell.
The predicate (adjacent ?l1 - LOC ?l2 - LOC ?d - DIR) includes three parameters
to describe adjacency relationships between locations in a particular direction (i.e., which
cell is adjacent to another and in which direction). Finally, the predicate (clear ?l - LOC)
has one parameter that identifies unoccupied locations, indicating where the robot can move.
The domain defines executable actions. Each action has parameters, which can be assigned
specific values to form a concrete action. However, to determine whether a concrete action is
executable, we must evaluate its preconditions. If all the predicates in the precondition are
satisfied, the action can be executed. Executing an action results in its corresponding effects,
which are essentially changes to predicates: some predicates may be added, while others may
be removed as a consequence of the action’s execution.

In this example, the Sokoban domain defines two actions: move and push. The move
action allows the robot to move between adjacent locations if the target location is clear,
updating the robot’s position accordingly. The push action enables the robot to push a box
from one location to an adjacent location, provided the target location is clear and the robot
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1 (define (problem sokobanProblem)
2 (: domain sokoban)
3 (: objects
4 up down left right - DIR
5 box0 - BOX
6 f0 -0f f0 -1f f0 -2f
7 f1 -0f f1 -1f f1 -2f
8 f2 -0f f2 -1f f2 -2f - LOC
9 )

10 (:init
11 (adjacent f0 -0f f0 -1f right)
12 (adjacent f0 -0f f1 -0f down)
13 (adjacent f0 -1f f0 -0f left)
14 (adjacent f0 -1f f0 -2f right)
15 (adjacent f0 -1f f1 -1f down)
16 (adjacent f0 -2f f0 -1f left)
17 (adjacent f0 -2f f1 -2f down)
18 (adjacent f1 -0f f1 -1f right)
19 (adjacent f1 -0f f0 -0f up)
20 (adjacent f1 -0f f2 -0f down)
21 (adjacent f1 -1f f1 -0f left)
22 (adjacent f1 -1f f1 -2f right)
23 (adjacent f1 -1f f0 -1f up)
24 (adjacent f1 -1f f2 -1f down)
25 (adjacent f1 -2f f1 -1f left)
26 (adjacent f1 -2f f0 -2f up)
27 (adjacent f1 -2f f2 -2f down)
28 (adjacent f2 -0f f2 -1f right)
29 (adjacent f2 -0f f1 -0f up)
30 (adjacent f2 -1f f2 -0f left)
31 (adjacent f2 -1f f2 -2f right)
32 (adjacent f2 -1f f1 -1f up)
33 (adjacent f2 -2f f2 -1f left)
34 (adjacent f2 -2f f1 -2f up)
35 (at box0 f1 -1f)
36 (clear f0 -0f)
37 (clear f0 -1f)
38 (clear f0 -2f)
39 (clear f1 -0f)
40 (clear f1 -2f)
41 (clear f2 -0f)
42 (clear f2 -1f)
43 (clear f2 -2f)
44 (at -robot f0 -0f)
45 )
46 (:goal (at box1 f2 -2f))
47 )

Listing 2.2 Problem definition

is positioned next to the box, facing the box in the same direction as the movement from the
robot to the box and from the box to the target location. This action updates the positions of
both the robot and the box.

The Sokoban domain provides a reusable framework, while the problem instance specifies
particular configurations, including the initial state and desired goal state, as shown in
Listing 2.2. In this specific task, the grid is a 3×3 layout where the robot begins in the
bottom-left corner f0-0f and a box (box0) is located at the center f1-1f. The domain
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defines objects such as directions (up, down, left, right), locations (f0-0f to f2-2f), and
the box. The initial state encodes adjacency relationships for valid movements, specifies that
the robot starts at f0-0f and the box at f1-1f, and marks all locations as clear except the one
occupied by the box. The goal state requires moving the box to the top-right corner f2-2f.

The research presented by Pereira et al. [95, 96] leveraged planning landmarks combined
with probabilistic models to develop efficient heuristics for predicting user goals, where
a landmark is a critical element or condition that must be realized at some point in any
valid plan that aims to achieve a specific goal. In their 2017 work [95], the use of planning
landmarks as heuristic guides allowed the system to quickly and accurately infer an agent’s
objectives without needing to simulate every possible action or outcome, thus speeding up
goal recognition. Building on this foundation, their 2020 work [96] refined these landmark-
based heuristics to enhance goal recognition accuracy. This later work includes adjustments
that better account for uncertainty and variability in human behavior and planning, thereby
improving the system’s robustness and reliability in dynamic real-world scenarios.

The work by Santos et al. [107] introduced a novel approach to goal recognition using
linear programming (LP) within an operator-counting framework. This method efficiently
handles partial and noisy observations by incorporating observation-counting constraints,
which enhanced the accuracy and robustness. The framework uses heuristic functions to
estimate uncertainties and manage noisy data, showing superior performance in agreement
ratio, accuracy, and spread compared to the existing approaches. Besides, many other
studies [130, 99, 132] tackle the GR problem by assuming that agents follow an optimal
(or near-optimal) plan to achieve their goals. These studies employ planning techniques
and probability models to infer the likely goals of an agent by comparing observed action
sequences with optimal plans generated by planners. Additionally, some works also consider
handling irrational behaviors [83, 144].

A common drawback of planning-based GR techniques is that declarative models, such
as PDDL or the STRIPS model, are generally designed to represent synthetic scenarios
(domains). It is challenging to define effective and precise models for many real-world
scenarios. For example, it is difficult for planning-based GR approaches to accurately
define domain models that describe customer behaviors in real-world scenarios like banks or
supermarkets, and then to infer the goals of these customers. Moreover, even in synthetic
domains, defining such domain models requires considerable effort from domain experts,
and these models are not generalizable to every domain. When a new domain arises, domain
experts need to define it anew. We review learning-based GR techniques in the following
section.
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2.1.3 Leaning-Based Goal Recognition

The development of deep learning has provided mature techniques for handling many pattern
recognition problems, and recent works in the goal recognition field have also applied deep
learning algorithms to train neural network models to address GR challenges. The work by
Min et al. [88] proposes a framework for player goal recognition in open-world digital games
using Long Short-Term Memory (LSTM) networks. In this study, the sequence of player
actions is analyzed to predict the player’s next gameplay objective. Their approach includes
encoding player actions, where discrete actions are transformed into continuous vector spaces.
The LSTM network automates the process of feature extraction, which not only reduces
the time and effort involved in model development but also enhances the model’s ability
to generalize across different gaming scenarios without the need for fine-tuning. Amado
et al. [6] aim to address the GR problem without relying on pre-defined domain knowledge
provided by domain experts. They aim to predict the next images from a sequence of images
using a variational autoencoder (VAE) to encode these images into a latent space. This latent
representation captures essential features of the raw data that are relevant for planning and
goal recognition. From the latent representations, they automatically generate a planning
domain, which includes defining an action library in PDDL. Another work by Amado
et al. [7] proposed a GR framework that integrates model-free reinforcement learning (RL)
techniques. In this system, policies or utility functions for each potential goal are obtained
using tabular Q-learning. These learned policies are then applied to infer the agent’s goals by
comparing the observed trajectory against the learned policies, thereby identifying the most
likely goal. Chiari et al. [24] addressed GR as a classification task by introducing GRNet, a
Recurrent Neural Network (RNN) designed to process action sequences and determine the
class (goal) of each sequence. Through experiments, they demonstrated that GRNet achieves
superior performance in terms of speed and accuracy compared to the landmark-based GR
approach [96] across various domains.

Learning-based approaches do not rely on pre-defined planning domain models or plan
libraries. Although these approaches require historical datasets for training, data collection
and model training can be automated, which minimizes human effort. Moreover, the trained
models are generalizable and can predict sequences not present in the historical data. How-
ever, a common drawback of neural network-based models is their “black-box” nature, which
obscures the underlying logic behind their inferences. In this thesis, the “evidence-based GR
framework” we propose not only automatically learns models but also acquires interpretable
models, such as Petri nets, enhancing the transparency of the inferred logic. A few works are
similar to our proposal. However, they require more than just historical action sequences. For
instance, the GR approach proposed by Sohrabi et al. [114] requires sequences of states as
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input and uses pre-defined domain knowledge as mapping functions to map state sequences to
plans. Another work by Shvo et al. [111] presented a GR approach that can learn interpretable
dynamics, specifically through deterministic finite automata. However, this approach requires
additional knowledge of the transition functions.

In summary, plan library-based approaches are explainable, but defining a generalized plan
library is challenging and requires significant human effort. Planning-based approaches,
utilizing STRIPS or PDDL models, can exhaustively represent possible plans within a specific
domain, yet defining such a domain model also demands considerable human effort. On
the other hand, learning-based GR approaches, such as those using deep neural network
models, generally lack explainability. We state that our GR approach primarily aligns with
learning-based GR. Moreover, our proposal retains the explainability advantages, as detailed
in Table 2.1, which outlines the advantages and disadvantages.

Human effort-free Generalizable Explainable
Plan library-based GR ✘ ✘ ✔

Planning-based GR ✘ ✔ ✔

Learning-based GR ✔ ✔ ✘

Our GR framework ✔ ✔ ✔

Table 2.1 The capabilities of GR approaches.

2.2 Process Mining Techniques

The study of workflow executions began in the late 1990s, and the concept of process mining
was first introduced by van der Aalst [121]. Process mining is an analytical discipline aimed
at discovering, monitoring, and improving real processes by extracting knowledge from event
logs. It includes three main research aspects: process discovery, conformance checking, and
enhancement [122]. In this thesis, the proposed evidence-based GR framework incorporates
process discovery and conformance checking techniques.

2.2.1 Process Discovery

Process discovery is a critical component of process mining that focuses on automatically
extracting process models from event logs. These event logs contain detailed records of
process activities captured by information systems. The process models are representations
of the sequences and dependencies between activities within a business process. Common
modeling notations include Petri nets, BPMN (Business Process Model and Notation), and
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Causal nets. We review the key publications on process discovery techniques, including the
Alpha Miner, Inductive Miner, Heuristics Miner, Split Miner, and Directly Follows Miner.

The Alpha Miner [124] is one of the foundational algorithms in process mining. It uses the
ordering relations between events to construct a workflow net (a type of Petri net specifically
tailored for modeling workflows) that captures the control flow of the process. The algorithm
identifies causal dependencies between activities. For instance, if activity a1 is often followed
by activity a2, a causal relation a1→ a2 is inferred. The Alpha Miner algorithm follows three
main steps. First, it identifies relations by determining direct succession, causality, parallel,
and choice relations between activities based on the event log. Second, it constructs places
using these identified relations to create states in the Petri net. Finally, it builds the net by
connecting activities with places to form a Petri net that accurately reflects the observed
process behavior. However, the Alpha Miner can be sensitive to noise and may produce
incorrect models if the event log contains infrequent or erroneous events. Additionally, it
struggles with accurately discovering parallel activities, especially in complex and highly
concurrent processes.

The Inductive Miner [71] uses a divide-and-conquer strategy to recursively split an event
log into smaller subsets based on identified patterns such as sequences, parallelisms, choices,
and loops. It guarantees the production of sound workflow nets, ensuring that the discovered
process models are free from deadlocks and other anomalies. One of the key strengths of the
Inductive Miner is its robustness against noise, making it particularly suitable for real-world
event logs that often contain irregularities and infrequent behaviors. Additionally, it achieves
a good balance between fitness and precision, making it well-suited for constructing process
models from structured and repeated behaviors.

The Heuristics Miner [136] constructs process models by identifying frequent and sig-
nificant patterns in event logs, effectively handling noise and incomplete data. It produces
heuristics nets, which represent the sequence, parallelism, and frequency of activities within
a process, enabling organizations to visualize and optimize their workflows. The Flexible
Heuristics Miner [137] (FHM) is an enhanced version of this algorithm, developed to address
the limitations of the traditional Heuristics Miner in dealing with low-structured and noisy
event logs. FHM utilizes augmented Causal nets (augmented-C-nets) to provide a more
detailed and accurate representation of complex control-flow constructs. By incorporating
split and join frequency tables and focusing on the most significant patterns, FHM achieves
improved accuracy and understandability, making it a robust and flexible tool for discovering
process models from complex and noisy data.

The Split Miner [9] addresses common issues in existing process discovery methods
such as producing complex, spaghetti-like models and balancing model quality dimensions
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like fitness, precision, generalization, and simplicity. By filtering the directly-follows graph
induced by an event log and identifying combinations of split gateways, Split Miner captures
concurrency, conflict, and causal relations effectively. It guarantees the creation of deadlock-
free process models without being restricted to block-structured models. Empirical studies
demonstrate that Split Miner achieves a high and balanced fitness and precision while
maintaining low complexity and faster execution times compared to other state-of-the-art
methods.

The Directly Follows Miner (DFM) [72] constructs process models by directly capturing
the transitions between activities as they appear in the event logs. It primarily focuses on
the directly-follow relationships, creating a model that precisely reflects the sequences in
the events log. The DFM technique is designed to create clear and user-friendly process
maps, which can be easily interpreted by stakeholders. Unlike more complex academic
tools that often produce models with intricate details like concurrency and inclusive choices,
DFM aims for simplicity and clarity. It helps organizations to visualize their processes and
identify performance measures such as execution times and bottlenecks. However, one of the
challenges with directly-follows models is ensuring their accuracy and soundness, as overly
simplistic models can lead to incorrect conclusions. To address this, DFM incorporates
conformance checking techniques to validate the discovered models against the event logs,
ensuring that the models accurately reflect the recorded process behavior.

2.2.2 Conformance Checking

Conformance checking is a technique that demonstrates the alignment between observed
behavior (event logs) and modeled behavior (process models). In this thesis, the evidence-
based GR framework employs techniques drawn from two existing works [1, 126] to construct
optimal alignments between new observations and the learned process models. The work
by Adriansyah et al. [1] focuses on a cost-based approach to assess fitness in conformance
checking. This method quantifies the cost of deviations between the model and the log,
providing a monetary or impact-based measure of non-conformance. Additionally, the work
by van der Aalst et al. [126] elaborates on the concept of replaying history on process models.
This approach involves mapping events in an event log to elements within a process model,
enabling detailed analysis of where and how actual process executions deviate from the
model. In Chapter 3, we elaborate on the conformance checking using a concrete running
example to demonstrate how alignments are utilized to compute probabilities, which are then
used to infer the goal.
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2.2.3 Predictive Process Monitoring

In the area of business process management, several existing works have objectives similar
to goal recognition. These works aim to predict the business goal of an incomplete business
process (i.e., a partially observed trace), a task referred to as outcome-oriented predictive
process monitoring [118] (PPM). From a process mining perspective, PPM is an analogous
research area to GR in the planning community. The existing methods [82, 69, 125, 39, 133,
2] predict the class label (business goal) of a given trace based on trained classifiers. Similar
to our GR approach, these works require an offline phase for learning classifiers and an
online phase for predicting. As summarized by Teinemaa et al. [118], the outcome-oriented
predictive process monitoring methods first extract and filter traces from an event log to
obtain the prefixes of the traces. Next, these methods divide the trace prefixes into multiple
buckets for training several classifiers. Several bucketing approaches are used, such as the
k-nearest neighbors (KNN) [82], the state-based approaches [69, 125], and the clustering-
based approaches [39, 133]. Subsequently, the trace prefixes in each bucket are encoded
to feature vectors, since training the classifiers requires the fixed-length feature vectors as
input. Finally, the classifiers are trained with commonly used classification algorithms such
as decision tree (DT), random forest (RF), or support vector machine (SVM). In the online
predicting phase, the trained classifier assigns a class label to an observed trace. However,
these outcome-oriented predictive process monitoring approaches are also non-interpretable
artifacts. In contrast, we construct interpretable artifacts such that both skill models and
alignments are interpretable.

2.3 Adaptive Goal Recognition

We extend the single-shot GR problem to the adaptive GR problem. Lesh [76] proposed an
approach for selecting the best-performing adapted GR system to solve a single-shot GR
problem, given a collection of allowed GR system adaptations. However, different from the
work by Lesh [76], our study focuses on retraining a data-driven GR system to maintain
high performance over an extended period, as demonstrated in Chapter 4. Adaptive GR
demands GR systems to tackle multiple single-shot GR tasks over a period of time. When the
environment changes, the GR systems need to detect the changes and subsequently adapt their
GR inference procedures. The adaptive GR problem can be decomposed into subproblems
of three types: a conventional GR problem, a knowledge model updating problem, and a
concept drift detection problem. The related works for conventional GR have already been
reviewed in Section 2.1. In this section, we explore related works that focus on updating the
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knowledge model and detecting concept drift. Additionally, we discuss potential applications
that can benefit from adaptive GR techniques.

The work by Bryce et al. [17] proposed a technique for issuing queries for updating the
knowledge models. This technique adapts the models by analyzing query answers. However,
instead of updating the models automatically, this technique relies on human-provided query
answers. Chakraborti et al. [22] proposed a model reconciliation algorithm. The idea of
model reconciliation is that if two different models result in different optimal plans for the
same goal, the reconciliation technique attempts to modify one of the models to get a single
optimal plan for both models. Consequently, when reconciling the models, one updates them
according to a single trace. In contrast, our relearning mechanism updates the models based
on an arbitrary number of traces. The algorithms for process model repair can be used for
updating the process models of the PM-based GR systems [33, 97]. In this thesis, however,
the PM-based GR systems relearn new process models from scratch. Specifically, we use
DFM [72] to learn the initial models and then relearn the up-to-date models. The problem
of concept drift detection in process mining studies ways to detect behavioral changes by
analyzing the chronologically ordered traces in an event log [140, 29, 55]. The solutions
to the concept drift detection problem can be used to trigger the relearning of knowledge
models of adaptive GR systems.

The adaptive GR systems can be deployed in scenarios such as human-robot teaming,
where robots continuously update their estimation of the plans and goals of the human(s)
in the loop with every new observation. The domain knowledge of an adaptive GR system
can evolve over time due to changing human goals and a changing environment. An early
example using the planning-based GR system [102] and an abstraction technique called
“resource profiles” is presented by Chakraborti et al. [21], where the evolving nature of the
environment was extracted from the output of the GR algorithm to feed into the ultimate
plan generator. Similar approaches have recently been built on this principle of abstraction in
settings that require higher-order representations driving the adaptive plan/goal recognition
and plan generation cycle [60].

2.4 Powered Transhumeral Prosthesis

In the field of powered transhumeral prosthetics, linear discriminant analysis (LDA) is the
most commonly used classifier algorithm in prosthesis control and is also used in gesture
recognition scenarios via Myoelectric interfaces [59, 80]. Due to the lightweight and low-
complexity nature of the LDA classifier, it can achieve high control accuracy with short
training and processing times [93]. Machine learning classifiers are commonly implemented
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in upper-limb prostheses [44]. Given an input signal from sensors, a classifier predicts the
output signal and the intended movement of the patient. In the work by Shehata et al. [110],
it was demonstrated that neural networks achieve high goal recognition accuracy because
they can learn complex dependencies between signal inputs and control outputs, although
they require extensive training. For instance, Huang et al. [57] successfully employed LSTM
neural networks to predict target poses based on time series of electromyography signals.

Chapter 5 explores how the evidence-based GR framework can contribute to the develop-
ment of powered transhumeral prostheses. To this end, we implement a system based on the
evidence-based GR framework, designed to analyze repeated, real-valued, continuous data
captured by typical sensors and to infer the users’ movement intentions (goals). As existing
literature has demonstrated that using varied features customized for individual subjects
enhances the accuracy of identifying intended movements [141]. Such customization intro-
duces complexity into the development of ideal plan libraries or domain models, necessitating
unique plans or models for each individual subject. We state that the evidence-based GR
framework is data-driven and particularly well-suited for customization, as it can learn per-
sonalized patterns from a patient’s historical behavior. Therefore, we conducted both offline
and online experiments on the individual level. In the offline setting, the GR techniques are
compared using pre-recorded data. In the online setting, we assess the performance of the
GR techniques through human-in-the-loop control experiments. This experimental setup
aims to address concerns raised in the literature about the conflicting results regarding the
performance correlation between these two conditions [92, 81, 52].

2.5 Tools

This thesis develops and evaluates process mining-based GR systems using several tools. The
work by Speck et al. [115] introduced the Symbolic Top-K Planner, aimed at generating a set
of the k most cost-effective plans for a given planning task, referred to as the top-k planner.
The top-k planner utilizes representations of state spaces through binary decision diagrams,
which can handle sets of states. This approach enhances efficiency and scalability when
exploring multiple potential solutions, and the top-k planner is both sound and complete.
The decision problem associated with determining whether there exists a set of k plans
for a planning task is theoretically PSPACE-complete. This places top-k planning equal to
classical planning in terms of computational complexity. The work by Katz and Sohrabi
[61] aims to generate multiple plans that not only meet quality standards but also exhibit
diversity. They propose the Forbid Iterative (FI) Approach, a planning algorithm that
modifies the planning task rather than the planner itself, which is adaptable to any planner.
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Similar to the top-k planner, the FI approach can first generate a large set of plans and
then choose a subset based on configurable diversity metrics. Therefore, we refer to it
as a diverse planner. Additional tools relevant to this thesis include ProM Tools,1 which
offer an expandable framework accommodating diverse process mining algorithms through
plug-ins. The Exploratory Modeling and Analysis (EMA) Workbench2 is a tool we used for
sensitivity analysis and parameter optimization, as detailed in Chapter 3 Section 3.5. LAPKT
provides straightforward interfaces, providing flexibility by decoupling parsers from problem
representations and algorithms [103]. Tarski facilitates the modeling and manipulation of
AI planning problems [38]. In Chapter 4 Section 5.4, the experimental data for evaluating
adaptive GR systems consist of a series of historical agents’ traces generated in different
environments. We developed a tool called GRACE to generate such experimental data. Given
a GR problem instance in PDDL format, GRACE utilizes the Tarski and LAPKT tools to
parse and manipulate the input environment models, simulating different drifts. Additionally,
it leverages the top-k and diverse planners to generate sequences of agent actions towards
different goals in the drifting environments.

1https://promtools.org/
2https://github.com/quaquel/EMAworkbench

https://promtools.org/
https://github.com/quaquel/EMAworkbench


Chapter 3

Process Mining-Based Goal Recognition

In this chapter, we address RQ1: How to do goal recognition in the absence of domain
knowledge? We introduce the evidence-based goal recognition framework, which is inspired
by the principles of observational learning [12]. This framework is also referred to as the
Process Mining-based Goal Recognition (PM-based GR) framework because it is primarily
designed to use process mining techniques to instantiate concrete GR systems. These systems
can automatically learn process models from event logs of historical agent observations. The
learned models encode the skills for achieving various goals in the environment, and the GR
system analyzes deviations between the new observed agent behavior and the learned skill
models to make inferences. The GR system is expected to output a probability distribution
over a pre-defined set of goal candidates, such a problem referred to as Probabilistic Goal
Recognition. We assume that the agent operates in a static environment and receives only
a sequence of observations as input, which is a common assumption in the field of goal
recognition research.1 The PM-based GR framework serves as the foundation of this thesis,
with the adaptive GR (in Chapter 4) and the case study of the robotic prosthesis scenario (in
Chapter 5) built upon the findings of this chapter.2

Concretely, this chapter makes the following contributions:

• It proposes a GR framework that describes the fundamental mechanisms for performing
GR without pre-defined models;

• It discusses an implementation of a concrete GR approach based on process mining
techniques that follows the proposed GR framework and relies on four parameters to
construct a probability distribution over possible goals and to infer the most likely

1The terms “single-shot” and “conventional” GR, which are mentioned repeatedly in the rest of this thesis,
actually refer to probabilistic GR.

2This chapter is an adaptation of a previously published work, “Fast and accurate data-driven goal recogni-
tion using process mining techniques.” Artificial Intelligence, 323:103973, 2023. ISSN 0004-3702.
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goal. The four parameters are a “smoothening” constant (φ ) that flattens the proba-
bility distribution over possible goals, a consecutive mismatch suffix factor (λ ) that
detects whether the agent is deviating from a candidate goal, a discount factor (δ ) that
emphasizes the recently observed actions to have more impact on the goal inferences,
and a decision threshold (θ ) that determines which goals should be inferred as likely
goals;

• It presents the results of a sensitivity analysis over 15 IPC domains and ten real-world
domains that confirm that all four parameters (φ , λ , δ , and θ ) have a significant impact
on the performance of our GR approach;

• It presents a scenario discovery method for identifying parameters that lead to better
performance of our GR approach;

• It summarizes the insights of a comprehensive comparison of the performance of
our GR approach with the state-of-the-art techniques, which show that our approach
achieves a comparable performance and is often faster;

• It demonstrates that our GR approach is applicable in real-world scenarios.
The next section introduces the probabilistic goal recognition problem by means of a

motivating example. Section 3.2 is devoted to presenting the GR framework. Section 3.3
introduces the process mining techniques used to implement a concrete PM-based GR system,
which is subsequently presented in detail in Section 3.4. Finally, Section 3.5 presents the
results of an evaluation of our implementation of the GR system.

3.1 Probabilistic Goal Recognition

A definition of probabilistic goal recognition that can be symbolically formulated requires
some preliminary knowledge about planning, as goal recognition is akin to the reverse side of
an automated planning problem. To this end, we use symbolic terms from planning to define
the probabilistic goal recognition problem. Firstly, we introduce several important sets: (i)
Let F be a set of fluents, where a fluent refers to a condition or property of the world that
can change over time. A fluent can be represented in first-order logic by a predicate. In the
PDDL model example presented in Chapter 2, Listing 2.2, each row in the “:init” section
describes a property of the initial state. For example, the predicate (at-robot f0-0f)
specifies the robot’s location and represents a fluent; (ii) Let A be the set of all possible
actions, where each action a ∈ A has preconditions Pre(a) ⊆ F , additive effects Add(a) ⊆ F ,
and delete effects Del(a) ⊆F . Additive effects refer to the outcomes of actions that introduce
new fluents to the current state of the world without removing or conflicting with existing
facts. In contrast, delete effects represent the negative consequences of an action, removing
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fluents from the current state of the world; (iii) Let O =A∗ represent the set of all possible
finite-length action sequences formed by concatenating actions from the set A. Then, the
probabilistic goal recognition problem can be defined as follows.

Definition 1 (Probabilistic goal recognition). Given a tuple < F ,A,I,G,O >, where F is a
set of fluents, A is a set of actions, I ⊆ F is the initial state, G ⊆ 2F is a set of candidate goals
(each given as a set of fluents that ought to be true in the corresponding goal state), and O ∈O
is an observation given as a sequence of actions performed by an agent, the probabilistic
goal recognition problem consists in obtaining a posterior probability distribution over the
candidate goals (G) that describes the likelihood of the agent achieving the different goals.

In this thesis, the definition of the single-shot, or conventional, GR problem refers to the
definition of probabilistic GR, which serves as the foundation (the adaptive GR problem in
Chapter 4 is derived from this definition).

We present an example of a probabilistic GR problem in Figure 3.1a. The figure depicts
an 11x11 grid, including the initial state in cell I and six goals represented by cells A to F
(this grid is similar to the grid used in [102]). The grid also shows three observed walks of
an agent, comprising a rational walk towards goal A (green), an irrational walk towards goal
A (red), and a rational walk towards goal F (blue). To achieve a goal, the agent can perform
horizontal and vertical steps at the cost of 1 and diagonal steps at the cost of

√
2.

The green walk has a cost of 5+3
√

2. As this cost is close to the cost of the optimal walk
from I to A (i.e., 1+5

√
2), we say that it is rational. The red walk starts by approaching goal

F before diverting towards reaching target goal A, resulting in a cost of 5+6
√

2. Hence, the
red walk is irrational. Finally, the blue walk towards goal F has a cost of 3+4

√
2, which is

close to the cost of the optimal walk from cell I to cell F and is, therefore, rational.
In Section 3.4, we present our approach to obtaining the probability distributions over goal

candidates, referring to our GR system for now. Figures 3.1b to 3.1d show the probability
distributions over the candidate goals computed by our GR system for the three walks
from Figure 3.1a. As expected, along the green rational walk, goal A is consistently the most
likely goal; see Figure 3.1b. For the first seven steps of the red irrational walk, however,
goals E and F prevail, while goal A is identified as the most likely goal only towards the
end of the walk; see Figure 3.1c. Finally, the blue rational walk towards goal F shows an
equal probability towards goals E and F for the first three steps (the same confusion as for the
first steps of the irrational walk), with the probability for goal F prevailing from step four
onwards; see Figure 3.1d. Empirical evidence suggests (refer to Section 5.4) that our GR
system can be used to quickly and accurately infer the intended goals of agents for a wide
range of domains.
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(a) Three walks of an agent in a grid:
two from initial cell I to goal cell A
(green rational walk and red irrational
walk) and one from initial cell I to
goal cell F (blue rational walk).
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(b) Rational walk to goal A.
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(c) Irrational walk to goal A.
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(d) Rational walk to goal F.

Figure 3.1 Inferred probability distributions (Figure 3.1b, 3.1c, and 3.1d) over the six goals
from Figure 3.1a computed based on the observed behaviors shown in Figure 3.3.

Ramírez and Geffner [102] derive probability distribution over the possible goals from
Bayes’ Rule based on the assumption that the probability of a plan is inversely proportional
to its cost. Such assumption is encapsulated in the notion of cost difference between the (cost
of the) optimal plan for a goal matching the observed actions and the optimal plan that could
have been reached otherwise, that is, not embedding the observed actions. To compute those
costs, planning systems are used over specific encodings of the domain that also account for
the observations. Ultimately, this yields a Boltzmann-like sigmoidal distribution with the
important property that the lower the cost difference, the higher the probability.

Several works have subsequently elaborated Ramírez and Geffner’s set-up (which we
will refer to as R&G from now on) or grounded it to specific interesting settings, such as
navigation. Here, we shall adopt a most recent elaboration by Masters and Sardiña [84, 86],
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which refined the original set-up to achieve a simpler and computationally less demanding GR
approach that can handle irrational agent behavior parsimoniously without counter-intuitive
outcomes. Concretely, taking optc(St,O,G) to denote the optimal cost of reaching goal G ∈ G
from state St ⊆ F by embedding the sequence of observations O ∈ O, we first define the cost
difference of reaching the goal G from St via observations O as follows:3

costdiff (St,O,G) = optc(St,O,G)−optc(St,ε,G).

When the agent is observed to act optimally for G, the cost difference is zero; as the agent
becomes more suboptimal towards G, the cost difference increases. Here, the difference to
the R&G approach is that the “cost difference” is calculated against the optimal cost (without
knowing any observations) to reach the goals, rather than the optimal cost without executing
some observed actions, which is known to be computationally demanding [84, 86].

Using the cost difference and assuming for simplicity that all goals are initially equally
likely, the probability of a candidate goal G ∈ G given observations O from initial state I can
be obtained as follows (note the denominator acts here as the normalization factor) [102, 85]:

Pr(G ∣O) = e−β×costdiff (I,O,G)

∑
G′∈G

e−β×costdiff (I,O,G′) , (3.1)

where β is a parameter that “allows the goal recognition system developers to soften the
implicit assumption of the agent being rational” [102]. This account yields the principle
that the more suboptimal an agent acts for a potential goal, the higher the cost difference,
hence the lower the probability. Nonetheless, we adopt Masters and Sardiña [85, 83]’s
approach—in turn, inspired in the cost-ratio used by Vered et al. [131]—that lifts the original
requirement that agents ought to be rational (or close to rational) by dynamically modulating
the β parameter using a rationality measure of the observed agent as follows:

β = (max
G∈G

optc(I,ε,G)
optc(I,O,G))

η

. (3.2)

Intuitively, this β expresses the most optimistic rationality ratio among all goals, with β = 1
when the agent is fully rational towards some goal. By using this dynamic parameter,
the more erratic the agent behavior (irrational to all goals), the more Pr(⋅) approaches a
uniform distribution. By doing this, the resulting GR system is capable of self-modulating

3Under no observations (i.e., O = ε), optc(St,O,G) reduces to optimal cost to G from state St.
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its confidence as observations are gathered (η is a positive constant regulating how quickly
confidence should drop when irrational behavior is seen).

