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Abstract 
 

Timely pest detection is very important for preventing the potential hazards of pests, 

traditional detection methods have been difficult to apply to today's modern agricultural 

system, although there have been a lot of automatic pest detection methods using advanced 

technologies, but they have the problems of high cost, difficult to deploy and hard to operate 

by non-professional personnel, thus it does not apply to non-commercial farmers.  

 

This paper implements a cost-effective pest detection method that can be used for micro-

farmers by using a low-cost electronic nose and machine learning modelling. This method 

was realized by conducting a controlled experiment and making measurements, we designed 

and conducted controlled experiment using wheat and an oat aphid as experimental materials, 

while measurements were made using E-nose and an open gas exchange system to acquire 

data sets used for model construction. 

 

Artificial Neural Network (ANN) was used to develop three models including two 

classification models and one regression model. These classification models are able to 

classify the level of pest infestation based on E-nose measurements and the regression model 

can predict three physiological parameters including photosynthesis, stomatal conductance 

and transpiration based on E-nose measurements. Both classification models achieve high 

accuracy around 98% and the best one of them was confirmed through model evaluation and 

analysis to have no over-fitting or under-fitting problems. The regression model has the 

performance of overall correlation coefficient 0.79. Model evaluation were analyzed based on 

accuracy, Mean Squared Error (MSE) and correlation coefficient. These three models enable 

the method implemented in this study to detect pests efficiently and reliably. 
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1  Introduction  

1.1 Background and Motivation 

Agricultural pests are a group of insects that harm the growth and development of crops. 

They are one of the main factors causing agricultural disasters and can cause great losses to 

agricultural production and the economy. It can have serious effects on both yield and quality 

of crops, by consuming crops and producing secretions that affect plant physiological 

activities or spread plant diseases, pests affect the fruit quality of crops, thus reducing their 

market value, and also lead to the decline of crop yield or even cause extinction in severe 

cases. As the global population grows and the demand for food increases, maintaining stable 

food production has become an important long-term goal for the global community, and the 

damage caused by pests to food is a major threat to achieving this goal. Globally, pests have 

been reported to reduce agricultural yields by about 10-16% both before and at harvest, 

respectively [1].  On the other hand, the invasion of crops by pests can also have a great 

economic impact, many farmers have suffered economic losses from pest infestation and the 

high cost of pest management also poses a challenge for human society. According to the 

survey, the economic losses caused by pests have been underestimated because it is difficult 

to be estimated accurately and reliably [2].   

 

Effective pest management can prevent the potential damage caused by pests and thus plays a 

vital role in maintaining the world's crop yields and reducing farmers' economic losses, and 

lack of early monitoring and management of some pests that are highly reproductive and 

disruptive can lead to devastating destruction, including infectious illnesses and worldwide 

agricultural pandemics [3].  

 



Pest detection is the most critical part of pest management, it is the foundation of pest control. 

Reliable and timely pest detection can help farmers use more rational pest control schemes 

and reduce the potential damage of pests to the greatest extent. However, unreliable and 

incomplete information on pest density in farmlands obtained through detection can directly 

lead to ineffective pest control and even the use of wrong control strategies with more serious 

consequences. In today's agricultural society, the use of pesticides has become the dominant 

approach to pest control, due to its ease of implementation, readily availability, and 

effectiveness [4]. Nevertheless because of the difficulty of reliable and accurate pest 

detection over a large area of farmland for non-commercial farmers, especially micro-

farmers, most of them spray entire fields with the same amount of chemicals. This usually 

leads to inappropriate use of pesticide doses because the level of pest infection generally 

varies within the farmland. As a result, excessive pesticides waste resources and may result in 

biodiversity loss [5], while insufficient amounts of pesticides can be ineffective in 

eliminating pests. More importantly, the abuse of pesticides, even if it only has a minor effect 

on agricultural products at present, can cause great harm to human and animal health in the 

long run. The main factor in farmers' misuse of pesticides as pest control measures is the 

limited availability of affordable and reliable pest detection methods for non-commercial 

farmers. Therefore, an important way to alleviate this problem is to come up with more 

effective, affordable, and reliable pest detection methods that will help most farmers, 

especially micro-farmers, to be able to apply the appropriate amount of pesticides based on 

accurate pest detection results. 

 

The most traditional method of pest detection is manual identification [6], where farmers go 

out to their fields and check on crops and they usually determine the level of infestation by 

their own experience based on the appearance of the crops including color, shape, and overall 

condition of crops. 



Although this method does not require any additional equipment or significant expenditure, it 

is not only time-consuming [6], labor-intensive, and inefficient, but also difficult to have a 

detailed and comprehensive examination in a large field. The rapid development of 

technology provides a solution to the limitations of traditional methods. Alternative to human 

visual inspection, digital vision combined with machine learning has attracted extensive 

attention in the research field of pest detection [4][7][8]. Besides, remote sensing 

technologies such as Near-Infrared Spectral sensors [9], thermal sensors [10], and 

fluorescence spectra [11] are also widely used to assist and optimize pest detection. These 

advanced approaches are quite effective and dependable, but typically require the use of 

expensive, non-portable technologies that are difficult to set up and are therefore only 

suitable for commercial grade large-scale farmland. 

  

Electronic-nose, as a system of gas sensors, has been chosen for many plant-pest studies 

because of its ability to discriminate reliably among volatile organic compounds (VOCs) 

profiles [12] released from flowers, leaves, and fruits of plants. VOCs provide information 

that can be used to indicate the physiological state of the plant and as a basis for analysis of 

plant damage [13]. There are many types of e-noses on the market, most e-noses used in 

studies are commercial e-noses and are still expensive and complicated to use [14][15]. And 

so far, most of these studies on the use of e-nose have focused only on the changes in VOCs 

caused by pests [16][17], which does not directly contribute to pest detection. 

Based on the above background description, we can see that although modern advanced 

technology has aided in the improvement of pest detection systems, a major challenge in the 

pest detection area is the trade-off between the dependability of pest detection methods and 

their cost. Hence modern farming requires a not only reliable but also affordable smart pest 

detection method, which can enable non-commercial farmers in making more reasonable and 

effective decisions in response to pest infestations, resulting in higher agricultural production 

and better profit. Furthermore, a solid and cost-effective pest detection method can also help 

to build a healthier agricultural system and the healthy development of agriculture not only 

generates certain economic benefits but also contributes considerably to the maintenance of 

ecological balance.  

 

1.2 Aim and Objectives 



This paper aims to implement an efficient, reliable, and affordable pest detection method by 

using a specific cost-effective e-nose consisting of nine gas sensors combined with state-of-

the-art machine learning technology. Our pest detection method was achieved by developing 

two machine learning models based on the data collected through e-nose including a 

classification model to classify the pest infestation levels of crops and a regression model to 

predict physiological parameters (photosynthesis rate, stomatal conductance, and 

transpiration) on plants based on physiological measurements. This paper also evaluates our 

proposed pest detection method by evaluating the performance of two models. 

Our goal was accomplished by achieving the following objectives: 

• We firstly conducted controlled experiments to collect data by growing plants, 

introducing pests to the plants, and making measurements based on e-nose. 

• We analyzed acquired data by carrying out an Analysis of Variance (ANOVA) and 

Tukey honestly significant difference (HSD) post hoc test to determine the ability of 

e-nose and physiological parameters to discriminate between plants with different 

degrees of pest infestation. 

• We then developed two machine learning models by performing algorithmic 

selection, and neuron trimming, based on model evaluation parameters including 

accuracy and Mean Squared Error (MSE) after extracting and preprocessing the 

collected data. 

• We derived conclusions for our research topic by evaluating the performance of our 

models and conducting an overfitting and underfitting analysis. 

 

1.3 Thesis Outline 

The main content and structure of this paper are as follows: 

Chapter 2 Literature Review 

In this chapter, we mainly review some existing research on pest detection. Based on 

different detection methods, they are classified into three groups for discussion that include: 

image-based pest detection, remote sensing detection, and e-nose-based detection. We also 

review and present the research contributions of the specific e-nose used in this study in other 

fields. 

 

Chapter 3 Problem Statement 



In this chapter, we describe the gap between the scope and effectiveness of existing pest 

detection methods and the complete and desired pest detection system required by modern 

agriculture. In addition, we also clarify the research questions of this paper. 

 

Chapter 4 Data Collection 

In this chapter, we demonstrate the implementation of our controlled experiments by 

elaborating on the experimental materials, experimental equipment we used, experimental 

settings, and experimental process in detail including the planting and measuring. 

Furthermore, we justify each of our experimental choices. 

 

Chapter 5 Statistical Analysis 

In this chapter, we describe the process of statistical analysis we did, which are ANOVA 

and post hoc tests. The purpose of the analysis is also clarified. 

 

Chapter 6 Model Development 

In this chapter, we start with data pre-processing by describing the detailed process and 

method, and then we introduce the model performance evaluation method used for model 

selection and explain the model construction process including algorithm selection, neuron 

trimming, and data division test. Finally, we expand on introducing the two optimal models 

we choose. 

 

Chapter 7 Results 

In this chapter, we present the results of statistical analysis for both e-nose data and 

physiological measurements of plants and demonstrate the results of different model 

algorithms tested during our model construction, and further evaluate the performance of our 

models.  

 

Chapter 8 Discussion 

In this chapter, we explicate and analyze important research findings from the results, and 

indicated the significance of these findings for pest detection. In addition, we also elaborated 

on the applicability and potential significance of the research results.  

 

Chapter 9 Conclusion 



In this chapter, we summarize the content of this research and describe the contributions and 

limitations of this research, to put forward the direction of future improvement and the 

potential value of this study in future work. 

2  Literature Review 
Many automated pest detection methods have been designed to enhance and help improve 

pest management in modern agriculture. These automatic methods can provide solutions for 

the limitations of traditional identification such as manual inspection and cumbersome 

counting of pests stuck on the sticky traps [18]. The enhanced sensitivity of modern digital 

tools, as well as improvements in data analysis techniques, have resulted in tremendous 

progress in automatic pest detection research in recent years.  

 

These studies are generally carried out in two stages: 1) collection of different forms of data 

related to plants and pests including images, videos, thermal or physiological parameters, etc. 

2) analysis of the data acquired. For the data analysis, most of the researchers adopted the 

state of the art technology, which is machine learning and deep learning[4][7][11]. Therefore 

we divided these studies into three categories mainly based on the data collection techniques 

they were based on: image-based automatic pest detection, remote sensing technology-based 

pest detection, and e-nose based pest detection. 