The existing solutions that implement this approach require the declarative model of the
planning domain. Our Research Question 1 explores how to perform GR in the absence
of domain models. We assume the full sets of fluents F and actions A are not available,
and the initial state I is also unknown. Instead, we collect a set of action sequences that
resulted in achieving the candidate goals in the past, denoted by D ⊆ A∗×G. We propose
a solution based on process mining [123] techniques, which are used to learn skill models
for achieving different goal candidates from historically observed traces. We then analyze
the deviations between the learned skill models and the newly observed action sequence
of the agent to infer its goal. Concretely, given a tuple < D,G,τ >, where D ⊆ A∗ ×G is a
set of pairs, each relating a historical sequence of actions to the goal achieved by executing
this sequence, G is a set of goal candidates, and τ ∈ A∗ is an observation represented as a
sequence of actions performed by an agent, the problem consists of obtaining a posterior
probability distribution over the goal candidates. Section 3.2 presents our GR framework
inspired by the principles of observational learning [12]. The framework can be seen as a
collection of abstract components that, when instantiated, result in a concrete GR system.
Then, in Section 3.4, we discuss an instantiation of the framework using process mining
techniques to implement a GR system.

3.2 Goal Recognition Framework

We present a framework for implementing intelligent agent systems that can continuously
recognize goals according to newly observed actions and re-learn from the mistakes to
improve the retained knowledge. The framework is inspired by the principles of observational
learning, which considers the attitudes, values, and styles of thinking and behaving acquired
by observing other examples [12]. Note that, compared with other well-developed cognitive
architectures, the proposed framework shown in Figure 3.2 is arguably one of the many
components of a cognitive architecture, namely, a goal-intention recognition module (not
a completed cognitive architecture). The framework is specifically proposed as an outline
to implement process mining-based GR systems and consists of four corresponding stages:
attention, retention, motivation, and recognition. The framework is given as a collection of
UML Activity Diagrams that must be enacted simultaneously to support continuous learning
and goal recognition. Next, we summarize each of these four stages.

1. The attention stage is responsible for determining whether an observed stimulus, e.g., a
performed action, is relevant for learning a certain skill and capturing the relevant stimuli.
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Figure 3.2 A schematic visualization of the evidence-based goal recognition framework.

This stage also regulates the selection of the relevant observed stimuli for a certain learning
purpose and ignores irrelevant or noisy stimuli. In the top-left part of Figure 3.2, the
framework proposes to capture relevant actions s and w executed by agents A and B,
respectively. Meanwhile, the framework also recognizes that agent A has achieved goal
α . Hence, a GR system that instantiates the framework must “know” the possible goals
agents may achieve in the environment and the conditions when these goals are fulfilled.

2. The retention stage (the top-right part of Figure 3.2) is responsible for incorporating the
observed stimuli into skill models, where a skill model describes how agents achieved
one particular goal in the past; for example, the α-skill model records the historical
traces to goal α . The framework receives information about the observed actions s and
w and appends them to the corresponding currently constructed traces. Once the “Goal
completion recognized” signal triggered by action α is captured, the corresponding trace
of agent A is added to the skill library, a collection of recently observed traces that lead
to the same goal. For instance, in the figure, the “Retain skill trace” activity adds trace
α5 = ⟨e,e,e,n,e,w,s⟩ to the α-skill library (α5 is one of the traces to goal α). We use
process discovery techniques [123, 127] from process mining to update old skill models
based on the retained traces. Thus, a skill model aggregates and generalizes the observed
behaviors for achieving the corresponding goal.



35 Process Mining-Based Goal Recognition

3. Based on the observed stimuli captured in the attention stage and stored in the retention
stage, the motivation stage of the framework is responsible for triggering the subsequent
goal recognition episodes. In the bottom-left part of Figure 3.2, as a response to the
“Action retained” signal triggered by action w, goal recognition is initiated by triggering
the “Goal recognition initiated” signal. The motivation stage filters actions, waiting to
accumulate sufficient meaningful subsequences before triggering the recognition stage for
deeper computation. If the observed actions lack insightful patterns, the system delays
processing to gather more information, conserving computational resources. However, in
this thesis, we do not instantiate the motivation stage when implementing the concrete
GR system; instead, the recognition stage is triggered at every step upon receiving a new
action. According to the principles of observation learning, all four stages, including the
motivation stage, should ideally be incorporated. Thus, integrating the motivation stage to
develop an evidence-based GR system remains a direction for future work.

4. The recognition stage is responsible for inferring the goals of the currently observed agents
based on the retained skill models. This stage constructs the observed trace fragment, as
shown in the bottom-right part of Figure 3.2. For example, fragment ⟨s,e,w⟩ is performed
by agent B and launches the “Check conformance” activity. The latter analyzes the
commonalities and discrepancies between the trace fragment and all the available skill
models to compute the distribution over the possible goals the agent may be striving to
achieve. We use conformance checking techniques [126, 123, 73] from process mining to
compute the commonalities and discrepancies between trace fragments and skill models.
Finally, based on the performed analysis, the framework decides the goal of the agent. For
instance, Figure 3.2 suggests that β is the goal that agent B currently aims to achieve since
⟨s,e,w⟩ matches the β -skill model (the model for achieving goal β ) better than the α-skill
model (for goal α).

Apart from the four stages mentioned above, a feedback mechanism for learning based
on the recognition mistakes can be introduced. The need for such a feedback mechanism
is motivated by the argument that observational learning could emerge from reinforcement
learning [14].

3.3 Process Mining Techniques

Process mining studies methods, techniques, and tools to discover, monitor, and improve
processes carried out by organizations using the knowledge accumulated in event logs
recorded by information systems that support the execution of business processes [123].
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An event log, or log, is a collection of traces, where each trace consists of a sequence of
timestamped events observed and recorded during the execution of a single case of a business
process. Each event in such a log refers to an action executed by an agent at a particular time
and for a particular case. Let E be a universe of events. Then a log is defined as follows.

Definition 2 (Trace, Event log). A trace τ is a finite sequence of n events ⟨e1, . . . ,en⟩, with
ei ∈ E and i ∈ [1..n]. An event log, or log, L is a finite collection of traces over E .

In relation to Definition 1, a trace τ can be understood as an observation O. For the remainder
of this chapter, we will use the symbol τ to represent the observation O.
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Figure 3.3 Observed agent behaviors from initial cell I to each of the goals A–F.

Continuing with the example in Figure 3.1a, we assume that the surrounding environment
(domain model) of the agent is unknown. However, the observed action sequences executed
by the agent can be used to learn models that explain the behavior for achieving different
goals. For each of the six goals from Figure 3.1a, each sub-figure in Figure 3.3 shows
“footprints” of six observed walks of the agent from cell I to one of the six goals. The
thickness of an arrow in the sub-figures indicates the frequency with which the corresponding
step was taken. We can encode each collection of six sequences of actions towards each of
the six goals from Figure 3.3 in an event log of six traces. An event in a trace of such an
event log encodes a step in the grid and can be specified as a pair of two cells: the source cell
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Figure 3.4 Event log LA representing the walks to goal A shown in Figure 3.3a.

and the target cell. For example, by (5,0
4,1), we denote the event of the agent moving from the

initial state in cell (5,0) to cell (4,1) in the grid. Let LA = {τ1, . . . ,τ6} be the log that contains
six traces, each capturing the moves from some walk towards goal A shown in Figure 3.3a.
These six traces from log LA are specified in Figure 3.4. In the figure, a trace is defined as a
table with two rows, where a column encodes one event. The bottom row specifies the moves,
while the top row visualizes the moves as arrows pointing in the directions of the moves.
Thus, trace τ1 in Figure 3.4 consists of six events. The first five events encode diagonal
north-west moves that take the agent from cell (5,0) to cell (0,5), and the last event encodes
the move from cell (0,5) to cell (0,6), thus going north and reaching the goal.

Process Discovery

The behavior captured by the traces in an event log can be graphically represented us-
ing various process models, such as Petri nets, Directly-Follows Graphs (DFG), Business
Process Model and Notation (BPMN), UML Activity Diagrams, or Event-Driven Process
Chains [123]. In this thesis, we utilize Petri nets due to their formal mathematical framework
for representing systems. Their concepts of tokens, places, and transitions align closely with
the notions of transitions and states commonly used in the planning community. Additionally,
Petri nets are particularly well-suited for applying conformance checking. However, BPMN,
DFG, or other models could also serve as viable alternatives. Process discovery is a technique
that automatically constructs a process model from an event log [4, 124]. Given a universe
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of logs L and a universe of process models M, a process discovery technique π is a function
that maps event logs onto process models, i.e., π ∶L→M. We say that the model π(L), L ∈L,
is discovered from event log L using technique π .

Petri nets provide a convenient way to describe and analyze traces rigorously. A Petri net
is a directed bipartite graph with two types of nodes: places (graphically denoted by circles)
and transitions (graphically denoted by rectangles). Nodes of a Petri net are connected via
directed edges called arcs. Transitions of a Petri net represent actions, or events, while places
represent conditions. Let L be a universe of labels, then a Petri net is defined as follows [120].

Definition 3 (Petri net). A Petri net is a tuple (P,T,A,λ), where:
• P is a finite set of places,
• T is a finite set of transitions, such that P∩T = ∅,
• A ⊆ (P×T)∪(T ×P) is a set of arcs, and
• λ ∶ P∪T →L is a labeling function.

A state M of a Petri net, often referred to as a marking, is a function that associates places of
the Petri net with numbers, i.e., M ∶P→N0. A marked net, or a net, is a tuple (P,T,A,λ ,M0),
where (P,T,A,λ) is a Petri net and M0 ∶ P→N0 is the initial marking. The preset of a node
y ∈P∪T is denoted by ●y and is the set of all input nodes of y, i.e., ●y = {x ∈P∪T ∣ (x,y) ∈A}.
The postset of a node y ∈ P∪T is denoted by y● and is the set of all output nodes of y, i.e.,
y● = {x ∈ P∪T ∣ (y,x) ∈ A}. If ∀p ∈ ●t ∶M(p) > 0, transition t ∈ T is said to be enabled in
marking M. If t is enabled, the firing of t, denoted by M

tÐ→M′, leads to a new marking
M′, with M′(p) =M(p)−1 if p ∈ ●t ∖ t●, M′(p) =M(p)+1 if p ∈ t●∖●t, and M′(p) =M(p)
otherwise. An execution σ of a net N is either the empty sequence, if no transitions are
enabled in the initial marking, or a sequence of transitions ⟨t1,t2, . . . ,tn⟩, ti ∈ T , i ∈ [1..n], such
that M0

t1Ð→M1
t2Ð→ . . .

tnÐ→Mn and there are no enabled transitions in Mn.
Figure 3.5 shows the marked net discovered from log LA shown in Figure 3.4 using the

Split miner discovery technique [9]. Note that in the discovered net, we label transitions
with events to refer to the actions they represent, i.e., it holds that E ⊂ L. In the figure, the
initial marking is denoted by the black dot in place I, specifying that in the initial marking,
place I is associated with the number one (one black dot in the place), whereas every other
place of the net is associated with the number zero (no black dots). The executions of the
net describe (and generalize) the walks from the initial cell I towards goal A in the grid
shown in Figure 3.3a. In particular, the net generalizes the repetitive fragment in trace τ5,
via transitions t5,t6,t7,t8,t10, and t11. The transitions in the net encode steps in the grid.
For example, transitions t1 and t5, despite both capturing a step to the north, describe two
different steps in the grid, namely, (5,0

5,1) and (4,1
4,2), respectively; the cell references are not

shown in the figure. Hence, execution ⟨t3,t4,t5,t6,t7,t8,t10,t11,t5,t6,t7,t8,t9,t14,t19,t23⟩ of the
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net describes trace τ5 in the log from Figure 3.4. Note that transitions t4 and t9 are silent,
i.e., they are assigned silent labels that do not convey the domain semantics, shown as black
rectangles in the figure.

A

I

⇑
t6

⇖
t15

⇐
t21

⇖
t6

⇐
t7

⇖
t13

⇖
t23

⇘
t10

⇑
t22

⇖
t18

⇑
t24

⇖
t3

⇖
t16

t4

⇐
t2 t9

⇑
t5

⇖
t20

⇖
t17

⇖
t14

⇐
t8

⇘
t11

⇑
t19

⇑
t1

Figure 3.5 Net NA discovered from the event log in Figure 3.4 capturing the walks to goal A
shown in Figure 3.3a.

Using process discovery techniques, we obtain skill models from historical observations
that describe the skills required for accomplishing the goals. Subsequently, new observations
of an agent in the environment can be compared with the acquired models to identify
discrepancies between the newly observed behavior and the skill models. Intuitively, the
more discrepancies between the observed behavior and a skill model, the less likely the agent
is attempting to achieve the corresponding goal. We use conformance checking techniques to
identify discrepancies and use the identified discrepancies to compute probability distributions
over the goal candidates.

Conformance Checking

Conformance checking measures and explains commonalities and discrepancies between
traces in an event log and traces described in a process model. For example, conformance
checking allows verifying the goodness of a model with respect to the log it is constructed
from or the degree to which the observed behavior in the log corresponds with the allowed
behavior specified in a normative model [135, 126, 20, 98, 3].

One of the central concepts in conformance checking is the concept of an alignment.
An alignment describes a relation between a trace and an execution of a process model as a
sequence of moves, relating events in the log to transitions in the model [126]. In the context
of nets, a move is a pair in which the first component refers to an element in a trace τ in a
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log L, and the second component refers to an element in an execution σ of a net N. Some
elements in the trace may be not mimicked by elements in the execution (no move in the
model) and vice versa (no move in the log). We denote “no move” by ‘≫’, a special symbol
that is neither an event nor a transition.

Definition 4 (Move). A move over an execution σ of a net (P,T,A,λ ,M0) is a pair (x,y) ∈
(((E ∪{≫})×(T ∪{≫}))∖{(≫,≫)}), where:

• (x,y) is a synchronous move if x ∈ E , y ∈ T and x = λ(y);
• (x,y) is a move on log if x ∈ E and y =≫; and
• (x,y) is a move on model if x =≫ and y ∈ T .

A move (x,y) is a legal move if it is either a move on log, a move on model, or a synchronous
move; otherwise, move (x,y) is an illegal move. We also refer to moves on log and moves
on model as asynchronous moves. By MLM, we denote the set of all legal moves.

Definition 5 (Alignment). An alignment of a trace τ and an execution σ is a finite sequence
γ ∈M∗LM of legal moves such that the first elements of the moves arranged in the order of the
moves they come from without the ‘≫’ symbols yield τ and the second elements of the moves
arranged in the order of the moves they come from without the ‘≫’ symbols yield σ .

Let δ ∶MLM →N0 be a function that assigns non-negative costs to moves. The cost of an
alignment γ is denoted by δ(γ) and is equal to the sum of the costs of all its moves. As
synchronous moves specify agreement between the trace and the execution, we use cost
functions that assign zero costs to synchronous moves. In addition, as moves on model for
silent transitions, e.g., transitions t4 and t9 in Figure 3.5, do not demonstrate a disagreement
with traces, they are also assigned zero costs. Indeed, a silent transition does not represent a
step of an agent and is present in a net for technical reasons only, i.e., to support the encoding
of the desired executions. Asynchronous moves capture the disagreement between the trace
and the execution. Thus, we use cost functions that assign positive costs to asynchronous
moves. Finally, an optimal alignment of a trace and a marked net is an alignment of the trace
and some execution of the marked net that yields the lowest, among all possible alignments
between the trace and executions of the marked net, cost. Intuitively, an optimal alignment
characterizes minimal discrepancies between the trace and the net. A trace and a net are said
to agree perfectly if an optimal alignment of zero cost exists between the trace and some
execution of the net.

Let us again consider the three walks of the agent from Figure 3.1a. Alignments can be
used to identify the discrepancies between the observed behavior of the agent in each of these
walks and the models that represent the historical behavior towards the goals. Recall that net
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NA in Figure 3.5 models the observed behavior of the agent towards goal A from Figure 3.3a.
In addition, Figure 3.6 depicts net NF modeling the observed behavior of the agent towards
goal F from Figure 3.3f.
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⇑
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⇗
t27
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Figure 3.6 Net NF discovered from the walks to goal F shown in Figure 3.3f.

It is convenient to represent alignments as tables. Table 3.1 shows an optimal alignment
γ1 between the rational walk to goal A in Figure 3.1a and net NA.4 In the table, moves are
encoded as columns, such that two successive columns refer to two successive moves in the
alignment. Each column has five rows. The top two rows of each column correspond to
the trace contribution to the move; they encode either an event from the trace (i.e., a step
of the agent) or the no move symbol. The bottom three rows of each column correspond to
the model contribution to the move; they encode either execution of an action in the model
(i.e., an occurrence of a transition that describes a step of the agent) or, again, the no move
symbol.

γ1 =

τ
′

5,0
4,1

4,1
4,2

4,2
4,3

4,3
3,3

3,3
2,3

2,3
1,4

1,4
1,5

1,5
A

⇖ ≫ ⇑ ⇑ ⇐ ⇐ ≫ ⇖ ⇑ ⇖

NA

⇖ ⇑ ⇑ ⇐ ⇐ ⇖ ⇑ ⇖
5,0
4,1

4,1
4,2

4,2
4,3

4,3
3,3

3,3
2,3

2,3
1,4

1,4
1,5

1,5
A

t3 t4 t5 t6 t7 t8 t9 t14 t19 t23

Table 3.1 Optimal alignment between the rational walk τ ′ towards goal A in Figure 3.1a and
net NA in Figure 3.5.

The first move in γ1 is the synchronous move of transition t3 in the net from Figure 3.5
and event that encodes the step from cell (5,0) to cell (4,1) in the grid from Figure 3.1a.
Note that all moves in γ1 except the second and the seventh move are synchronous. These
are two model moves of silent transitions. Hence, the trace and model agree perfectly and

4The logs that describe the walks towards the six goals shown in Figure 3.3 and the nets discov-
ered from these logs, captured using the XES standard (https://xes-standard.org/) and PNML standard
(http://www.pnml.org/) notations, respectively, can be accessed here: https://doi.org/10.26188/21749570.

https://xes-standard.org/
http://www.pnml.org/
https://doi.org/10.26188/21749570
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δ(γ1) = 0. Note that the first elements in the moves in Table 3.1 without the “no move”
symbols define the rational walk towards goal A shown in Figure 3.1a, refer to Definition 5.
Similarly, the second elements define execution ⟨t3,t4,t5,t6,t7,t8,t9,t14,t19,t23⟩ of the net in
Figure 3.5.

Table 3.2 shows optimal alignment γ2 of the walk towards goal F in Figure 3.1a and net
NF from Figure 3.6. The first five moves in γ2 are synchronous. The next move is, however,
asynchronous. It is a move on model for transition t17 of the net. The last two steps in
γ2 are moves on log. As a result of these three asynchronous moves, two straight and one
diagonal, it holds that δ(γ2) = 2 +

√
2. Note that we use the costs of straight and diagonal

steps discussed in Section 3.1 as costs of the corresponding asynchronous alignment moves.

γ2 =

τ
′′

5,0
5,1

5,1
6,2

6,2
7,3

7,3
8,4

8,4
9,5

9,5
10,5

10,5
F

⇑ ⇗ ⇗ ⇗ ⇗ ≫ ⇒ ⇑

NF

⇑ ⇗ ⇗ ⇗ ⇗ ⇗ ≫ ≫
5,0
5,1

5,1
6,2

6,2
7,3

7,3
8,4

8,4
9,5

9,5
F

t1 t2 t5 t8 t12 t17

Table 3.2 Optimal alignment between the rational walk τ ′′ towards goal F in Figure 3.1a and
net NF in Figure 3.6.

Table 3.3 shows optimal alignment γ3 of the irrational walk towards goal A in Figure 3.1a
and net NA from Figure 3.5. The first five moves in γ3 are moves on model, while the
subsequent seven moves are moves on log. The final five moves demonstrate agreement
between the walk and model. Considering cost function δ used to obtain costs of alignments
γ1 and γ2 above, it holds that δ(γ3) = 6+5

√
2; again, the silent moves on model for transitions

t4 and t9 are not penalized.

γ3 =

τ
′′′

5,0
5,1

5,1
6,2

6,2
7,3

7,3
6,4

6,4
5,4

5,4
4,4

4,4
3,3

3,3
2,3

2,3
1,4

1,4
1,5

1,5
A

≫ ≫ ≫ ≫ ≫ ⇑ ⇗ ⇗ ⇖ ⇐ ⇐ ⇙ ⇐ ≫ ⇖ ⇑ ⇖

NA

⇖ ⇑ ⇑ ⇐ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ⇐ ⇖ ⇑ ⇖
5,0
4,1

4,1
4,2

4,2
4,3

4,3
3,3

3,3
2,3

2,3
1,4

1,4
1,5

1,5
A

t3 t4 t5 t6 t7 t8 t9 t14 t19 t23

Table 3.3 Optimal alignment between the irrational walk τ ′′′ towards goal A in Figure 3.1a
and net NA in Figure 3.5.

Finally, Table 3.4 shows optimal alignment γ4 of the irrational walk towards goal A
in Figure 3.1a and net NF from Figure 3.6. Using the cost function δ , it holds that δ(γ4) =
4+7
√

2. Indeed, the first three moves are synchronous. However, among the subsequent
eleven asynchronous moves, four represent straight steps and seven encode diagonal steps.
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γ4 =

τ
′′′

5,0
5,1

5,1
6,2

6,2
7,3

7,3
6,4

6,4
5,4

5,4
4,4

4,4
3,3

3,3
2,3

2,3
1,4

1,4
1,5

1,5
A

⇑ ⇗ ⇗ ≫ ≫ ≫ ⇖ ⇐ ⇐ ⇙ ⇐ ⇖ ⇑ ⇖

NF

⇑ ⇗ ⇗ ⇗ ⇗ ⇗ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫
5,0
5,1

5,1
6,2

6,2
7,3

7,3
8,4

8,4
9,5

9,5
F

t1 t2 t5 t8 t12 t17

Table 3.4 Optimal alignment between the irrational walk τ ′′′ towards goal A in Figure 3.1a
and net NF in Figure 3.6.

3.4 Framework Instantiation Using Process Mining

This section presents our approach to instantiating the recognition stage of the GR framework
from Section 3.2. The attention and motivation stages can capture every action and trigger
goal recognition for every captured action, while the retention phase can discover each skill
model from a set of observed traces (historical observations). Figure 3.7 presents the archi-
tecture of a PM-based GR system, demonstrating the computation and data flow within the
system. The PM-based GR system consists of three steps: the first two are process discovery
and conformance checking, which are explained in detail in Section 3.3. Note that we use
the Directly Follows Miner discovery technique [72] to learn skill models.5 The Directly
Follows Miner technique is more suitable for mining skill models of autonomous agents
compared to other state-of-the-art miners, such as Split Miner [9] or Inductive Miner [71],
which are primarily designed for mining business models. For example, the Directly Follows
Miner tends to be more efficient in processing observations with many actions (long plans)
without over-generalization.

 Historical
Observations

Traces for 
achieving Goal 1 Process model 1

Process
discovery

Process
discovery

Process
discovery

Conformance
checking

Conformance
checking

Conformance
checking

Optimal
alignment 1

Probability
calculation

Probability
distribution

Step 1 Step 2 Step 3

New Observation (Trace)  

Traces for 
achieving Goal 2

Traces for 
achieving Goal N Process model N

Process model 2 Optimal
alignment 2

Optimal
alignment N

Figure 3.7 Architecture of the PM-based GR system.

5A skill model is denoted as αG as shown in Figure 3.2, or as MG as shown in Figure 3.7.
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The third step in the architecture, probability calculation, focuses on instantiating the
recognition stage of the evidence-based GR framework. The GR system takes a trace
fragment as input and constructs a GR probability distribution relative to a set of learned
skill models. Section 3.1 explained how probabilistic GR could be realized by relying on
the cost difference for each candidate goal. In line with that intuition, given a set of goals
G and a sequence of observations τ , we adapt Equation 3.1 by re-stating cost difference in
terms of the level of misalignment between τ and each learned skill model αG, with G ∈ G.
The less misalignment the observed behavior τ displays against the skill model αG learned
for goal G, the more likely it is that G is the goal of the agent. The level of misalignment
is quantified by the alignment weight (defined below) of τ against model αG, denoted by
ω(τ,αG). We follow Masters and Sardiña [84] in using a true Boltzmann distribution instead
of a sigmoidal, and rewrite Equation 3.1 as follows:

Pr(G ∣ τ) = e−β×ω(τ,αG)

∑
G′∈G

e−β×ω(τ,αG′)
. (3.3)

Here, ω(τ,αG) ≥ 0, while the “temperature” β controls the level of confidence for GR, which
can also be interpreted as the trust over the learned models. We define parameter β as
follows:

β = 1
1+min

G∈G
ω(τ,αG)

. (3.4)

Equation 3.4 follows and simplifies Equation 3.2 to account for the fact that the best case sce-
nario is an alignment weight of zero, which implies that Equation 3.4 inherits the confidence-
based properties described in [85]. As the minimum (among all goals) alignment weight ω

increases, the observed agent is arguably more “irrational”, β approaches zero and the GR
probability distribution more closely resembles a uniform one. Finally, the alignment weight
between an observation trace τ = ⟨e1, . . . ,en⟩ and a skill model αG captured as a marked net
is defined as follows:

ω(τ,αG) = φ +λ
m×

n
∑
i=1
(iδ ×c(τ,αG, i)) ,where: (3.5)

• c(τ,αG, i) is the cost of move for trace event ei in an optimal alignment6 between trace τ

and model αG;
6As there can exist multiple optimal alignments between a trace and a model, in this work, we rely on a

procedure proposed by the authors of the original alignment technique that chooses one such optimal alignment
deterministically [1, 126].
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• iδ , with δ ≥ 0, is a discount factor that emphasizes that the more recent disagreements
between the trace and the model impact the alignment weight more;

• φ ≥ 0 is the “smoothening” constant that flattens the likelihoods of the goals in the case of
(close-to-)perfect alignments for all (most of) the skill models; and

• λ m penalizes the suffix of the trace that deviates from the skill model, where λ ≥ 1 is a
constant and m is the number of consecutive asynchronous moves on trace at the end of the
optimal alignment between trace τ and model αG.

We use the example optimal alignments from Section 3.3 to demonstrate the computation
of alignment weights. Differently from the cost functions used in conformance checking,
which penalize moves on both model and log, for GR purposes, we assign the cost of move
ei, i.e., c(τ,αG, i), to be equal to one if it is an asynchronous move on log. All other moves
are assigned a cost of zero. This costing scheme avoids penalizing partially observed traces
since an optimal alignment of a partial trace tends to contain asynchronous moves on model.
These moves on model, for example, describe how the trace can unfold in the future, not
the discrepancies between the model and trace. A cost of one for asynchronous moves on
trace is used as, in general, we assume no knowledge about the GR environment and the
problem domain. Similarly, in all the evaluations of the approach we performed, when
constructing alignments, we penalized all asynchronous moves, both moves on model and
moves on trace, with a cost of one, and all the other moves were given no cost. This is
different from our example alignments γ1–γ4 that were constructed using the cost of

√
2 for

diagonal asynchronous moves. Note that picking different optimal alignments can affect the
computation result of alignment weight, affecting the goal inference. Furthermore, in the
example calculations, we use these default parameter settings: φ = 50, λ = 1.1, and δ = 1.

In alignment γ1 from Table 3.1, all events in the trace are matched by model αA, that is,
net NA from Figure 3.5. Hence, each move has zero cost, i.e., c(τ ′,αA, i) = 0, for any position
i in the trace. The number of consecutive asynchronous moves on trace in the suffix of the
alignment is zero (λ m = 1.10). Therefore, the alignment weight of γ1 is 50; see the calculation
below.

ω(τ ′,αA) = φ +λ
m×

n
∑
i=1
(iδ ×c(τ ′,αA, i)) = 50+1.10×0 = 50

γ1 =
τ
′ ⇖ ≫ ⇑ ⇑ ⇐ ⇐ ≫ ⇖ ⇑ ⇖

αA ⇖ ⇑ ⇑ ⇐ ⇐ ⇖ ⇑ ⇖
iδ 11 21 31 41 51 61 71 81

c(τ ′,αA, i) 0 0 0 0 0 0 0 0
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In alignment γ2 from Table 3.2, the first five events in the trace are matched by model
αF, that is, net NF from Figure 3.6. However, the sixth and the seventh events result in
asynchronous moves on log. Hence, each of the two corresponding moves in the alignment
incurs the cost of one. As the alignment closes with two consecutive asynchronous moves
on log, it holds that λ m = 1.12. Consequently, the alignment weight of γ2 is 65.73, see the
detailed calculation below; the red columns in this and subsequent examples denote the
asynchronous moves on log that are penalized when calculating alignment weight.

ω(τ ′′,αF) = φ +λ
m×

n
∑
i=1
(iδ ×c(τ ′′,αF, i)) = 50+1.12×13 = 65.73

γ2 =
τ
′′ ⇑ ⇗ ⇗ ⇗ ⇗ ≫ ⇒ ⇑

αF ⇑ ⇗ ⇗ ⇗ ⇗ ⇗ ≫ ≫
iδ 11 21 31 41 51 61 71

c(τ ′′,αF, i) 0 0 0 0 0 1 1

In γ3 from Table 3.3, the first seven events in the trace are not matched by model αA.
Thus, the costs of the corresponding seven asynchronous moves in the alignment are equal to
one. The last four moves are synchronous. As there are no asynchronous moves at the end of
the alignment, it holds that λ m = 1.10. Therefore, the alignment weight of γ3 is 78, as shown
below.

ω(τ ′′′,αA) = φ +λ
m×

n
∑
i=1
(iδ ×c(τ ′′′,αA, i)) = 50+1.10×28 = 78

γ3 =
τ
′′′ ≫ ≫ ≫ ≫ ≫ ⇑ ⇗ ⇗ ⇖ ⇐ ⇐ ⇙ ⇐ ≫ ⇖ ⇑ ⇖

αA ⇖ ⇑ ⇑ ⇐ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ⇐ ⇖ ⇑ ⇖
iδ 11 21 31 41 51 61 71 81 91 101 111

c(τ ′′′,αA, i) 1 1 1 1 1 1 1 0 0 0 0

Finally, in alignment γ4 from Table 3.4, the first three events in the trace are matched by
the model, while the remaining eight events are not and, thus, it holds that λ m = 1.18. The
weight of γ4, consecutively, amounts to 178.62, see below.

ω(τ ′′′,αF) = φ +λ
m×

n
∑
i=1
(iδ ×c(τ ′′′,αF, i)) = 50+1.18×60 ≈ 178.62

γ4 =
τ
′′′ ⇑ ⇗ ⇗ ≫ ≫ ≫ ⇖ ⇐ ⇐ ⇙ ⇐ ⇖ ⇑ ⇖

αF ⇑ ⇗ ⇗ ⇗ ⇗ ⇗ ≫ ≫ ≫ ≫ ≫ ≫ ≫ ≫
iδ 11 21 31 41 51 61 71 81 91 101 111

c(τ ′′′,αF, i) 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Our GR system uses Equation 3.3 and weights of the alignments between the observed
trace and all the skill models to construct a probability distribution over all the available goals.
Subsequently, the GR system infers the possible goal(s) of the agent based on the constructed
probability distribution and a given selection threshold θ . First, the candidate goal with the
highest computed probability (Pr+) is included in the resulting set of goals. Next, every goal
with a computed probability greater than θ ×Pr+ is added to the resulting set. For instance,
if it holds that Pr+ = 0.5 and θ = 0.8, then if any of the candidate goals has the probability of
at least 0.8×0.5 = 0.4, it is included in the resulting set. In our implementation of the GR
system, we set the default value of the selection threshold θ to be equal to 0.8.

Putting everything together, Equation 3.3 provides a novel middle ground between
traditional plan-library-based goal recognition and the more recent approaches from the
planning literature grounded in cost differences between plans. Indeed, observations are
matched to a sort of library of plans, implicitly represented and aggregated in a collection of
skill models that generalize the original plans they are discovered from by re-interpreting
plan cost as the level of misalignment between the observations and the skill models. Our
GR system can be, in principle, used for plan recognition. Instead of inferring the goals, it
could return skill models and remove the branches that are not optimally aligned with the
observed action sequence, from which plan(s) can be inferred. Learning skill models from
spurious (missing and noisy) observations is also possible but may lead to two issues: (i)
An action should be included in the model but is missing. This phenomenon will lead to
an asynchronous move on model, which may increase the alignment weight and decrease
the recognition accuracy. (ii) An action should be excluded from the model but is included
nonetheless. This phenomenon will cause an asynchronous move on log, which we do not
penalize, hence no impact on the accuracy.

Our GR system has four parameters that impact the inferences it produces, namely δ ,
λ , φ , and θ . In the next section, we demonstrate that each of these parameters impacts the
performance of the system and suggest an approach for configuring them to maximize the
GR performance.

3.5 Evaluation

In this section, we present our experimental setup (Section 3.5.1), and then we use sensitivity
analysis to verify whether all the parameters of our GR system impact its performance
(Section 3.5.2). Subsequently, we illustrate how to configure the parameters in our GR
system for better performance (Section 3.5.3). Following this, we investigate whether the
choice of a particular collection of traces for learning skill models impacts goal recognition
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time and accuracy (Section 3.5.4). Next, we compare our approach with other methods and
explore how the performance of our GR system compares with that of other state-of-the-
art GR systems (Section 3.5.5). Finally, we assess the applicability of our GR system in
real-world scenarios (Section 3.5.6).

3.5.1 Experimental Setup

This section presents the experimental setup, including the datasets used in the experiments,7

the implementation of the PM-based GR system, and the quality measures used to assess the
performance of all GR systems participating in the experiments.

Synthetic datasets

We evaluated the performance of our GR system over 15 synthetic datasets, or domains,
summarized by Pereira et al. [96]. Other techniques also use these domains for testing GR
performance [102, 95], which allows for comparing performance across different experiments.
Each of these synthetic domains consists of several problem instances. Each instance contains
a list of candidate goals, the true goal, and an observed sequence of actions towards the true
goal (an observation). An observation can be full (when 100% of actions in the sequence
were observed) or partial (for example, when only 10%, 30%, 50%, or 70% of all actions
were observed).

Our approach requires historical observations for learning skill models. However, the
mentioned domains only provide the rules of how agents can act in the environment. There-
fore, we used planners to generate plans (traces) that resemble historical observations towards
the candidate goals. Our GR system does not consider the frequencies of observed traces
when it learns the skill models so that every generated trace in the dataset is unique.

To generate the traces, two planners were used: the top-k planner [62] and the diverse
planner [61]. The top-k planner generates a set of k different cost-optimal traces towards
a given goal. Such cost-optimal traces simulate possible rational behaviors of an agent
towards the goal. On the other hand, the diverse planner generates a set of divergent traces
such that each trace is significantly different from others according to a stability diversity
metric [37, 25]. The stability between two plans is the number of the co-occurring actions in
both plans over the total number of the actions, refer to Equation 3.6. The diverse planner
generates a set of plans such that the stability between every two plans is equal to or is less
than a specified number. Note that A(π) and A(π ′) in Equation 3.6 represent the sets of
actions in plan π and plan π ′, respectively.

7The datasets used in the experiments are available here: https://doi.org/10.26188/21749570.

https://doi.org/10.26188/21749570
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stability(π,π ′) = ∣A(π)∩A(π
′)∣

∣A(π)∪A(π ′)∣ (3.6)

A planner does not guarantee that it can generate an arbitrary number of distinct traces
towards a given goal. Therefore, if a planner failed to generate the requested number of traces
for a given problem, we removed that problem from the dataset. We attempted to generate
100 traces towards each candidate goal in each problem instance in all 15 synthetic domains
using the top-k planner and the diverse planner. If a planner did not generate 100 traces
towards a candidate goal within one hour, we marked the GR problem instance containing that
candidate goal as failed. The diverse planner failed to generate 100 traces for all the problem
instances from the Campus and Kitchen domains; these were excluded from the analysis
accordingly. For the same reason, we excluded several problem instances in the remaining
domains, for both planners. For each planner, the summary of the excluded instances is
provided in Appendix A.1. The excluded instances were not used in our experiments.

Real-World Datasets

We evaluated the performance of our GR system over ten real-world datasets, or domains.
Most of these domains are made publicly available by the IEEE Task Force on Process Mining.
Each of these ten domains is a real-world log of business processes comprising action traces
to achieve a particular business goal. In seven of these logs, the labels of the traces for
achieving goals are missing. Hence, we used the preprocessed datasets provided by Teinemaa
et al. [118], in which the traces in the original logs are classified into categories using Linear
Temporal Logic (LTL) classifiers. Each obtained cluster contains traces belonging to some
business sub-goal. The domains and the classifiers are presented as follows:

• The BPIC 2011 event log includes records of patients’ medical treatments from a
Dutch Hospital (DOI: 10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54). Four
GR problems were formulated using the LTL classifiers to capture different treatment
outcomes.

• The five BPIC 2015 event logs record the application processes to acquire building
permits in five Dutch municipalities (DOI: 10.4121/uuid:31a308ef-c844-48da-948c-
305d167a0ec1), one municipality per log. The traces in each event log were classified
according to whether the action “send confirmation receipt” was executed before the
action “retrieve missing data”.

• The BPIC 2017 event log records the loan application process of a Dutch financial
institute (DOI: 10.4121/12705737). This event log was partitioned into six clusters

https://www.tf-pm.org/resources/logs
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/12705737
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that formed three GR problems of identifying whether an application is accepted,
rejected, or canceled. Each problem consists of two subsets of traces: one with
the corresponding outcome (“accepted”, “rejected”, or “canceled”) and the other
one with all the remaining traces (“not accepted”, “not rejected”, or “not canceled”,
respectively).

• The Hospital Billing event log records the execution of billing procedures for medical
services (DOI: 10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741). Two GR
problems were formulated based on this log: to recognize whether the billing package
was eventually closed and to recognize whether the case was reopened.

• The Production event log records activities for producing items in a manufacturing
scenario (DOI: 10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399). The traces
were classified into two sub-logs according to whether the number of rejected orders
was zero or not.

• The Sepsis Cases event log from a Dutch hospital records laboratory tests of pa-
tients who have sepsis conditions (DOI: 10.4121/uuid:915d2bfb-7e84-49ad-a286-
dc35f063a460). Three GR problems were formulated using the LTL classifiers:
whether a patient will return to the emergency room within 28 days of discharge,
whether a patient is admitted for intensive care services, and whether a patient is
discharged due to a reason other than Release.

• The Traffic Fines event log records events related to fines from an Italian local police
force (DOI: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5). The traces were
classified into two groups according to whether the fine was fully repaid or not.

The resulting GR problems are binary choices between two candidate goals. The traces
for training skill models and the observed traces for testing GR performance are provided by
Teinemaa et al. [118]. The statistics of these binary-choice datasets are shown in Table 3.5.
We also tested our GR system on multi-class problems that have more than two candidate
goals. To this end, we used three real-world datasets, namely Activities of Daily Living,
Building Permit Applications, and Environmental Permit Applications. The statistics of these
multi-class datasets are shown in Table 3.6. These datasets were divided into 80% and 60%
of traces for training the skill models and the remaining 20% and 40% of traces, respectively,
for testing GR performance. These three domains are summarized below:

• The Activities of Daily Living event logs record activities executed by four individuals
during weekdays and weekends separately (DOI: 10.4121/uuid:01eaba9f-d3ed-4e04-
9945-b8b302764176). Therefore, eight event logs were used to formulate the GR

https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176
https://doi.org/10.4121/uuid:01eaba9f-d3ed-4e04-9945-b8b302764176
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Domain Sub-set # Train traces # Obs traces # Candidates Avg Len Min Len Max Len Std Dev

BPIC 2011

1 516 58 2 56.66 1 824 113.50
2 1025 115 2 131.34 1 1814 202.60
3 1008 113 2 62.93 1 1368 134.44
4 1025 115 2 81.64 1 1432 142.54

BPIC 2015

1 626 70 2 41.34 2 101 17.22
2 677 76 2 54.71 1 132 19.04
3 1194 134 2 43.29 3 124 15.35
4 518 59 2 42.00 1 82 14.52
5 945 106 2 51.91 5 134 15.11

BPIC 2017
1 28270 3143 2 38.15 10 180 16.70
2 28270 3143 2 38.15 10 180 16.70
3 28271 3142 2 38.15 10 180 16.70

Hospital Billing 1 69772 7753 2 5.53 2 217 2.32
2 69771 7754 2 5.27 2 217 1.97

Production 197 23 2 11.31 1 78 10.13

Sepsis Cases
1 702 80 2 16.78 5 185 12.10
2 703 79 2 13.97 4 60 5.05
3 702 80 2 15.94 4 185 12.18

Traffic Fines 116652 12963 2 3.55 2 20 1.37

Table 3.5 Statistics of the real-world datasets for binary choice problems. Train traces: the
traces for training skill models; Obs traces: the observed traces for testing GR performance.

problem of identifying who and on which day (weekday or weekend) executed a given
action sequence.

• The Building Permit Applications is the same dataset as BPIC 2015 mentioned above
(10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1). It contains event logs that
record the processes of build permit applications handled by five Dutch municipalities.
Instead of classifying the traces in each event log into two sub-groups, we formulated
GR problems to identify which municipality handled which action sequence.

• The five Environmental Permit Applications event logs record the environmental permit
application processes in five Dutch municipalities (DOI: 10.4121/uuid:26aba40d-8b2d-
435b-b5af-6d4bfbd7a270). As for the Building Permit Applications domain, the
GR problems were formulated to recognize which municipality processed which
environmental application.

Domain # Traces # Candidates Avg Len Min Len Max Len Std Dev
Activities of Daily Living 148 8 75.26 20 134 23.49

Building Permit Applications 1000 5 45.61 1 154 19.67
Environmental Permit Applications 1000 5 43.89 2 108 17.39

Table 3.6 Statistics of the real-world datasets for multi-class problems.

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
https://doi.org/10.4121/uuid:26aba40d-8b2d-435b-b5af-6d4bfbd7a270
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Implementation

Our GR system was implemented and is available as part of an open-source simulation tool8

capable of automatically solving batches of GR problem instances formulated in a given
domain. When solving a single problem instance, our tool takes a set of parameters and an
observed trace as input. As a result, it returns a list of inferred goals, their likelihoods, and
the time spent solving the instance. All the problem instances were run on a single core of
an Intel Xeon Processor (Skylake, IBRS) @ 2.0GHz. Note that solving a single problem
instance requires less than 4GB of RAM.

Quality Measures

We used precision, recall, and accuracy to evaluate the performance of GR systems. Four
terms are used to compute these measures. True Positive (TP) is the number of correct goals
inferred by a GR system. True Negative (TN) is the number of incorrect goals that were
not inferred. False Positive (FP) is the number of incorrect goals inferred by a GR system.
Finally, False Negative (FN) is the number of correct goals that were not inferred. Given the
above terms, precision is the fraction of the correctly inferred goals among all the inferred
goals.

fprecision =
TP

TP+FP
(3.7)

Recall is defined as the fraction of the correctly inferred goals among all the true goals.

frecall =
TP

TP+FN
(3.8)

Finally, accuracy is the ratio of the correct positive and negative inferences to the total
positive and negative inferences.

faccuracy =
TP+TN

TP+TN +FP+FN
(3.9)

Suppose our GR system observes an agent that executes a sequence of actions. The agent
works towards a true hidden goal (g1) among ten candidate goals (g1 to g10). For example,
according to the observed action sequence, our GR system infers g1 and g2 as two possible
goals the agent is trying to achieve. Thus, g1 and g2 are two positive goals, and the other
candidate goals are negative goals. In this scenario, for the two positive goals, g1 is the true
hidden goal correctly inferred by the GR system. Hence, TP is equal to one. Goal g2 is
not the true hidden goal (it is falsely inferred by the GR system). Thus, FP is also equal
to one. For the eight negative goals (g3 to g10), none of them is the true hidden goal. As

8https://doi.org/10.26188/23807415

https://doi.org/10.26188/23807415


53 Process Mining-Based Goal Recognition

such, TN equals eight because our GR system made the correct decision not to infer these
goals. Finally, FN is equal to zero because none of the true hidden goals are missed (our GR
system correctly recognized the true hidden goal). Hence, in this example scenario, precision,
recall, and accuracy are equal to 0.5, 1.0, and 0.9, respectively. Note that in our experiments
TP,FN ∈ {0,1}, as there is only one true goal per instance, while TN,FP ∈ {0, . . . , ∣G∣−1},
where G stands for the set of candidate goals.

3.5.2 Variance-Based Sensitivity Analysis

A sensitivity analysis explores how much each input (independent) variable contributes to
the variance of a target (dependent) variable [106]. In our GR experiments, we used the
average accuracy across different problems as the target variable and the parameters of
our GR system (i.e., φ , λ , δ , and θ ) as the input variables. Consequently, we conducted a
sensitivity analysis to verify whether the parameters of our GR system have a significant
impact on its performance in terms of accuracy. The sensitivity analysis relies on sampling
input variable values and evaluating the corresponding target variable values to understand
whether all the input variables influence the target variable.

We integrated our GR system and the performance measures discussed in Section 3.5.1
into a publicly available sensitivity analysis tool called “Exploratory Modelling and Analysis
(EMA) Workbench” [67]. We subsequently conducted the sensitivity analysis using the Sobol
variance decomposition method [113], namely Sobol sensitivity analysis, implemented by the
EMA Workbench to obtain the first-order and total effects. The first-order effect captures the
direct influence of each parameter by measuring whether changes in a single parameter (while
keeping all other parameters unchanged) affect the performance significantly [106]. The total
effect captures both the direct and the indirect influence, where indirect influence measures
change produced by every single parameter due to interactions with other parameters being
changed at the same time [106]. Note that the index of the total effect is greater than or equal
to the index of the first-order effect. The difference between these two indices expresses the
indirect impact of the parameter on the GR performance. The total effect of a parameter
measures the percentage of the output variance contributed by that parameter (directly and
indirectly). Following Zhang et al. [143], a parameter can be considered to have a significant
impact if the total effect index is greater than 0.05. The Sobol analysis also provides a
confidence interval (CI) for each sensitivity index. The sensitivity index is expected to fall
within the range defined by the CI. Therefore, we considered a parameter to have a significant
impact only if it is expected to be above 0.05, where the lower bound of the CI falls above
the 0.05 mark.
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We conducted the Sobol sensitivity analysis on all synthetic domains discussed in Sec-
tion 3.5.1. The results of the Sobol sensitivity analysis in the blocks-world domain for the GR
system trained by the cost-optimal traces and the divergent traces are displayed in Figure 3.8.
The S1 values express the first-order effects, and ST values represent the total effects. The
black lines are the confidence intervals for the estimated indices. The lower bounds of the ST
confidence intervals for these four parameters are greater than 0.05. These results indicate
that, for the blocks-world domain, all four parameters, directly and indirectly, impact the GR
performance (accuracy) regardless of which set of traces is used for training the GR system.

(a) (b)

Figure 3.8 Sobol sensitivity analysis indices for the first-order effects and the total effects for
the blocks-world domain. The GR system was trained by (a) the cost-optimal traces and (b)
the divergent traces.

The Sobol sensitivity analysis results for all the other synthetic domains are listed in
Appendix A.2. For the Sokoban domain with the divergent traces, the lower bound of the
ST confidence interval for parameter φ is less than 0.05 (non-significant). Except for this
special case, all other lower bounds are greater than 0.05, indicating that all four parameters
significantly impact the performance.

3.5.3 Scenario Discovery

Our sensitivity analysis concluded that all four parameters impact the target performance
measure. Consequently, we need to consider all four parameters for scenario discovery.
Scenario discovery is a technique to identify the scenarios of interest from a collection
thereof. We define a scenario as an experiment in which the parameters of our GR system are
configured and lead to corresponding performance measurements (e.g., accuracy). In general,
scenarios establish the relationship between configuration parameters and performance
measurements. We identify interesting scenarios as those in the top 10-percentile with respect
to accuracy. We used the Latin Hypercube sampling method to fairly distribute the sampled
parameter configurations in the multi-dimensional sampling space [53]. It is desirable to
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have N simulations (parameter configurations), where N is much larger than the number
of parameters [106] (our GR system has four parameters). We followed the example from
[16] and sampled 1,000 simulations for scenario discovery, given the small computational
cost of running each simulation. Subsequently, we conducted the GR experiments based on
these parameter configurations to obtain 1,000 scenarios. The parameter configurations that
result in interesting scenarios constitute a region. Intuitively, configuring our GR system with
parameters in that region should yield better performance than randomly selected parameters.

The Patient Rule Induction Method (PRIM) is an algorithm to iteratively seek a smaller
(denser) region in which the mean of the target value is significantly higher than the mean
value outside that region [40, 16]. As such, PRIM can be used to iteratively peel away
some scenarios to find a high-density region, a small region that contains many interesting
scenarios. Meanwhile, the region should have high coverage, which explains the percentage
of interesting scenarios located in the region. In general, there is a trade-off between finding
a region with high density of interesting scenarios versus a region with high coverage of
interesting scenarios. Therefore, we aim to find a balance between the density and the
coverage. Figure 3.9 shows the PRIM peeling trajectory for 1,000 generated scenarios in
the driverlog domain (traces generated by the cost-optimal top-k planner). Each point on
the trajectory represents a region of scenarios with the corresponding density and coverage
values. As expected, the density decreases when the coverage increases.

Figure 3.9 Peeling trajectory for
the driverlog domain (trained by
the cost-optimal traces).

Figure 3.10 Visualization of the parameter
ranges recommended by the PRIM algo-
rithm.

Each region on the peeling trajectory is characterized by four attributes corresponding to
the parameter ranges φ , λ , δ , and θ . Figure 3.10 shows these parameter ranges for a selected
region from the peeling trajectory in Figure 3.9 with a density of 0.765 and coverage of 0.5.
For this region, parameter δ ranges from 0.53 to 3.1, λ from 1.7 to 5.0, φ from 0.0 to 72.0,
and θ from 0.9 to 1.0. Note that 50% of the interesting scenarios stem from the parameter
configurations that fall into these ranges, as indicated by the coverage.
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To select a representative region on the peeling trajectory, we aim to choose a region
that induces narrow parameter ranges that are significant, i.e., the quasi p-value or qp-value
of the parameter ranges is less than 0.05. In Figure 3.10, the qp-value for each parameter
appears between parentheses. However, one cannot guarantee to find a point (region) on
the peeling trajectory with qp-values of all parameter ranges less than 0.05. Therefore, we
choose the region of highest coverage with four restricted dimensions and all qp-values less
than or equal to 0.05; otherwise, we choose the region of maximal density. Figure 3.10
shows a representative region with the restricted parameter ranges and the qp-values of each
parameter range. The qp-values for δ is 0.00035, for λ is 0.047, for θ is 2.4e−22, and for φ

is 0.0011.
We applied the PRIM algorithm for all the domains with skill models trained by the

cost-optimal and divergent traces. The parameter ranges for representative regions for all the
domains are shown in Tables 3.7 and 3.8. The ∗ indicates a qp-value of less than 0.05, and
the ∗∗ indicates a qp-value of less than 0.001. A parameter range has lower (Min) and upper
(Max) bounds. If at least one bound, lower or upper, is significantly restricted, it is annotated
with ∗/∗∗. Parameter ranges without any ∗/∗∗ symbol indicate that no significant restriction
has been applied, where interesting scenarios are evenly distributed in the initial sampling
parameter range.

Domain Delta (δ ) Lambda (λ ) Phi (φ ) Threshold (θ )
Min Max Min Max Min Max Min Max

Blocks-world 0.31 4.54 1.00 5.00 0.00 13.50∗∗ 0.81∗∗ 1.00
Campus 2.19∗∗ 5.00 2.36∗∗ 5.00 0.00 95.50 0.64 1.00
Depots 0.20 3.72∗ 1.72 4.65 0.00 58.50∗∗ 0.93∗∗ 1.00

Driverlog 0.53 3.12∗∗ 1.69∗ 5.00 0.00 71.50∗ 0.90∗∗ 1.00
DWR 0.03 2.19∗∗ 1.00 5.00 0.00 82.50 0.94∗∗ 1.00

Easy-ipc-grid 0.44 5.00 2.19∗∗ 5.00 11.00 73.50∗ 0.86∗∗ 0.98
Ferry 0.35 2.49∗∗ 1.25 4.93 0.00 95.00 0.94∗∗ 1.00

Intrusion-detection 0.32 3.25 1.00 5.00 0.00 68.50 0.95∗∗ 1.00
Kitchen 0.13 3.52 1.62 4.56 0.00 30.50∗∗ 0.86∗∗ 1.00

Logistics 0.24 3.94 1.31 4.97 0.00 94.50 0.96∗∗ 1.00
Miconic 0.22 4.00∗∗ 1.00 5.00 0.00 100.00 0.96∗∗ 1.00
Rovers 0.00 5.00 1.17 4.99 0.00 85.50 0.97∗∗ 1.00
Satellite 0.93∗ 3.10∗∗ 1.03 5.00 0.00 89.50 0.94∗∗ 1.00
Sokoban 0.23 1.98∗∗ 1.21 3.41∗∗ 5.00 92.50 0.87∗∗ 1.00

Zeno-travel 0.15 4.18∗ 1.00 5.00 0.00 45.50∗∗ 0.94∗∗ 1.00

Table 3.7 The recommended ranges for parameters of the GR system (cost-optimal traces).
∗: qp-value ≤ 0.05; ∗∗: qp-value ≤ 0.001.
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Domain Delta (δ ) Lambda (λ ) Phi (φ ) Threshold (θ )
Min Max Min Max Min Max Min Max

Blocks-world 0.00 5.00 1.64 4.56 0.00 18.50∗∗ 0.87∗∗ 1.00
Depots 0.27 1.97∗∗ 1.34 4.92 0.00 92.00 0.92∗∗ 1.00

Driverlog 0.61 2.74∗∗ 1.45 5.00 0.00 74.50 0.94∗∗ 1.00
DWR 0.33 3.11∗∗ 1.17 5.00 0.00 100.00 0.96∗∗ 1.00

Easy-ipc-grid 1.01∗ 4.29∗ 2.54∗∗ 5.00 0.00 79.50∗ 0.78∗∗ 1.00
Ferry 0.44 4.32∗ 1.00 5.00 0.00 95.50 0.96∗∗ 1.00

Intrusion-detection 0.30 3.90∗ 2.41∗ 5.00 0.00 79.50∗ 0.94∗∗ 1.00
Logistics 0.21 2.58∗∗ 1.23 5.00 0.00 100.00 0.95∗∗ 1.00
Miconic 0.27 2.21∗∗ 1.00 4.95 0.00 87.50 0.94∗∗ 1.00
Rovers 0.00 1.90∗∗ 1.08 5.00 0.00 89.50 0.91∗∗ 1.00
Satellite 0.26 2.52∗∗ 1.00 5.00 0.00 39.50∗∗ 0.89∗∗ 1.00
Sokoban 0.19 2.41∗∗ 1.31∗ 2.97∗∗ 0.00 86.50 0.87∗∗ 1.00

Zeno-travel 0.40 2.25∗∗ 1.00 5.00 0.00 92.50 0.93∗∗ 1.00

Table 3.8 The recommended ranges for parameters of the GR system (divergent traces). ∗:
qp-value ≤ 0.05; ∗∗: qp-value ≤ 0.001.

Intuitively, PRIM narrows the parameter ranges to smaller ones that are more likely to
contain the top performance scenarios. Thus, for each domain, we use the middle points
of the parameter ranges discovered by PRIM to configure our GR system to obtain good
performance. For example, in Figure 3.10, the middle point of the range for parameter δ is
1.82. Therefore, we configured the δ of our GR system to be 1.82. Similarly, other parameters
are configured with the middle points of the corresponding ranges identified by PRIM, namely
the PRIM parameters. We performed GR experiments with the PRIM parameters for all
the synthetic domains and compared the performance with the GR experiments based on
the default parameters (φ = 50, λ = 1.1, δ = 1.0, θ = 0.8). The results of precision, recall,
accuracy, and execution time for each domain on each level of observation are listed in
Appendix A.3.

We use the precision, recall, accuracy, and execution time from the GR system configured
by the PRIM parameters and subtract the corresponding values from the GR system con-
figured by the default parameters. Figures 3.11 and 3.12 show the performance differences
between the GR system configured with the PRIM parameters and that with the default
parameters. The blue bars, “PRIM win,” represent that the GR system configured with the
PRIM parameters performs better than that configured with the default parameters. The
height of the bars represents how much one is better than the other. Contrarily, the orange
bars, “default win,” represent the default parameters’ win over the PRIM parameters.
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Figure 3.11 The performance differences between the GR system configured with the PRIM
parameters and that configured with the default parameters (both systems are trained by the
cost-optimal traces).
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Figure 3.12 The performance differences between the GR system configured with the PRIM
parameters and that configured with the default parameters (both systems are trained by the
divergent traces).

The comparison results show that the PRIM parameters are likely to yield high precision
and accuracy of our GR system, while the default parameters yield high recall. A GR
system with higher precision and accuracy is more convincing to be a good system than
that with higher recall, as one can always obtain high recall by inferring all the candidate
goals. Therefore, we conclude that the PRIM parameters lead to better performance, and we
recommend using the PRIM analysis presented here to identify configuration parameters of
our GR system.

3.5.4 Impacts of Training Traces

In our experiments, the traces accepted as historical observations of agents are generated by
planners, namely the top-k planner and the diverse planner, see Section 3.5.1, which may
impact learning the skill models and, consequently, the GR performance. We compared the
GR systems trained by different sets of traces (configured with the PRIM parameters). The
performance of the GR systems trained by the cost-optimal and divergent traces is shown in
Appendix A.3.

The results of comparing GR performance on different sets of training traces are shown
in Figure 3.13. The blue bars represent the GR system trained by divergent traces win over
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those trained by the cost-optimal traces. The orange bars represent the cost-optimal traces
win. The height of the bars represents how much one is better than the other.
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(a) Precision
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(b) Recall
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(c) Accuracy
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Figure 3.13 The differences of the GR performance between the system trained by the
cost-optimal traces and the divergent traces.

The divergent traces yield higher precision than the cost-optimal traces (except for the
domains of DWR, Intrusion-detection, and Logistics), as well as a higher accuracy (except
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for the domains of DWR, Intrusion-detection, and Sokoban). The cost-optimal traces yield
higher recall for all the domains. The recognition times of the GR system trained by the cost-
optimal traces are shorter than those trained by the divergent traces. Intuitively, compared
with the cost-optimal traces, the divergent traces tend to be longer traces that consist of more
actions. As Table 3.9 shows, the skill models (Petri nets) learned from these traces tend to
have more places, transitions, and arcs, which suggests that the skill models tend to cover a
larger state space. Consequently, the GR system trained by the divergent traces yields higher
precision and accuracy. However, computing the optimal alignment between a trace and a
skill model that covers a smaller state space is relatively easier, such that the recognition time
of the GR system trained by the cost-optimal traces is shorter.

Domain Cost-optimal Traces Divergent Traces
Transitions Places Arcs Transitions Places Arcs

Blocks-world 63.08 28.08 126.16 120.59 58.25 241.18
Depots 32.36 12.73 64.72 389.94 121.4 779.87

Driverlog 23.52 8.55 47.04 591.32 263.12 1182.64
DWR 78.43 33.90 156.86 134.93 53.71 269.86

Easy-ipc-grid 39.74 21.80 79.49 151.05 86.54 302.10
Ferry 28.22 13.79 56.45 381.15 127.02 762.30

Intrusion-detection 73.23 18.71 146.46 89.20 18.60 178.40
Logistics 35.63 14.73 71.25 275.95 102.38 551.91
Miconic 53.05 30.25 106.11 375.52 182.67 751.08
Rovers 24.35 8.55 48.70 387.68 135.92 775.35
Satellite 32.78 15.72 65.57 294.33 138.58 588.67
Sokoban 134.65 81.96 269.30 358.85 186.03 717.71

Zeno-travel 19.33 8.51 38.66 678.79 284.67 1357.58

Table 3.9 The average number of transitions, places, and flow arcs over the skill models
learned from the cost-optimal traces and the divergent traces for each domain.

3.5.5 Comparison with Other Approaches

We compared our PM-based GR approach with state-of-the-art GR approaches. Section 3.5.5
presents the comparison between our approach and domain knowledge-based GR techniques:
Ramirez and Geffner’s approach (R&G) [102], the landmark-based approach [96], and the LP-
based GR approach [107]. Section 3.5.5 shows the comparison between our approach and the
long short-term memory networks (LSTM-)based GR approach [88]. For the R&G approach,
we experimented with two embedded planners: the Greedy LAMA planner [105] and the
state-of-the-art planner from the international planning competition, DUAL-BFWS [79]. For
the landmark-based approach, we used uniqueness as the heuristic and set the threshold
to 20%. For the LP-based approach, we used a combination of three heuristics, which are
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landmarks, state equation, and post-hoc. Our GR system and the LSTM-based approach are
trained using the divergent traces for all except Campus and Kitchen. Note that the diverse
planner failed to generate traces for these two domains (cf. Section 3.5.1). Therefore, we
used the cost-optimal traces to train our GR system and the LSTM-based approach for these
domains. We configured our GR system using the PRIM parameters (cf. Section 3.5.3).

Comparison with Domain Knowledge-Based GR Approaches

The GR performance for domain knowledge-based approaches is listed in Appendix A.4.
Figure 3.14 plots the precision, recall, accuracy, and time for different GR approaches in
each domain for each level of observation. The blue dots represent the GR performance of
our approach. We calculated the average of the precision, recall, and accuracy over the other
approaches and compared it with the performance of our approach. A blue line represents
that the performance of our approach is better than the mean of the other GR approaches
for the corresponding domain and observation level. For the comparison of the execution
time, the blue lines represent that our approach is the fastest in that domain with the level of
observation.
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(a) Precision
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(d) Time (in seconds)

Figure 3.14 The performances of different GR approaches. For the precision, recall, and
accuracy, the blue lines indicate that the performance of our approach is better than the
average performance of the other GR approaches. For the time, the blue lines indicate that
our approach uses the shortest recognition time (the fastest approach).

In Figure 3.14, the plots show that our approach uses the shortest recognition time in 57
out of 75 cases. The precision of our GR approach is higher than the average of the other
approaches in 12 out of 75 cases, and in 14 out of 75 the recall of our approach is higher
than the average. As PRIM identified parameters to maximize accuracy, in approximately
half of the cases (36 out of 75 cases), our accuracy is higher than the average of the other
approaches. As other approaches (R&G variants) can access the full domain model, they can
compute the cost difference between the optimal plan and any observed plan to infer the goal.
However, our PM-based approach learns skill models based on a few rational (optimal or
close to optimal) plans. If an observed plan has a large distance from plans in the learning
dataset, the recognition accuracy of our PM-based approach tends to decrease. Hence, for
some domains and some levels of observation, other GR approaches can outperform our
PM-based approach. For example, in Section 3.1, the skill model for achieving goal A is
learned from six rational traces (see Figure 3.3a). If the first seven steps of the red irrational
walk (in Figure 3.1a) are observed, our PM-based GR system is unlikely to infer that the red
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walk intends to achieve goal A, because only the first step can match the steps in Figure 3.3a.
However, for the planning-based GR approaches, after seven steps of the red walk, the agent
is located in cell (3,3), which is close to goal A. As a result, it is likely for these systems
to infer goal A. In short, our PM-based GR system can recognize a goal accurately if it has
observed some similar traces before (regardless of the rationality).

GR approach Precision Recall Accuracy Time
avg std avg std avg std avg std

PM (Ours) 4.24 0.94 4.53 0.72 3.52 0.96 1.44 0.80
Landmark 3.55 1.02 2.17 0.85 3.75 1.26 2.03 0.71

R&G (DUAL-BFWS) 3.36 1.30 3.60 0.99 3.67 1.31 4.24 0.73
R&G (Greedy LAMA) 2.39 0.85 3.23 0.93 2.56 1.02 4.64 0.48

LP 1.45 0.96 1.47 1.05 1.51 1.02 2.65 0.60

Table 3.10 The average ranks of performance (avg) for each GR approach and the standard
deviations (std) of the ranks.

Table 3.10 shows the average ranks of GR performance (precision, recall, accuracy, and
time) for the five approaches mentioned above. Despite only using skill models learned from
historical observations and without access to full domain knowledge, our approach achieves
an accuracy level that is comparable to other GR approaches. Furthermore, our approach
shows a clear performance advantage over existing GR approaches in terms of recognition
speed. We note that, potentially, the R&G variants may use some form of precomputation
to speed up the recognition by, for example, precomputing the probabilities “heatmaps"
for each state or the so-called Radius of Maximum Probability (RMP) for each possible
goal, as proposed by Masters and Sardiña [85, 86]. However, those techniques have been
proposed for the special case of navigational grid-world settings, which enjoy a uniform
and manageable state space. In our work, on the other hand, we deal with task-planning
domains (beyond navigation) with arbitrary state space, so precomputation is less applicable
or practical. In particular, RMP only provides the tipping point boundary in which a goal
becomes the most probable but does not provide probabilities or ranks outside that boundary.
More generally, precomputation is arguably a different and orthogonal issue to all approaches.
As such, all the evaluated techniques have performed the recognition from scratch to allow
meaningful and fair comparisons.