 

2.1 Image-based automatic pest detection 

Automatic detection through digital vision is a good alternative to human vision detection, 

and the images of plants are the most intuitive digital vision, which can provide a wealth of 

important information for pest detection instead of human observation. So there has been 

plenty of previous studies on pest detection which are based on plant images. Most of them 

are powered with machine learning (ML) or deep learning (DL) techniques to process the 

information extracted from the images [4][7][11].  

 

Ebrahimi et al. have proposed an efficient pest detection method based on crop canopy 

images by incorporating an image processing technique with the Support Vector Machine 

(SVM) to detect parasites such as thrips, whitefly, housefly, and ant, which are prevalent in 

strawberry greenhouses [4]. The results of this study showed that it can successfully detect 

thrips based on plant images with less than 2.5% error. However, all images used in this 



study were captured by mounting a digital camera on a mobile agricultural robot moved 

along the track. Therefore, despite the success of this work on the accuracy of detection, it 

has the problem of using unportable and expensive equipment for image collection, which 

makes the method unsuitable for non-commercial farmers.  

A conceptually similar detection method has also been carried out in which white flies are 

automatically identified from the leaves based on the images of leaves by using various 

image processing techniques and SVM as a classifier [6]. This method can successfully 

classify leaf with white flies from leaf without white flies with 98% accuracy. Nevertheless, 

the method of image acquisition is manual photography, which greatly reduces the 

automaticity of the method and complicates the practical application as a large number of 

professionals are required. 

In contrast to [6], another study put forward a fully automated pest detection method based on 

binocular stereo vision and image segmentation technique [8]. although this method 

implemented a complete pest management system by getting location information to guide 

the robot's automatic spray, a limitation of this study, similar to study [4], is that the images 

used were taken from a camera installed on a robot, which is very difficult to operate and 

deploy by non-specialists. And the high automation of the whole system is achieved on the 

basis of the high cost of equipment. 

In addition to these automatic pest detection methods based on small datasets, a large and 

growing body of literature has focused on using large image databases to achieve more 

complex pest detection tasks, including the classification of healthy leaves, pest leaves, and 

disease leaves [18], and the detection and classification of many different pests [7], even the 

identification of 24-categories pest [19]. Due to a large amount of data, these methods 

typically use deep learning such as convolutional neural network (CNN) as the recognition 

algorithm and they achieve outstanding performance in obtaining high precision results on 

difficult pest detection tasks, but at the same time, the computational cost of image 

processing of these methods is extremely high, and the data sets used in these studies are 

either artificial images created in advanced research institute and laboratory, or collected by 

deploying a large number of devices such as a wireless image monitoring system comprised 

of several wireless imaging nodes [7]. Therefore, these studies mainly contribute to the 

factory-level farmland and are infeasible for micro-farmers. 

In general, most image-based pest detection methods have two major limitations. First of all, 

large quantities of high-quality plant images are difficult and expensive to collect. In actual 

agriculture, most pests are extremely small in size, so the equipment needed for image 



collection has to be advanced enough. And in order to obtain images containing more 

effective information, there are also high requirements on the angle and light when taking 

photographs. In addition, due to the diversity of the environment of plant growth, images 

captured will contain additional interference factors besides pests and plants, making the 

processing of the images a very complicated and challenging task. 

 

Therefore, another important constraint on all these image-based pest detection methods 

discussed in this area is that they require additional complex feature extraction processes, 

which normally is a key factor affecting the effectiveness of these detection methods. For 

minimizing the noise contained in the information extracted from the image, these methods 

need to apply some feature extraction techniques to extract effective features from images for 

further model construction. Based on some basic image processing including image cropping, 

image segmentation, and image RGB extraction, the features extracted from images for pest 

detection are usually divided into traditional features and deep features [7]. Features extracted 

manually through image analysis [4] [6] are often too simple and less adaptive, making it 

difficult for plants with varying conditions and changing environments in real life. However, 

features extracted by deep learning [18] [19] usually require high computational costs and a 

convoluted extraction process. 

 

2.2 Remote sensing technology-based pest detection 
 
Providing the solution to the problem of high requirements of image collection and difficult 

feature extraction on image-based detection methods, some researchers have attempted to 

apply different remote sensing techniques to open up new directions for automatic pest 

detection methods. 

Xu et al. carried out a study on the reflectance spectra of damaged tomato leaves caused by 

leaf miners and explored the wavelength that varies most in the changes of tomato leaf 

damage [9]. Thus, some spectral parameters were used to further determine the pest 

infestation level of the tomato. An encouraging result showed that the wavelength parameters 

obtained by near-infrared (NIR) measurements in this study could successfully classify the 

leaf-miner infestation severity of tomato leaves. Compared with most image-based pest 

detection methods, although there is no complex feature extraction process required in this 

study and usable features can be directly obtained through measurement, the measurement 

process requires the collection of tomato leaves, thus causing damage to the plant itself. This 



method is destructive and does not have the sustainability characteristics required by modern 

agriculture and cannot be generalized. 

Another study by Christoph et al. on wheat leaf rust detection before symptom occurrence 

based on fluorescence spectrum combined with SVM [11] also has similar dilemmas. They 

used a fluorescence spectrometer to take measurements on the wheat leaves that needed to be 

sampled. One of the advantages of fluorescence spectroscopy compared with reflection 

spectroscopy is that it can obtain physiological changes before symptoms of plant damage, 

and thus has the prospect of early detection. But currently available systems for measuring 

fluorescence spectrum are usually used for research purposes and are very expensive. 

Besides, the measured data are numerical data that reflect the health of the plant and can 

therefore be used directly as a feature, but because this method causes damage to the plants 

themselves, the benefits are outweighed when applied to large farms similar to [9]. 

Another remote sensing technology used for pest detection that is just as costly as 

fluorescence spectroscopy is thermal sensing. A study on tomato plants used thermal sensing 

techniques to propose a method for automatic detection of diseased plants based on depth, 

temperature, and color information extracted from thermal and visible light image data [10]. 

The experimental results of this method show that the accuracy of detection can be increased 

by adding thermal sensitivity information to the basic image information. Although this 

method reflects the potential of thermal sensing technology in pest detection, the use of the 

technology still lacks proof of independence. There are relatively few studies in the area of 

pest detection using only thermal sensing techniques due to the limitations of the effective 

information that thermal sensing technology can provide and the high cost. 

The application of remote sensing technology to pest detection is still being explored. At 

present, Synthetic aperture radar (SAR) and lidar (Lidar), which have features that can be 

used to profile the characteristics of plants and their growth environment [20] [21], have also 

emerged as potential technologies for pest and disease monitoring. However, current research 

on them is limited only to changes in the structure and morphology of plants caused by pests, 

and direct application of these techniques for pest detection has not been achieved based on 

the weak relationship between the information these techniques can provide and the infested 

plants. 

Therefore, the pest detection methods based on remote sensing technology are still in the 

conceptual stage, with the high cost and low applicability.  



 

2.3 Electronic nose-based pest detection 

One of the core basis of all pest detection methods is the changes in plants caused by pest 

infestation. In addition to the changes in plant leaf appearance, spectrum, structure, and 

morphology described above, another one that has attracted extensive attention of researchers 

is changing the volatile organic compounds (VOCs) emitted from plants. The distribution and 

amount of VOCs emitted by different plants at different phases of development varied 

substantially, and the difference in VOCs released by infested plants and non-infested plants 

is significant [12].  

A conventional approach for identifying plant VOCs is gas chromatography/mass 

spectroscopy (GC/MS) [22], which is time-consuming, expensive, and requires experienced 

manpower to collect and analyze data [11] and it is a well-known analytical technique for the 

qualitative and quantitative analysis of plant volatiles [17]. In recent years, the electronic 

nose (E-nose) has gradually become a better alternative to GC/MS not only due to its highly 

sensitive identification of VOCs but also its convenience of use and non-invasiveness. 

E-nose is an instrumental device consisting of an array of sensors that are sensitive to 

different types of gases [23] and used for reliable differentiation of VOCs profiles emitted by 

infested and un-infested plants, thus enabling further detection of pests on crops by 

monitoring the changes of VOCs on plants [12]. In the agricultural area, research into 

employing E-nose for pest identification is not new, Wu et al. investigated the ability and 

feasibility of E-nose in the detection of pest infection levels by conducting experiments to 

detect the infestation levels of pests in wheat grain with different humidity and to distinguish 

the pest species [14]. This method was able to successfully detect the presence of Red flour 

beetle in wheat and distinguish different infestation levels, but only at certain humidity levels, 

because the E-nose Alpha MOS FOX-3000 used in the study is particularly sensitive to 

humidity.  

A new study in recent years used the same E-nose system as an alternative method to 

simulate biological olfactory processes for the detection of Citrus Tristeza Virus (CTV), a 

pathogen in Khasi Mandarin Orange plants [15], this method achieves 95.30% accuracy by 

using random forest classifier. Another E-nose called PEN2 (Airsense Analytics, Germany) 

consists of 10 sensors equipped with a headspace sampling device that was used to 

discriminate between the volatile characteristics released from healthy rice plants and those 

exposed to the different densities of Nilaparvata lugens adults [17]. A recognition model with 



over 92.5% accuracy was developed by employing a three-layer back-propagation neural 

network in this study. 

Although these E-noses have demonstrated their excellent performance and helped the 

methods in these studies achieved good results, which proves their reliability and shows clear 

and encouraging potential for application as an effective means of pest detection, they are all 

commercial-grade and therefore, although slightly less expensive than the GC/MS method, 

still necessitate expensive and elaborate experimental infrastructure and the participation of 

skilled professional operators, making them inaccessible to most farmers. 

Driven by modern market demands, low-cost E-noses have been gradually developed and 

brought to the market by researchers in recent years. The affordable E-nose is regarded as the 

best choice to balance the reliability and the cost of discriminating VOCs on different objects 

with volatile gases. Recently, several studies have been conducted in different fields using a 

low-cost portable E-nose newly developed by the Digital Agriculture Food and Wine Group 

from the University of Melbourne [23].  