The relatively lower values for precision and recall reflect our PRIM parameter settings,
which are optimized for accuracy. When no domain models are available but only historical
traces, our GR system is the only approach among those evaluated here that can still be used.
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Comparison with LSTM-based GR Approach

The implementation of the LSTM-based GR approach uses the configuration recommended
by Min et al. [88]. The LSTM model, with a dropout rate of 0.75, comprises three layers:
an embedding layer that converts actions to a 20-dimensional vector space, a layer with
100 self-connected memory cells (units), and a softmax layer for probability distribution
over goal candidates, with the highest probability indicating the inferred goal. To handle
actions that appear in testing traces but not in training traces, we set the number of distinct
embeddings in the embedding layer to be the number of unique actions in the training traces,
with an additional label for “unknown” actions. During the training of the LSTM model, we
utilize a mini-batch size of 8, employ the cross entropy loss function, apply the stochastic
gradient descent optimizer, and train for a total of 100 epochs. We evaluated the PM- and
LSTM-based systems with two datasets: a small dataset of 10 traces for achieving each goal
and a large dataset with 100 traces per goal. Note that the training datasets generated by
the diverse planner and the top-k planner differ from the standard testing dataset provided
by Pereira et al. [96]. The detailed GR performance results for the PM- and LSTM-based
approaches trained with small and large datasets are listed in Table A.5 included in Appendix
A.5. For three performance metrics of precision, recall, and accuracy, Table 3.11 shows
the percentage and the number of cases (out of 75 total cases) where the PM-based system
strictly outperforms the LSTM-based system.

Precision Recall Accuracy
10 Traces 89% (67) 94% (71) 72% (54)
100 Traces 56% (42) 85% (64) 33% (25)

Table 3.11 The percentage (number) of cases out of 75 cases in which the PM-based system
outperformed the LSTM-based system.

Figure 3.15 plots the accuracies of the PM-based and LSTM-based GR approaches
trained with 10 and 100 traces per goal for all 75 cases. The blue vertical lines denote the
cases in which the PM-based approach is more accurate than the LSTM-based approach.
When trained with 10 traces per goal, the PM-based approach is more accurate in 54 out
of 75 cases than the LSTM-based approach. However, the latter is more accurate more
often when trained with 100 traces per goal. For precision and recall, regardless of the size
of the training dataset, our approach outperforms the LSTM-based GR. In Appendix A.5,
Figure A.3 plots all the comparison results for precision and recall on 10 and 100 training
traces. The reason why our approach performs better on the precision and recall, while the
LSTM-based approach performs better (with a large training dataset) on the accuracy, is that
LSTM tends to have high true negative scores (TN, refer to Section 3.5.1). The problem
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instances in our dataset contain multiple goal candidates but only one true goal. If LSTM
tends to infer only one goal (or few goals) among many goal candidates, the TN score is
high, even if LSTM always infers a wrong goal. In contrast, our approach tends to infer
more goals to increase the possibility of containing the true goal. Hence, the TN score of
our approach tends to be low, especially in the situations of uncertainty, like when only a
few observations have been made. We conclude that our approach performs better than the
LSTM-based approach if the training dataset size is small and has comparable performance
to the LSTM-based approach when the dataset is relatively large.
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(b) Accuracy (trained with 100 traces per goal).

Figure 3.15 The accuracies of the PM-based GR approaches and the LSTM-based GR
approach. The blue lines indicate that the accuracy of our approach is better than that of the
LSTM-based GR approach.

The explainability is another merit of the PM-based GR system. While the logic behind
the GR inference is a black box for the LSTM-based GR, the GR results of the PM-based
approach can be explained using alignments between observations and the learned Petri
nets. The user can explore the commonalities and discrepancies between the observations
and skill models for each goal and study how they contributed to the resulting probabilities
assigned to each candidate goal; refer to the examples discussed in Section 3.3. In addition,
the learned Petri nets explain the behavior of the agents towards candidate goals and, thus,
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give a general view of what agents are doing when striving for different goals. In contrast,
the LSTM network only provides tuned parameters, which hardly delivers any insights into
the inference.

3.5.6 Performance in Real-World Scenarios

To verify whether our GR system is applicable in real-world scenarios, we conducted the
GR experiments using the real-world dataset mentioned in Section 3.5.1, and introduced
the random guess baseline to compare with our GR performance. We considered our GR
system applicable in the real-world if it outperforms the baseline. Note that we applied a
PRIM analysis in the real-world domains to identify the best configuration parameters. The
random guess baseline represents the performance of a GR approach that randomly returns
any candidate goal or any combination of candidate goals. For example, if a GR problem
instance has two candidate goals (g1 and g2), the random guess approach can randomly
return {g1}, {g2}, or {g1, g2}.

The performance of the binary choice real-world GR problems is shown in Table 3.12. As
mentioned in Section 3.5.1, we clustered the event log of each domain into subsets of traces
to formulate sub-problems. The notation “BPIC 2011 (1)” in the table represents the first
sub-problem in the BPIC 2011 domain. The Production and Traffic Fines domains only have
one sub-problem. Since binary choice problems only have two candidate goals, precision
equals accuracy. Hence, we only show the values of precision to represent both precision
and accuracy. In Table 3.12, the majority of precision and recall values are greater than the
corresponding expected precision and recall of the random guess baseline GR approach,
except for 15 out of 190 cases (highlighted in red). The recognition time tends to increase
as more actions are observed. Note that, if a recognition time is less than 0.01 seconds, we
consider that GR problem instance to be recognized immediately, and the time is denoted
with ε accordingly.

The performance of the multi-class real-world GR problems is shown in Table 3.13. The
“Activities,” “Build Prmt,” and “Env Prmt” represent the datasets of Activities of Daily Living,
Building Permit Applications, and Environmental Permit Applications, respectively. The
80%/20% split represents that the skill models were learned from 80% of the traces in that
domain, and the remaining 20% of the traces were used for testing the GR performance. The
(60%/40%) means that 60% of traces were used for learning and 40% of traces for testing.
For the domains of “Activities” and “Build Prmt,” all precision, recall, and accuracy values
are greater for the PM-based GR system than for the random guess baseline. For the domain
of “Env Prmt,” there are two cases where the recall values are slightly lower than the baseline
(annotated in red), while the corresponding precision and accuracy values are significantly
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BPIC 2011 (1) BPIC 2011 (2) BPIC 2011 (3) BPIC 2011 (4) BPIC 2015 (1)
%O p r t p r t p r t p r t p r t

10 0.47 0.84 0.32 0.56 0.96 1.98 0.59 0.94 0.48 0.55 0.92 1.05 0.53 0.90 0.45
30 0.65 0.91 0.72 0.60 0.89 5.75 0.66 0.88 1.26 0.62 0.88 2.86 0.65 0.74 1.72
50 0.62 0.86 1.40 0.67 0.92 11.00 0.63 0.83 2.18 0.62 0.88 4.64 0.76 0.80 3.51
70 0.59 0.84 1.94 0.70 0.91 14.37 0.81 0.96 2.95 0.66 0.88 6.85 0.71 0.74 7.31
100 0.69 0.86 2.58 0.66 0.85 15.61 0.79 0.97 3.11 0.84 0.97 8.41 0.82 0.83 10.30

Baseline 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67
BPIC 2015 (2) BPIC 2015 (3) BPIC 2015 (4) BPIC 2015 (5) BPIC 2017 (1)

%O p r t p r t p r t p r t p r t

10 0.56 0.87 0.70 0.63 0.93 0.28 0.53 0.81 0.32 0.69 0.97 0.98 0.50 1.00 ε

30 0.56 0.71 2.07 0.45 0.59 1.63 0.65 0.97 1.16 0.54 0.79 2.68 0.52 0.98 ε

50 0.55 0.61 5.96 0.76 0.91 3.57 0.79 0.93 2.37 0.72 0.90 4.87 0.57 0.98 ε

70 0.58 0.64 6.63 0.85 0.90 4.66 0.91 0.93 4.05 0.84 0.89 7.30 0.59 0.97 ε

100 0.68 0.75 7.29 0.90 0.94 6.04 0.95 0.97 4.86 0.82 0.87 7.70 0.77 0.97 ε

Baseline 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67
BPIC 2017 (2) BPIC 2017 (3) Hospital Billing (1) Hospital Billing (2) Production

%O p r t p r t p r t p r t p r t

10 0.50 1.00 ε 0.50 1.00 ε 0.50 1.00 ε 0.50 0.99 ε 0.50 1.00 0.01
30 0.52 0.97 ε 0.50 1.00 ε 0.68 0.99 ε 0.12 0.20 ε 0.52 1.00 0.01
50 0.56 0.96 ε 0.51 1.00 ε 0.97 0.98 ε 0.50 0.89 ε 0.43 0.83 0.01
70 0.59 0.94 ε 0.51 0.99 ε 0.98 0.98 ε 0.51 0.91 ε 0.52 0.87 0.01
100 0.78 0.97 ε 0.99 1.00 ε 0.99 0.99 ε 0.91 0.93 ε 0.50 0.87 0.01

Baseline 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67
Sepsis Cases (1) Sepsis Cases (2) Sepsis Cases (3) Traffic Fines

%O p r t p r t p r t p r t

10 0.49 0.97 ε 0.49 0.99 ε 0.49 0.97 ε 0.50 1.00 ε

30 0.55 0.97 ε 0.46 0.87 ε 0.47 0.85 ε 0.62 0.80 ε

50 0.59 0.96 ε 0.45 0.85 ε 0.50 0.89 ε 0.64 0.95 ε

70 0.57 0.96 0.01 0.54 0.96 ε 0.47 0.91 0.01 0.68 0.99 ε

100 0.61 0.94 0.01 0.91 0.97 ε 0.55 0.94 0.01 0.74 0.98 ε

Baseline 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67

Table 3.12 GR performance of the binary-choice real-world GR problems; %O: the level of
observation, p: precision, r: recall, t: time (in seconds), ε: time < 0.01. The performance
worse than the random guess baseline is highlighted in red.

higher than the baseline. These two cases indicate that our GR system tends to infer fewer
goals, resulting in higher precision and accuracy, which, in turn, impacts recall. There are
two accuracy values slightly lower than the baseline (annotated in red), which might indicate
that 10% observations may not contain enough information to identify the true goal.

The precision values are sometimes low (even for 100% observations). The testing
observations are not seen during the learning stage, and the GR precision relies on the ability
of the learned Petri nets to generalize to unforeseen traces. If the learned Petri nets do not
generalize well, our GR system may not infer the true goal, and the precision decreases. If
the learned Petri nets manage to over-generalize, not distinguishing between different traces
for different goals, then our GR system may infer multiple goals, decreasing the precision.

Our GR system outperforms the random guess baseline for binary choice and multi-
class real-world GR problems. We conclude that our GR system is applicable in real-world
scenarios.
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Activities (80%/20%) Build Prmt (80%/20%) Env Prmt (80%/20%)

%O p r a t p r a t p r a t

10 0.27 0.97 0.52 0.14 0.34 0.77 0.59 2.00 0.30 0.72 0.47 1.42
30 0.34 0.77 0.71 0.28 0.53 0.65 0.76 6.21 0.40 0.59 0.69 4.99
50 0.35 0.61 0.81 0.47 0.58 0.69 0.80 11.29 0.41 0.52 0.73 9.62
70 0.42 0.74 0.82 0.62 0.58 0.64 0.82 15.88 0.43 0.54 0.72 13.64
100 0.55 0.81 0.88 0.67 0.71 0.76 0.88 20.80 0.55 0.69 0.78 15.20

Baseline 0.13 0.50 0.50 0.20 0.52 0.49 0.20 0.52 0.49
Activities (60%/40%) Build Prmt (60%/40%) Env Prmt (60%/40%)

%O p r a t p r a t p r a t

10 0.29 1.00 0.58 0.04 0.33 0.72 0.58 1.70 0.32 0.74 0.46 0.76
30 0.43 0.71 0.82 0.08 0.56 0.65 0.79 5.37 0.43 0.60 0.72 2.92
50 0.54 0.73 0.88 0.12 0.60 0.70 0.81 9.74 0.37 0.42 0.72 5.75
70 0.50 0.67 0.87 0.15 0.61 0.65 0.83 13.66 0.39 0.48 0.72 8.17
100 0.50 0.60 0.87 0.18 0.65 0.69 0.86 17.85 0.59 0.69 0.81 8.93

Baseline 0.13 0.50 0.50 0.20 0.52 0.49 0.20 0.52 0.49

Table 3.13 GR performance of the multi-classes real-world GR problems; %O: the level of
observation, p: precision, r: recall, a: accuracy, t: time (in seconds), 80%/20%: 80% of
traces used for learning and 20% of traces used for testing, 60%/40%: 60% of traces used for
learning and 40% of traces used for testing. The performance worse than the random guess
baseline is highlighted in red.

We acknowledge the limitations in the evaluation metrics, particularly the accuracy metric.
Notably, the accuracy metric tends to yield high True Negative scores in scenarios where
there is only one true goal but multiple goal candidates, potentially leading to an inflated
accuracy score. Nevertheless, we use the same metric for consistency when evaluating and
comparing different approaches to ensure a fair comparison. In the subsequent chapters, we
address this bias by using balanced accuracy as our primary evaluation metric.



Chapter 4

Adaptive Goal Recognition with Process
Mining Techniques

The PM-based GR framework described in Chapter 3 is designed to address the “single-shot”
GR problem (also referred to as the conventional GR problem). That approach concentrates
on observing a single sequence of actions and then identifying the agent’s intended goal based
on that action sequence. However, some real-world scenarios require addressing multiple GR
problems over an extended period, during which the environment may change. When such
environmental changes occur, the behavior of agents aiming to achieve their goals generally
adapts [112]. For example, in navigation, the emergence of new obstacles or shortcuts may
lead intelligent agents to choose alternative pathways. These scenarios, characterized by
changes in the underlying environment, are known as concept drift. Such drifts are commonly
observed in business processes when the behavior of process participants changes to address
new regulations, compliance rules, and innovative business practices [140]. In all these
scenarios, we expect a GR system to first recognize changes in observed behavior and then
adapt accordingly to maintain its recognition performance. We refer to the problem of solving
multiple GR problems over a time interval during which the environment in which the agent
operates may change as the adaptive GR problem. This chapter formally introduces and
defines the challenge. It also presents an adaptive GR framework based on process mining
(PM) techniques and outlines three adaptive GR systems that extend from the established
framework.1

1This chapter is an adaptation of two of our previously published works: (1) “GRACE: A simulator
for continuous goal recognition over changing environments.” In PMAI@IJCAI, volume 3310 of CEUR
Workshop Proceedings, pages 37-48. CEUR-WS.org, 2022. (2) “Adaptive goal recognition using process
mining techniques.” Engineering Applications of Artificial Intelligence, 133:108189, 2024. ISSN 0952-1976.
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In this chapter, we address RQ2: How to do goal recognition in non-stationary environ-
ments? Our objective is to apply the goal recognition (GR) technique in scenarios where
the GR system is required to continuously observe agents’ action sequences. However, the
underlying environment may change during the observation period, potentially influencing
the agents’ behaviors in achieving their goals. Throughout this period, it is assumed that
agents execute multiple action sequences over several GR episodes, with environmental
changes occurring exclusively between these GR episodes. We develop an experimental data
generator named the Goal Recognition Amidst Changing Environments (GRACE) tool, capa-
ble of synthesizing problem instances. Each problem instance is a concept drift containing
multiple action sequences, ordered by the time each sequence occurs. Finally, we propose
an adaptive GR framework designed to continuously solve GR tasks in periods where the
underlying environment is non-stationary. We instantiated three adaptive GR systems from
the proposed adaptive GR framework and evaluated them using both synthetic and real-world
domains. This evaluation results confirm that the adaptive GR systems indeed improve
average GR performance compared to conventional GR systems, which cannot adapt to
environmental changes.

Concretely, this chapter makes the following contributions:

• It formally defines the adaptive GR problem, which can be seen as an optimization
problem that balances the cost of adapting knowledge models with the accuracy of
GR;

• It introduces GRACE, a tool designed to simulate significant environmental changes
affecting agents’ behaviors and generate publicly available drift behavior problem
instances2 for evaluating adaptive GR systems;

• It introduces an adaptive GR framework as a control mechanism over a conventional
GR system grounded in process mining techniques, and presents three concrete adaptive
GR systems instantiated from this framework;

• It uses synthetic and real-world datasets to evaluate the three instantiated adaptive GR
systems. The evaluation results confirm the effectiveness of these GR systems for
solving adaptive GR problems.

2https://doi.org/10.26188/21802081

https://doi.org/10.26188/21802081
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4.1 Adaptive Goal Recognition

An adaptive algorithm aims to improve its performance based on the inputs and changing
conditions. Such an algorithm is useful, for instance, when the problem it solves is defined
over a dynamic or uncertain environment. We define the adaptive GR problem based on
the conventional probabilistic GR problem, as outlined in chapter 3, Definition 1. In the
conventional probabilistic GR problem, G denotes a set of candidate goals, F denotes a
set of fluents, A denotes a set of actions, I denotes the initial state, and O denotes an
observation, which is a sequence of actions performed by an agent. F , A, and I together
represent the available knowledge, K , about an agent and the environment. Therefore, given
a triple < G,K,O >, the probabilistic GR problem involves obtaining a posterior probability
distribution over G based on K and O that describes the likelihood of the agent achieving the
different goals.
Different instantiations of this definition of the GR problem have been proposed in the
literature. They differ in how the elements of the problem and its solution are represented.
In the approach by Ramírez and Geffner [102], the knowledge is represented by a domain
theory and the information on when the agent’s actions are applicable in the environment
and how they transform it, while in our proposed PM-based GR framework (Chapter 3),
the knowledge is given as collections of historical action sequences towards goals. The
observations usually capture a time-ordered sequence of actions performed by the agent thus
far. Finally, the inferred goals can be identified by a set G ⊆ G, for instance, as a subset of the
most likely goals of the agent.

Let P , S, and T denote the universes of all GR problems, solutions to these problems
(for instance, probability distributions over candidate goals), and (true) goals, respectively. A
goal recognition algorithm α maps problems to solutions, that is, α ∶ P → S , where α(p) is
the solution to problem p ∈ P by algorithm α . Given a solution α(p) to problem p and the
true goal g ∈ T of the agent from p, one can assess the quality of the solution using standard
measures such as precision, recall, and accuracy. Given a sequence X of length n, by X[i],
i ∈ [0 ..n], we denote the prefix of X of length i. By Xi, we denote the element of sequence X
at position i.

Then, the adaptive GR problem is defined as follows.

Definition 6 (Adaptive goal recognition). A triple < P,S,T >, where P ∈ P∗, S ∈ S∗, T ∈ T ∗,
∣P∣ = n, and ∣S∣ = n−1 = ∣T ∣, is an adaptive goal recognition problem of size n that consists in
solving GR problem Pn if either (i) n = 1 or (ii) n > 1, Si is a solution to problem Pi, Ti is the
true goal of the agent from problem Pi, i ∈ [1 ..n−1], and < P[n−1],S[n−2],T [n−2] > is an
adaptive GR problem of size n−1.
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The adaptive GR problem reduces to the conventional GR problem when n = 1 and is a
generalization of the latter. The adaptive GR problem can also be captured as a special GR
problem with the candidate goals and observations of Pn and the knowledge given by P, S,
and T . However, the explicit inductive structure of Definition 6 suggests that each subsequent
goal recognition can happen under new conditions and, thus, it is possible that Pi = Pj but
Si ≠ S j, or Si = S j but Pi ≠ Pj. The former situation can occur when a solution to the same
problem learns from its previous solution and adapts it, aiming to improve the quality of the
new solution. The latter situation may arise when different knowledge of the environment or
observations of the agent confirm the same inferred goal.

An algorithm for solving adaptive GR problems can use available information on the
quality of previous GR solutions to improve its performance. Interestingly, we do not require
all the solutions in S to stem from the same algorithm. However, in practice, one can often
expect that Sn−1 is obtained by the same algorithm that is used to solve Pn when solving the
adaptive problem of size n−1 defined by the prefixes of P, S, and T . Finally, the performance
of a GR algorithm that tackles an adaptive GR problem can be assessed over time, that is,
over all the induced problems of sizes from one to n.
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Figure 4.1 Two environments in the blocks-world domain.

Figure 4.1 shows two environments in the blocks-world domain. An environment in
this domain consists of a set of blocks, each either lying on the table or stacked on top of
another block, and an arm that can either be empty or hold a single block. For example, in
Figure 4.1a, the arm is empty, blocks r, w, and h are on the table, block e is stacked on top of
block r, block o is stacked on top of block w, block t is stacked on top of block o, block a is
stacked on top of block h, and block m is stacked on top of block a. When empty, the arm,
controlled by an agent, can pick up single block x from the table, using action (pick-up x),
or unstack x from block y, using action (unstack x y), if no other blocks are stacked on top
of block x. After picking up a block, the arm is no longer empty, as it now holds the block,
and cannot pick up other blocks. The arm can put block x it is holding back onto the table,
using action (put-down x), or stack it on top of block y, using action (stack x y).
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Let the environment in Figure 4.1a be the initial environment from which an agent starts
to control the arm and attempts to achieve one of two candidate goals: G1 or G2. Goal G1 is
to build the blocks that form the word “tower” where there are no blocks on t, block r is on
the table, t stacks on o, o stacks on w, w stacks on e, and e stacks on r. Goal G2 is to build
the blocks and form the word “mother” where there are no blocks on m, block r is on the
table, m stacks on o, o stacks on t, t stacks on h, h stacks on e, and e stacks on r. The actions
of the agent are the ability to use the arm to pick up and put down blocks. The knowledge
about the environment and agent determines which blocks the arm can pick up and where it
can put the block it holds.

One can capture the described situation as the probabilistic goal recognition problem
< {G1,G2},K,O >, where K describes the environment in Figure 4.1a and the actions the
agent can perform in different circumstances, and O is an observation of the agent’s his-
torical actions. For example, one can use the sequence ⟨(unstack t o), (put-down t),
(unstack o w),(put-down o), (pick-up w), (stack w e)⟩ to specify that six consec-
utive actions performed by the agent were observed. A solution to this problem can state, for
instance, that the agent aims for G1 with the probability of 0.7 and G2 with the probability of
0.3.

In practice, an agent may need to achieve the same goal repeatedly, for example, to
practice or learn different operation strategies or to accomplish multiple instances of the
same task. In general, the environment and the behavior of the agent may change over
time. For example, the initial state of the environment in which the agent attempts to
achieve the goals can change from the one shown in Figure 4.1a to the one depicted in
Figure 4.1b. Other changes that may affect the agent’s performance include changes in the
candidate goals, changes in the knowledge about the principles that govern the evolution of
the environment, and the evolution of the skills of the agent to operate in the environment.
Such ongoing changes to the environment can be referred to as concept drifts. Figure 4.2
visualizes an example gradual drift of the initial state of the environment from environment 0
to environment 1 generated by the GRACE tool3 that happens between time steps 50 and 100.
In this type of drift, the initial state defined by environment 0 is observed up to and including
time step 67. Subsequently, between time steps 67 and 88, the initial state gradually changes
from environment 0 to environment 1, with environment 1 appearing more frequently over
time until from time step 88 onward the initial state is entirely defined by environment 1.

A data-driven GR algorithm, like the PM-based GR system described in Chapter 3, often
has a training stage. During training, such an algorithm can use historical observations
and feedback from existing GR solutions to learn how to carry out future goal recognition

3https://github.com/zihangs/GRACE

https://github.com/zihangs/GRACE
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Figure 4.2 An example gradual drift from environment 0 to environment 1 generated by
GRACE.

practices best. Such training is often associated with a cost, for instance, computational
resources and time spent for training. While there is a desire to minimize these costs,
frequent training may be necessary when the environment, goals, or the agent’s behavior
drifts. These conflicting aims call for exploring different strategies to minimize training costs
while maximizing GR quality over time.

Given two sequences X and Y , X ○Y denotes their concatenation. Let P ∈ P∗ be a non-
empty sequence of GR problems of length n. By P(1), we denote the adaptive GR problem
< P[1],⟨⟩ ,⟨⟩ >. Then, by P(i), i ∈ [2 ..n], we denote the adaptive GR problem < P[i],S,T >,
where S = S′ ○ ⟨s⟩ and T = T ′ ○ ⟨g⟩, such that S′ and T ′ are, respectively, the solutions and
goals of P(i−1) and s and g are, respectively, the solution of problem P(i−1) and the true
goal of the agent from problem P(i−1). Then, an adaptive GR strategy is a solution to
the optimization problem that maximizes the quality of solutions to GR problems while
minimizing the cost invested in training the GR algorithm to obtain the solutions.

Definition 7 (Adaptive GR strategy). Given a GR algorithm α ∶ P → S and a non-empty
sequence of GR problems P ∈ P∗ of length n, an adaptive GR strategy is a set of positions I
in P, such that for each position i ∈ I algorithm α is trained on the solutions and true goals
of P(i) before it is applied to solve problems {P(k) ∣ k ∈ [i ..n]}, aiming to maximize an
objective function that praises the GR solutions of high quality and condemns training of α

of high costs.

To exemplify the trade-off between the performance of GR inference and the number of
times the system is trained, Figure 4.3 compares the performance of the conventional PM-
based GR system and the same system controlled by the open-loop adaptive strategy, which
regularly triggers the system to relearn its knowledge models based on which it carries
out the inference. The inference is made for the two goals of building words “tower” and
“mother” starting from one of the two environments shown in Figure 4.1. The initial state of
the environment for each time step is determined by the drift depicted in Figure 4.2. In the
figure, green boxes denote the accuracy of the adaptive GR system that relearns every ten
time steps using the data collected from the ten most recent inferences. Vertical blue dashed
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lines in the figure denote the time steps when the system is retrained. In contrast, red crosses
denote the accuracy of the conventional GR system that relies on the same knowledge models
throughout the entire inference period. The adaptive GR system achieves an average accuracy
of 0.90 over the period between time steps 50 and 100 while being trained four times, while
the conventional GR system achieves an average accuracy of 0.75 without updates of its
knowledge models, showing the value of the adaptive strategy.
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Figure 4.3 Accuracy of a conventional GR system and a GR system that implements an
open-loop adaptive strategy.

Each time step in Figures 4.2 and 4.3 defines an adaptive GR problem, cf. Definition 6,
and reports the quality of its solution. Specifically, for a time step i, the corresponding
adaptive GR problem is defined by <Pi,Si,T i >, where Pi is the sequence of all GR problems
requested to be solved up to, and including, time step i, Si is the sequence of all solutions
to the GR problems solved up to, but excluding, time step i, and T i is the sequence of all
true goals the agent achieved in the past up to, but excluding, time step i. The accuracy
of the solutions in Si with respect to the true goals from T i is reported in Figure 4.3. The
GR problem Pi

j can be captured as triplet < {G1,G2},K j,O j >, where K j is the knowledge
model defined by the environment at time step j in Figure 4.2 and O j are the available
observations of the agent in that environment. Besides the gradual drift, the GRACE tool can
also simulate other types of concept drifts such as sudden drift and reoccurring drift. Sudden
drift, see Figure 4.4a, concerns the situation when the original environment (env0) changes to
the new environment (env1) over a short period. Reoccurring drift, see Figure 4.4b, concerns
the situation when two distinct environments env0 and env1 repeatedly alternate, where each
environment is observed for some period. Note that reoccurring drift is different from gradual
drift as there is no incremental transition from env0 and env1 and the transitions between the
environments happen abruptly.
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Figure 4.4 Other types of concept drift.

4.2 Adaptive Goal Recognition Architecture

The adaptive GR system extends the conventional PM-based GR system by incorporating
additional control mechanisms governed by adaptive GR strategies. These mechanisms
trigger the relearning of process models, which is crucial for adapting the system to handle
new GR problems when the environment changes. As presented in Chapter 3, Figure 3.7
illustrates the three steps in a PM-based GR system for solving single-shot GR problems:
process discovery, conformance checking, and probability calculation. The architecture
of the adaptive version of the PM-based GR system consists of a conventional PM-based
GR system and two additional steps, feedback collection and relearn decision, as shown in
Figure 4.5.
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Figure 4.5 Architecture of the adaptive PM-based GR system.
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We use the example from Figure 4.1, which includes a transition from the original environ-
ment (environment 0) to environment 1, to describe all five steps of the adaptive PM-based
GR system below.

Step 1: Starting from the initial state shown in Figure 4.1a, the agent controls the arm to
achieve one of the two candidate goals: to form the word “tower” (G1) and to form the word
“mother” (G2). Let us assume that we have already observed two distinct sets of traces (event
logs), denoted by LG1 and LG2 , each containing five traces as presented in Tables 4.1 and 4.2.

τ1 τ2 τ3 τ4 τ5
⟨(unstack t o), ⟨(unstack t o), ⟨(unstack t o), ⟨(unstack t o), ⟨(unstack t o),
(put-down t), (stack t m), (put-down t), (put-down t), (stack t m),
(unstack o w), (unstack o w), (unstack o w), (unstack o w), (unstack o w),
(put-down o), (put-down o), (stack o m), (stack o t), (stack o t),
(pick-up w), (pick-up w), (pick-up w), (pick-up w), (pick-up w),
(stack w e), (stack w e), (stack w e), (stack w e), (stack w e),
(pick-up o), (pick-up o), (unstack o m), (unstack o t), (unstack o t),
(stack o w), (stack o w), (stack o w), (stack o w), (stack o w),
(pick-up t), (unstack t m), (pick-up t), (pick-up t), (unstack t m),
(stack t o)⟩ (stack t o)⟩ (stack t o)⟩ (stack t o)⟩ (stack t o)⟩

Table 4.1 Event log LG1 comprising five traces τ1 to τ5 for achieving goal G1.

τ6 τ7 τ8 τ9 τ10
⟨(unstack m a), ⟨(unstack m a), ⟨(unstack m a), ⟨(unstack m a), ⟨(unstack m a),
(put-down m), (put-down m), (put-down m), (put-down m), (put-down m),
(unstack a h), (unstack a h), (unstack a h), (unstack a h), (unstack a h),
(put-down a), (put-down a), (put-down a), (put-down a), (stack a e),
(pick-up h), (pick-up h), (pick-up h), (pick-up a), (unstack a e),
(stack h e), (stack h e), (stack h e), (put-down a), (put-down a),

(unstack t o), (unstack t o), (unstack t o), (pick-up h), (pick-up h),
(stack t h), (stack t h), (stack t h), (stack h e), (stack h e),

(unstack o w), (unstack o w), (unstack o w), (unstack t o), (unstack t o),
(stack o t), (stack o t), (stack o t), (stack t h), (stack t h),
(pick-up m), (pick-up m), (pick-up m), (unstack o w), (unstack o w),
(stack m o)⟩ (stack m o), (stack m o), (stack o t), (stack o t),

(pick-up a)⟩ (pick-up w)⟩ (pick-up m), (pick-up m),
(stack m o)⟩ (stack m o)⟩

Table 4.2 Event log LG2 comprising five traces τ6 to τ10 for achieving goal G2.

The GR system can subsequently learn two process models from LG1 and LG2 , namely
MG1 and MG2 , represented graphically as Petri nets in Figure 4.6 and Figure 4.7, respectively.4

4In Figure 4.6 and Figure 4.7, we abbreviate agent’s actions as follows: pu = pick-up, pd = put-down,
st = stack, us = unstack.
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Figure 4.6 Petri net MG1 learned from event log LG1 .

us t o
st t h

pd t us m a

us m a

pd m us a h

pd a

st a e us a e pd a

pu a

pu hst h eus t o

pu t st t h us o w st o t pu m st m o

pd a

pu a pu w end

end end

Figure 4.7 Petri net MG2 learned from event log LG2 .

Step 2: Table 4.3 shows two example optimal alignments, denoted by γ1 and γ2, between
a partially observed trace τo and models MG1 and MG2 . Trace τo = ⟨(unstack t o),
(put-down t), (unstack o w), (stack o m), (pick-up w), (stack w e), (unstack
o m)⟩ consists of seven actions, denoted by a1, . . . ,a7, where action indices correspond to
their positions in the trace, which do not provide a complete sequence of actions from the
initial state to the goal state. Let the ground truth be that the agent that performed τo aims
to achieve goal G1. Model MG1 describes a trace that can match τo perfectly. However, the
best-matched trace described by MG2 can only align three actions, a1, a3, and a5 with τo,
while a2, a4, a6, and a7 are asynchronous moves denoted by the special skip symbol “≫”.
Intuitively, in the example in Table 4.3, the agent is more likely to work towards goal G1.
Next, the probability distribution over candidate goals G1 to GN is computed using optimal
alignments γ1 to γN that describes the likelihood of τo leading to the true goal.

a1 a2 a3 a4 a5 a6 a7

γ1 =
τo (unstack t o) (put-down t) (unstack o w) (stack o m) (pick-up w) (stack w e) (unstack o m)

MG1 (unstack t o) (put-down t) (unstack o w) (stack o m) (pick-up w) (stack w e) (unstack o m)
iδ 11 21 31 41 51 61 71

c(τo,MG2, i) 0 0 0 0 0 0 0

γ2 =
τo (unstack t o) (put-down t) (unstack o w) (stack o m) (pick-up w) (stack w e) (unstack o m)

MG2 (unstack t o) >> (unstack o w) >> (pick-up w) >> >>
iδ 11 21 31 41 51 61 71

c(τo,MG2, i) 0 1 0 1 0 1 1

Table 4.3 Optimal alignments between trace τo observed in environment 0 from Figure 4.1a
and models MG1 and MG2 .

Step 3: The weight of the constructed optimal alignment between τ and model MG is
computed using Equation 3.5, as described in Chapter 3. The parameter values are configured
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as φ = 50, δ = 1.0, λ = 1.5, and the cost of each asynchronous move on the trace is set to
c(τ,MG, i) = 1. In Table 4.3, iδ represents a discount factor, and c(τ,MG, i) denotes the cost
of the asynchronous move on the trace in position i in the alignment (for example actions a2,
a4, a6, and a7 in γ2). Thus, in the blocks-world example, the alignment weight ω(τo,MG1)
is 50, since all the moves in γ1 are synchronous and only the constant φ contributes to the
weight. On the other hand, ω(τo,MG2) = 50+1.52×(1×21+1×41+1×61+1×71) = 92.75,
since a2, a4, a6, a7 in γ2 are asynchronous moves. When incorporating the alignment weights
ω(τo,MG1) and ω(τo,MG2) into Equation 3.3, the probabilities of the agent achieving G1

and G2 are 0.69 and 0.31, respectively. The probabilities indicate that the observed trace τo

is more likely to lead the agent to goal G1, and, hence, the system infers G1 as the goal of the
agent.

The above three steps work perfectly in the original environment (environment 0) if
the environment is static. However, if the environment changes from environment 0 to
environment 1 (as shown in Figure 4.1), the agent will need to follow a significantly different
trajectory to achieve the same goal. Assume that the new observed sequence of actions
for the agent acting in environment 1 to achieve G1 is τ ′i = ⟨ (put-down e), (unstack
m a), (put-down m), (unstack t o), (stack t m), (unstack a w), (put-down a)
⟩. If we align τ ′i to the models learned for the environment 0, MG1 and MG2 , we obtain
optimal alignments γ3 and γ4, as shown in Table 4.4. The alignment weights, according
to Equation 3.5, are ω(τ ′i ,MG1) = 92.75 and ω(τ ′i ,MG2) = 66, respectively. According to
Equation 3.3, the inferred probabilities of the agent to achieve G1 and G2 are 0.40 and 0.60,
respectively. Consequently, if the GR system relies on the models learned for environment 0,
the newly inferred probabilities indicate that the agent executing τ ′i is more likely working
towards G2, which is incorrect given that the true goal of the agent is G1. This running
example illustrates the limitations of the conventional GR system when the underlying
environment changes.

a1 a2 a3 a4 a5 a6 a7

γ3 =
τ ′i (put-down e) (unstack m a) (put-down m) (unstack t o) (stack t m) (unstack a w) (put-down a)

MG1 >> >> >> (unstack t o) (stack t m) >> >>
iδ 11 21 31 41 51 61 71

c(τ ′i ,MG1, i) 0 0 0 0 0 0 0

γ4 =
τ ′i (put-down e) (unstack m a) (put-down m) (unstack t o) (stack t m) (unstack a w) (put-down a)

MG2 >> (unstack m a) (put-down m) >> >> >> (put-down a)
iδ 11 21 31 41 51 61 71

c(τ ′i ,MG2, i) 1 0 0 1 1 1 0

Table 4.4 Optimal alignments between trace prefix τ ′i observed in environment 1 from
Figure 4.1a and models MG1 and MG2 .

Next, we discuss the two new steps of the adaptive version of the PM-based GR system.
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Step 4: Once the agent reaches a goal, the information on completed trace τi, true goal
G the agent has achieved by executing τi, and the previously inferred goal based on the
corresponding trace prefix τ ′i are passed to the feedback collection component. We assume
that once the agent reaches a goal, that is, completes a trace of actions, the corresponding
true goal can be detected. The feedback collection component performs two tasks. First, it
evaluates the inferred goal against the true goal. The evaluation results are then communicated
to the relearn decision component through goal inference statistics to inform whether to
retrain the GR system.

Second, the completed trace and the corresponding achieved goal are stored in the
collection of historical observations, ready to be used to relearn the process models once the
necessity arises.

Step 5: The relearn decision component uses the goal inference statistics to generate signals
to instruct the GR system to update the discovered process models, that is, to implement
adaptive GR strategies. In this work, we explore open- and closed-loop strategies. The
open-loop strategy instructs the process discovery component to relearn the models after
a specified number of performed GR tasks; the decision to relearn the models is triggered
regularly. On the other hand, a closed-loop strategy evaluates the historical performance
of GR inferences by the system summarized in the statistics generated by the feedback
collection component to decide when to trigger the decision to relearn the process models.
We use balanced accuracy to measure the GR performance, as explained in Section 4.3.2.
Intuitively, a drop in the GR accuracy indicates that the environment may have changed.
Consequently, the adaptive GR system may decide to relearn the process models from the
recently observed historical traces.

In this work, we present and evaluate three adaptive GR strategies summarized below.

• Open-loop adaptive GR strategy. This strategy requests automatically relearning the
process models from the most recent historical observations after a pre-configured number
of GR inferences, regardless of the GR performance.

• Closed-loop adaptive GR strategy based on average accuracy. This strategy monitors
the average accuracy over the pre-configured number of most recent GR inferences. If the
average accuracy drops below a given threshold, it requests to relearn the process models
from the most recent historical observations.

• Closed-loop adaptive GR strategy based on accuracy trend. This strategy uses linear
regression to analyze the accuracy trend of the most recent GR inferences. If this trend
suggests that the accuracy of a number of the subsequent GR inferences will drop below a
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given threshold, the strategy requests to relearn the process models from the most recent
historical observations.

4.3 Evaluation

This section presents an evaluation we conducted to study the performance of our adaptive
GR systems. Section 4.3.1 describes the synthetic datasets we generated using the extended
version of the GRACE tool and the real-world event logs we used to evaluate the GR
performance. Section 4.3.2 presents the measures we used to assess the performance of our
GR systems. Finally, Section 4.3.3 describes the experiments, while Section 4.3.4 discusses
the results of the experiments.

4.3.1 Datasets

The synthetic dataset, a collection of adaptive GR problems, used in our experiments was
generated using the extended version of the GRACE tool. The tool takes a static GR
problem instance described in the Planning Domain Definition Language (PDDL) [51] and a
configuration as input and generates a sequence of GR problems, each composed of a PDDL
description of the environment and an observation of an agent accomplishing a goal in the
environment, as output. The configuration specifies changes that should be applied in the
environment of the input GR problem (e.g., a change of the initial state of the agent and
objects in the environment) and a drift type according to which this input environment should
evolve in the modified environment. Each problem in the generated sequence is either the
original GR problem or the GR problem over the changed environment. Two consecutive
problems in the sequence specify their temporal relation; the preceding problem should be
solved before the succeeding problem. The order of the problems in the sequence implements
the requested drift type.

To ensure that the GRACE tool generates environments significantly different from those
in the input GR problems, we extended the tool to use the significance of change (SOC)
measure. The SOC measure quantifies the differences between the original and modified
environments. In the first implementation of the GRACE tool, the input environment
is modified randomly. For example, a new initial state of the agent is discovered via
a random walk from the original initial state of the environment. The new initial state
discovered this way could be similar to the original initial state. To avoid such situations,
we extended GRACE to use the differences between optimal plans in the original and the
changed environments to quantify how significantly the environment has been modified. The
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difference between two given plans is computed as their Levenshtein edit distance [78]. Let
the original environment have n goal candidates, G1, . . . ,Gn, and an initial state I. For each
goal candidate Gi, i ∈ [1 ..n], we find an optimal plan πi that starts in I to Gi using the top-k
planner [115]. The GRACE tool modifies the original environment to an environment with
n candidate goals, namely G′1, . . . ,G

′
n, and one initial state I′. We compute optimal plans

π ′1, . . . ,π
′
n that start in I′ to goals G′1, . . . ,G

′
n, where π ′i is an optimal plan from I′ to G′i. By

dist(πi,π ′i ), we denote the Levenshtein edit distances between plans πi and π ′i ; note that the
plans are captured as sequences of actions performed by the agent, that is, traces. If two
traces, πi and π ′i , are entirely different, the maximum possible Levenshtein edit distance
between them can be obtained by summing their lengths, that is ∣πi∣ + ∣π ′i ∣. Equation 4.1
defines the SOC measure between the original and modified environments.

SOC = ∑
n
i=1 dist(πi,π ′i )
∑n

i=1(∣πi∣ + ∣π ′i ∣)
(4.1)

It holds that SOC is between zero and one, inclusively, that is, SOC ∈ [0,1]. The larger the
SOC value, the more significant the difference between the original and modified environ-
ments.

We used conventional GR problem instances from 15 International Planning Competition
(IPC) domains5 as input to GRACE. For each input problem instance, GRACE was configured
to generate the corresponding adaptive GR problem instance by following these four steps:

1. Modify the initial state of the environment of the input GR problem to generate a new
GR environment that is significantly different from the input environment (the SOC
value greater or equal to 0.25).

2. Use the top-k planner [115] to construct 1 000 plans from the initial state to every goal
candidate state, both for the original and modified environment.

3. Use the original and modified environments to simulate sudden, gradual, and reoccur-
ring drifts from the original to the modified environment as sequences of these two
environments.

4. For each environment at every position in the sequence, select one generated plan
towards each candidate goal from the set of constructed 1 000 plans to represent the
behavior of the agent for accomplishing the goal in that environment at that time step.

We constructed and made publicly available 228 adaptive GR problem instances from 15
domains (76 problem instances times 3 types of drifts).6 Note that the number of problem
instances is determined by the number of different problems in the original IPC dataset.

5https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset
6https://doi.org/10.26188/21802081

https://github.com/pucrs-automated-planning/goal-plan-recognition-dataset
https://doi.org/10.26188/21802081
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Figure 4.1 shows the original environment (environment 0) and the modified environment
(environment 1) of one constructed adaptive GR problem instance from the constructed
datasets, while Figure 4.2 shows how these two environments are arranged in a sequence by
GRACE to simulate a gradual drift from environment 0 to environment 1.

To conduct experiments over real-world datasets, we used the preprocessed event logs
provided by Teinemaa et al. [118], in which the traces are grouped by Linear Temporal
Logic (LTL) classifiers. The traces within each group accomplish the same goal. For each
event log, we sorted the traces based on the timestamps of their last events. Following this
sorted chronological order, we selected an equal number of traces that accomplish each
goal candidate to simulate a sequence of observed traces as inputs for GR tasks. We then
extracted traces from the very beginning and the very end of each log to induce a drift.
Intuitively, a time gap between these two trace groups may result in a noticeable concept
drift. We then used the first ten time steps (where each time step is represented by the agent
traces towards all the goal candidates) for discovering the initial process models. We used
the subsequent 50 time steps (time steps 11 to 60) to simulate GR tasks within the initial
environment and the last 50 time steps to simulate GR tasks after the changes in the initial
environment. Finally, we conducted experiments using the conventional GR system that
does not adapt to environmental changes over the constructed 100 testing time steps. If
the average recognition accuracy over the first 50 time steps was significantly higher (by
10%) than the average accuracy over the last 50 time steps, we asserted that the concept
drift indeed occurred. Using this approach, we selected two event logs from the real-world
business domains that exhibit concept drift: BPIC 20117 and Hospital Billing.8 Note that for
the Sepsis Cases event log,9 the number of traces in the event log is relatively small, resulting
in 98 time steps after preprocessing. Thus, we examined the first and the last 20 time steps to
ascertain whether there was a significant drop in GR accuracy over these two periods. The
results revealed a 0.061 (8.6%) accuracy drop, but we included the Sepsis Cases event log in
the subsequent experiments. Consequently, we obtained three event logs6 from real-world
business domains, specifically BPIC 2011, Hospital Billing, and Sepsis Cases, which we
used for evaluating our adaptive GR systems.

4.3.2 Performance Measures

For each observation of an agent attempting to accomplish a goal supplied with the adaptive
GR problem instance from the dataset, the GR performance is measured using the balanced

7https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
8https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
9https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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accuracy measure [90], which requires four terms to compute. True Positive (TP) is the
number of correct goals inferred by the GR system. True Negative (TN) is the number of
incorrect goals not inferred. False Positive (FP) is the number of incorrect goals inferred
by the GR system. Finally, False Negative (FN) is the number of correct goals not inferred.
For example, consider a GR system observing an agent that executes a sequence of actions,
working towards a true hidden goal (G1) among ten candidate goals (G1 to G10). Suppose
that, according to the observed action sequence, the GR system infers G1 and G2 as possible
goals the agent is trying to achieve. Therefore, G1 and G2 are two positive goals, and the
rest of the candidate goals are negative goals. In this scenario, for the two positive goals,
G1 is the true hidden goal correctly inferred by the GR system. Thus, TP is equal to one.
Goal G2 is not the true hidden goal; it is falsely inferred by the GR system. Thus, FP equals
one. None of the eight negative goals (G3 to G10) is the true hidden goal. Hence, TN equals
eight because the GR system made the correct decision not to infer these goals. Finally, FN
is equal to zero because none of the true hidden goals are missed; the GR system correctly
recognized the true hidden goal. Note that, in our experiments, TP,FN ∈ {0,1}, as there is
only one true goal per instance, while TN,FP ∈ {0, . . . , ∣G∣−1}, where G stands for the set of
candidate goals. Given the four terms (TP, TN, FP, and FN), the balanced accuracy (BACC)
is an average of the true positive and the true negative rates, given below.

BACC = 1
2
×( TP

TP+FN
+ TN

TN +FP
) (4.2)

4.3.3 Experiments

We evaluated the performance of the standard PM-based GR system and the three adaptive
GR strategies (see Section 4.2) over the synthetic and real-world instances of the adaptive
GR problems. We denote the evaluated GR systems that follow different adaptive strategies
as follows: SYSstd is the standard PM-based GR system; SYSol is the adaptive PM-based GR
system that implements the open-loop adaptive GR strategy; SYScla is the adaptive PM-based
GR system that implements the closed-loop adaptive GR strategy based on average accuracy;
and SYSclt is the adaptive PM-based GR system that implements the closed-loop adaptive
GR strategy based on accuracy trend.

We used the performance of SYSstd as the baseline to compare it with the performance
of the three adaptive GR systems. In SYSol, we set the system to relearn after every ten GR
inferences. In SYScla, we set the relearn threshold of the highest average accuracy over ten
consecutive GR inferences, denoted by ACCh10, to 80%. Hence, the system would relearn if
the average accuracy over the past ten GR inferences is below 0.8×ACCh10. In SYSclt, if the
predicted accuracy of the following ten GR inferences is below 0.8×ACCh10, then the GR
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system relearns the process models. We simulated partial observability of the agent in each
GR task by only including 50% of the actions from each trace towards a goal supplied in the
datasets.

All the adaptive GR problem instances from the datasets were solved using our open-
source implementation of the PM-based GR system and the proposed adaptive GR strategies
on a single core of an Intel Xeon Processor (Skylake, IBRS) @ 2.0GHz with 16GB of
RAM.10

4.3.4 Results

The results of the experiments confirmed that, compared to the standard PM-based GR system,
the adaptive GR systems achieve better recognition accuracies. Figure 4.8 summarizes the
performance of the four evaluated GR systems (SYSstd, SYSol, SYScla, and SYSclt) on an
adaptive GR problem instance from the synthetic zeno-travel domain with a sudden drift
from the original to the modified environment. Specifically, the first 50 GR problems are
defined for the original environment, while problems 51 to 100 are defined for the modified
environment. In each plot in Figure 4.8, the X-axis shows a sequence of problems tackled
by the GR system, while the Y-axis shows the average balanced accuracy of the recognized
goals. Note that each adaptive GR problem instance in the dataset is defined for multiple (n)
candidate goals (G1 to Gn). Recall that for each GR problem at position j in the sequence on
the X-axis, we have n observations (i.e., traces of actions), one trace the agent has followed
for each goal. By BACCs

Gi
, we denote the balanced accuracy of performing goal recognition

using GR system s on the trace towards goal Gi, i ∈ [1 ..n], s ∈ {SYSstd,SYSol,SYScla,SYSclt}.

Hence, each data point in the plots stands for
(∑n

i=1 BACCs
Gi
)

n and is denoted by ABACCs
j. The

line segment associated with each data point represents the corresponding standard deviation
range, while data points in red, in addition, represent that at that position in the sequence, the
system decided to update its knowledge base and relearned the models it uses for solving GR
problems.

Figure 4.8a shows that the average recognition accuracy drops from 0.927 to 0.670
after the environment changes if the GR system does not update the process models. In
contrast, for the GR systems with relearn mechanisms, the recognition accuracy can recover
to some degree after the environment changes. The open-loop adaptive GR system SYSol

(Figure 4.8b) relearns ten times, and the average accuracy after environment change is 0.789.
The closed-loop adaptive GR system based on average accuracy SYScla (Figure 4.8c) relearns

10The code to run the experiments and our implementations of the GR systems can be accessed here:
https://doi.org/10.26188/25329490.

https://doi.org/10.26188/25329490
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(a) The standard PM-based GR system SYSstd; average accuracy in cases 1–50 and 51–100
is 0.927 and 0.670, respectively, with no updates of the process models.

(b) The open-loop adaptive PM-based GR system SYSol; average accuracy in cases 1–50
and 51–100 is 0.943 and 0.789, respectively, with ten updates of the process models.

(c) The closed-loop adaptive PM-based GR system based on average accuracy SYScla;
average accuracy in cases 1–50 and 51–100 is 0.927 and 0.761, respectively, with one
update of the process models.

(d) The closed-loop adaptive PM-based GR system based on accuracy trend SYSclt; average
accuracy in cases 1–50 and 51–100 is 0.921 and 0.792, respectively, with four updates of
the process models.

Figure 4.8 Performance of four GR systems on a single adaptive GR problem instance with a
sudden drift.
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once, and the average accuracy after environment change is 0.761. Finally, the closed-loop
adaptive GR system based on accuracy trend SYSclt (Figure 4.8d) relearns four times, and the
average accuracy after environment change is 0.792. The detailed results for each adaptive
GR system, performing in different problem instances under three types of environmental
drift, are available online.11

We computed the average accuracies of the goal recognition for the four evaluated GR
systems in the original and modified environments over all the problem instances and all the
drift types in the datasets. The average accuracy achieved by GR system s in the original

environment is denoted by ABACC0s and equals
(∑j∈E0 ABACCs

j)
∣E0∣ , while ABACC1s stands for

the average accuracy in the modified environment and equals
(∑j∈E1 ABACCs

j)
∣E1∣ ; E0 and E1 are

the sets of all positions in the sequence of GR problems defined over the original environment
and the modified environment, respectively. The difference between the average accuracies
in the original and modified environments for the SYSstd system shown in Figure 4.8a (i.e.,
the system without relearn capabilities) is the drop in accuracy for the baseline system, see
below.

ACCDROP = ABACC0SYSstd −ABACC1SYSstd (4.3)

The accuracy improvement is the difference between the average accuracies in the modified
environments computed for adaptive GR system s and the standard GR system SYSstd.

Improvements = ABACC1s−ABACC1SYSstd , s ∈ {SYSol,SYScla,SYSclt} (4.4)

Next, the improvement ratio for GR system s is defined as follows.

ImprovementRatios = Improvements

ACCDROP
, s ∈ {SYSol,SYScla,SYSclt} (4.5)

Table 4.5 shows accuracy improvement ratios computed per drift type for the three
adaptive GR systems and the average number of times (per problem instance) the system
triggered relearning of the knowledge base. The detailed results of all the experiments based
on which the data in the table was computed are publicly available.12 For instance, the table
suggests that the open-loop system on a problem with a sudden drift relearns (on average)
ten times and demonstrates the improvement ratio of 0.62. That is, it recovers (on average)
62% of the drop in recognition accuracy due to the change of the environment. The last
column in Table 4.5 shows the absolute accuracy drop for each type of drift over all problem
instances. We conclude from the results that the proposed adaptive GR systems can improve

11https://doi.org/10.26188/21901296
12https://doi.org/10.26188/21901296

https://doi.org/10.26188/21901296
https://doi.org/10.26188/21901296
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recognition accuracy compared to the standard PM-based GR system. In general, the more
times the system relearned, the better improvement in accuracy was observed. However, good
improvements in accuracy can already be obtained by retraining the system a small number
of times. Hence, it is evident that a closed-loop GR system can achieve good performance
over a wide range of domains and drift types while keeping the number of relearn episodes
low.

Drift Open-loop Closed-loop (Avg) Closed-loop (Trend) ACCDROP
Sudden 62.0% / 10 33.5% / 1.4 51.6% / 2.3 0.170
Gradual 106.2% / 15 43.6% / 1.7 87.6% / 3.2 0.170
Reoccuring 62.3% / 20 36.1% / 3.4 51.5% / 5.4 0.167

Table 4.5 Accuracy improvement ratio and the average number of times the process models
were relearned (improvement ratio/avg. number of relearn episodes per problem instance)
for three adaptive GR systems over 218 problem instances.

The improvement ratios in GR accuracy achieved by using adaptive GR systems, along
with the number of times the system triggered relearning of process models for the real-
world business domains—BPIC 2011, Sepsis Cases, and Hospital Billing—are displayed in
Table 4.6. The column labeled “ACCDROP” represents the absolute accuracy drop after the
environmental change (concept drift) when using SYSstd. Nevertheless, these performance
drops can be mitigated using the adaptive GR systems: SYSol, SYScla, and SYSclt. For instance,
for the BPIC 2011 event log, the average accuracy drops by 0.116 when using SYSstd due to
the environmental change, and SYSol can recover 122.4% of the accuracy drop by relearning
the process models ten times over the entire goal recognition period.

Domain Open-loop Closed-loop (Avg) Closed-loop (Trend) ACCDROP
BPIC 2011 122.4% / 10 95.7% / 6 152.6% / 7 0.116 (from 0.540 to 0.424)
Sepsis Cases 98.4% / 10 173.8% / 2 123.0% / 1 0.061 (from 0.713 to 0.652)
Hospital Billing 108.3% / 10 96.4% / 4 137.0% / 3 0.084 (from 0.720 to 0.636)

Table 4.6 Accuracy improvement ratio and the average number of times the process models
were relearned (improvement ratio/avg. number of relearn episodes per problem instance)
for three adaptive GR systems over three real-world domains.



Chapter 5

Evidence-Based Goal Recognition for
Powered Transhumeral Prostheses

This chapter focuses on RQ3: Are evidence-based goal recognition techniques practically
useful? We claim that the evidence-based goal recognition (GR) framework introduced in
Chapter 3 is applicable in real-world scenarios. To empirically verify our claim, this chapter
conducts a case study that applies process mining (PM)-based GR techniques to powered
transhumeral prostheses scenarios. This study aims to develop a powered transhumeral
prosthesis, guided by PM-based GR techniques, to enhance the efficiency of prosthetic use
for individuals with upper limb disabilities [75, 142, 141] We conduct both offline and human-
in-the-loop (HITL) experiments to evaluate our proposed target pose recognition1 approaches
using process mining techniques. The results confirm that our approaches outperform the
existing state-of-the-art baseline approaches [141, 57] in the field of transhumeral prostheses.2

Concretely, this chapter makes the following contributions:

• It applies the PM-based GR framework to target pose recognition for powered tran-
shumeral prostheses, aiming to assist the daily activities of people with disabilities.
The proposed techniques adapt the PM-based GR approach to operate with multi-
dimensional, real-valued, continuous measurements that characterize the observed
behavior of interest;

• It evaluates the two proposed PM-based target pose recognition techniques by com-
paring them with state-of-the-art baselines, including static LDA, dynamic LDA, and
LSTM, through an offline experiment;

1In this chapter, we use the terms “goal recognition” and “target pose recognition” interchangeably.
2This chapter is an adaptation of our previously published works: “Data-driven goal recognition in

transhumeral prostheses using process mining techniques.” In 2023 5th IEEE International Conference on
Process Mining (ICPM), pages 25-32, 2023.
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• It conducts a human-in-the-loop (HITL) experiment to assess the two best-performing
approaches identified in the offline setting, the PM-based GR with a classifier and the
dynamic LDA baseline. The experiment results verify that the PM-based approach
outperforms the baseline, thereby supporting the claim that the evidence-based GR
framework is practically useful in real-world scenarios.

5.1 Study Description

Transhumeral prostheses, designed to restore upper limb function by replacing missing limb
segments below the shoulder, facilitate tasks such as reaching or grasping, thereby enhancing
users’ ability to perform activities of daily living. This study aims to develop a technique for
guiding actuator-driven powered transhumeral prostheses towards a target that the human
user knows, while the prosthesis does not. Accurately identifying this goal is crucial, as
failure to achieve it can result in inefficient task execution, user frustration, and potential
device abandonment [49]. The prosthetic joint movements are usually controlled through
the user’s volitional movement comprising surface electromyography (sEMG) signals of the
above-elbow muscles, the movement of the residual limb (upper arm) and body [5, 42]. We
aim to develop an algorithm that identifies a user’s intended target from continuous, real-
valued sensor measurements, similar to goal recognition techniques. However, developing
effective GR algorithms in transhumeral prostheses is challenging due to the lack of direct
inputs linked to the joint movements—muscles anatomically connected to the wrist are
not accessible—and the significant variability in kinematic and muscle activity signals of
individuals [110].

We conduct a two-step study that consists of (i) offline experiments for algorithm de-
velopment and (ii) human-in-the-loop (HITL) prosthesis movement control experiments
employing the developed algorithm. This two-step approach is commonly employed in the
literature of powered prostheses [49]. We first use pre-collected body movement and muscle
activity datasets from non-disabled human subjects to develop an accurate and robust goal
recognition algorithm based on offline experiments. Then, we deploy the algorithm to control
the prosthetic device in real-time based on the inputs generated by human users that are
impacted by the HITL control mechanisms.

The distinction between offline and HITL experiments is whether the subjects interact
with the powered prosthesis. In offline experiments, measurements are taken as non-disabled
subjects reach goals with their intact limb without interacting with the prosthesis. This
dataset is collected to inform the development of the GR system. In HITL experiments,
real-time measurements are used by the developed GR system to recognize the goal. The
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motors then drive the prosthesis to the recognized goal (pose), which closely aligns with the
intended real-life use of the prosthetic device. In a HITL experiment, the subject interacts
with the prosthesis by experiencing its movement and adjusting their joint and muscle
movements accordingly. These “interactions” between the prosthesis and the user can lead
to inputs to the GR system that are substantially different from those captured in the offline
dataset. HITL experiments thus support testing the robustness of the developed GR system.
Additionally, doubts exist in the literature regarding the correlation between offline and HITL
performance [92, 81, 52], highlighting the need for HITL experiments to justify the efficacy
of the developed powered transhumeral prostheses.

5.1.1 Offline Experiments

The dataset for offline experiments was collected as non-disabled subjects extended their
intact upper limbs forward to reach three goal elbow poses repeated at three shoulder
flexion/extension poses. The goals (target elbow poses) are denoted as T1, T2, and T3 in
Figure 5.1a, which illustrates the side-view schematic of the upper limb. The dataset captures
the above-elbow joint movements and muscle activities through motion trackers and surface
electromyography (sEMG) sensors, respectively, with 12 joint kinematic movement features
and 35 sEMG features extracted at a rate of 10 Hz (the measurements were taken every
0.1 seconds). The process of extracting the sEMG and joint movement features has been
described in detail in previous work [142].

(a) (b) (c)

Figure 5.1 Offline dataset collection setup: (a) Target shoulder and elbow poses; T1–T3
denote three goals, (b) Experimental setup and the placement of VIVE trackers and sEMG
electrodes, and (c) VR avatar showing target example (side view).

The sensor placements and the virtual avatar in VR are shown in Figures 5.1b and 5.1c,
respectively. To capture the residual limb joint kinematics, three HTC VIVE trackers were
strategically positioned at the upper arm (UA), shoulder acromion (SA), and trunk (TR). The
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displacement and velocity of the six degrees of freedom (DoF) shoulder and trunk movements
were extracted as features. An additional tracker was placed on the forearm (FA) to acquire
the elbow joint kinematics. A controller was held in the hand to move the hand avatar shown
in Figure 5.1c. For monitoring the muscle activity, seven Trigno™ wireless sEMG electrodes
by Delsys® were attached to the upper-arm muscles of the dominant arm. Each electrode
produces five features.

In the experiment, the goal is considered reached when the middle finger of the virtual
avatar hits the target sphere, which is generated to elicit the target shoulder and elbow poses.
For each goal, the subjects were tasked with 30 iterations of the forward-reaching. They
were instructed to keep their final upper limb pose for one second upon reaching the goal.
The data spanned from the initiation of the movement to the end of the holding period were
reserved for feature extraction.

(a) (b) (c)

Figure 5.2 Human-in-the-loop experiment setup: (a) virtual 3-DoF prosthesis avatar; (b)
forward stage of the RCRT task, and (c) backward stage of the RCRT task; numbers indicate
goals (intended movements) with red solid and dashed arrows demonstrating the movement
paths, letters A to D show the relocation positions, and O represents the arm resting position
(upper-arm pointing downwards).

5.1.2 Human-In-The-Loop Experiments

In the human-in-the-loop (HITL) experiments, a real-world task is assessed in the HMD VR
environment, where subjects are tasked with picking up and relocating the clothespins by
using a virtual prosthesis attached to their dominant side, as depicted in Figure 5.2a. Such
a task involves three prosthetic DoFs: elbow flexion/extension, wrist pronation/supination,
and hand open/pinch. It is worth noting that this task involves different target poses (goals)
compared to the offline experiment. Therefore, a different training dataset is first collected
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from the subject executing the clothespin relocation task to construct the GR system, followed
by the HITL experiment.

For real-time goal recognition, features are extracted at a rate of 10 Hz and streamed
as inputs to the GR system for controlling the prosthetic elbow and wrist movement. The
hand open/pinch function typically requires a dedicated control algorithm or GR system
separate from joint control due to the temporal sequence of gross arm movement and hand
manipulation [5]. Thus, a switching mechanism is needed to transition between the two
control algorithms. To isolate the effects of switching between control algorithms, the
hand open/pinch function is controlled through a button held in the non-dominant hand, as
described in [75]. The socket of the prosthesis tracks the movement of the UA tracker and
connects the prosthesis to the subject’s residual limb. The sensor setup mirrors the one used
in the offline evaluation. Twelve more kinematic features are investigated, comprising the
acceleration of the six DoF movements used in the offline experiments and the kinematics of
two additional DoFs, which are essential to extend the workspace from a plane (Figure 5.1a)
to a 3-dimensional space.

The HITL experiments adhere to the widely used Refined Clothespin Relocation Task
(RCRT) documented in [58, 75], with a dedicated one-to-one scale virtual setup. The task
comprises eight kinds of movements, representing eight distinct goals, accomplished in two
stages. In the forward stage, see Figure 5.2b, the subjects begin from the upper-arm resting
and pointing downwards (denoted as “O” in Figure 5.2b). They then sequentially pick up
the two clothespins placed vertically on the horizontal rod (positions A and B) and transfer
them to the vertical rod (positions C and D). Subsequently, in the backward stage, they
start from the resting position and then return the clothespins at positions C and D to the
original positions A and B, see Figure 5.2c. The desired movements and goal categories
are marked using red arrow lines and corresponding numbers; solid lines are used to depict
desired movement trajectories in the forward stage, while dashed lines capture the desired
movement trajectories for the backward stage of the experiment. From a GR perspective,
which typically focuses on distinguishing different goals from the same initial state, the eight
movement trajectories present three GR challenges: identifying whether the subject aims for
A or D from initial position O; identifying whether the arm is moving toward C or D from
position B; and identifying whether the movement is toward A or B from position C.
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5.2 Target Pose Recognition Using Linear Discriminant
Analysis

Linear Discriminant Analysis (LDA) is a trainable classification function that linearly sepa-
rates multi-dimensional, real-valued, continuous measurements (data points) into a specified
number of clusters. LDA is a lightweight classifier which can perform well with small
amounts of training data and its fast reaction time, making it suitable for real-time tasks. It
is commonly used in various applications analyzing myoelectric signals, such as prosthetic
control [49] and gesture recognition [59]. In recent studies of powered transhumeral prosthe-
ses, LDA has been used to analyze sEMG and kinematic signals collected from the residual
body parts of disabled patients to predict intended movements [141, 142], thereby guiding
powered transhumeral prostheses to reach the desired poses of the patients.