So far, this specific E-nose has been used for different applications with remarkable 

achievements. These studies have mainly focused on assessing beverage quality, which has 

important implications for human health. Fuentes et al. carried out a field trial to use the low-

cost E-nose to classify smoke contamination levels in wines made from grapevines exposed 

to smoke and coupled with a machine learning algorithm [24]. This study implemented five 

models, all of which achieved an overall accuracy of around 95%, and these models can 

provide winemakers and producers with valuable information to help them make better 

decisions when producing commercial wines by reducing smoke pollution. Because the study 

used E-nose, which is reliable, efficient, and cheap, the cost of the method has been greatly 

reduced, making it available to most winemakers and growers. A similar study used the same 

E-nose to implement a system that can evaluate the quality of beer by examining its aromatic 

profile [25]. The system consists of four machine learning models and can classify or predict 

beer fermentation levels, consumer preferences, acceptability, and physicochemical and 

colorimetric analysis with about overall 90% accuracy. Besides, the E-nose has also been 

used in predicting the presence of various aromas in coffee and identifying the intensity of 

coffees [26] with high accuracy.  

These studies revealed the reliability and efficiency of the specific low-cost E-nose, thus 

providing a solid research basis for the development of a cost-effective pest detection method 

by using this E-nose for most farmers. 



3  Problem Statement and Research Question 
Many pest detection techniques have emerged as science and technology have progressed. 

Based on the review of existing research, we can see the existing pest detection technology is 

advanced, and the contribution to agriculture is significant, but most of them are only 

applicable to commercial large-scaled farmland. Consequently, in the field of pest detection, 

an important research gap is that few studies have proposed a cost-effective pest detection 

method. The trade-off between reliability and the cost of the method is a major challenge. 

However, it is worth noting that non-commercial farmers are an important part of modern 

agriculture. Therefore, from a broad perspective, the current pest detection system is 

incomplete, and an affordable and efficient pest detection method for non-commercial 

farmland needs to be developed to realize the desired pest detection system in the future.  

Based on the research gap and the current major challenges in the field described above, the 

research question proposed in this paper is whether an affordable and reliable pest detection 

method can be implemented by developing two models with high performance using a low-

cost E-nose coupled with a machine learning modeling based on the model evaluation 

(accuracy and Mean Squared Error) to help growers with pest management.  

The following sub-questions will be addressed in this study:  

• · Would it be possible to classify the infestation levels on the plant (Low, Medium, 

High) using a low-cost e-nose and machine learning modeling?  

• · Would it be possible to predict physiological parameters (photosynthesis rate, 

stomatal conductance, and transpiration) using a low-cost e-nose and machine 

learning modeling?  

4  Data Collection 
To collect the data needed for developing our models to answer our research question, we 

firstly conducted a controlled experiment. For providing sufficient reference or repeatable 

experimental basis for future field trials, this chapter will describe the experimental materials, 

experimental equipment, experimental settings, and experimental process in detail, and each 

experimental choice will also be justified. 

4.1 Experimental materials 

In the long term, this study aims to provide a pest detection method with a degree of 

universality suitable for most crops. Therefore, the selection of experimental plants and pests 

in this experiment is based on the principle of representativeness and universality. Based on 



this principle, wheat was chosen as the plant material for our experiment since wheat is the 

most widely grown and important crop in the world [27]. And global wheat demand will 

grow by roughly 30% from its current production level of 642 million tonnes according to the 

Food and Agriculture Organization (FAO) [28]. 

The most common pest in wheat is aphids, which are highly destructive and reproductive. As 

long as wheat is infected by the aphid, without timely and effective detection and 

management, it will lead to wheat yield reduction or even extinction. Among the aphids 

associated with wheat and even other winter wheat, Rhopalosiphum padi (R. padi) is 

currently the prevalent and predominant species [29]. In recent years, it has been found in 

large numbers at all stages of wheat growth and development and it is the most frequently 

infested species in wheat growth [30]. Therefore, the pest material we choose for this 

experiment is R. padi, which was provided by laboratory cultures of Pest & Environmental 

Adaptation Research Group, School of Biosciences, The University of Melbourne, Australia.  

 

4.2 Experimental equipment 

 

Two devices were used to measure and collect data in this experiment: a newly developed 

Electronic nose by the Digital Agriculture, Food and Wine (DAFW) Group at the University 

of Melbourne's Faculty of Veterinary and Agricultural Sciences (FVAS) [26] and a Li-6400 

XT open gas exchange system (Li-Cor Inc, Environmental Sciences, Lincoln, NE, USA). 

 

The low-cost e-nose used in this experiment is lightweight and portable as shown in Figure 1. 

It consists of a printed circuit board (PCB) [23] with only 92 mm in diameter and an array of 

nine gas sensors sensitive to different gases, as well as a humidity sensor and a temperature 

sensor (AM2320, Guangzhou Aosong Electronics Co., Ltd., Guangzhou, China)  to monitor 

the environmental condition while taking measurements. 



 

Figure 1. The front part of E-nose consists of nine sensors 

 

The model numbers of these nine sensors are MQ-3, MQ-4, MQ-7, MQ-8, MQ-135, MQ-

136, MQ-137, MQ- 138, and MG811 (Henan Hanwei Electronics Co., Ltd, China) and their 

corresponding sensing gases and sensitivity ranges are shown in Table 1. 

Table 1: Gas sensors integrated in the E-nose [23] 

 

The E-nose was programmed using Python (Python, Wilmington, DE, USA) to capture the 

data and the voltage output from each sensor is proportional to the amount of the particular 

gas [23] and this is because the e-nose records relative measurements of gases rather than 

absolute concentrations. The information in volts for each sensor, along with the temperature 

and humidity readings, is uploaded to a computer via Universal Serial Bus (USB), where it is 

automatically saved in a comma-separated values (.csv) file to simplify further analysis. 

Li-6400 XT open gas exchange system (Figure 2) was used to measure three plant 

physiological parameters: 

• Photosynthesis (A; µmol CO2 m-2 s-1)  

• Stomatal Conductance (gs; mol H2O m-2 s-1), 



• Transpiration (E; mmol H2O m-2 s-1) 

 

Figure 2. Li-6400 XT open gas exchange system 

 

4.3 Experimental settings 

 

Three treatments with different levels of pest infection were designed in our experiment: (i) 

low level of aphids infestation, (ii) medium level of aphids infestation, and (iii) high level of 

aphids infestation, and one control was also designed in our experiment: (iv) aphids-free.  

The specific number of aphids in each treatment will be determined by counting the number 

of tillers of wheat prior to aphids introduction, which will be explained later in the 

experimental process. In order to reduce the bias of data collected through the controlled 

experiment, we set a repeating group for each treatment, that is, each treatment was applied to 

two groups, so as to improve the reliability of our experimental data. Similarly, there are also 

two groups for control. 

 

Experimental set-ups and their corresponding labels: 

• Two groups of treatment with low-density of aphids: T1-1, T1-1 

• Two groups of treatment with medium-density of aphids: T2-1, T2-2 

• Two groups of treatment with high-density of aphids: T3-1, T3-2 

• Two groups of control with no aphids: CO-1, CO-2 

 

Each group contains 4 adjacent wheat plants and our total number of samples is 32.  



 

Samples:  (3 treatments + 1 control) ∗ 2 groups ∗ 4 wheats = 32 wheats 

Our experiment was carried out in a growing chamber (Biosciences Glasshouse Complex, 

The University of Melbourne, Parkville, VIC Australia) with automatic temperature control 

of 20-25°C and 16 hours of daylight / 8 hours of dark. A general overhead view of the 

laboratory setup is shown in figure 3. 

 

 
Figure 3. Experimental settings in the grown chamber. 

Each group consisted of an insect rearing tent (BugDorm, Australian Entomological Supplies 

Pty. Ltd., South 116 Murwillumbah, NSW Australia) containing a tub filled with diluted 

nutrient solution, and two aero pots (Anti-Spiral Pot, Garden City Plastics, Dandenong South, 

VIC Australia) planted with two wheat plants was placed in each tub (Figure 4). In addition 

to 8 groups of 32 wheat samples, we also planted some additional plants in two set-ups for 

aphids rearing. The positions of each group were arranged by random number extraction. 

 

 



 

Figure 4 Insect rearing tent (left) containing a tub with two aero pots planted with two wheat 

plants (right) each. 

4.4 Experimental process 

The experiment is mainly divided into three parts to acquire data: 

Step1: Grow plants for aphid infection. 
 
In order to minimize the interference and influence of external factors on wheat samples 

before aphids infection and ensure the uniformity among the experimental groups, the wheat 

in this experiment was grown from seeds, which were first sterilized and placed in a culture 

dish in the fridge in dark at a temperature of 4 °C for 48 hours, then they were transferred to a 

light environment at normal room temperature (17-25 °C)  for 72 hours. The germinated 

seeds were next transferred to Jiffy peat pellets that have been hydrated and expanded in 

warm water, and all peat pellets containing germinated seeds were placed in germination 

trays with a vented dome (Figure 5). This step is to allow the seedlings to be transplanted 

until they are large enough to avoid transplant shock, which can result from destroying the 

delicate root system of the plant. Jiffy Peat Pellets were used due to it consists of compressed 

peat, wood pulp, and coir pitch pellets and can offer an ideal growing media for seeds. 



 
Figure 5. Germination trays with vented dome placed Jiffy peat pellets with seeds 

Transplanting was carried out when the seedlings reached the two-leaf stage in the 

germination tray. We carefully transferred every two wheat seedlings to an aero-pot filled 

with water-soaked clay pebbles, then we placed a set of two pots into a tub in aphids rearing 

tent according to the experimental setup, and finally filled each tub with 5L diluted nutrient 

solution and closed the opening of the tent to allow wheat to grow in an ideal safe 

environment. 

 

The wheat planting method we use is hydroponics, which is a method of growing plants in 

water containing nutrient solutions instead of using soil [31]. Hydroponics prevents the 

occurrence of a variety of malignant diseases transmitted by soil-borne pathogens and cuts 

off one of the most important channels of pest and disease transmission, thus providing more 

ideal growing conditions for wheat and improving its survival rate [32]. Furthermore, 

hydroponics can ease the frequency of watering, thereby reducing their exposure to other 

pests.  

  

During the whole process of plant growth, we performed a weekly routine inspection on the 

plant, to monitor the growth of the plant, and supplement or replace the nutrient solution 

appropriately according to the observed plant status and nutrient solution consumption. 

 
Step2: Aphids infestation trial 
 
To obtain sufficient quantities of aphids for the infestation trial, we first multiplied oat aphids 

(R. padi) by introducing them to healthy wheat grown in two extra experimental set-ups 

under the same conditions as other set-ups.  