Suppose the sensors capture a sequence of 15 data point signals for a subject moving their
arm to reach a pose; see Figure 5.3. Each data point contains multi-dimensional features.
The sequence is divided into two phases. Data points 1–10 are captured while the arm is
moving towards the target pose. The last five data points, data points 11–15, are collected
when the arm is fixed after reaching the target position. Yu et al. [141, 142] assume that the
instantaneous sEMG and kinematic signals at different target poses exhibit distinct patterns.
Therefore, they train the LDA classifier using sets of signals collected while the arm is held at
specific static poses, we refer to these approaches as static LDA. When testing the recognition
performance of static LDA, as the prosthesis moves closer and closer to a specific target
pose, the last observed instantaneous signals become increasingly recognizable to the trained
LDA classifier. Due to the characteristic of the LDA classifier being trained with static poses
(where subjects hold their arms at the target pose), it may not effectively predict the target
pose when receiving signals while the arm is in motion towards the target pose. To address
this limitation and ensure that the LDA classifier reflects signal patterns during motion, we
modify the training phase to incorporate signals collected during arm movements towards
the target pose, referred to as dynamic LDA. In the example illustrated in Figure 5.3, the
static LDA classifier is trained using the last five data points, whereas the dynamic classifier
is trained using data points 1–10. However, note that both static and dynamic LDAs are
applied to classify single data points, such as the sEMG and kinematic signals at a specific
timestamp, rather than a sequence of signals.

Note that there are no customizable parameters in this approach. It is trained using all
data points along the trajectory, and once the subject reaches a target, any remaining data
points are discarded. Both methods, static LDA and dynamic LDA, are used as baselines for
comparison with the PM-based GR techniques demonstrated in Section 5.3.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Train dynamic LDA Train static LDA

A data point: feature 1, feature 2, ......, feature N

Figure 5.3 A sequence of data points captured by sensors.

5.3 Target Pose Recognition Using Process Mining

We propose target pose recognition approaches that leverage the PM-based GR frame-
work. For a detailed understanding of our approach, please refer back to the PM-based GR
framework discussed in Chapter 3 for concepts such as traces, event log, process discovery
techniques (e.g., Directly Follows Miner [72]), Petri nets, conformance checking, optimal
alignment, and the formulas for computing alignment weight and probability distribution.
The PM-based GR technique is designed to recognize the intentions of agents by analyzing
sequences of discrete events (i.e., actions). However, this project aims to recognize the
intended poses of subjects based on multi-dimensional real-valued features collected by
sensors. Therefore, to effectively utilize the PM-based GR framework, we propose two
data conversion approaches to transform the original multi-dimensional real values into
discrete events. We use two running examples to illustrate the step-by-step process of the
data conversion approaches, followed by an explanation of how to employ the PM-based
GR technique to recognize the intended poses by analyzing the converted data. The first
approach, based on hierarchical clustering and K-means clustering algorithm, is presented in
Section 5.3.1, while the second approach, involving training an LDA classifier leveraging the
target pose information in the training data, is discussed in Section 5.3.2.

5.3.1 Event Identification Using Clustering

In this section, we use a running example to illustrate how the PM-based GR framework
combines feature selection and event discretization techniques to tackle the target pose
prediction problem. In the example, we instructed a subject to perform six iterations of
reaching tasks, three times to reach target T1 and three times to reach target T2. The GR
system observed six sequences of signals, each comprising 30 continuous real-valued features
(including sEMG signals and kinematic signals), denoted as f1 to f30. Traces 1 to 3 represent
signal sequences recorded during movements towards target pose T1, while traces 4 to 6
represent sequences for movements towards T2. The dataset of input signal sequences and
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tools for reproducing the results are publicly available.3 Table 5.1 presents a portion of the
example dataset, with each row containing collected feature values ordered by their respective
timestamps of data collection.

Trace Goal f1 f2 f3 . . . f29 f30

1 T1 5.19727337 7.02395793 0.00254431 . . . 5.39759498 -0.3722619
1 T1 7.76278776 8.08816201 0.00472689 . . . 1.01557531 1.37592798
1 T1 13.4185557 8.87159453 0.00821896 . . . -4.0004147 1.65328609
1 T1 22.0916619 9.04377674 0.01015369 . . . -5.5399488 -1.7805512
1 T1 31.3641039 9.3586209 0.009165 . . . -3.5156837 1.36367015
1 T1 38.2312577 10.139119 0.00616715 . . . -1.4720033 5.87820456
1 T1 42.0592085 10.8827908 0.00315491 . . . -0.3338844 4.29640897
2 T1 7.39110795 6.07336937 0.00064332 . . . 2.92403705 1.46698529
2 T1 10.5229866 7.44734189 0.00194998 . . . 1.60034347 2.94734496
2 T1 17.6705947 8.62902577 0.00393832 . . . 1.41373702 2.84419105

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 53.1712171 19.394227 0.00270796 . . . -3.5619104 0.78601719
6 T2 60.1200614 22.6060167 0.00091891 . . . -2.6239834 1.7355157
6 T2 64.1830578 25.2975943 -0.0003433 . . . -1.1970367 0.92412363
6 T2 66.8916142 27.5304609 -0.0017204 . . . 0.31022101 0.95595258

Table 5.1 Extract of the running example dataset.

The PM-based GR approach, using clustering algorithms for feature selection and event
discretization, comprises five steps:
Step 1: The first step involves reducing the dimensionality of the input data by selecting
features that have a substantial predictive power. Specifically, we exclude highly correlated
features. First, we compute correlations between each pair of features in the dataset. Fig-
ure 5.4 summarizes the absolute values of the Pearson correlation coefficients for all pairs of
features. Then, we use agglomerative hierarchical clustering [26] to group features into N f

clusters using correlation coefficients to define distances between the features. The resulting
dendrogram, refer to Figure 5.5, provides a visual representation of the hierarchical structure
of the computed clusters based on the correlations from Figure 5.4. One can use a threshold
value to determine the number of clusters they want to extract from the dendrogram. The
similarity threshold specifies the desired distance between formed clusters. As shown in
Figure 5.5, in our example, setting the threshold to 1.23 (see the red dashed horizontal line in
the figure) allows us to extract 15 clusters; groups of features connected below the threshold
are considered as one cluster, while groups of features above the threshold are separate
clusters. From each extracted cluster of features, we then select one representative feature
with the largest correlation with all the other features in the cluster. The selected features
constitute a lower-dimensional representation of the dataset. In the running example, we

3https://doi.org/10.26188/25487290

https://doi.org/10.26188/25487290
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reduced the feature space to N f = 15 dimensions; the selected 15 features are highlighted in
red in Figure 5.5.
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Figure 5.4 Correlation matrix.
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Figure 5.5 Dendrogram and selection of clusters. The red dotted line represents the threshold
used to cut the dendrogram to form 15 clusters.

An extract of the reduced dataset is displayed in Table 5.2.
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Trace Goal f3 f6 . . . f27 f30 Event
1 T1 0.002544311 0.121301538 . . . 9.057075924 -0.372261852 e0
1 T1 0.004726894 0.210557727 . . . 10.55266625 1.375927982 e6
1 T1 0.008218956 0.391712037 . . . 4.416704571 1.653286092 e5
1 T1 0.010153689 0.327711654 . . . 1.372325318 -1.780551234 e2
1 T1 0.009165 0.311548058 . . . 5.526959903 1.363670147 e5
1 T1 0.00616715 0.734098175 . . . 8.869853729 5.87820456 e6
1 T1 0.003154906 1.227944362 . . . 4.916643199 4.296408971 e8
2 T1 0.000643317 0.103164637 . . . 12.86040763 1.466985286 e8
2 T1 0.001949978 0.336630569 . . . 13.45204634 2.94734496 e6
2 T1 2.00E-05 2.91E-05 . . . 0.65070719 88.8458582 e2

. . . . . . . . . . . . . . . . . . . . . . . .
6 T2 3.47E-05 1.25E-05 . . . 0.16984547 90.8573749 e1
6 T2 3.85E-05 1.06E-05 . . . 0.30483842 50.9656092 e1
6 T2 -0.000343322 0.410761081 . . . 23.78469914 0.924123631 e4
6 T2 -0.001720367 0.504684583 . . . 21.08908217 0.955952575 e3

Table 5.2 Extract of the reduced running example dataset.

Step 2: In the next step, we convert the reduced dataset into event traces. To this end, we
perform K-means clustering [50] over N f -dimensional data points to obtain Nc clusters. The
K-means algorithm groups similar data points together to minimize the variance within each
cluster and maximize the distance between different clusters. Within each cluster, the data
points are considered as instances of the same event.

The K-means algorithm takes the number of clusters it constructs as input. The approach
we use to determine the appropriate number of clusters is elaborated in Section 5.4. For
the purpose of demonstration, in the running example, we use Nc = 10. Consequently, the
15-dimensional data points are grouped into 10 clusters, represented by events e0 to e9, as
shown in the “Event” column in Table 5.2. Then, we split the obtained traces of events into
event logs, where each event log contains all the traces toward a specific candidate goal.
As there are two target poses in the running example, we split the traces into two event
logs: L1 and L2. The traces in the event logs L1 and L2 aim towards target poses T1 and T2,
respectively.

Steps 1 and 2 illustrate the event identification method using clustering algorithms. To present
a complete running example, steps 3 to 5 demonstrate how to use the proposed PM-based
GR framework (Chapter 3 to recognize the target pose given the converted event logs.

Step 3: We use process discovery techniques to construct process models from the event logs
obtained in the previous step. Figures 5.6 and 5.7 depict the Petri nets M1 and M2, which
are constructed by the Directly Follows Miner from the event logs L1 and L2 obtained in the
previous step. The models M1 and M2 describe the processes for reaching the corresponding



100 Evidence-Based Goal Recognition for Powered Transhumeral Prostheses

target poses, T1 and T2, respectively. They are considered as “knowledge” learned from
historical experiences and stored in our GR system.
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Figure 5.6 Process model M1 discovered from even log L1.

e0

e8

e6

e6

e0

e1

e9

e4

e1

e9

e1

e4 e3 e3

e3

Figure 5.7 Process model M2 discovered from even log L2.

Step 4: Next, we use conformance checking techniques [126] to assess the commonalities
and discrepancies between the discovered models and newly observed traces, leveraging this
information to infer the intended target poses. In the running example, suppose we collect
a new sequence of signals as shown in Table 5.3. As with data collected for training, each
signal is a data point containing multi-dimensional, real-valued measurements representing
different features, including sEMG and kinematic features. The example observation is
partial—it comprises six first measurements during movement toward a target pose.

Timestamps f1 f2 f3 . . . f29 f30

t1 6.003909937 7.491469679 -0.000426667 . . . 3.003725052 1.044722093
t2 10.4000259 8.661748533 0.002236012 . . . -1.678683223 1.119218147
t3 18.34086353 9.394745911 0.005143733 . . . -4.419588229 0.414732289
t4 31.05712269 10.02530957 0.006663839 . . . -5.512023759 -0.470670561
t5 45.26542356 11.12347556 0.005400478 . . . -5.503936393 -0.967709384
t6 56.95525497 13.56039176 0.002532783 . . . -4.995283183 1.20365095

Table 5.3 A partial sequence of signals observed by the GR system.

The GR system then extracts the features selected in step 1 and converts the multi-
dimensional data points into discrete events by relating data points to clustering obtained
in step 2. These converted events are ordered according to the timestamp. In the running
example, this procedure results in trace τ shown below.

τ = ⟨e8,e6,e2,e1,e1,e9⟩ .
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Given trace τ and process models M1 and M2 discovered in the previous step, the GR system
computes optimal alignments σ1 and σ2 between the trace and the models. The constructed
optimal alignments are shown below. The transitions of M1 and M2 involved in the alignments
are shaded in gray in Figures 5.6 and 5.7.

σ1 =
τ e8 ≫ e6 e2 e1 e1 e9

M1 e8 e8 ≫ ≫ ≫ ≫ ≫

σ2 =
τ e8 e6 e2 e1 e1 e9 ≫ ≫ ≫

M2 e8 e6 ≫ e1 e1 e9 e4 e3 e3

Step 5: Finally, in the last step, the PM-based GR system leverages information on moves in
the constructed optimal alignments to calculate the probability distribution over the candidate
target poses. The probabilities associated with each target pose indicate the likelihood
of the subject aiming to reach that pose. To compute the probability distribution, the
system first computes alignment weights between trace τ and models M1 and M2 according
to Equation 3.5. Then, it uses Equations (3.3) and (3.4) to compute the probability of
reaching every target pose. In our running example, given the two alignments σ1 and σ2, the
probabilities of the subject that induced trace τ aiming to reach target poses T1 and T2 are
0.06 and 0.94, respectively. Consequently, the PM-based GR system infers that the subject
aims to reach T2.

5.3.2 Event Identification Using Linear Discriminant Analysis

This section describes another labeling technique utilizing a trained LDA classifier to assign
labels to signals. An LDA classifier can map multi-dimensional values to particular categories.
To train an LDA classifier, we first manually label the signals in the observed traces and then
proceed to train the classifier using these labeled signals. We assume that the data points
in the trajectories can be divided into sub-groups based on their timestamps. For example,
data points collected early in the trajectory may differ significantly from those collected later.
Therefore, we aim to divide the data points into sub-groups according to their time order
and then train an LDA classifier to identify which sub-group a data point belongs to. This
approach allows the classifier to distinguish whether a data point was collected in the early or
late stage of the trajectory. Once trained, the classifier is applied to convert multi-dimensional
real-valued signals into discrete labels. The subsequent steps follow the same logic as steps
3-5 outlined in Section 5.3.1. We create event logs and use the process discovery technique
to construct process models. With these process models, we conduct conformance checking
to construct optimal alignments between the process models and a newly observed converted
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trace. Finally, we utilize these optimal alignments to compute probabilities and infer the
intended pose accordingly.

We use another running example to illustrate the PM-based GR approach with an LDA
classifier. In this example, we observed 20 traces towards target poses T1 and T2, with 10
traces per target pose.4 The approach consists of four steps, explained below:
Step 1: In this step, signals of measurements are converted into discrete events, which is
achieved by training an LDA classifier. During the training phase, we label the data points
according to two aspects: the part of the trajectory the data points relate to and the final target
pose reached by the corresponding movement. For instance, consider a sequence of signals
illustrated in Figure 5.8, which eventually reaches target pose T2. During the movement, 10
data points are collected. We divide the sequence into five segments based on the timestamps
of the collected data points. Note that the number of segments to use is a parameter, and for
illustration purposes, we use five segments in our example. We then assign each data point
a label of the format TxPy, where Tx is the target pose that is reached by the sequence of
signals the data point belongs to and Py is part of the trace the data point is located at. For
example, the first part of the sequence of signals from Figure 5.8 capturing the initial phase
of the movement contains two data points. Consequently, these data points are assigned label
T2P1.

1 2 3 4 5 6 7 8 9 10

f1 = 6.25402493e+01
f2 = 1.46930070e+01
f3 = 2.55885810e-02

f29 = -3.18948321e+00
f30 = 3.47862122e+00

f1 = 5.83626273e+01
f2 = 1.27482990e+01
f3 = 2.79415200e-02

f29 = -3.54162505e+00
f30 = 2.01989220e+00

f1 = 5.16789910e+01
f2 = 1.00969709e+01
f3 = 3.36690810e-02

f29 = -3.95473794e+00
f30 = -8.22095308e+00

f1 = 4.13741586e+01
f2 = 8.29305356e+00
f3 = 3.99410700e-02

f29 = -5.38287018e+00
f30 = -9.00253224e+00

f1 = 2.83165799e+01
f2 = 8.05454274e+00
f3 = 4.04488200e-02

f29 = -8.50479939e+00
f30 = 1.66378049e+00

f1 = 1.53833019e+01
f2 = 7.82310097e+00
f3 = 3.39896200e-02

f29 = -1.17645335e+01
f30 = 8.78627228e+00

f1 = 6.50117769e+00
f2 = 6.68230991e+00
f3 = 2.56392130e-02

f29 = -8.18511160e+00
f30 = 9.10489343e+00

f1 = 3.38516072e+00
f2 = 5.18939244e+00
f3 = 1.98317980e-02

f29 = -1.02799324e+00
f30 = 2.76320280e+00

f1 = 3.80321884e+00
f2 = 3.55905184e+00
f3 = 1.70687740e-02

f29 = 3.09162389e+00
f30 = -2.50493140e-02

f1 = 4.03750417e+00
f2 = 2.38497163e+00
f3 = 1.56551410e-02

f29 = 4.94320441e+00
f30 = 5.89258273e-01

T2P1 T2P2 T2P3 T2P4 T2P5 

Trace

Labels

..
.

Figure 5.8 LDA partition.

Once all the data points are labeled, we use the obtained labels to train an LDA classifier.
Once we obtain this classifier, we use it to convert the original multi-dimensional signals
into discrete labels representing events. We then group the obtained events into event traces,
where each trace captures all events from one movement toward a target pose. The traces are
then grouped into event logs, where each event log contains all the constructed traces to a

4The data and source code required to replicate the running example: https://doi.org/10.26188/25487290

https://doi.org/10.26188/25487290
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particular goal. In the running example, 20 sequences of signals are converted into two event
logs L′1 and L′2, as shown below:

Event log 1 (L1′)
< T 2P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P4,T 1P5,T 1P5 >
< T 2P1,T 1P1,T 1P1,T 2P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P4,T 1P4,T 1P5,T 1P5 >
< T 1P1,T 1P2,T 1P2,T 1P2,T 1P3,T 1P3,T 1P4,T 1P4,T 1P5 >
< T 2P1,T 1P2,T 1P2,T 1P3,T 1P4,T 1P4,T 1P5 >
< T 1P1,T 2P1,T 2P2,T 1P2,T 2P3,T 1P3,T 1P4,T 1P4,T 1P5,T 1P5 >
< T 1P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P3,T 1P4,T 1P5 >
< T 1P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P4,T 1P4,T 1P5 >
< T 1P1,T 1P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P3,T 1P4,T 1P5,T 1P5 >
< T 1P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P4,T 1P4,T 1P5 >
< T 1P1,T 1P1,T 1P2,T 1P2,T 1P3,T 1P3,T 1P4,T 1P4 >
Event log 2 (L2′)
< T 2P1,T 2P1,T 2P2,T 2P2,T 2P3,T 2P3,T 2P4,T 2P4,T 2P5,T 2P5 >
< T 2P1,T 2P1,T 2P2,T 2P2,T 2P3,T 2P4,T 2P4,T 2P5 >
< T 2P1,T 2P1,T 2P1,T 2P1,T 2P1,T 2P2,T 2P2,T 2P3,T 2P3,T 2P4,T 2P4,T 2P5 >
< T 2P1,T 2P1,T 1P1,T 1P2,T 2P2,T 2P3,T 2P3,T 2P4,T 2P4,T 2P5,T 2P5 >
< T 2P1,T 2P1,T 2P1,T 2P2,T 2P3,T 2P3,T 2P4,T 2P4,T 2P4 >
< T 2P1,T 2P1,T 2P2,T 2P2,T 2P3,T 2P3,T 2P4,T 2P4,T 2P5,T 2P5 >
< T 2P1,T 1P1,T 2P2,T 2P2,T 2P3,T 2P3,T 2P4,T 2P5,T 2P5,T 2P5 >
< T 2P1,T 2P2,T 2P2,T 2P3,T 2P4,T 2P4,T 2P5,T 2P5 >
< T 2P1,T 2P1,T 1P2,T 2P2,T 2P3,T 2P3,T 1P4,T 2P4,T 2P5,T 2P5,T 2P5 >
< T 1P1,T 1P1,T 1P2,T 1P2,T 2P3,T 2P3,T 2P3,T 2P4,T 2P4,T 2P5 >

Table 5.4 Event logs

Step 1 illustrates the event identification method through training an LDA classifier. Similarly,
steps 2 to 4 then demonstrate the complete example of using the PM-based GR framework to
recognize the intended target pose.

Step 2: In this step, we use Directly Follows Miner to discover process models from all event
log obtained in step 1. For instance, using event logs L′1 and L′2, we construct process models
M′1 and M′2 shown in Figures 5.9 and 5.10, respectively, representing the “knowledge” about
how target poses T1 and T2 can be reached.
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Figure 5.9 Process model M′1 discovered from event log L′1.
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Figure 5.10 Process model M′2 discovered from event log L′2.

Step 3: In this step, we conduct conformance checking to identify discrepancies between
a newly observed trace and the discovered models. Once the GR system receives a new
sequence of sensor data points recorded during a subject’s movement, we use the trained
classifier from step 1 to map the data points to events, resulting in a trace of events. For
illustration purposes, consider we obtain event trace τ ′ shown below.

τ
′ = ⟨T 1P1,T 1P1,T 2P1,T 2P3,T 2P3,T 2P3,T 2P4⟩ .

Note that τ ′ is a partially observed trace, representing only a prefix of a full trace. The
subject finally reached target pose T2 after completing that full trace. The optimal alignments
between τ ′ and the two discovered models M1′ and M2′ are represented by symbols σ ′2 and
σ ′2, as depicted below.

σ ′1 =
τ ′ T 1P1 T 1P1 T 2P1 ≫ T 2P3 ≫ ≫ T 2P3 T 2P3 T 2P4

M′1 T 1P1 T 1P1 T 2P1 T 1P2 T 2P3 T 1P3 T 1P4 ≫ ≫ ≫

σ ′2 =
τ ′ T 1P1 T 1P1 ≫ T 2P1 T 2P3 T 2P3 T 2P3 T 2P4

M′2 T 1P1 T 1P1 T 2P2 ≫ T 2P3 T 2P3 T 2P3 T 2P4

Step 4: Finally, in the last step, we compute the probabilities that the subject aims to reach
target poses T1 and T2 using the diagnoses of the synchronous and asynchronous moves
in the optimal alignments σ ′1 and σ ′2. Assuming the asynchronous moves with skips in the
model have the cost of one, and using the default parameters for the GR system, the alignment
weights computed following Equation 3.5 are 110.75 and 53, respectively. Then, we use
Equations (3.3) and (3.4) to compute the probabilities of the subject reaching T1 and T2
after observing trace τ ′, which are equal to 0.26 and 0.74, respectively. These probabilities
indicate that, based on the sensor data, the subject is more likely to reach target pose T2.
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5.4 Evaluation

In this section, we compare the performance of our PM-based GR approaches for recognizing
target poses with three baselines. The experiments are conducted in two settings: offline
experiments, as described in Section 5.1.1, and human-in-the-loop (HITL) experiments,
as detailed in Section 5.1.2. In the offline experiments, we evaluate two PM-based GR
approaches presented in Section 5.3 by comparing their performance with three baselines,
namely the LSTM-based approach [57], the static LDA classifier [142], and the dynamic
LDA classifier (an improved version of the static LDA approach described in Section 5.2).
In the HITL experiments, we compare the two best-performing approaches from the offline
experiments: the PM-based approach that uses an LDA classifier to convert sensor data into
events and the dynamic LDA classifier. When compared, the different GR approaches were
trained using (possibly different parts of) data collected during the same arm movements
toward target poses.

For convenience, we denote the five evaluated GR approaches as follows:

1. PMclustering denotes the PM-based GR approach that uses clustering to convert sensor
data into events;

2. PMclassifier indicates the PM-based GR approach that uses an LDA classifier to convert
sensor data into events;

3. LSTM signifies the LSTM-based approach for target pose recognition;
4. sLDA represents the static LDA classifier for target pose recognition; and
5. dLDA denotes the dynamic LDA classifier for target pose recognition.

5.4.1 Performance Measures

To assess the quality of goal inferences by the evaluated techniques, we use the F1 score
and balanced accuracy. These measures are computed based on four terms: True Positive,
True Negative, False Positive, and False Negative. The True Positive (TP) term denotes the
number of correct goals inferred by the GR system. The True Negative (TN) component is
the number of incorrect goals that were not inferred. The False Positive (FP) term represents
the number of incorrect goals inferred by a GR system. Finally, the False Negative (FN)
component refers to the number of correct goals that were not recognized by the system.

Given the four terms, the F1 score is computed as follows:

F1 =
2×TP

2×TP+FP+FN
.
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Balanced accuracy (bacc) is computed as follows:

bacc = 1
2
( TP

TP+FN
+ TN

TN +FP
) .

The F1 score is also known as the harmonic mean of precision and recall, where precision
is the fraction of the correctly inferred target poses among the total number of poses that were
inferred, and recall is the fraction of the correctly inferred target poses among the relevant
poses. Balanced accuracy is well suited for measuring performance in imbalanced scenarios,
like the case when there is only one true target pose.

Both offline and HITL experiments include multiple GR problem instances, where a
problem instance comprises one attempt to recognize the target pose at some stage during
the movement toward that pose. For each problem instance, we compute F1 score and
balanced accuracy, subsequently calculating the averages across all problem instances for
each individual subject.

5.4.2 Baselines

We compare our PM-based GR approaches with three baselines: the LSTM-based approach,
the static LDA approach, and the dynamic LDA approach.

LSTM neural networks, tailored to recognize dependencies and patterns in sequential
data, have proven exceptionally adept at classifying multi-dimensional, continuous, real-
value measurements, such as sEMG and kinematic sensor data. In our experiments, we adopt
configurations and hyperparameters outlined in [57] for implementing the LSTM-based GR
baseline.

LDA functions are trainable classifiers that utilize linear decision boundaries to categorize
multi-dimensional, continuous, real-valued data points into pre-defined clusters. They are
effective in analyzing individual data points, such as sEMG and kinematic signals, captured
at specific moments. For our experiments, we implemented the static LDA classifier baseline
detailed in [141] and the dynamic LDA classifier baseline discussed in Section 5.2. The
static and dynamic LDA classifiers differ in the data that is used for training. The static
LDA classifier is trained on data collected from the arm being held in target poses, using
ten data points from each pose. The dynamic LDA classifier, however, is trained on data
collected during the movement of the arm toward the target poses, capturing the arm’s motion
dynamics.
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5.4.3 Offline Experiments

The offline experiments involve ten subjects (subject IDs from 1 to 10) completing three
tasks, each task requiring the subject to move their hands to reach one of the three target
positions, T1, T2, or T3 (the tasks are described in Section 5.1.1). Each subject is required
to complete each reaching task 30 times, resulting in the collection of 90 trajectories for
each subject in total. We cross-validate the recognition performance at an individual level by
splitting the collected trajectories into training and testing sets. For each subject, we conduct
experiments over 30 iterations. In each iteration, we select three traces, with one target pose
per trace, to serve as testing instances. The remaining 87 traces, calculated as 3×(30−1)
traces, are used for training the GR systems.

As PMclustering (Section 5.3.1) contains two key parameters, the number of selected
features N f and the number of clusters Nc, we use a brute force search methodology to
determine the optimal combination of these parameters. In the experimental dataset, which
comprises 47 distinct features, we set the selection range for the number of features (N f ) to
any integer from 1 to 47, inclusive. For the number of discrete event clusters (Nc), we chose
values from the set {10,20, . . . ,200}, in increments of 10. To identify the optimal combination
of N f and Nc that maximizes F1 score, we systematically evaluate each pair against the F1

score. We evaluate and compare all approaches, including PMclustering, PMclassifier, LSTM,
sLDA, and dLDA. Each approach is implemented and running on a cloud server, using a
single core of an Intel® Xeon Processor at 2.0GHz, and uses the same set of selected features.
As GR techniques aim to identify goals before the full sequences of signals are observed, we
evaluate the approaches using prefixes of the full traces that are cut off at the first 10%, 30%,
50%, and 70% of the full sequences.

Table 5.5 displays the average F1 score and balanced accuracy (bacc) achieved by each
individual subject in recognizing target poses. These five distinct target pose recognition
approaches are evaluated at different prefix lengths (10%, 30%, 50%, and 70% of the full
trace). The two columns “Features” and “Clusters” show the number of selected features,
N f , and the number of discrete event clusters, Nc, for each subject. The last row shows the
average across all subjects and all levels of observation.
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subject ID features clusters obs
PMclustering LSTM sLDA dLDA PMclassifier

F1 score bacc F1 score bacc F1 score bacc F1 score bacc F1 score bacc

1 29 70

10% 0.519 0.525 0.356 0.517 0.333 0.500 0.544 0.658 0.533 0.547
30% 0.515 0.567 0.444 0.583 0.344 0.508 0.633 0.725 0.604 0.700
50% 0.570 0.656 0.389 0.542 0.367 0.525 0.689 0.767 0.744 0.808
70% 0.691 0.758 0.544 0.658 0.467 0.600 0.756 0.817 0.796 0.847

2 1 10

10% 0.489 0.497 0.311 0.483 0.333 0.500 0.311 0.483 0.333 0.486
30% 0.504 0.533 0.333 0.500 0.333 0.500 0.444 0.583 0.422 0.561
50% 0.544 0.558 0.333 0.500 0.378 0.533 0.511 0.633 0.519 0.631
70% 0.572 0.589 0.333 0.500 0.422 0.567 0.522 0.642 0.530 0.647

3 2 150

10% 0.491 0.494 0.322 0.492 0.267 0.450 0.344 0.508 0.494 0.506
30% 0.563 0.597 0.356 0.517 0.322 0.492 0.456 0.592 0.528 0.628
50% 0.604 0.678 0.311 0.483 0.367 0.525 0.600 0.700 0.552 0.650
70% 0.652 0.731 0.333 0.500 0.422 0.567 0.567 0.675 0.633 0.714

4 34 50

10% 0.498 0.508 0.444 0.583 0.389 0.542 0.511 0.633 0.467 0.492
30% 0.500 0.533 0.467 0.600 0.344 0.508 0.556 0.667 0.589 0.681
50% 0.519 0.572 0.489 0.617 0.400 0.550 0.500 0.625 0.541 0.639
70% 0.589 0.653 0.511 0.633 0.567 0.675 0.578 0.683 0.622 0.708

5 32 90

10% 0.511 0.531 0.356 0.517 0.244 0.433 0.544 0.658 0.556 0.614
30% 0.617 0.686 0.478 0.608 0.289 0.467 0.522 0.642 0.619 0.700
50% 0.630 0.708 0.400 0.550 0.300 0.475 0.578 0.683 0.604 0.700
70% 0.811 0.858 0.522 0.642 0.556 0.667 0.544 0.658 0.622 0.714

6 28 160

10% 0.483 0.497 0.367 0.525 0.367 0.525 0.400 0.550 0.478 0.528
30% 0.496 0.567 0.378 0.533 0.344 0.508 0.456 0.592 0.511 0.617
50% 0.496 0.592 0.422 0.567 0.378 0.533 0.567 0.675 0.574 0.675
70% 0.600 0.681 0.489 0.617 0.622 0.717 0.589 0.692 0.633 0.725

7 22 80

10% 0.522 0.542 0.367 0.525 0.322 0.492 0.467 0.600 0.528 0.597
30% 0.493 0.550 0.422 0.567 0.344 0.508 0.522 0.642 0.619 0.694
50% 0.520 0.608 0.400 0.550 0.456 0.592 0.733 0.800 0.696 0.769
70% 0.554 0.631 0.400 0.550 0.522 0.642 0.600 0.700 0.704 0.769

8 34 100

10% 0.456 0.489 0.433 0.575 0.300 0.475 0.433 0.575 0.507 0.586
30% 0.494 0.597 0.411 0.558 0.311 0.483 0.644 0.733 0.630 0.717
50% 0.572 0.667 0.511 0.633 0.378 0.533 0.633 0.725 0.719 0.786
70% 0.707 0.781 0.522 0.642 0.589 0.692 0.756 0.817 0.719 0.789

9 23 100

10% 0.498 0.503 0.411 0.558 0.400 0.550 0.500 0.625 0.506 0.519
30% 0.528 0.564 0.356 0.517 0.344 0.508 0.589 0.692 0.557 0.658
50% 0.457 0.542 0.344 0.508 0.367 0.525 0.611 0.708 0.607 0.700
70% 0.467 0.558 0.411 0.558 0.567 0.675 0.678 0.758 0.704 0.778

10 28 170

10% 0.500 0.500 0.467 0.600 0.322 0.492 0.489 0.617 0.467 0.481
30% 0.648 0.714 0.511 0.633 0.378 0.533 0.589 0.692 0.657 0.733
50% 0.733 0.794 0.578 0.683 0.311 0.483 0.700 0.775 0.733 0.792
70% 0.867 0.900 0.656 0.742 0.533 0.650 0.678 0.758 0.711 0.783

average 0.562 0.613 0.422 0.567 0.390 0.543 0.559 0.669 0.589 0.667
standard deviation 0.030 0.033 0.026 0.019 0.030 0.023 0.033 0.025 0.032 0.031

Table 5.5 Average F1 score and balanced accuracy (bacc) for individual subjects at different
levels of observation (highest in bold).

We conducted t-tests to assess the statistical significance of differences in average F1

score and bacc between the two PM-based GR approaches and the three other baselines. The
null hypothesis of the t-tests is that there is no significant difference between the average
F1 score and bacc. The t-tests comparing the average F1 score and bacc across all the five
approaches yield pairwise p-values, which are presented in Table 5.6 and Table 5.7 in a
matrix format. The bottom-left corner of the matrix shows the p-values between each pair
of approaches among the total five approaches, while the upper-right corner of the matrix
indicates whether the two approaches are significantly different from each other. If the
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p-value is less than 0.05,5 we use the symbol “diff” to represent that the two approaches are
significantly different (rejecting the null hypothesis); otherwise, we use “—” to represent
that they are not significantly different (cannot reject the null hypothesis).

PMclustering LSTM sLDA dLDA PMclassifier

PMclustering diff diff diff —
LSTM 3.767e-07 diff diff diff
sLDA 6.244e-19 5.593e-14 diff diff
dLDA 2.600e-03 6.741e-04 1.093e-19 —
PMclassifier 1.022e-01 3.437e-05 1.018e-18 1.358e-01

Table 5.6 The pairwise t-test results for comparing the average F1 score across the five
approaches.

PMclustering LSTM sLDA dLDA PMclassifier

PMclustering diff diff — —
LSTM 1.458e-02 diff diff —
sLDA 2.442e-10 5.593e-14 diff diff
dLDA 4.579e-01 6.741e-04 1.093e-19 —
PMclassifier 3.397e-01 1.433e-01 1.426e-09 6.183e-01

Table 5.7 The pairwise t-test results for comparing the average balanced accuracies (bacc)
across the five approaches.

The PMclassifier achieves the highest F1 score, while the dLDA approach achieves the
highest bacc based on the average performance across all subjects. However, according
to the results of the t-test, these two approaches are not statistically significantly different
from each other in the offline experiment settings. In the next section, we use these two
approaches to conduct HITL experiments to compare their performance further. Note that
the number of selected features varies significantly between individual subjects. This may
be due to unique patterns of muscle and kinematic activity exhibited by each subject when
moving their arms, potential difficulties encountered by the sensors during data collection, or
limitations in the brute-force search method used to find the optimal combination of features
and clusters. While the exact cause remains uncertain, we acknowledge this as an area for
further exploration.

5.4.4 Human-In-The-Loop Experiments

The human-in-the-loop (HITL) experiments include six additional subjects (subject IDs
11 to 16, none of whom had prior experience with our designed experiment), performing

5The t-tests use the Šidák correction at a 95% confidence level.
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the Refined Clothespin Relocation Task (RCRT) as detailed in Section 5.1.2. The HITL
experiment contains two phases, the training phase and the testing phase.
Training Phase: During this phase, all sensors are activated to collect signals with 59 features,
while the virtual avatar (Figure 5.1c) visible in the VR environment is designed to mirror
the real arm’s movements. The wrist of the subject is constrained using a brace, only
allowing forearm rotation movement. Subjects are instructed to complete all tasks across
ten iterations, with each iteration consisting of eight distinct goals performed only once. All
signals collected during this phase are used to train the two best-performing approaches
identified in the offline experiment—PMclassifier and dLDA—as we aim to compare these
approaches in the HITL experiment settings
Testing Phase: During this phase, subjects are required to use the two trained approaches to
control the virtual prosthesis, see Figure 5.2a. For each approach, subjects are instructed
to complete five iterations of the same task as they performed during the training phase.
However, in the testing phase, kinematic sensors below the elbow joint are deactivated to
simulate scenarios of patients with disability. We observe and collect data to assess whether
the “simulated disabled patients” can successfully complete the tasks using our approaches.
Note that the subjects test the PMclassifier and dLDA approaches in random order; half of
the cohort began with PMclassifier, while the rest started with dLDA. This is intended to
minimize any learning effects where experience gained from the first approach could improve
performance in the second, ensuring a fair comparison. We use the same performance
measures, F1 score and bacc. Additionally, we measure the average time spent by subjects
to pick up each clothespin and relocate it using the provided approaches. Note that, during
HITL experiments, we conduct parallel alignment weight calculations to enhance reaction
speeds. While the offline experiments were run on a cloud server, the HITL experiments
were conducted on a lab PC with an Intel® Core™ i7-8700K processor at 3.7GHz, for easy
interaction with the subjects.

Table 5.8 shows the performance of the PMclassifier approach and the dLDA approach
in the HITL experiment. We present the F1 score, bacc, and average task completion time
for the six subjects (subject IDs from 11 to 16) using these two approaches for executing
each task. The third-to-last row, labeled ‘average,’ represents the average F1 score, bacc,
and completion time across the six subjects for each approach, PMclassifier and dLDA. The
second-to-last row, labeled ‘std.,’ displays the standard deviation for all measures across the
subjects. The final row, labeled ‘p-value,’ presents the p-value from a t-test comparing the
average performance of the two approaches, measured by F1 score, bacc, and completion
time, to determine if the differences are statistically significant. Table 5.8 demonstrates that,
on average across all subjects, PMclassifier outperforms the dLDA baseline significantly in
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subject ID
F1 score bacc Time

PMclassifier dLDA PMclassifier dLDA PMclassifier dLDA
11 0.353 0.246 0.630 0.569 9.348 10.793
12 0.287 0.252 0.590 0.573 8.872 8.078
13 0.433 0.286 0.678 0.592 10.948 11.316
14 0.490 0.375 0.709 0.643 8.577 8.778
15 0.559 0.254 0.751 0.573 11.729 25.084
16 0.404 0.271 0.662 0.583 6.986 7.616

average 0.421 0.281 0.670 0.589 9.410 11.944
std. 0.097 0.049 0.057 0.028 3.656 21.114

p-value 0.010 0.011 0.196

Table 5.8 Average F1 score, balanced accuracy (bacc), and task completion time for subjects
using the PMclassifier and dLDA approaches in the HITL experiments.

terms of the F1 score and bacc. Furthermore, subjects utilizing the prosthesis controlled by
the PMclassifier approach complete tasks faster, on average, with a smaller standard deviation.
This suggests that the PMclassifier approach is not only quicker but also less sensitive to human
variations compared to the dLDA baseline. These findings underscore the potential of the
proposed method PMclassifier in the application of prosthetic devices.



Chapter 6

Conclusion

This thesis introduces the evidence-based GR framework that uses process mining techniques
to learn the knowledge model and infer the goals. We instantiated several GR systems
from this framework, including the GR system to solve single-shot GR problems and the
systems addressing adaptive GR challenges over extended periods. Through synthetic and
real-world experiments, we verified that the evidence-based GR framework successfully
addresses the challenges faced by existing GR techniques, including reliance on hand-crafted
models, model generalization, and model explainability. Furthermore, extensive testing and
case studies, particularly in the context of powered transhumeral prostheses, validate the
framework’s potential benefits in real-world scenarios. Therefore, we claim that our proposed
GR approach, which uses process mining to automatically learn explainable models, provides
a novel contribution to the GR research field. The main contributions of this thesis are
presented in Chapters 3-5. In this conclusion chapter, we summarize the core content from
these chapters, address frequently asked questions raised by readers, and acknowledge the
potential limitations of our findings. Finally, we highlight directions for future work.

6.1 Summary

In Chapter 3, we introduced a solution to the GR problem that does not rely on pre-defined
models of behavior, such as plan libraries or domain dynamic descriptions (e.g., planning
domains). Instead, our approach leverages recorded past behaviors, represented as collections
of event traces, to automatically learn skill models using process discovery techniques. The
agent’s goal is then inferred by checking conformance, or aligning, observations against
these skill models. To represent skill models compactly as sequences of actions, we used
Petri nets, which facilitate efficient alignment and conformance checking. This approach
capitalizes on the availability of logs of past behaviors, which are often accessible or can
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be collected with reasonable effort, unlike plan libraries or domain descriptions that may
be costly or unavailable in many real-world domains. Our experiments used the Directly
Follows Miner (DFM) [72] as the primary process discovery technique. While DFM excels
in simplicity and speed, it can produce overly complex models when applied to logs with
high behavioral variability. Nonetheless, in datasets with clear sequential patterns, DFM
provided accurate models. We demonstrated that our approach achieved recognition accuracy
comparable to state-of-the-art GR methods that rely on full domain knowledge, with superior
recognition speed. Additionally, the method was validated on real-world datasets where
domain knowledge was unavailable, underscoring its practicality and scalability. Finally,
we performed sensitivity analysis on the four parameters of our system, using the Patient
Rule Induction Method (PRIM) to identify configurations yielding high GR accuracy. This
analysis confirmed that the method’s performance is robust, even with limited past behavioral
data.

In Chapter 4, we examined the GR problem over extended periods, where the environment
in which the observed agent operates may change. This eliminates the assumption made
in RQ1 (Chapter 3) that the environment is stationary. We first define the adaptive GR
problem in an abstract manner that suits, among others, standard definitions of probabilistic
goal recognition. Roughly speaking, the adaptive GR problem amounts to solving the
current GR instance task in the context of previously solved problem instances; the various
instances may (slightly) differ in the underlying environment as well as in the true agent’s
goal. We then presented three strategies for adaptive GR systems to address this challenging
problem. To accurately recognize the goals in changing environments, the proposed GR
systems were designed as both open- and closed-loop control systems that measure their
recognition accuracy over time and react by relearning their knowledge base if the recognition
accuracy becomes unsatisfactory. We conducted an experimental evaluation to validate the
effectiveness of our proposed GR systems in addressing adaptive GR problems and showed
that, indeed, they achieve better overall recognition accuracies across the target time intervals.
Furthermore, we compared our (adaptive) GR systems based on the effort they require to
achieve their performance, as the number of times they update their knowledge base. For the
experiments conducted in synthetic domains, we use a collection of adaptive GR problem
instances generated by the GRACE tool. Additionally, we assessed the performance of
the proposed adaptive GR systems in real-world domains where the problem instances are
modified from existing business logs. The evaluation results demonstrate a trade-off between
the GR performance over time and the effort invested in adaptations of the GR mechanisms
of the system, showing that few well-planned adaptations can lead to a consistently high GR
performance.
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In Chapter 5, we explore the applicability of the evidence-based GR framework in identi-
fying target poses for users employing powered transhumeral prosthetics, aimed at restoring
missing anatomical segments below the shoulder, including the hand, using continuous, real-
valued data from surface electromyography electrodes and kinematic sensors. We propose
methods to transform sensor data into discrete events and incorporate these methods with
evidence-based GR techniques to develop target pose recognition approaches. Two data
transforming approaches–clustering, which extracts features without reliance on target poses,
and linear discriminant analysis (LDA) classification, which is based on target poses–are
proposed. In addition, we propose a dynamic LDA approach, which uses the entire time
series of measurements to identify classes, as an enhancement of the existing static LDA
approach. These methods are evaluated through offline datasets and online human-in-the-
loop experiments, comparing them with established techniques such as static LDA and
approaches based on neural networks. Real-time human-in-the-loop experiments further
validate the effectiveness of the proposed methods, demonstrating that the GR system with
an LDA classifier achieves superior harmonic mean of precision and recall (the F1 score) and
balanced accuracy compared to state-of-the-art baselines.

6.2 Discussion

We argue that our GR approach can be used to instantiate a GR framework inspired by the
principles of observational learning from social cognitive learning theory, which constitutes
a collection of components that can be selectively replaced to tune the performance of the
system. The research on cognitive architectures [8, 68, 43, 35] attempts to model the core
capabilities of humans, including, but not limited to, perception, attention mechanisms, action
selection, learning, memory, reasoning, and metareasoning [65]. Our GR framework can be
seen as a goal-intention recognition module of a cognitive architecture, such as ACT-R [8]
and Soar [68]. However, although our proposed evidence-based GR framework is inspired
by observational learning theory, we do not aim to introduce a novel cognitive architecture
like SOAR or ACT-R, which is beyond the scope of the thesis.

Process discovery resembles action model learning [41, 109, 70, 87]. Whereas the aim of
action model learning is to learn the dynamics of an underlying environment (e.g., PDDL
models), process discovery aims to learn models that compactly describe sets of action
sequences (goal-relevant plans, in our case) without relying on any information about the
states of the environment. Hence, unlike existing works on learning action models, process
discovery has fewer data requirements in that it does not require information about domain
states. As such, places in our Petri nets do not represent domain states but rather the states
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of plans in a generalized manner. Importantly, discovery techniques are also designed to
work with human-driven processes and, thus, are made to be robust towards missing or noisy
data. At the technical level, Petri nets and planning models (PDDL or STRIPS) have indeed
been related in both directions, but for different purposes and needs than ours. For example,
planning models were translated to Petri nets to perform concurrent planning using known
Petri net unfolding techniques [13, 54], while Petri nets have been compiled into planning
models to facilitate process analysis using planning technology [32, 27]. As stated, our
Petri net models do not aim to represent dynamic systems or be used to perform planning.
Instead, we use Petri nets as convenient compact representations of sets of plans and leverage
significant existing work and tools to perform process discovery and alignment analysis.

Although the framework is primarily designed for goal prediction, it can also be used
for plan recognition by identifying the remaining steps to achieve a goal through optimal
alignment techniques. Instead of inferring goals, the GR system can return skill models
and remove misaligned branches, from which plans can be inferred. However, learning
from noisy or incomplete observations may lead to two issues: (i) missing actions result in
asynchronous moves, increasing alignment weight and reducing accuracy, and (ii) incorrectly
included actions do not impact accuracy, as they are not penalized in the trace.

The evidence-based GR approach requires historically observed traces as input to learn
skill models. These traces are pre-classified based on the final goal state they achieve. The
GR system then learns and stores multiple skill models, each describing the actions required
to achieve a specific goal. However, it could be more useful and robust if the GR system
does not require pre-classified traces. In this case, traces with different goals would be mixed
in a single event log, and the GR system would discover a general model that formulates the
transitions between states. This means that, in any given state, only a few valid actions would
be available to transition to the next state. This is commonly observed in business process
management systems, where the process model could be augmented with AI techniques
to automatically unfold traces and generate meaningful processes to accomplish specific
tasks. This challenge is referred to as process framing [31]. One relevant AI technique is
planning algorithms, which aim to find optimal or near-optimal plans for task completion.
Planning algorithms often rely on heuristic functions to guide action selection. Similarly,
in process framing tasks, incorporating a goal-oriented perspective with heuristics could
provide valuable insights to guide the unfolding algorithm in finding desirable processes
from the process model.

GR in multi-agent systems is another hot research area focused on inferring agents’ goals
from their observable actions and interactions. In the field of process mining, there is also
research focused on discovering multi-agent systems, such as the work on agent miner [119],
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which aims to extract models from environments where multiple agents collaborate. The
algorithm generates a high-level process model that encapsulates the entire system, with each
agent’s behavior represented as a low-level process model. Each of these low-level models
corresponds to the actions of a single agent, and together, they form a comprehensive view
of how agents interact and collaborate to accomplish tasks. The resulting high-level model
provides an integrated description of the entire system, illustrating how individual agents’
actions contribute to the collective achievement of goals within the system.

6.3 Limitations and Future Work

The main process discovery technique we used is the Directly Follow Miner (DFM) [72].
While DFM excels in simplicity and the directness of model generation, its major limitation
lies in its potential to generate overly complex models in cases of logs with high variability
in behavior. However, for logs with clear and strong sequential patterns, DFM offers a quick
and accurate snapshot of process flows. We have not tested with a wider range of process
discovery techniques, including learning and using stochastic process models [4]. Stochastic
process mining can discover models that encode information about behavior frequencies.
For instance, if we observe a certain action sequence repeatedly, the model will reflect these
traces as high-frequency occurrences with corresponding high probabilities. Additionally,
exploring conformance checking techniques that leverage frequency information to compute
probability distributions could yield valuable insights [73]. Therefore, applying stochastic
process mining techniques to implement evidence-based GR systems can be an interesting
direction for future study.

In Chapter 3, we introduce four key parameters in our approach. To assess their impact on
GR accuracy, we conducted a sensitivity analysis and used the Patient Rule Induction Method
(PRIM) to identify the parameter settings that yield the highest accuracy. Our experiments
demonstrate that, despite relying on a limited number of past behaviors, our approach
achieves accuracy comparable to state-of-the-art GR methods that have full access to domain
knowledge, while also offering faster recognition speeds. While the PRIM algorithm, a result-
oriented method, improves performance through iterative experimentation, we believe an
ideal parameter optimization method should not rely on experimental results. Thus, another
interesting direction for future research could involve exploring methods for optimizing
system parameters or investigating the development of parameter-free GR models.

Our GR approach, like most existing methods, assumes pre-defined goal candidates,
limiting its ability to identify new or previously unseen goals. The reliance on pre-defined
target poses for training, as discussed in Chapter 5, limits the system’s ability to generalize
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to arbitrary or unseen target poses. Extending the framework to recognize and incorporate
unseen goals would enhance its flexibility and applicability in dynamic environments. Identi-
fying new goals that agents aim to achieve, particularly in scenarios where the goals have not
been observed before, presents an important direction for future research.

In Section 6.2, we discussed how business process management systems can be aug-
mented with AI techniques like planning to frame processes. However, planning typically
requires a domain model, such as a PDDL model, which is highly abstract and difficult to
apply to real-world scenarios. In contrast, using process mining techniques to derive models
from event logs can result in a Petri net, which represents only a partial view of the domain
(not covering the entire state space described by a PDDL model). The advantage of Petri
nets is that they can be generated automatically using process discovery algorithms. This
stresses the importance of two research directions: (1) how to mine process models with
state information, and (2) how to define heuristic functions to guide the search algorithm in
finding a path from the current state to the goal state within the process model.

The adaptive GR framework we present in Chapter 4 uses feedback on GR performance
to detect changes in the environment. Exploring and developing more effective concept drift
detection techniques could be an interesting direction for future work, offering potential
benefits for solving adaptive GR problems. Exploring and applying process model repair
techniques for updating process models could be another interesting direction. This approach
may improve overall GR performance while minimizing the costs associated with updating
the process models. Moreover, the three adaptive GR systems presented in Section 4.2 can
be further refined. For example, when the systems update the learned process models, they
relearn new models from scratch. An alternative, arguably more efficient, way forward is to
use process model repair techniques [33, 97] to update the models incrementally.

For the adapttive GR problem, We assume that the feedback on the solution to each GR
problem can be obtained (in the form of the true goal the agent eventually achieved) before
the next GR problem is to be solved. In future work, one can generalize our setup to account
for situations when certain true goals cannot be attained, or the next GR problem must be
solved before the solutions or true goals for the previous problems are available.

In the case study presented in Chapter 5, the current feature selection and event discretiza-
tion approaches are arguably simple and we would like to explore elaborate feature selection
and event discretization. The brute-force search approach, used to determine which features
to select and how many clusters are needed for grouping the data points to convert original
signals into events, could be replaced by a more efficient method. For the PM-based GR
approach using an LDA classifier, exploring alternative machine learning-based classifiers
could be interesting. Additionally, the method for partitioning the trajectory and labeling data
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points could be revised; there may be other innovative ways to label data points for training
classifiers. Furthermore, it would be interesting to identify feature conditions capturing
meaningful prosthetic postures/configurations, and test whether sequences of these yield
good predictors for the goal being pursued. Doing so will also allow us to take advantage of
one of the key features of our PM-based GR approach, namely, the possibility of explaining
the outcome of the system based on the process model and misalignment of the observed
behavior.

Yet another area for further exploration is the testing of alternative alignment approaches.
While process discovery demands linear time [72], alignment techniques—including the one
we used in this work [126]—are often exponential in the worst case. For HITL experiments, as
our approach requires alignments to be computed at recognition time, fast extraction is crucial
for real-time applicability. However, worst-case scenarios often do not occur in practice,
and by computing alignments in parallel, we effectively improve reaction times. Our HITL
experiments demonstrate that our approaches can respond within the necessary timeframe,
thus performing faster and more accurately than the baselines. Nonetheless, we would
like to experiment with techniques that are specifically designed for online conformance
checking [129] as well as those that seek approximate alignments, but fast [128]. Indeed, we
conjecture online conformance checking approaches may be a good fit for our GR setting,
since observations are incrementally extended and such approaches extract alignments
incrementally by re-using previously computed ones. Another potential challenge arises with
our system learning numerous process models, as the recognition phase requires substantial
computational resources for parallel alignment weight computations, where insufficient
resources may slow reaction speeds. To address this, we could explore smarter and more
efficient methods for parallelizing these computations.

The datasets for both offline and HITL experiments are arguably small, with the offline
experiment using an existing dataset of 10 subjects and the HITL experiments including 6
subjects. The positive outcomes achieved so far encourage expanding the study to include
a larger number of subjects to confirm the results’ generalizability. Another aspect worth
further exploration is the significant performance gap between the offline experiments and
the HITL experiments. This discrepancy might be due to the dataset capturing features from
forward-reaching tasks using sound limbs, rather than from real-time control of a prosthesis.
The difference between real-time prosthetic states and sound limbs introduces variations in
visual feedback, which could affect the feature patterns collected during movement. The
feature patterns can have an impact on the real-time recognition accuracy of machine-learning-
based techniques [139, 92]. Therefore, collecting data from real-time control experiments
and pre-defining standard traces towards the goal with distinguishable feature patterns for
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training the PM-based GR system has the potential to improve accuracy. The adaptive GR
framework from Chapter 4 shows that if GR performance is below expectations, an adaptive
GR system can automatically update its model to improve performance in current scenarios.
Using the adaptive GR technique, we could start by learning GR models from the movements
of sound limbs. Then, as subjects collaborate with the prostheses to perform tasks, the
adaptive GR technique can adjust the initially learned models to improve human-in-the-loop
recognition performance.
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Appendix A

Additional Results and Statistics

A.1 Skipped GR Problems

The total number of GR problem instances, the number of skipped instances, and the number
of remaining instances used in our evaluations, for each synthetic domain, are shown in
Table A.1. The number of skipped instances and remaining instances for the top-k planner
and the diverse planner are recorded in separate columns. In the domains of Blocks-world,
Depots, DWR, and Sokoban, the top-k or the diverse planner skip a portion of the total
instances. For the domains in which some instances are skipped, in Table A.2, we display the
total number of instances and the numbers of skipped instances for each level of observations
(10%, 30%, 50%, 70%, and 100%).

Domain Instances top-k planner diverse planner
skipped remaining skipped remaining

Blocks-world 1076 12 1064 152 924
Campus 75 0 75 75 0
Depots 364 0 364 203 161
Driverlog 364 0 364 0 364
DWR 364 0 364 260 104
Easy-ipc-grid 673 0 673 0 673
Ferry 364 0 364 0 364
Intrusion-detection 465 0 465 0 465
Kitchen 75 0 75 75 0
Logistics 673 0 673 0 673
Miconic 364 0 364 0 364
Rovers 364 0 364 0 364
Satellite 364 0 364 0 364
Sokoban 364 0 364 104 260
Zeno-travel 364 0 364 0 364

Table A.1 The number of skipped problems in synthetic domains for the top-k planner and
the diverse planner.
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Domain (planner) 10% 30% 50% 70% 100%
total skipped total skipped total skipped total skipped total skipped

Blocks-world (top-k) 246 0 246 0 246 0 246 0 92 12
Blocks-world (diverse) 246 36 246 36 246 36 246 36 92 12
Depots (diverse) 84 47 84 47 84 47 84 47 28 16
DWR (diverse) 84 60 84 60 84 60 84 60 28 20
Sokoban (diverse) 84 24 84 24 84 24 84 24 28 8

Table A.2 The number of skipped problems for each level of observations (for the domains
with some, and not all, skipped instances).

A.2 Sobol Sensitivity Analysis

The results of the Sobol sensitivity analysis on the synthetic domains (excluding the domain
of Blocks-world discussed in Section 3.5.2) with the cost-optimal traces generated by the
top-k planner are shown in Figure A.1.

(a) Campus (b) Depots (c) Driverlog

(d) DWR (e) Easy-ipc-grid (f) Ferry

(g) Intrusion-detection (h) Kitchen (i) Logistics

– Continued on the next page. . .
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(j) Miconic (k) Rovers (l) Satellite

(m) Sokoban (n) Zeno-travel

Figure A.1 Sobol sensitivity analysis (the GR system was trained with the cost-optimal
traces).

The results of the Sobol sensitivity analysis on the synthetic domains (excluding the
domain of Blocks-world discussed in Section 3.5.2) with the divergent traces generated by
the diverse planner are shown in Figure A.2.

(a) Depots (b) Driverlog (c) DWR

(d) Easy-ipc-grid (e) Ferry (f) Intrusion-detection

– Continued on the next page. . .
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(g) Logistics (h) Miconic (i) Rovers

(j) Satellite (k) Sokoban (l) Zeno-travel

Figure A.2 Sobol sensitivity analysis (the GR system was trained with the divergent traces).

A.3 Performance of GR Approaches Trained Using Cost-
Optimal and Divergent Traces and Configured Using
PRIM and Default Parameters

Domain %O
PRIM (cost-optimal traces) Default (cost-optimal traces) PRIM (divergent traces) Default (divergent traces)

p r a t p r a t p r a t p r a t
10 0.13 0.67 0.53 0.04 0.05 1.00 0.05 0.05 0.12 0.50 0.69 0.07 0.05 1.00 0.05 0.07
30 0.25 0.79 0.70 0.04 0.03 0.99 0.05 0.06 0.31 0.60 0.87 0.07 0.05 0.95 0.10 0.07

blocks-world 50 0.33 0.77 0.74 0.04 0.05 0.99 0.26 0.04 0.39 0.58 0.91 0.08 0.07 0.91 0.30 0.08
70 0.49 0.91 0.78 0.05 0.13 1.00 0.53 0.05 0.58 0.70 0.95 0.10 0.20 0.90 0.65 0.10
100 0.76 1.00 0.93 0.05 0.43 1.00 0.82 0.06 0.76 0.89 0.98 0.12 0.43 0.97 0.82 0.12
10 0.50 1.00 0.50 0.01 0.50 1.00 0.50 0.01 — — — — — — — —
30 0.60 0.93 0.60 5.96E-3 0.50 1.00 0.50 6.81E-3 — — — — — — — —

campus 50 0.63 1.00 0.63 6.57E-3 0.50 1.00 0.50 6.85E-3 — — — — — — — —
70 0.80 1.00 0.80 5.51E-3 0.57 1.00 0.57 6.14E-3 — — — — — — — —
100 0.90 1.00 0.90 6.53E-3 0.70 1.00 0.70 6.95E-3 — — — — — — — —
10 0.16 0.85 0.31 0.01 0.11 1.00 0.11 0.01 0.11 0.57 0.45 0.19 0.12 1.00 0.12 0.15
30 0.21 0.88 0.41 0.01 0.13 0.96 0.23 0.01 0.28 0.42 0.75 0.35 0.22 1.00 0.35 0.26

depots 50 0.26 0.92 0.44 0.01 0.16 0.95 0.32 0.01 0.25 0.36 0.77 0.55 0.20 0.92 0.39 0.41
70 0.29 0.94 0.45 0.02 0.22 0.96 0.40 0.02 0.46 0.64 0.84 0.74 0.30 0.94 0.58 0.54
100 0.41 0.96 0.48 0.01 0.34 0.93 0.46 0.01 0.58 0.67 0.91 0.98 0.66 1.00 0.84 0.73
10 0.34 0.94 0.41 9.75E-3 0.15 1.00 0.15 0.01 0.29 0.68 0.58 0.68 0.15 0.99 0.17 0.69
30 0.26 0.88 0.41 8.43E-3 0.13 0.96 0.24 8.80E-3 0.35 0.51 0.74 2.09 0.22 0.80 0.45 2.13

driverlog 50 0.34 0.94 0.45 8.83E-3 0.24 0.95 0.37 7.67E-3 0.48 0.60 0.82 3.43 0.42 0.83 0.68 3.48
70 0.34 0.94 0.45 9.51E-3 0.27 0.96 0.41 9.65E-3 0.56 0.62 0.84 4.85 0.52 0.80 0.76 4.85
100 0.42 0.93 0.48 7.85E-3 0.41 0.96 0.47 7.32E-3 0.79 0.86 0.93 6.61 0.64 0.93 0.82 6.82
10 0.33 0.52 0.71 0.02 0.22 0.87 0.39 0.02 0.18 0.54 0.50 0.04 0.15 1.00 0.15 0.04
30 0.39 0.58 0.83 0.04 0.28 0.76 0.65 0.04 0.22 0.29 0.74 0.06 0.17 0.83 0.30 0.06

dwr 50 0.55 0.74 0.89 0.05 0.50 0.87 0.81 0.05 0.25 0.33 0.78 0.10 0.29 0.83 0.58 0.09
70 0.54 0.70 0.90 0.07 0.51 0.87 0.85 0.07 0.28 0.38 0.79 0.12 0.31 0.83 0.59 0.11
100 0.80 0.86 0.95 0.07 0.79 0.96 0.92 0.08 0.12 0.12 0.74 0.16 0.35 0.62 0.81 0.16
10 0.34 0.96 0.46 0.01 0.13 1.00 0.13 0.01 0.48 0.90 0.70 0.09 0.16 1.00 0.23 0.09
30 0.54 0.99 0.67 0.02 0.23 1.00 0.39 0.02 0.79 0.95 0.94 0.17 0.45 1.00 0.67 0.17

easy-ipc-grid 50 0.59 1.00 0.68 0.02 0.45 1.00 0.59 0.02 0.89 0.97 0.97 0.24 0.69 0.97 0.87 0.23
70 0.61 1.00 0.69 0.02 0.56 1.00 0.66 0.02 0.89 0.96 0.98 0.29 0.79 0.96 0.92 0.29
100 0.73 1.00 0.75 0.02 0.72 1.00 0.75 0.02 0.92 0.97 0.98 0.27 0.86 0.95 0.97 0.27
10 0.17 0.75 0.37 0.01 0.13 1.00 0.13 0.01 0.16 0.40 0.59 0.23 0.13 1.00 0.14 0.24
30 0.13 0.65 0.45 9.97E-3 0.11 0.92 0.29 0.01 0.18 0.29 0.70 0.52 0.18 0.90 0.40 0.52

ferry 50 0.18 0.64 0.51 0.01 0.20 0.90 0.42 0.01 0.29 0.42 0.78 0.86 0.26 0.76 0.58 0.86
70 0.29 0.77 0.54 0.01 0.33 0.95 0.54 0.01 0.41 0.45 0.83 1.15 0.54 0.85 0.81 1.16