The national economic threshold (ET) is used as a criterion to determine the number of 

aphids that need to be introduced for different treatments. ET is a disease density index that 

refers to a reasonable time for disease control. That is when the pest or disease reaches this 

density, control measures should be taken to prevent the disease population from increasing 

in density and reaching economic damage levels [33]. For Australian winter cereals, the 

economic threshold for oat aphids is 10-20 aphids per tiller on 50% of tillers [34]. 

 

Therefore, according to the national ET, the aphid load standard for three treatments in our 

experiment is: 

• Treatment with low-density of aphids: 5 aphids per tiller in 50% of tillers  

• Treatment with medium-density of aphids: 10 aphids per tiller in 50% of tillers  

• Treatment with high-density of aphids: 17 aphids per tiller in 50% of tillers 

 

Based on the standard, we manually counted the number of tillers per wheat and calculated 

the exact number of aphids per wheat needed according to their treatment levels. When the 

wheat grew to about the stem elongation stage, a specific number of aphids randomly 

selected from the multiplied population were introduced to the wheat plants in each treatment 

using a natural brush to start the aphid infestation. And in the process, we made sure that the 

controls were isolated. 

 

Step3: Make measurements. 

Two measurements were scheduled at different times throughout the experiment. A baseline 

measurement was conducted before the aphid's introduction, and a post-infection 

measurement was taken 5 days after the aphids were transferred to wheat plants. For each 

measurement, we had the same process by using E-nose and Licor. 

 

The E-nose as a gas sensor has the same potential problems as other measuring instruments, 

which can be more or less error-prone after being used for a period of time due to 

surrounding factors such as humidity and movement. Therefore, in order to ensure the 

consistency of each measurement and minimize the bias caused by the equipment, we take E-

nose outside the tent for calibration in the natural grown chamber environment for 30 seconds 

every time before and after measuring wheat. Data was recorded by placing E-nose on the top 

of wheat plants inside the tent for one minute, and repeated four times for each experimental 

group (each tent) including two times were measured on each pot. To keep E-nose under the 



volatile compounds emitted by the plants as much as possible, and avoid affecting by the 

gases outside the tent, we opened the tent just wide enough for the e-nose to fit in. 

The physiological status of wheat was measured by LiCOR to obtain relevant data. 

Physiological measurements were taken 12 times in total for each group, and repeated three 

times on different leaves of each wheat. 

5  Statistical Analysis 
We performed statistical analysis on the physiological and E-nose data acquired to gain basic 

information about the relationship between the result of measurement and different wheat 

sample groups. For simplicity, we use the control, low, medium, and high to represent four 

wheat sample groups including three treatments with different levels of infection and one 

control when introducing and describing our analysis. Analysis of Variance (ANOVA) and a 

post hoc test was conducted to examine if E-nose and physiological measurements can 

discriminate across wheat groups using XLSTAT v.2020.3.1 (Addinsoft, New York, NY, 

USA) in this study. 

 

ANOVA was adopted in our analysis because it is the most flexible, effective, and common 

method for analyzing data from controlled experiments, and the computer software that 

provides the ANOVA is readily available, making this analysis easy accessible, and time-

saving to perform. The aim of conducting ANOVA is to determine whether or not there is a 

statistically significant difference (p < 0.05) between the means of the output of nine gas 

sensors from E-nose for four sample groups including control, low, medium, and high. 

Similarly, physiological measurements also were analyzed using ANOVA to determine 

whether the mean values for photosynthesis, stomatal conductance, and transpiration differed 

between four sample groups.  

 

Based on the result of ANOVA, we also conducted a Tukey honestly significant difference 

(HSD) post hoc test (a= 0.05) to obtain more information about the relationships between 

different sample groups. The statistically significant results of ANOVA can only show that 

not all wheat groups are equal in means. However, the results do not specify which group 

difference is significant for the mean.  

 



From the practical significance of this study, the results of ANOVA can only show whether 

our measurements have the discrimination ability to distinguish between different wheat 

groups, but they cannot assess the strength of their ability to discriminate, such as, between 

the control group and the low level of infestation group, two physiologically similar groups in 

all wheat groups. Therefore, we performed a post hoc test on our measurements to further 

explore the relationships between different pairwise groups.  

6  Model development 
Machine learning modeling was performed based on an artificial neural network (ANN) 

using a customized code written in Matlab® R2020a to develop two models with different 

purposes in this study: a classification model was constructed to classify the level of 

infestation on wheat (control, low, medium, high) and a regression model was developed to 

predict the physiological parameters including photosynthesis, stomatal conductance, and 

transpiration. The first model is the core of the pest detection method implemented in this 

study, and its results can be used as an indication to inform farmers whether and to what 

extent corresponding pest control measures are to be taken, providing them with the most 

important pest detection information. The second model provides additional plant details to 

help farmers make more rational decisions about pest management. It also provides the basis 

for the possibility of using e-nose instead of LiCOR, which is complex and expensive to 

operate, to obtain the physiological status of plants.  

 

6.1 Data pre-processing 
 
The quantity and quality of data sets play an important role in model construction. Data and 

its features determine the upper limit of machine learning performance. Therefore, we 

preprocessed the raw datasets before model training. 

 

E-nose is data logging every 500ms by using the microcontroller with an on-board ADC, 

which means that E-nose reads data twice per second. Since we have a total of 2 minutes of 

measurement time including 30 seconds of calibration before and after each measurement and 

1 minute of measuring on the top of the wheat. The amount of data obtained per measurement 

is around 240. And each group repeats 4 measurements, which though provides us with a 

large enough dataset, but that dataset suffers from poor stability and the amount of data varies 



between groups leading to data imbalance. To increase the stability and reliability of the data 

set and build a better model, we extracted data based on the raw data from E-nose. 

A supervised code written in MATLAB (MathWorks Inc., Natick, MA, USA) was used to 

help us with data extraction. By reading all the data for each measurement, the code 

automatically recognizes the e-nose output and plots a curvy figure. By observing the figure, 

we then manually select a starting and ending point to determine the most stable continuous 

range of measurements, the code subsequently automatically subdivides the selected data into 

ten equidistant segments and computes an average for each segment, thus outputting 10 

averages as the result of the data extraction. This code can simultaneously batch read and 

process multiple groups of data, and output all the results into a CSV file, each group of 

output data is separated by a blank line.  

 

After conducting data extraction of E-nose measurements, we also normalized both E-nose 

and physiological data before building the regression model. Normalization can make each 

variable in the same range or have the same variance, reducing bias caused by different 

dimensions, self-variation, or large numerical differences across data. These pre-processed E-

nose data were used as inputs for both classification and regression model construction. Since 

each set of an average of nine sensors extracted was taken as an input, thus, there were 40 

inputs in total for each group of four measurements containing 10 averages each.  

For the classification model, we use four infestation levels (control, low, medium, high) as 

targets, and the label values corresponding to each instance were realized by assigning the 

number 1 or 0 to each level, which means that the corresponding actual infestation level of an 

instance is set as 1, and all other labels are set as 0.  

 

For the regression model, three physiological measurements including photosynthesis, 

stomatal conductance, and transpiration were used as multi-targets for model development, 

one problem with the data set used to build the regression model is that the amount of inputs 

and targets data does not match. There were 12 physiological measurements in each group 

and 40 E-nose measurements as we described before, there was a large quantitative 

difference. Therefore, data matching was carried out as another data pre-processing before 

regression model construction. We performed the simplest method of data matching, which is 

to copy and paste the physiological measurements to match the E-nose data. This method can 

minimize the problem of data authenticity caused by data matching and the purpose of this 



study is to detect and report the most realistic state of wheat to detect pests, the authenticity 

of data is taken as the priority in this paper. 

 

The pre-processing of the raw data maximized the correctness, completeness, and consistency 

of the dataset used to further construct our model, providing a robust basis for model 

development. 

6.2 Model evaluation method 

Data pre-processing is the basis of model training, while the evaluation method is the 

cornerstone of model selection. In this study, to build the best model, we trained multiple 

models on the dataset, and different model evaluation methods were used as a standard to 

compare model performance.  

Model evaluation, as an integral part of the machine learning field, is crucial to solving 

practical problems. Only applying evaluation methods that match application scenarios can 

better solve research problems. Therefore, it is necessary before model construction to 

understand the significance of different evaluation indexes and choose suitable ones based on 

our research questions. This section will introduce the model evaluation methods used in this 

study. 

Each evaluation index has its meaning, most of the evaluation indexes can only reflect a part 

of the overall performance of the model. If the evaluation indicators are not properly applied, 

not only the problems of the model itself cannot be found, but also the wrong conclusions 

will be drawn. A good model evaluation scheme can provide good feedback during model 

construction to help adjust and optimize the model. Hence, we avoid considering a single 

one-sided index in the selection of the evaluation method, due to the results obtained in this 

way usually do not have sufficient reference significance.  

This study adopted a combination of different evaluation methods as the model evaluation 

criteria. Accuracy, Mean Squared Error (MSE), and Correlation Coefficient (R) was used as 

the main evaluation indexes, as well as Confusion Matrix and Learning Curve were also used 

as our evaluation tools to form a comprehensive and solid model evaluation system. The 

model development was based on this evaluation scheme and we also applied it as a model 

analysis method to evaluate the performance of two models we developed to conclude our 

research questions.  



Accuracy is the simplest and most intuitive evaluation metric in classification problems, but it 

has a limitation that when the sample proportions of different categories are very unbalanced, 

the sample class with a large proportion tends to be the dominant class affecting the accuracy. 

And accuracy can be the best evaluation metric for our classification model since the sample 

proportion of the four classes (control, low, medium, high) in the data set of this study is 

relatively balanced. Accuracy is the percentage of the total sample that is predicted correctly. 

Formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠	𝑡ℎ𝑎𝑡	𝑎𝑟𝑒	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑇ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠  

The magnitude of the accuracy value represents the strength of the model's overall 

classification ability, and the accuracy value is proportional to the model's classification 

ability. Accuracy was used as the main evaluation parameter for our classification model. 

The MSE is the expected value reflecting the difference between the estimated value and the 

real value and measures the degree to which the predicted value matches the real value. It is a 

statistical measure and loss function commonly used in machine learning models such as 

linear regression. It is also often used to evaluate the deviation of data and the performance of 

the fitting model. The statistical parameter is the mean of the sum of squares of the errors at 

the corresponding points between the predicted data and the true data. Formula: 

𝑀𝑆𝐸 =	
1
𝑛((𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)!