Table A.3 – continued on the next page. . .
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Domain %O
PRIM (cost-optimal traces) Default (cost-optimal traces) PRIM (divergent traces) Default (divergent traces)

p r a t p r a t p r a t p r a t
100 0.48 0.93 0.59 0.01 0.51 1.00 0.59 0.01 0.84 0.89 0.95 1.45 0.76 0.96 0.89 1.43
10 0.32 0.52 0.78 0.01 0.07 0.70 0.04 0.01 0.19 0.55 0.58 0.02 0.07 0.70 0.04 0.02
30 0.43 0.58 0.89 0.01 0.14 0.77 0.47 0.02 0.26 0.50 0.77 0.01 0.10 0.64 0.25 0.01

intrusion-detection 50 0.46 0.55 0.91 0.02 0.28 0.65 0.79 0.02 0.42 0.49 0.85 0.01 0.29 0.64 0.71 0.01
70 0.55 0.61 0.93 0.02 0.47 0.66 0.89 0.02 0.47 0.52 0.87 0.01 0.41 0.66 0.80 0.01
100 0.43 0.49 0.91 0.02 0.42 0.49 0.89 0.02 0.44 0.44 0.87 0.02 0.43 0.51 0.81 0.01
10 0.66 1.00 0.71 0.01 0.33 1.00 0.33 0.01 — — — — — — — —
30 0.73 0.87 0.82 6.02E-3 0.48 1.00 0.49 5.84E-3 — — — — — — — —

kitchen 50 0.57 0.80 0.69 5.72E-3 0.51 1.00 0.51 5.97E-3 — — — — — — — —
70 0.90 1.00 0.93 5.09E-3 0.44 1.00 0.47 5.40E-3 — — — — — — — —
100 0.80 0.87 0.87 4.15E-3 0.49 1.00 0.56 4.55E-3 — — — — — — — —
10 0.41 0.86 0.67 0.01 0.10 1.00 0.10 0.01 0.24 0.58 0.61 0.16 0.10 0.98 0.14 0.17
30 0.40 0.78 0.71 0.02 0.20 0.97 0.53 0.01 0.38 0.48 0.83 0.31 0.24 0.78 0.61 0.30

logistics 50 0.48 0.81 0.72 0.02 0.33 0.97 0.65 0.02 0.43 0.52 0.87 0.45 0.38 0.87 0.78 0.45
70 0.56 0.88 0.74 0.02 0.45 0.98 0.71 0.02 0.57 0.63 0.91 0.60 0.48 0.88 0.84 0.60
100 0.62 0.84 0.78 0.02 0.55 0.98 0.76 0.02 0.82 0.84 0.96 0.66 0.70 0.95 0.92 0.67
10 0.22 0.64 0.49 0.01 0.16 0.94 0.19 0.01 0.31 0.60 0.65 0.30 0.17 0.86 0.28 0.31
30 0.19 0.56 0.59 0.02 0.14 0.87 0.34 0.02 0.26 0.40 0.68 0.68 0.22 0.77 0.46 0.68

miconic 50 0.20 0.56 0.60 0.02 0.16 0.80 0.46 0.02 0.34 0.42 0.76 1.05 0.32 0.75 0.58 1.05
70 0.20 0.50 0.61 0.02 0.19 0.69 0.51 0.02 0.48 0.50 0.82 1.41 0.46 0.75 0.73 1.41
100 0.35 0.61 0.63 0.02 0.31 0.68 0.57 0.02 0.68 0.71 0.88 1.92 0.70 0.75 0.86 1.94
10 0.24 0.93 0.36 8.74E-3 0.17 1.00 0.17 9.04E-3 0.17 0.46 0.56 0.27 0.17 0.92 0.23 0.28
30 0.22 0.86 0.40 7.43E-3 0.11 1.00 0.11 7.36E-3 0.32 0.48 0.71 0.72 0.22 0.85 0.38 0.72

rovers 50 0.15 0.74 0.39 6.10E-3 0.13 0.98 0.23 6.26E-3 0.43 0.51 0.79 1.11 0.29 0.81 0.52 1.12
70 0.15 0.70 0.38 7.83E-3 0.14 0.89 0.30 6.87E-3 0.42 0.50 0.79 1.57 0.36 0.81 0.66 1.55
100 0.19 0.71 0.39 6.46E-3 0.16 0.75 0.35 6.19E-3 0.43 0.46 0.79 2.22 0.45 0.93 0.67 2.20
10 0.17 0.89 0.24 0.01 0.16 1.00 0.16 0.01 0.20 0.64 0.44 0.13 0.16 1.00 0.16 0.13
30 0.15 0.88 0.32 0.01 0.11 1.00 0.11 9.41E-3 0.26 0.55 0.58 0.21 0.20 0.83 0.33 0.21

satellite 50 0.19 0.87 0.38 9.44E-3 0.15 0.95 0.25 0.01 0.41 0.60 0.75 0.32 0.32 0.82 0.54 0.32
70 0.27 0.92 0.42 9.64E-3 0.18 0.96 0.31 0.01 0.55 0.65 0.79 0.43 0.41 0.82 0.64 0.43
100 0.39 0.93 0.48 7.29E-3 0.26 0.96 0.40 8.11E-3 0.71 0.75 0.88 0.56 0.57 0.86 0.76 0.56
10 0.33 0.67 0.62 0.04 0.17 0.96 0.20 0.04 0.20 0.70 0.43 0.12 0.16 0.98 0.18 0.12
30 0.36 0.57 0.79 0.07 0.33 0.75 0.67 0.07 0.38 0.53 0.72 0.32 0.35 0.70 0.60 0.33

sokoban 50 0.41 0.61 0.82 0.11 0.37 0.69 0.76 0.11 0.46 0.50 0.83 0.64 0.49 0.68 0.80 0.64
70 0.51 0.76 0.86 0.14 0.53 0.83 0.84 0.14 0.67 0.68 0.89 0.93 0.65 0.70 0.86 0.93
100 0.70 0.82 0.89 0.15 0.68 0.82 0.87 0.16 0.70 0.70 0.89 1.22 0.70 0.70 0.88 1.22
10 0.23 0.93 0.31 9.45E-3 0.15 1.00 0.15 0.01 0.26 0.58 0.61 0.97 0.15 0.99 0.16 0.69
30 0.22 0.95 0.32 8.44E-3 0.10 1.00 0.12 7.95E-3 0.31 0.43 0.77 2.02 0.25 0.83 0.45 1.32

zeno-travel 50 0.20 0.90 0.32 9.37E-3 0.13 0.99 0.22 7.57E-3 0.37 0.44 0.78 3.02 0.33 0.79 0.61 2.04
70 0.22 0.92 0.32 9.77E-3 0.16 0.96 0.28 9.36E-3 0.41 0.45 0.82 4.06 0.42 0.79 0.71 2.71
100 0.32 0.96 0.38 7.36E-3 0.28 0.96 0.37 7.24E-3 0.54 0.54 0.85 5.49 0.58 0.82 0.83 3.61

average — 0.40 0.82 0.61 0.02 0.29 0.92 0.44 0.02 0.43 0.58 0.78 0.93 0.35 0.85 0.55 0.85

Table A.3 Performance of the GR systems with the PRIM parameters and the cost-optimal
traces, the Default parameters and the cost-optimal traces, the PRIM parameters and the
divergent traces, and the Default parameters and the divergent traces; the PRIM parameters:
the middle points of the parameter ranges identified by the PRIM algorithm, the Default
parameters: φ = 50, λ = 1.1, δ = 1.0, θ = 80%, %O: the level of observation, p: precision, r:
recall, a: accuracy, t: time (in seconds).

A.4 Performance Comparison with the Domain Knowledge-
Based GR Approaches

Domain %O
PM-based (ours) Landmark-based R&G (DUAL-BFWS) R&G (Greedy LAMA) LP-based

p r a t p r a t p r a t p r a t p r a t
10 0.12 0.50 0.69 0.05 0.19 0.63 0.79 0.40 0.24 0.84 0.71 97.17 0.29 0.94 0.70 773.25 0.27 0.96 0.67 2.51
30 0.29 0.60 0.85 0.06 0.27 0.74 0.83 0.40 0.43 0.64 0.91 23.39 0.38 0.68 0.90 772.76 0.51 0.88 0.90 2.44

blocks-world 50 0.39 0.59 0.91 0.07 0.29 0.81 0.84 0.41 0.51 0.65 0.91 19.03 0.48 0.63 0.94 806.92 0.69 0.91 0.95 2.44
70 0.58 0.70 0.95 0.09 0.42 0.95 0.89 0.41 0.64 0.76 0.93 27.25 0.64 0.73 0.96 819.90 0.86 0.99 0.98 2.48
100 0.76 0.89 0.97 0.11 0.52 1.00 0.93 0.41 0.66 0.76 0.94 52.18 0.63 0.72 0.96 848.38 0.93 1.00 0.99 2.49
10 0.50 1.00 0.50 0.01 0.50 1.00 0.50 0.31 0.57 0.73 0.57 0.36 0.83 1.00 0.83 0.70 0.87 1.00 0.87 0.23
30 0.60 0.93 0.60 6.02E-3 0.60 1.00 0.60 0.31 0.67 1.00 0.67 0.19 0.87 0.93 0.87 0.83 0.97 1.00 0.97 0.24

campus 50 0.63 1.00 0.63 6.19E-3 0.57 1.00 0.57 0.31 0.63 0.93 0.63 0.20 0.93 1.00 0.93 0.82 0.97 1.00 0.97 0.23
70 0.80 1.00 0.80 5.82E-3 0.67 1.00 0.67 0.31 0.60 0.93 0.60 0.19 0.83 0.87 0.83 0.90 0.97 1.00 0.97 0.24
100 0.90 1.00 0.90 6.84E-3 0.67 1.00 0.67 0.30 0.60 0.87 0.60 0.21 0.60 0.80 0.60 0.97 0.97 1.00 0.97 0.22
10 0.11 0.57 0.45 0.17 0.22 0.62 0.60 0.92 0.37 0.51 0.78 18.61 0.50 0.68 0.82 326.27 0.40 0.81 0.75 1.70
30 0.28 0.39 0.75 0.33 0.40 0.92 0.70 0.93 0.57 0.67 0.84 58.49 0.69 0.72 0.92 322.05 0.67 0.81 0.90 1.69

depots 50 0.27 0.47 0.75 0.52 0.48 0.94 0.76 0.94 0.57 0.83 0.73 130.20 0.83 0.92 0.92 349.64 0.77 0.94 0.91 1.69
70 0.43 0.61 0.81 0.71 0.58 0.92 0.84 0.95 0.60 0.89 0.68 159.63 0.78 0.78 0.94 346.60 0.97 0.97 0.99 1.69

Table A.4 – continued on the next page. . .
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Domain %O
PM-based (ours) Landmark-based R&G (DUAL-BFWS) R&G (Greedy LAMA) LP-based

p r a t p r a t p r a t p r a t p r a t
100 0.54 0.67 0.90 0.93 0.79 1.00 0.95 0.95 0.65 0.92 0.75 214.83 0.83 0.83 0.95 367.32 1.00 1.00 1.00 1.67
10 0.29 0.68 0.58 0.65 0.24 0.80 0.48 0.83 0.39 0.45 0.78 17.10 0.42 0.48 0.82 16.39 0.38 0.77 0.72 1.07
30 0.35 0.51 0.73 1.98 0.35 0.83 0.59 0.84 0.27 0.75 0.45 80.30 0.41 0.45 0.82 18.03 0.60 0.83 0.86 1.08

driverlog 50 0.49 0.61 0.81 3.28 0.51 0.93 0.73 0.84 0.28 0.86 0.38 117.16 0.62 0.71 0.84 23.06 0.82 0.93 0.95 1.08
70 0.57 0.63 0.84 4.67 0.63 1.00 0.83 0.85 0.30 0.92 0.36 165.37 0.71 0.81 0.87 30.97 0.88 0.95 0.97 1.07
100 0.79 0.86 0.93 6.49 0.79 1.00 0.94 0.85 0.55 0.93 0.61 252.39 0.73 0.82 0.91 31.65 0.98 1.00 1.00 1.12
10 0.18 0.54 0.50 0.04 0.23 0.75 0.48 0.59 0.20 0.50 0.58 1.66 0.30 0.71 0.59 271.30 0.28 0.88 0.52 1.01
30 0.22 0.29 0.74 0.06 0.29 0.92 0.55 0.58 0.27 0.67 0.61 7.65 0.53 0.79 0.77 264.35 0.65 1.00 0.82 1.02

dwr 50 0.23 0.29 0.77 0.09 0.40 0.96 0.68 0.59 0.25 0.62 0.55 19.75 0.68 0.83 0.89 275.76 0.81 1.00 0.94 1.04
70 0.30 0.38 0.79 0.11 0.52 1.00 0.80 0.61 0.47 0.67 0.72 47.24 0.78 0.88 0.90 288.99 0.91 0.96 0.97 1.00
100 0.19 0.25 0.76 0.15 0.58 1.00 0.85 0.60 0.29 0.50 0.65 86.00 0.88 0.88 0.96 312.59 1.00 1.00 1.00 1.04
10 0.48 0.90 0.70 0.08 0.36 0.93 0.46 0.68 0.67 0.90 0.87 7.28 0.64 0.84 0.87 45.03 0.64 0.93 0.87 1.28
30 0.79 0.95 0.94 0.15 0.58 0.90 0.73 0.69 0.82 0.98 0.91 3.30 0.82 0.96 0.93 96.23 0.82 0.95 0.95 1.29

easy-ipc-grid 50 0.89 0.97 0.97 0.22 0.84 0.95 0.92 0.69 0.91 0.99 0.95 8.05 0.89 0.95 0.96 198.89 0.93 0.99 0.99 1.30
70 0.89 0.96 0.98 0.27 0.94 0.98 0.98 0.71 0.94 1.00 0.96 6.12 0.83 0.87 0.95 379.05 0.94 0.99 0.99 1.32
100 0.92 0.97 0.98 0.25 1.00 1.00 1.00 0.68 0.99 1.00 0.99 5.71 0.69 0.74 0.88 614.65 0.98 1.00 1.00 1.20
10 0.17 0.44 0.59 0.21 0.21 0.93 0.37 0.39 0.52 0.68 0.84 1.58 0.54 0.69 0.84 61.95 0.50 1.00 0.71 0.90
30 0.19 0.30 0.71 0.49 0.46 0.93 0.67 0.39 0.48 0.76 0.68 10.62 0.79 0.90 0.92 69.77 0.85 1.00 0.93 0.92

ferry 50 0.29 0.39 0.78 0.80 0.62 0.93 0.81 0.40 0.40 0.89 0.48 25.59 0.87 0.95 0.94 86.17 0.92 1.00 0.97 0.91
70 0.43 0.49 0.84 1.09 0.78 0.93 0.87 0.40 0.29 0.89 0.38 44.89 0.92 0.99 0.95 99.55 0.99 1.00 1.00 0.92
100 0.86 0.89 0.96 1.34 0.89 0.93 0.92 0.40 0.59 0.93 0.66 68.78 0.90 1.00 0.93 127.22 1.00 1.00 1.00 0.91
10 0.19 0.55 0.58 0.02 0.10 1.00 0.21 0.40 0.61 0.98 0.91 10.66 0.59 1.00 0.91 4.91 0.59 1.00 0.91 1.76
30 0.27 0.49 0.78 0.01 0.32 1.00 0.70 0.40 0.84 0.92 0.98 1.80 0.93 1.00 0.99 4.95 0.94 1.00 0.99 1.77

intrusion-detection 50 0.42 0.49 0.85 0.01 0.54 1.00 0.86 0.40 0.85 0.92 0.97 2.40 0.99 1.00 1.00 5.05 0.99 1.00 1.00 1.77
70 0.47 0.52 0.87 0.01 0.72 1.00 0.91 0.41 0.78 0.85 0.97 3.69 1.00 1.00 1.00 5.32 1.00 1.00 1.00 1.79
100 0.44 0.44 0.87 0.01 0.91 1.00 0.94 0.41 0.72 0.80 0.96 6.81 1.00 1.00 1.00 5.65 1.00 1.00 1.00 1.81
10 0.66 1.00 0.71 0.01 0.33 1.00 0.33 0.27 0.59 0.80 0.67 5.27 0.59 0.80 0.67 1.32 0.66 1.00 0.71 0.32
30 0.73 0.87 0.82 6.24E-3 0.47 1.00 0.47 0.27 0.80 0.93 0.87 0.92 0.80 0.93 0.87 1.07 0.83 1.00 0.89 0.33

kitchen 50 0.57 0.80 0.69 6.25E-3 0.47 1.00 0.47 0.28 0.83 0.92 0.89 0.29 0.74 0.83 0.81 1.00 0.79 0.93 0.84 0.32
70 0.90 1.00 0.93 4.74E-3 0.56 1.00 0.56 0.28 0.79 0.93 0.82 0.38 0.79 0.87 0.84 1.09 0.82 0.87 0.87 0.32
100 0.80 0.87 0.87 4.72E-3 0.69 1.00 0.69 0.28 0.77 0.93 0.84 0.71 0.69 0.87 0.78 1.18 0.60 0.60 0.73 0.32
10 0.25 0.58 0.62 0.15 0.24 0.94 0.44 1.18 0.47 0.61 0.85 26.33 0.55 0.79 0.88 12.41 0.61 1.00 0.85 1.51
30 0.38 0.47 0.83 0.29 0.54 0.97 0.79 1.19 0.56 0.78 0.76 35.07 0.70 0.89 0.85 14.28 0.86 0.98 0.97 1.50

logistics 50 0.42 0.50 0.87 0.43 0.70 1.00 0.90 1.19 0.56 0.83 0.72 64.76 0.75 0.96 0.81 16.81 0.93 0.99 0.98 1.50
70 0.56 0.62 0.90 0.57 0.86 1.00 0.96 1.21 0.54 0.82 0.70 121.22 0.75 0.97 0.78 22.28 0.96 1.00 0.99 1.48
100 0.81 0.84 0.96 0.64 0.96 1.00 0.99 1.09 0.52 0.69 0.81 139.02 0.80 0.98 0.82 30.15 1.00 1.00 1.00 1.44
10 0.31 0.60 0.65 0.29 0.23 1.00 0.28 0.99 0.28 0.48 0.67 3.68 0.43 0.61 0.77 13.35 0.63 1.00 0.81 1.03
30 0.26 0.40 0.68 0.64 0.43 1.00 0.60 1.00 0.26 0.65 0.50 4.83 0.45 0.88 0.58 40.92 0.92 1.00 0.97 1.02

miconic 50 0.32 0.38 0.75 1.00 0.54 1.00 0.74 1.00 0.26 0.75 0.44 13.21 0.48 0.87 0.59 53.85 0.96 1.00 0.98 1.02
70 0.45 0.49 0.81 1.37 0.73 1.00 0.86 1.00 0.19 0.82 0.33 22.20 0.52 0.90 0.60 69.41 0.99 1.00 1.00 1.00
100 0.65 0.68 0.86 1.84 0.79 1.00 0.90 1.01 0.18 0.93 0.23 39.31 0.63 0.93 0.68 73.11 1.00 1.00 1.00 1.04
10 0.19 0.46 0.58 0.26 0.27 0.96 0.40 1.01 0.55 0.73 0.82 6.43 0.51 0.80 0.78 4.28 0.53 0.99 0.71 0.99
30 0.34 0.46 0.73 0.69 0.39 0.96 0.57 1.02 0.65 0.83 0.80 13.31 0.70 0.90 0.84 12.11 0.78 0.86 0.92 0.99

rovers 50 0.43 0.48 0.80 1.09 0.52 0.98 0.72 1.05 0.72 0.93 0.81 63.57 0.76 0.95 0.83 16.98 0.92 0.99 0.97 0.98
70 0.36 0.42 0.77 1.53 0.71 1.00 0.86 1.05 0.70 0.96 0.78 96.03 0.74 0.96 0.78 39.90 0.98 0.99 0.99 0.98
100 0.39 0.43 0.77 2.14 0.83 1.00 0.91 1.05 0.79 0.96 0.88 85.87 0.82 0.96 0.84 54.18 1.00 1.00 1.00 1.02
10 0.20 0.64 0.44 0.12 0.25 0.89 0.40 1.24 0.30 0.55 0.65 6.37 0.35 0.65 0.66 5.83 0.46 0.92 0.69 1.03
30 0.26 0.54 0.59 0.20 0.39 0.90 0.59 1.24 0.44 0.69 0.72 12.22 0.50 0.70 0.78 9.76 0.68 0.93 0.85 1.04

satellite 50 0.41 0.60 0.75 0.30 0.59 0.92 0.77 1.25 0.34 0.69 0.55 27.00 0.64 0.80 0.84 10.57 0.82 0.96 0.94 1.05
70 0.55 0.65 0.79 0.40 0.67 0.93 0.83 1.26 0.30 0.83 0.47 45.91 0.62 0.87 0.80 15.48 0.93 0.98 0.97 1.02
100 0.71 0.75 0.88 0.51 0.74 0.93 0.88 1.25 0.37 0.93 0.47 84.69 0.74 0.93 0.84 13.11 0.96 1.00 0.99 1.02
10 0.20 0.70 0.43 0.11 0.28 0.90 0.42 1.30 0.59 0.72 0.81 51.53 0.36 0.42 0.78 215.56 0.58 0.73 0.85 1.93
30 0.38 0.53 0.72 0.30 0.42 0.83 0.63 1.32 0.73 0.87 0.83 179.13 0.52 0.77 0.68 321.13 0.62 0.63 0.87 1.93

sokoban 50 0.46 0.50 0.83 0.59 0.54 0.92 0.73 1.33 0.84 0.93 0.88 309.37 0.71 0.82 0.85 438.12 0.47 0.48 0.81 1.87
70 0.67 0.68 0.89 0.88 0.75 0.95 0.89 1.33 0.81 0.88 0.90 415.83 0.81 0.90 0.90 510.07 0.45 0.47 0.79 1.89
100 0.70 0.70 0.89 1.16 0.89 1.00 0.97 1.35 0.91 0.95 0.94 632.05 0.90 0.90 0.97 637.70 0.35 0.35 0.75 1.88
10 0.26 0.55 0.61 0.78 0.29 0.70 0.62 1.28 0.30 0.45 0.69 6.97 0.45 0.50 0.80 10.39 0.49 0.87 0.71 1.39
30 0.31 0.42 0.77 1.61 0.39 0.90 0.67 1.30 0.30 0.69 0.53 46.92 0.48 0.74 0.69 12.28 0.71 0.90 0.88 1.37

zeno-travel 50 0.37 0.45 0.78 2.42 0.62 0.95 0.82 1.30 0.26 0.82 0.39 111.15 0.63 0.92 0.69 13.78 0.89 0.95 0.97 1.38
70 0.41 0.45 0.81 3.29 0.79 1.00 0.90 1.31 0.37 0.92 0.43 186.22 0.63 0.94 0.68 16.34 1.00 1.00 1.00 1.35
100 0.52 0.54 0.85 4.44 0.95 1.00 0.98 1.31 0.60 1.00 0.60 268.10 0.73 0.96 0.75 21.54 1.00 1.00 1.00 1.36

average — 0.46 0.62 0.77 0.74 0.54 0.94 0.72 0.80 0.54 0.81 0.71 65.73 0.68 0.84 0.83 157.42 0.79 0.93 0.91 1.24

Table A.4 Performance of different GR approaches; %O: the level of observation, p: precision,
r: recall, a: accuracy, t: time (in seconds). The PM-based approach (ours) is configured with
the PRIM parameters and trained with the divergent traces or with the cost-optimal traces
if the divergent traces are not available. The landmark-based approach uses the uniqueness
heuristic with θ = 20%. The two R&G approaches use the DUAL-BFWS planner and the
Greedy LAMA planner, respectively. The LP-based approach uses a combination of three
heuristics, which are landmarks, state equation, and post-hoc.
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A.5 Performance Comparison with the LSTM-Based GR
Approach

Domain %O PM (10) LSTM (10) PM (100) LSTM (100)
p r a p r a p r a p r a

10 0.16 0.63 0.72 0.05 0.21 0.74 0.12 0.50 0.69 0.08 0.18 0.81
30 0.34 0.60 0.88 0.07 0.23 0.79 0.29 0.60 0.85 0.09 0.25 0.83

blocks-world 50 0.48 0.66 0.93 0.08 0.23 0.82 0.39 0.59 0.91 0.15 0.29 0.85
70 0.61 0.72 0.95 0.04 0.13 0.79 0.58 0.70 0.95 0.23 0.42 0.88
100 0.78 0.88 0.98 0.07 0.20 0.80 0.76 0.89 0.97 0.23 0.42 0.88
10 0.57 0.93 0.57 0.63 0.67 0.63 0.50 1.00 0.50 0.57 0.60 0.57
30 0.60 1.00 0.60 0.80 0.80 0.80 0.60 0.93 0.60 0.67 0.67 0.67

campus 50 0.60 0.87 0.60 0.73 0.73 0.73 0.63 1.00 0.63 0.67 0.67 0.67
70 0.73 0.93 0.73 0.43 0.47 0.43 0.80 1.00 0.80 0.73 0.73 0.73
100 0.77 0.93 0.77 0.60 0.60 0.60 0.90 1.00 0.90 0.57 0.60 0.57
10 0.11 0.51 0.47 0.15 0.38 0.69 0.11 0.57 0.45 0.14 0.14 0.80
30 0.27 0.42 0.76 0.16 0.36 0.70 0.28 0.39 0.75 0.17 0.17 0.80

depots 50 0.30 0.42 0.77 0.17 0.39 0.74 0.27 0.47 0.75 0.18 0.19 0.81
70 0.58 0.67 0.89 0.14 0.33 0.73 0.43 0.61 0.81 0.43 0.44 0.86
100 0.42 0.50 0.87 0.22 0.50 0.73 0.54 0.67 0.90 0.42 0.42 0.86
10 0.27 0.64 0.52 0.20 0.26 0.73 0.29 0.68 0.58 0.27 0.29 0.79
30 0.24 0.44 0.69 0.23 0.31 0.74 0.35 0.51 0.73 0.23 0.24 0.77

driverlog 50 0.33 0.50 0.72 0.26 0.38 0.71 0.49 0.61 0.81 0.27 0.27 0.79
70 0.38 0.51 0.73 0.22 0.30 0.72 0.57 0.63 0.84 0.40 0.42 0.83
100 0.54 0.68 0.80 0.26 0.39 0.74 0.79 0.86 0.93 0.43 0.43 0.83
10 0.32 0.75 0.57 0.12 0.17 0.67 0.18 0.54 0.50 0.21 0.25 0.76
30 0.24 0.33 0.71 0.29 0.33 0.78 0.22 0.29 0.74 0.25 0.25 0.77

dwr 50 0.15 0.21 0.74 0.24 0.38 0.76 0.23 0.29 0.77 0.29 0.29 0.79
70 0.25 0.29 0.77 0.37 0.58 0.78 0.30 0.38 0.79 0.46 0.46 0.84
100 0.25 0.25 0.72 0.09 0.25 0.68 0.19 0.25 0.76 0.50 0.50 0.86
10 0.62 0.88 0.85 0.25 0.34 0.78 0.48 0.90 0.70 0.29 0.29 0.82
30 0.81 0.93 0.95 0.37 0.42 0.83 0.79 0.95 0.94 0.51 0.54 0.87

easy-ipc-grid 50 0.87 0.93 0.97 0.45 0.52 0.85 0.89 0.97 0.97 0.72 0.73 0.94
70 0.92 0.98 0.98 0.52 0.61 0.88 0.89 0.96 0.98 0.77 0.77 0.95
100 0.93 1.00 0.98 0.71 0.80 0.92 0.92 0.97 0.98 0.82 0.84 0.96
10 0.17 0.36 0.62 0.15 0.30 0.64 0.17 0.44 0.59 0.31 0.33 0.81
30 0.29 0.44 0.75 0.17 0.33 0.69 0.19 0.30 0.71 0.23 0.23 0.78

ferry 50 0.28 0.36 0.77 0.13 0.32 0.66 0.29 0.39 0.78 0.31 0.32 0.80
70 0.29 0.31 0.80 0.18 0.32 0.69 0.43 0.49 0.84 0.51 0.54 0.86
100 0.64 0.68 0.90 0.18 0.36 0.68 0.86 0.89 0.96 0.41 0.43 0.83
10 0.21 0.53 0.55 0.09 0.17 0.74 0.19 0.55 0.58 0.16 0.21 0.82
30 0.29 0.38 0.80 0.13 0.22 0.75 0.27 0.49 0.78 0.31 0.34 0.86

intrusion-detection 50 0.34 0.43 0.85 0.13 0.20 0.80 0.42 0.49 0.85 0.37 0.37 0.87
70 0.44 0.46 0.87 0.09 0.22 0.71 0.47 0.52 0.87 0.59 0.59 0.92
100 0.40 0.40 0.87 0.04 0.04 0.80 0.44 0.44 0.87 0.42 0.44 0.88
10 0.64 1.00 0.69 0.30 0.33 0.51 0.66 1.00 0.71 0.50 0.53 0.67
30 0.77 0.80 0.84 0.43 0.47 0.62 0.73 0.87 0.82 0.60 0.60 0.73

kitchen 50 0.62 0.87 0.73 0.33 0.40 0.53 0.57 0.80 0.69 0.70 0.73 0.80
70 0.93 1.00 0.96 0.57 0.60 0.71 0.90 1.00 0.93 0.67 0.67 0.78
100 0.60 0.60 0.73 0.67 0.67 0.76 0.80 0.87 0.87 0.73 0.73 0.82
10 0.24 0.59 0.62 0.09 0.22 0.73 0.25 0.58 0.62 0.19 0.20 0.84
30 0.40 0.49 0.84 0.14 0.25 0.76 0.38 0.47 0.83 0.33 0.35 0.86

logistics 50 0.44 0.50 0.88 0.17 0.29 0.76 0.42 0.50 0.87 0.45 0.48 0.89
70 0.55 0.61 0.90 0.18 0.29 0.79 0.56 0.62 0.90 0.57 0.59 0.92
100 0.84 0.85 0.96 0.24 0.41 0.80 0.81 0.84 0.96 0.66 0.69 0.94
10 0.26 0.54 0.65 0.20 0.24 0.71 0.31 0.60 0.65 0.23 0.24 0.74
30 0.31 0.38 0.74 0.22 0.27 0.73 0.26 0.40 0.68 0.35 0.36 0.78

miconic 50 0.34 0.43 0.76 0.26 0.27 0.72 0.32 0.38 0.75 0.39 0.39 0.80
70 0.34 0.36 0.75 0.19 0.26 0.69 0.45 0.49 0.81 0.50 0.51 0.83
100 0.43 0.43 0.80 0.27 0.36 0.73 0.65 0.68 0.86 0.57 0.57 0.86
10 0.26 0.50 0.61 0.21 0.27 0.73 0.19 0.46 0.58 0.28 0.30 0.76
30 0.34 0.45 0.71 0.23 0.29 0.71 0.34 0.46 0.73 0.38 0.38 0.79

rovers 50 0.33 0.38 0.77 0.28 0.35 0.73 0.43 0.48 0.80 0.51 0.51 0.83
70 0.46 0.57 0.80 0.20 0.24 0.71 0.36 0.42 0.77 0.60 0.60 0.87
100 0.51 0.57 0.82 0.20 0.25 0.72 0.39 0.43 0.77 0.68 0.68 0.89
10 0.20 0.70 0.43 0.17 0.23 0.69 0.20 0.64 0.44 0.18 0.19 0.73
30 0.26 0.50 0.62 0.21 0.30 0.70 0.26 0.54 0.59 0.37 0.37 0.81

satellite 50 0.37 0.56 0.70 0.19 0.26 0.70 0.41 0.60 0.75 0.33 0.35 0.79
70 0.40 0.55 0.74 0.16 0.20 0.70 0.55 0.65 0.79 0.37 0.38 0.80
100 0.47 0.64 0.76 0.17 0.21 0.73 0.71 0.75 0.88 0.39 0.39 0.81
10 0.25 0.62 0.55 0.24 0.30 0.73 0.20 0.70 0.43 0.25 0.27 0.76
30 0.46 0.52 0.81 0.23 0.27 0.76 0.38 0.53 0.72 0.23 0.23 0.76

sokoban 50 0.38 0.40 0.77 0.21 0.25 0.74 0.46 0.50 0.83 0.37 0.37 0.81
70 0.54 0.57 0.85 0.23 0.23 0.76 0.67 0.68 0.89 0.39 0.42 0.81
100 0.60 0.65 0.88 0.23 0.35 0.73 0.70 0.70 0.89 0.60 0.60 0.89
10 0.25 0.58 0.59 0.17 0.29 0.69 0.26 0.55 0.61 0.36 0.37 0.80
30 0.40 0.50 0.78 0.17 0.27 0.70 0.31 0.42 0.77 0.35 0.37 0.80

zeno-travel 50 0.35 0.39 0.78 0.10 0.14 0.69 0.37 0.45 0.78 0.40 0.40 0.82
70 0.32 0.35 0.79 0.12 0.17 0.69 0.41 0.45 0.81 0.49 0.50 0.85
100 0.57 0.57 0.87 0.08 0.11 0.68 0.52 0.54 0.85 0.75 0.75 0.92

average — 0.44 0.59 0.77 0.24 0.33 0.72 0.46 0.62 0.77 0.41 0.43 0.82

Table A.5 Performance of the PM-based GR approach (ours) and the LSTM-based approach;
(10): trained with 10 traces per goal, (100): trained with 100 traces per goal, %O: the level
of observation, p: precision, r: recall, a: accuracy. Both approaches are trained with the
divergent traces or with the cost-optimal traces if the divergent traces are not available. Our
approach is configured with the PRIM parameters.
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(b) Recall (trained with 10 traces per goal).
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(c) Precision (trained with 100 traces per goal).
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(d) Recall (trained with 100 traces per goal).

Figure A.3 Precision and recall of the PM-based (ours) and the LSTM-based GR approaches.
The blue lines indicate cases when the PM-based approach outperforms the LSTM-based
approach.
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