"

#$%

 

Contrary to accuracy, MSE is negatively correlated with model performance because it 

reflects error. Therefore, when the value of MSE is smaller, it indicates that the model has 

better performance. MSE was used as the main evaluation index for both our classification 

and regression models. 

The correlation coefficient is a measure of the magnitude of the correlation between two 

variables. It reflects the degree of explanation of predicted value to real value and is an 

indicator of model explanatory power. Formula: 

𝑅(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

@𝑉𝑎𝑟[𝑋]𝑉𝑎𝑟[𝑌]
	 



Where 𝐶𝑜𝑣(𝑋, 𝑌) is the covariance of X and Y, 𝑉𝑎𝑟[𝑋] is the variance of X, and 𝑉𝑎𝑟[𝑌] is 

the variance of Y. 

When the correlation coefficient is 1, it indicates that the positive similarity of the changes in 

two variables is the greatest, that is, the perfect positive correlation. As their correlation 

coefficient decreases, the similarity of the changes among the two variables becomes smaller. 

When the correlation coefficient is 0, there is no similarity in the change process of the two 

variables, that is, the two variables are irrelevant. 

When the correlation coefficient continues to decrease and is less than 0, the two variables 

begin to show negative similarities. As the correlation coefficient continues to decrease, the 

negative similarity will gradually increase. When the correlation coefficient decreases to -1, it 

indicates that the negative similarity of the changes of the two variables is the largest, that is, 

the perfect negative correlation. Therefore, the closer the correlation coefficient is to -1 or 1, 

the higher the correlation will be. When it is 0, there is almost no correlation. The correlation 

coefficient was used as the main evaluation metric of our regression model. 

In addition to the three intuitive evaluation parameters described above, we also used some 

visual display graphics as evaluation tools for our model. Although accuracy can well reflect 

the overall performance of the classification model, it cannot meet the specific task 

requirements, such as evaluating the performance of the model that classifies a specific class 

from all other classes. Therefore, to analyze the performance of the model more 

comprehensively, we used the confusion matrix as an important evaluation tool.  

The confusion matrix is a visualization of the classification results for each category that 

compares them with the real results. Through the confusion matrix, we can see the correct or 

incorrect identification of each class of sample. It provides a more detailed picture of how 

"good or bad" the model is than accuracy.  

In addition, the confusion matrix is one of the most widely utilized approaches in machine 

learning model analysis since it was resistant to any data distribution. It provides us with 

detailed information about model errors, which can help us analyze the pest detection 

methods we implement from different directions based on the model performance.  

The confusion matrix for binary classification is shown in Table 2. 



Table 2: Confusion matrix of binary classification 

 Predict 

Real 

 Positive Negative 

Positive TP FN 

Negative FP TN 

• True Positive (TP): The number of samples for which the real label is positive and 

also predicted as positive correctly. 

• False Negative (FN):  The number of samples for which the real label is positive but 

predicted as negative incorrectly. 

• False Positive (FP): The number of samples for which the real label is negative but 

predicted as positive incorrectly. 

• True Negative (TN): The number of samples for which the real label is negative and 

predicted as negative correctly. 

This kind of confusion matrix is the basis for computing two important evaluation indexes: 

Precision and Recall. 

Precision refers to the percentage of the sample that the model predicts to be positive is 

actually positive: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

In our four-class classification problem, FP is the sum of the number of the other three types 

incorrectly classified as positive, as shown in table 3, it is the sum of the pink grid values for 

each row. In contrast to accuracy, which is the overall accuracy of the classifier, precision is 

the accuracy based on a particular class. 

Recall refers to the ratio of the number of samples predicted to be positive among all the real 

positive samples: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 



In general, the higher Recall is, the more positive samples are correctly predicted by the 

model, and the better the model performance is. 

The confusion matrix used in this paper is a modified version based on the concept of binary 

classification confusion matrix (See Table. 3), which applies to our four-class classification 

problem. More importantly, it can intuitively display precision and recall for each class. And 

in this matrix, the class being analyzed is positive and all other classes are negative. 

Table 3: Confusion matrix of classification model for classifying aphids infestation level 

Pr
ed

ic
te

d 
C

la
ss

 Control T F F F Precision1 

Low F T F F Precision2 

Medium F F T F Precision3 

High F F F T Precision4 

 Recall1 Recall2 Recall3 Recall4 Accuracy 

Control Low Medium High  

Real Class  

In machine learning analysis, even based on all the above evaluation parameters, it cannot be 

concluded that the model has a good performance. Since overfitting is the most common 

problem in machine learning modeling [35], especially when modeling small datasets using 

powerful machine learning methods, thus, overfitting and underfitting analysis must be 

included in a thorough and comprehensive evaluation method. Learning Curve was used as 

an evaluation tool in this study for over- and under-fitting analysis. The learning curve is 

generally a curve showing the change in Accuracy or MSE of the training and validation sets 

as the number of samples trained increases. The learning curve can show the general trend of 

the model and indicate the time when the stable state of the model occurs. 

For the learning curve used in this study, the X-axis is the number of epochs of training, and 

the Y-axis is MSE. This is because the number of training as the X-axis of a small data set 

does not have much reference significance, and using the number of training epochs can 

better explain the training status of the model. When the validation set reaches the lowest 

point, the model performs best. By observing the ordinate distance between the validation set 



and the training set in the learning curve, it can be seen whether the model has over-fitting 

phenomenon. 

In general, the model evaluation method used in this paper is adapted and designed based on 

traditional machine learning model evaluation.  By combining different evaluation metrics 

and tools, we realized a comprehensive and robust evaluation strategy suitable for the 

development of our models.  

6.3 Modeling 

Several supervised machine learning models were developed based on artificial neural 

networks (ANN). The construction of our models mainly includes algorithm selection, 

neuron trimming and data set division test. The three main processes for our model 

construction were all performed by using a customized code written in Matlab® R2020a.  

Different machine learning algorithms have their own characteristics, and for different data 

sets, the most suitable algorithm is usually different, and the performance of different 

algorithms on the same data set varies greatly. So it is very necessary to test different 

algorithms on data sets when building models. A total of seventeen different training 

algorithms were tested through a loop of the code (See Table. 4). They are grouped into three 

categories according to the main function type used, including Backpropagation with 

Jacobian derivatives, Backpropagation with gradient derivatives and Supervised weight and 

bias training functions. 

 

 

 

 

 

 

 



Table 4: Algorithms used and description of the main function type and abbreviations [39] 

Main Function Type Algorithm Abbreviation 

Backpropagation with Jacobian derivatives 

 

Levenberg Marquardt  LM 

Bayesian Regularization  BR 

Backpropagation with gradient derivatives 

 

Broyden, Fletcher, Goldfarb, and 

Shanno quasi-Newton  

BFGS 

Conjugate gradient with Powell-

Beale restarts  

PB 

Conjugate gradient with Fletcher-

Reeves updates  

FR 

Conjugate gradient with Polak-

Ribiere updates  

PR 

Gradient descent backpropagation  GD 

Gradient descent with adaptive 

learning rate  

GDLR 

Gradient descent with momentum  GDM 

Gradient descent with momentum 

and adaptive learning rate 

GDMLR 

One step secant  OSS 

Resilient backpropagation RPROP 

Scaled conjugate gradient  SCG 

Supervised weight and bias training functions  

 

Batch training with weight and bias 

learning rate  

BLR 

Cyclical order weight and bias  CO 

Random order weight and bias  RO 

Sequential order weight and bias  SO 

In addition to algorithms, the number of neurons is an important parameter of neural network 

learning, the number of neurons in the input layer equals the number of features and finding 

the correct number of neurons in the hidden layer is critical to the training of the model. Too 

few neurons can result in under-fitting, because the network cannot deep learn properly, 

however, too many neurons can easily lead to overfitting of the model because the network 

will capture a lot of noise due to overlearning and thus fail to generalize. Therefore, the right 

number of neurons must be selected to ensure that the model can be well trained. 

Based on the size of our data set, we carried out neuron trimming with different neuron 

numbers including 5, 7, and 10 neurons on the two algorithms that performed best after 

testing all algorithms. We used 10 as the maximum number of neurons because, in related 

studies of similar size to our dataset [23-26], they all used 10 as the maximum number of 

neurons and got good results. Therefore, based on experience with research basis, we set up 

these three neuron number options. 



The number of data sets used for training the model is also an important factor affecting the 

performance of the model because enough data sets can provide the basis for the network to 

obtain more information so that the model can get better training, but too small data sets often 

lead to the network difficult to capture enough information. The data split process is normally 

used to measure the performance of machine learning algorithms when they are used to make 

predictions. Using the same algorithm and neurons but with different data partitioning 

methods, the results of the model will be different. 

The same random data splitting was used for both algorithm testing and neuron trimming. For 

algorithms with no validation set, we divide the data into 70% training set and 30% test set. 

For algorithms with the validation set, we divide the total data into 70% training sets, 15% 

validation sets, and 15% test sets. This is one of the most common data partitioning methods 

in machine learning modeling. 

In order to further understand the impact of different data sets on the partition on model 

performance and to have a more adequate understanding of the model we constructed, after 

algorithm selection and neural trimming, we also tested another data partitioning method 

based on their results, it is that the data is randomly divided into 60% of the training set and 

40% test set, or 60% of the training set, 20% validation set and 20% test set. 

After the algorithm selection, neuron trimming, and data set division tests based on the model 

evaluation method described in the previous section, several models with different purposes 

were developed. 

Classification models were developed using pre-processed E-nose data as inputs (MQ3: 

alcohol, MQ4: methane, MQ7: carbon monoxide, MQ8: Hydrogen, MQ135: 

ammonia/alcohol/benzene, MQ136: Hydrogen sulfide, MQ137: ammonia, MQ138: 

benzene/alcohol/ammonia, MG811: carbon dioxide) and the level of pest infestation as 

targets to classify the level of aphids infestation on wheat (control, low, medium, high). 

Considering the small time interval between the baseline measurement and the first 

measurement after pest infection, the physiological state of plants without aphids changed 

very little, so the difference between the plant status at the baseline and the measurement 

after the first infection was very small. We attempted to add all the measurements of the 

baseline as control samples to the total data set for model training. This is to increase the 

number of data sets to try to build better models. Therefore, there are two models for 



classifying pest infestation levels using different inputs. The first model used only E-nose 

data after 5 days of pest infection as inputs, and the second model used both the baseline E-

nose measurements and E-nose data after 5 days together as inputs. Both models (See Figure. 

6) were developed based on an algorithm that performs best in the algorithm testing, which is 

the Bayesian Regularization training algorithm. A two-layers feedforward network with a 

hidden layer and an output layer was used in both two classification models and the hidden 

layer with 10 neurons used the tan-sigmoid function and the SoftMax function was used in 

the output layer. Both models were selected mainly based on accuracy, using a randomly 

divided 70% training set and 30% test set. 

 

Figure 6: The Artificial neural network structure of two best classification models 

For the regression model used to predict the photosynthesis rate, transpiration, and stomatal 

conductance, the E-nose data after 5 days of aphids introduction with E-nose baseline 

measurements together were used as inputs (MQ3: alcohol, MQ4: methane, MQ7: carbon 

monoxide, MQ8: Hydrogen, MQ135: ammonia/alcohol/benzene, MQ136: Hydrogen sulfide, 

MQ137: ammonia, MQ138: benzene/alcohol/ammonia, MG811: carbon dioxide) and three 

plant physiological parameters (photosynthesis, transpiration, and stomatal conductance) 

were used as targets. Both input and target data were normalized from -1 to 1 before training. 

The best regression model to predict the photosynthesis rate, transpiration, and stomatal 

conductance was developed using the Bayesian regularization algorithm. Similar to 

classification modeling, we also tried to train the model by adding E-nose baseline data to the 

data measured after the infection as inputs, and the effect was significant in regression model 

fitting. The regression model based only on the data measured after aphids infestation fit 

performed poorly, and the model trained after adding baseline data became the model that 



could be used in this study. Therefore, the best regression model used both the baseline E-

nose measurements and E-nose data after 5 days together as inputs and the physiological 

measurements as targets and it was developed based on the Bayesian Regularization training 

algorithm selected through algorithm testing. The model is a two-layer feedforward network 

(See Figure. 7), which consists of a hidden layer with 10 neurons and an output layer and tan-

sigmoid function and linear transfer function were used in the hidden layer and the output 

layer respectively. The training of the model is also based on randomly divided 70% of the 

training set and 30% of the test set using R and MSE as the main evaluation metrics. 

Figure 7: The Artificial neural network structure of the best regression model 

A total of three models were developed through our model building strategy of this study, 

including two classification models with different inputs and a regression model.  

7 Results 
 

ANOVA was performed to compare the effect of different levels of aphids infestation in 

wheat (control, low, medium, high) on the output of nine sensors corresponding to different 

gases after 5 days of aphids infestation. The result as shown in Table 5 revealed that there 

were statistically significant differences in both MQ3, MQ7, MQ8, MQ135, MQ136, 

MQ137, MQ138, and MG811 between different wheat groups (p < 0.05) at 5 days after 

aphids infestation. Among all sensors, only MQ4 (Methane) between different groups was 

not statistically significant (p = 0.286 > 0.05).  Some patterns can be seen in all sensors 

outputs for different groups. For all sensors, the medium group was significantly higher than 

the other three wheat groups (control, low, high) except for MG811 (Carbon dioxide). The 



medium was significantly the smallest for MG811 among four wheat groups (1.358 Volts). 

The high group was significantly lower than the other three wheat groups for all sensors 

except for MQ8 (Hydrogen) and MG811. For MQ8, control, Low and high were significantly 

the same and the high group was significantly higher than the other three wheat groups for 

MG811. high group was significantly higher than the other three wheat groups for MG811.  

Table 5: The ANOVA results for E-nose data measured after 5 days of aphids infestation 

Sensor MQ3 MQ4 MQ7 MQ8 MQ135 MQ136 MQ137 MQ138 MG811 

Gas Alcohol Methane 
Carbon 

monoxide 
Hydrogen 

Ammonia 

/Alcohol 

/Benzene 

Hydrogen 

Sulfide 
Ammonia 

Benzene 

/Alcohol 

/Ammonia 

Carbon 

dioxide 

Control 0.523  1.145 0.223  0.039  0.026  0.000  0.084  0.054  1.413  

Low 0.559  1.151 0.235  0.039  0.030  0.000  0.081  0.057  1.370  

Medium 0.736  1.143 0.275  0.041  0.037  0.002  0.106  0.070  1.358  

High 0.471  1.136 0.198  0.039  0.022  0.000  0.079  0.051  1.418  

Pr > 

F(Model) <0.0001 0.286 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Significant Yes No Yes Yes Yes Yes Yes Yes Yes 

Pr > 

F(Sample) <0.0001 0.286 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Significant Yes No Yes Yes Yes Yes Yes Yes Yes 

The effect of different levels of aphids infestation in wheat (control, low, medium, high) on 

the physiological state of wheat (photosynthesis, stomatal conductance, transpiration) at 

baseline and after 5 days of aphids introduction was also compared by conducting ANOVA. 

Table 6 presents and compares  ANOVA results of photosynthesis, stomatal conductance, 

and transpiration measured at baseline and five days after infection for different wheat 

groups. It can be seen from the data in Table 6 that there were non-significant differences in 

both measurements of photosynthesis, stomatal conductance, and transpiration between 

different wheat groups (p > 0.05) at baseline. For the measurements taken five days after 

aphids introduction, the mean value of stomatal conductance and transpiration were 

significantly different between different wheat groups (p < 0.05), but there was no 

statistically significant difference in mean photosynthesis between four wheat groups (p = 

0.07 > 0.5). 

For any physiological parameters measured 5 days after aphids introduction, the 

measurements of the control group were significantly higher than the other three wheat 



groups (low, medium, high). For physiological measurements at baseline, the high group was 

significantly lower than the other three wheat groups (control, low, medium). Although there 

was no statistically significant difference in the photosynthesis after 5days of infestation, the 

p-value dramatically decreased from the baseline (p = 0.924) to the measurement after 5 days 

of infection (p = 0.070) and was slightly above 0.05. 

Table 6: The ANOVA results for physiological measurements of baseline measurements and 

measurements after 5 days of aphids infestation  

Baseline Measurements 

Measurements taken 5 days after aphids 

introduction  

Sample 
Photosynthesis 

(μmol 𝐶𝑂!		𝑚"! 𝑠"#) 

Stomatal 

Conductance 
(mol 𝐻!𝑂 𝑚"! 

𝑠"#) 

Transpiration 
(mmol 𝐻!𝑂 

𝑚"! 𝑠"#) 

Photosynthesis 
(μmol 𝐶𝑂!		𝑚"! 

𝑠"#) 

Stomatal 

Conductance 
(mol 𝐻!𝑂 𝑚"! 

𝑠"#) 

Transpiration 
(mmol 𝐻!𝑂 

𝑚"! 𝑠"#) 

Control 7.847 0.125 1.833 7.863 0.234  3.305  

Low 8.243 0.148 1.967 6.457 0.124  2.265  

Medium 7.815 0.138 1.973 6.203 0.105  1.950  

High 7.737 0.116 1.729 5.669 0.102  1.984  

Pr > 

F(Model) 0.924 0.476 0.585 0.070 <0.0001 <0.0001 

Significant No No No No Yes Yes 

Pr > 

F(Sample) 0.924 0.476 0.585 0.070 <0.0001 <0.0001 

Significant No No No No Yes Yes 

 

Based on the results of ANOVA, we carried out a Tukey honestly significant difference 

(HSD) post hoc test for both E-nose measurements and physiological measurements. The 

ANOVA results provided us with basic information on the statistically overall significant 

differences between groups, while further Tukey tests were performed on all pairwise 

comparisons among four wheat groups (control, low, medium, high). 

As shown in Figure 8 and Figure 9, we use a compact letter display (CLD) with a stacked 

histogram to show the results.  CLD is a very effective method for reporting pairwise 

comparisons among treatments. The letters in CLD indicate significant differences between 

groups. Within each output of the sensor, the same letter means there is no significant 

difference between groups, while different letters mean there is a significant difference 

between groups. 



Since E-nose measurements of MQ4 and physiological measurements of photosynthesis were 

not statistically different between groups according to ANOVA results, Tukey's HSD test was 

not used for them and was represented by NS in the figure. 

The four groups (control, low, medium, high) in this study form a total of 6 pairwise 

comparisons, which are control-low, control-medium, control-high, low-medium, low-high 

and medium-high. From the result of the post hoc test on E-nose measurements taken after 5 

days of aphids introduction as shown in Figure 8, we can see some patterns for this 

comparison between 6 pairwise groups of the nine sensors. 

We found that the control group was significantly different from the low group for only  

MQ135 and MG811 and from the high group for only MQ7 and MQ135. There were 

statistically significant differences in any sensors between medium and control, or between 

medium and high and the medium group was also significantly different from the low for any 

sensors, except for MG811. It is worth noting that even though there were statistical 

differences between medium and control, or between medium and high for all sensors, there 

were no statistical differences between the control and high group for most sensors. 

In addition, we also observed that only for the measurements of MQ8, MQ136, MQ137, and 

MQ138, there were statistically significant differences between medium and the other three 

groups respectively (medium-control, medium-low, medium-high), while there is no 

statistically significant difference between all pairwise comparisons of the other three groups 

(control-low, control-high, low-high), and only in these four sensors among all the sensors, 

there was no statistical difference between low and high.  

In addition to the findings from the comparative perspective of different wheat groups based 

on the result, there were also some surprising results from the sensor perspective. The most 

important one is that all six pairwise comparisons between the four groups were statistically 

different only for MQ135 (Ammonia/Alcohol/Benzene), that is, there were statistically 

significant differences in MQ135 both between control and low, between control and 

medium, between control and high, between low and medium, between low and high and 

between medium and high. Apart from MQ135, all pairwise comparisons among low, 

medium, and high in MQ3, and MQ7 were the statistically significant difference and we can 

also find that the largest value is from sensors MG811 (), followed by MQ4 (Methane), MQ3 

(Alcohol), and MQ7 (Carbon monoxide). 



 

 

Figure 8: Tukey (HSD) post hoc results for all pairwise comparisons of E-nose outputs for 

all sensors at 5 days after aphids introduction 

The results of Tukey’s HSD test on physiological parameters are shown in Figure 9, we 

found that the control group was significantly different from all the other groups (low, 

medium, high) respectively for both stomatal conductance and transpiration, but the result 

showed non-significant differences between all pairwise comparisons of the other three 

groups (low-medium, low-high, medium-high) for both stomatal conductance and 

transpiration. Therefore, it indicates that the statistically significant difference between 

groups shown in ANOVA results is mainly due to the statistically significant difference 

between the control and the other groups. 

AB B

A

B A A A BB
B A C

A

A

A

A

C

NS

C B D B B B

A

A

A
A

A A
A

A

B

0

1

2

3

4

5

6

MQ3 MQ4 MQ7 MQ8 MQ135 MQ136 MQ137 MQ138 MG811

LS
 m

ea
ns

 fo
r E

-n
os

e 
O

ut
pu

t (
Vo

lts
)

E-nose Sensors

Control Low Medium High



 

Figure 9: Tukey (HSD) post hoc results for all pairwise comparisons of physiological 

measurements at 5 days after aphids introduction 

Several models were trained in the model development and the three best models were 

selected based on the results and performance of all models. Table 7 shows the statistical 

results of seventeen models developed using different algorithms from mainly different three 

function types, and these models all used measurements taken five days after E-nose infection 

as inputs and the level of infestation as targets, and they all trained with the same data 

division method using 10 neurons in the hidden layer. It can be observed that the two models 

with the best performance were developed using Levenberg-Marquardt and  Bayesian 

Regularization algorithms and they all are from Backpropagation with Jacobian derivatives. 

The worst-performing model was trained using Sequential order weight and bias algorithm 

belonging to Supervised weight and bias training functions with only 50.40% overall 

accuracy. Most models trained using the algorithms of the Backpropagation with gradient 

derivatives have a good performance, with an overall accuracy of about 87% except for 

Gradient descent backpropagation and Gradient descent with momentum. 
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Table 7: Statistical results of classification models developed using seventeen different 

algorithms. 

  Neuron number: 10 

  Data Division: 70% training set, 30% (15% validation set, 15% testing set) 

Main Function Type  Algorithms Training Validation Testing Overall 

Backpropagation with Jacobian 

derivatives  

LM 15.00% 88.10% 90.50% 93.90% 

BR 99.50% - 86.90% 95.70% 

Backpropagation with gradient 

derivatives  

BFGS 87.20% 88.10% 85.70% 87.10% 

PB 90.80% 88.10% 88.10% 90.00% 

FR 89.30% 81.00% 90.50% 88.20% 

PR 83.20% 100% 88.10% 86.40% 

GD 51.00% 54.80% 54.80% 52.10% 

GDLR 85.70% 92.90% 83.30% 86.40% 

GDM 58.20% 50.00% 64.30% 57.90% 

GDMLR 88.30% 85.70% 90.50% 88.20% 

OSS 87.80% 83.30% 83.30% 86.40% 

RPROP 92.30% 83.30% 90.50% 90.70% 

SCG 92.90% 88.10% 71.40% 88.90% 

Supervised weight and bias 

training functions  

BLR 55.10% 61.90% 54.80% 56.10% 

CO 91.80% 90.50% 85.70% 90.70% 

RO 88.80% 71.40% 78.60% 84.60% 

SO 48.50% - 54.80% 50.40% 

 

Based on the performance results of 17 algorithms, we further conduct neuron trimming and 

data division tests for the two algorithms with the best performance, and the results are shown 

in Table 8.  Inputs to all models were measurements taken five days after infestation. We can 

see that when using the same randomly divided 70% training set, 15% verification set, and 

15% test set, the Bayesian Regularization algorithm always performs better than Levenberg-

Marquardt even with different numbers of neurons, and better models can be trained with 10 

neurons than with 5 and 7.  Levenberg-Marquardt performs slightly better than Bayesian 

Regularization only when using a smaller set of data (60% training set).  However, it is clear 

from the table that when we use 60% of the training set, the trained model performs worse 

than when we use 70% of the training set for both algorithms. The model with the best 

performance was obtained by using the Bayesian Regularization algorithm based on a 70% 

training set and 30% test set with 10 neurons in the hidden layer. 

 

 



Table 8: Statistical results of models trained using algorithms LM or BR with different 

numbers of neurons (5,7,10) and data division methods. Inputs to all models were 

measurements taken five days after infestation. 
   Algorithm Levenberg-Marquardt Bayesian Regularization 

Neurons Stage Data Division Accuracy Error Data Division Accuracy Error 

10 

Training 70% 99.00% 1.00% 70% 100.00% 0.00% 

Validation 15% 95.20% 4.80% 15% - - 

Testing 15% 90.50% 9.50% 15% 91.70% 8.30% 

Overall   97.10% 2.90%  97.50% 2.50% 

7 

Training 70% 96.90% 3.10% 70% 100.00% 0.00% 

Validation 15% 81.00% 19.00% 15% - - 

Testing 15% 95.20% 4.80% 15% 88.10% 11.90% 

Overall   94.30% 5.70%  96.40% 3.60% 

5 

Training 70% 97.40% 2.60% 70% 100% 0.00% 

Validation 15% 95.20% 4.80% 15% - - 

Testing 15% 90.50% 9.50% 15% 89.3% 10.7% 

Overall   96.10% 3.90%  96.80% 3.20% 

10 

Training 60% 98.20% 1.80% 60% 100.00% 0.00% 

Validation 20% 91.10% 8.90% 20% - - 

Testing 20% 92.20% 7.80% 20% 88.40% 11.60% 

Overall   95.70% 4.30%   95.40% 4.60% 

 

Table 9 shows the results for eight models developed using Bayesian Regularization or 

Levenberg-Marquardt algorithm and different neuron numbers (5,7,10), the results were 

obtained by using baseline measurements together with measurements taken five days after 

an infestation as inputs to all models, which is the main difference from previous eight 

models. Compared with the data in Table 8, it is obvious that the models have a better 

performance after increasing the number of data sets no matter of different neurons, different 

algorithms, or data division methods. As the number of neurons decreases, the overall 

accuracy of the model gradually decreases. 10 is still the best number of neurons for training 

models, and Bayesian Regularization performs better than Levenberg-Marquardt when using 

10 or 7 neurons. The best model was developed by also using the Bayesian Regularization 

algorithm based on a 70% training set and 30% test set with 10 neurons in the hidden layer. 

Therefore, the neural network structure of the best two models is the same even with different 

inputs. 

 

 

 



Table 9: Statistical results of models trained using algorithms LM or BR with different 

numbers of neurons (5,7,10) and data division methods. . Inputs to all models were baseline 

measurements together with measurements taken five days after infestation. 

 

  
 

Algorithm 
Levenberg-Marquardt Bayesian Regularization 

Neurons Stage Data Division Accuracy Error Data Division Accuracy Error 

10 

Training 70% 99.00% 1.00% 70% 99.80% 0.20% 

Validation 15% 96.70% 3.30% 15% — — 

Testing 15% 94.40% 5.60% 15% 96.70% 3.30% 

Overall   98.00% 2.00%  98.80% 1.20% 

7 

Training 70% 99.00% 1.00% 70% 100.00% 0.00% 

Validation 15% 97.80% 2.20% 15% — — 

Testing 15% 91.10% 8.90% 15% 93.30% 6.70% 

Overall   97.70% 2.30%  98.00% 2.00% 

5 

Training 70% 98.30% 1.70% 70% 98.80% 1.20% 

Validation 15% 97.80% 2.20% 15% — — 

Testing 15% 93.30% 6.70% 15% 93.90% 6.10% 

Overall   97.50% 2.50%  97.30% 2.70% 

10 

Training 60% 97.20% 2.80% 60% 100.00% 0.00% 

Validation 20% 96.70% 3.30% 20% — — 

Testing 20% 96.70% 3.30% 20% 92.90% 7.10% 

Overall   97.00% 3.00%   97.20% 2.80% 

 

Table 10 shows the results of the two best classification models selected using measurements 

taken 5 days after an infestation as inputs (Model 1), or using baseline measurements together 

with measurements taken 5 days after an infestation as inputs (Model 2) to classify the level 

of aphids infestation (control, low, medium, high). Both models are built using 10 neurons. 

As can be seen from the table, both models have high overall accuracy around 98%, and 

when the amount of data increases from 280 to 600, model 2 (98.8% ) shows higher overall 

accuracy than model 1 (97.5). The accuracy for the training of the two models is extremely 

high and similar, Model 2 mainly performs better than Model 1 on the test set. For model 2, 

the MSE of both the test set and the training set were very small and close, so there were no 

over-fitting or under-fitting problems. However, for model 1, there is a certain gap between 

the performance of the test set and training set, the under-fitting problem was further 

analyzed using an evaluation tool. 

 



Table 10: Accuracy, Error and MSE for two machine learning classification models with 

different inputs developed using Bayesian Regularization algorithm to classify the level of 

pest infestation.  
10 neurons 

Model 1: Inputs: Day 5 only 

Stage Samples Accuracy Error MSE 

Training  196 100% 0% <0.01 

Testing 84 91.70% 8.30% 0.04 

Overall 280 97.50% 2.50% - 

Model 2: Inputs: Baseline + Day 5 

Training  420 99.80% 0.20% <0.01 

Testing 180 96.70% 3.30% 0.02 

Overall 600 98.80% 1.20% - 

 

Precision and recall results of the model 1 are shown in the confusion matrix in Figure 10 (a), 

The precision and recall of both four classes (control, low, medium, high) of Model 1 are 

very high, and the precision of the control group is 100%, so a very important advantage of 

this model is that none of the actual infected wheat samples were misclassified as uninfected 

samples. For Low, Medium, and High, their precision and recall are relatively balanced. We 

can also see that some of the control samples were misclassified as low- or medium-level 

infected samples.  

 

Figure 10 (b) shows the change of MSE of Model 1 as the number of training epochs 

increases, from the curve, it can be seen that the overall training status of the model is 

relatively stable, and the number of epochs 90 can be taken as the cut-off point. Before epoch 

90, There was not much change in the model's performance and the MSE of the training set 

and test set are both high but the gap is small. After epoch 90, the MSE of the model training 

set began to decrease significantly, while the test set does not decrease together with it and 

with the increase of the number of epochs, the MSE gap between the training set and the test 

set gradually increased until the model's training set performance reaches its optimal point. 

Therefore, we found that the model presents a certain over-fitting. 

 

 



 

Figure 10: (a) Confusion matrix and (b) Learning curve for machine learning classification 

model developed based on Bayesian Regularization algorithm and using measurements taken 

5 days after infestation as inputs. 

 

For Model 2, due to the addition of a large number of control samples to the dataset, which 

leads to the problem of the unbalanced dataset and the explanatory power of accuracy on the 

model performance will be limited. Therefore, the results of precision and recall as shown in 

Figure 11(a) are crucial for the analysis of this model. The precision and recall for all four 

sample groups are high, while the precision of control and low are all 100%. Therefore, 

model 2 can not only avoid the misclassification of actually infected wheat as uninfected 

plants but also avoid the misclassification of medium- and high-level infected plants as low-

level infected plants. Besides, we can also see that the precision of medium-level samples is 

relatively low at 94%, the model tends to misclassify the other three levels of infection 

(control, low, high) as medium-level infestation. 

 

As can be seen from the learning curve of the model 2 (Figure 11 (a)), the training process of 

the model has good stability, and the training and test sets of the model remain stable without 

any tendency to increase the gap between them after the training set reaches the optimal point 

of the model performance. Therefore, based on all the analyses there were no indications of 

over-fitting or under-fitting of model 2. 



 

Figure 11: (a) Confusion matrix and (b) Learning curve for machine learning classification 

model developed based on Bayesian Regularization algorithm and using baseline 

measurements together with measurements taken 5 days after infestation as inputs. 

 

In the case of the regression model, although we used the same process of building 

classification models, we only selected part of the results for demonstration and only a brief 

description will be given because most of the regression models built had poor performance 

and had no reference value to answer the research questions in this paper. 

 

Among seventeen algorithms in the algorithm selection, except for the three algorithms 

shown in Table 11, other algorithms only have a correlation coefficient of about or lower than 

0.50.   Besides, we tried to construct the model using only E-nose measurements five days 

after infection as the inputs, but all the models trained by 17 algorithms had only correlation 

coefficient values of around 0.50. Therefore, for all models demonstrated in table 11, baseline 

measurement of E-nose was used together with the measurement at 5 days after infection as 

inputs, and physiological measurements at 5 days after infection were used as targets and 

they were all constructed using 10 neurons based on a randomly divided data set (70% 

training set, 15% validation set and 15% testing set). From Table 11, it can be seen that the 

two best-performing models also used Bayesian Regularization and Levenberg-Marquardt 

algorithm. Among them, the correlation coefficient of Bayesian Regularization (0.78) was 

slightly higher than that of Levenberg-Marquardt (0.76).  Although BFGS performs better 

than most other algorithms, it still has an overall correlation coefficient of only 0.67. 

 

 

 



Table 11: The results of three regression models developed based on different algorithms. 
Neuron number: 10 

Data Division: 70% training set, 30% (15% validation set, 15% testing set) 

Algorithms Training Validation Testing Overall 

LM 0.78 0.76 0.67 0.76 

BR 0.86 - 0.57 0.78 

BFGS 0.69 0.63 0.64 0.67 

 

Table 12 shows the detailed results of performance of the regression model we used to 

predict physiological parameters. It can be seen that the overall correlation coefficient of the 

model is 0.79 and the slope is 0.68, while the correlation coefficient of the training set is 0.85 

and that of the testing set is 0.64.  

 

Table 12: Summary of Correlation coefficient, Slope and MSE for the machine learning 

regression model developed using Bayesian Regularization algorithm to predict the 

physiological parameters (photosynthesis, stomatal conductance and transpiration) 

 

10 neurons 

Inputs: Baseline + Day 5 

Stage Samples R Slope MSE 

Training 420 0.85 0.72 0.1 

Testing 180 0.64 0.57 0.2 

Overall 600 0.79 0.68 - 

 

The relationship between E-nose measurements and physiological parameters was visualized 

as shown in Figure 12. It presents the problem in the regression model, even though there was 

a clear relationship between E-nose measurements and physiological values, we can see that 

there are many outliers in the dataset that are far from the fitting line and therefore difficult to 

fit. 



 

Figure 12: The regression plot for the machine learning model developed using Bayesian 

Regularization algorithm to predict the physiological parameters (photosynthesis, stomatal 

conductance and transpiration) 

 

8  Discussion 

8.1 Effects of pest infection on different gases and physiological states 

Significant differences of most of sensors on different sample groups in the E-nose 

measurements can indicate the impact of pest infestation on VOCs in plants. Except MQ4, 

which showed no significant difference between groups, all the other eight sensors could be 

an indicator for the different gas changes of plants with different infection levels to a certain 

extent. Therefore, the results confirm that E-nose can be used as a good alternative to the 

expensive traditional GC/MS method for VOCs identification in plants [22]. This also 

validates its ability to identify patterns of gas change that have been used by other studies 

[12]. Furthermore, the results of Tukey’s HSD post hoc test shows that the sensitivity of each 

sensor to pest infection is different, which further indicates that each gas or combination of 

gases emitted by plants is affected to a different extent by pest infestation. The results could 

provide evidence for future studies on the interaction between pests and plants. Some gases 

that are insensitive to pest-plant interaction will not be of great research significance in the 

future, such as MQ4 (Methane) with no significant differences between groups, while some 

gases or gas compositions that are extremely sensitive to the interaction between pests and 

plants can be used as an important factor in future research, such as MQ135 

(Ammonia/Alcohol/Benzene) with significant differences between all pairwise groups. 



In addition, there was no significant difference in baseline physiological measurements 

between different groups, indicating that plants growing in the same environment without 

pest infection had similar physiological states, which also provided a guarantee for the 

starting conditions of the aphids infestation trial in this study.  

After the introduction of pests, it is reasonable that there was no significant difference in 

photosynthesis between different groups. This is because when plants are attacked by pests, 

they will automatically adjust or make compensation on the photosynthetic rate to maintain 

its level [36]. And the change in stomatal conductance and transpiration of plants in response 

to pest infestation has been described in other studies [37] . When plants are disturbed by the 

external factors, stomatal conductance and transpiration will decrease. 

Although there were significant differences in stomatal conductance and transpiration 

between different groups, it could be seen from the results of post hoc that the difference was 

actually caused by significant differences between the control group and other groups, while 

there were no significant differences between the three treatment groups, suggesting that they 

can be sensitive to infected and non-infected pests, but did not capable of strong 

discrimination ability to differentiate among all infected plants. 

 

8.2 Machine learning models for pest detection 

Two classification models and a regression model were constructed in this study as the 

cornerstone of our pest detection method. The two classification models which use E-nose 

data as inputs and aphids infestation level as targets have high accuracy in classifying the 

level of infestation on wheat. Both models could be used in the future for early detection of 

pests. In addition, the evaluation results of the models show that the high precision of the two 

models in the control group ensured that they would not misclassify infected plants as non-

infected pests, which greatly improves the practical application value and generalization of 

the model. Although the model 1 has the phenomenon of over-fitting, after increasing the 

datasets by adding the baseline data,  model 2 does not show the signs of over-fitting, which 

indicates that increasing the amount of data sets can be an effective way to solve the over-

fitting problem of model 1 in the future. Furthermore, the classes of data set of Model 2 is 

unbalanced, but it still has a good model performance, which ensures that the model can 



accommodate unbalanced dataset. Therefore, Model 2 is a perfect model for classifying pest 

infestation and thus helping to detect pests . 

The regression model using e-nose data as input and physiological measurement as targets 

used to predict physiological parameters has the performance of overall correlation 

coefficient 0.79. Although this model cannot be used directly for pest detection, it can 

provide us with additional useful information about the state of plants. Such model used to 

monitor plant status has also been proposed in other studies [38] and has achieved good 

model performance based on a larger data set than the one we used. In contrast, it shows that 

it is possible to improve the regression model by increasing the data set. Compared with 

LiCOR, which is used to measure plant physiological parameters directly, E-nose is cheaper, 

more portable, and more user-friendly, so this model also provides a good demonstration of 

the potential of using E-nose as an alternative method for monitoring photosynthesis, 

stomatal conductance and transpiration of plant. Therefore, the three models constructed in 

this paper can be used to monitor plant status and classify pest infestation levels, which can 

be a potential cost-effective method for a more comprehensive pest management system in 

the future. 

9  Conclusion 
 

This study presented a novel pest detection method by integrating a low-cost E-nose and 

machine learning modeling, our research questions can be answered from the analysis of 

three developed models. By designing controlled experiments, making measurements, 

building models and analyzing results, we can conclude that it is possible to predict the levels 

of pest infestation using a low-cost E-nose combined with machine learning, and it is also 

possible to predict the photosynthesis, stomatal conductance and transpiration in wheat using 

a low-cost E-nose combined with machine learning when sufficient data sets are available. 

In general, an affordable, reliable and effective pest detection method was implemented by 

developing three models with high performance using a low-cost E-nose powered by machine 

learning modelling based on the model evaluation.  

 

The contribution of this paper is mainly divided into three points: 

• The E-nose used in this paper is a rare low-cost and portable E-nose in the market, 

and the research on this kind of e-nose is very limited. Therefore, this paper 



successfully explores the potential application value of the e-nose by using it in the 

agricultural field and achieving good results. 

• The cost-effective method presented in this study can be used for most farmers 

including micro-farmers to detect pests by integrating it with a automated pest 

management systems, so as to fill the gap of the lack of economical and efficient pest 

detection methods in the agricultural field. 

• The three models developed in this paper can be a good basis for more complex 

studies related to pest-plant interaction and the regression model could also be used 

for monitoring physiological status of plants on other studies. 

 

Although this study has great contributions, it has certain limitations: 

• The classification on the level of pest infestation that includes only three levels is 

relatively simple, and infestations can be more complicated in real life, especially on 

large farmlands. 

• The study used only one species of plant and pest, respectively, so it is unclear 

whether it has the ability to be applied to a wider range of other plants and pests. 

• Plant growth environment is usually a lot more complicated in nature, in addition to 

pests, diseases are likely or other external factors affect the development of plants, 

and in our controlled experiment, pest is the only factor that affect plants, so this 

study is the lack of field trials to further verify the effectiveness of the method. 

 

Future direction 

• In the future, this method can be applied to different plants and pests to verify the 

generalization ability of this method. Besides the classification of pest infestation, we 

can further explore the classification of different kinds of pests that cause plant 

damage. 

• Since the pest infection trial in this experiment is based on the number of pests 

counted, we can try to predict the number of pests by collecting more data sets in the 

future, so as to obtain a more accurate pest detection result. 

• Based on this method, field trial can be carried out in the future. In large farms, we 

can set samples and collect sample data, and use the same process of this method to 

analyze the data, so as to create a more robust and economic pest detection method. 
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