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Abstract

Conflict-directed learning has been one of the most significant advances in com-

binatorial optimisation in recent decades, but until very recently has not been

directly applied to planning problems. Iterated compilations to conflict-directed

solving technologies have seen significant success in planning, but these compi-

lations do not learn from conflicts encountered during earlier iterations, seriously

limiting their scalability and applicability to cost-optimal planning. This thesis in-

troduces a number of novel algorithms that take into account information derived

from conflict on some important variants of the planning problem. These ap-

proaches use combinations of conflict-directed encodings, relaxation-refinement

procedures, and state-based search. Our results show that conflict-directed rea-

soning is a highly effective approach to cost-optimal planning when appropri-

ate decompositions and explanations are known. Automatically deriving the

most effective of these decompositions and explanations from unannotated prob-

lem descriptions will be a fruitful avenue of further work. We also highlight

the unique potential for learning strongly generalisable knowledge from con-

flict within plan-space planning algorithms. This learned knowledge enables our

plan-space search algorithms to compete with state-space search on some stan-

dard domains, and outperform it by orders of magnitude in appropriately struc-

tured industrial ones.
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Chapter 1

Introduction

Planning is the problem of finding a sequence of actions an agent can perform that

leads them from some initial state to a state satisfying some desired goal condi-

tion. A simple example of such a problem is finding a sequence of actions that

would enable a robot to move a ball between two rooms. Such a plan might be:

pick up the ball, move to the other room, then drop the ball. This is an obviously

contrived example, but planning has industrial applications too: for example if

the robot was a train, the ball cargo, and the rooms cities or ports. Especially if

the train has to somehow coordinate with a number of other trains sharing a busy

track network so as not to crash.

Search is one of the most pervasive approaches to planning and scheduling

problems, in simple terms, search consists of interleaving guesses with reasoning,

to try to incrementally build a large number of different solutions. A conflict

occurs when reasoning determines that one or more of the guesses made were

wrong. For example, when planning a set of train services, a planner may guess

that two trains should head towards each other at the same time, if there is no

siding to pass on, this will inevitably lead to a crash.

Learning from this conflict might involve realising that the underlying cause is

the relative order of the trains departing their stations and passing one-another.

One might reason, for example, that the colour of those trains, who is driving,

the particular cargo loaded onto them, or indeed the precise time of departure

1



2 Introduction

Algorithm Conflict Knowledge Learned
FragPlan (Ch. 3+4) Resource limitations Improving Agent Plan
OpSeq (Ch. 5) Unsequencable Generalised Landmark
CDHL (Ch. 6) Suboptimality Clause
MznLBBD (Ch. 7) Unschedulable Benders Cut
OpSched (Sec. 7.6) Unschedulable More Events Needed

Table 1.1: Summary of contributions

is not relevant to the conflict. Recognising what is and is not responsible for

conflict allows algorithms to avoid making the same mistake many times in many

superficially distinct states generated during search.

The types of guesses made during search, and their interactions with the rea-

soning techniques employed determine the types of conflict that can be detected,

which in turn define the kinds of knowledge that may be derived from these con-

flicts.

The focus of this thesis is on applying and extending this kind of conflict-

directed reasoning to several important variants of the planning problem. To

this end we introduce a number of novel algorithms, associated kinds of conflict,

and representations of knowledge derived from these conflicts. These algorithms

are summarised in table 1.1. All of the approaches we introduce are capable of

finding the optimal plan and proving its optimality.

Thesis Organisation

The next chapter covers related work, expands on our view of the relationship

between conflict and learning, and highlights the bigger questions asked and an-

swered by this thesis. The chapters comprising the body of the thesis are intended

to be self contained. A reader should be able to read any chapter without the need

to refer to any other much like any paper. This does mean that some backgound

information is repeated in several chapters, but this is intentional in order to make
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reading the thesis out of order less daunting.

These chapters are grouped into 3 parts, the introductions to each of these

parts highlight the common themes, the relationships between the chapters and

the thesis as a whole.

Part I considers multi-agent planning problems, the agents in these chapters

can be black boxes, but we use the Golog language to describe and analyse them.

This section covers the FragPlan algorithm which enables agents to plan largely

independently, and to learn from the conflicts they cause in terms of shared re-

sources.

Part II considers classical planning problems, and covers both Operator Se-

quencing and Conflict-Directed Heuristic Learning. Operator Sequencing (OpSeq)

separates the choice of the count of actions in a plan from the order of those ac-

tions, then learns information about the former when conflicts are detected while

searching for the latter. Conflict-Directed Heuristic Learning (CDHL) attempts to

learn how far from a goal each state is in terms of desirable properties that do not

yet hold in a state.

Part III considers temporal problems, starting with Automatic LBBD for Mini-

Zinc, which solves alternative scheduling problems, a half-way point between

temporal planning and scheduling. We then move on to Operator Scheduling,

a theoretical extension of the automatic LBBD approach to tackle true temporal

planning problems.

Chapter 3 is derived from the paper Toby O. Davies, Adrian R. Pearce, Pe-

ter J. Stuckey, and Harald Søndergaard (2014). “Fragment-Based Planning us-

ing Column Generation”. In: International Conference on Automated Planning and

Scheduling (ICAPS 14), pp. 83–91.

Chapter 4 is derived from the paper Toby O. Davies, Adrian R. Pearce, Peter J.

Stuckey, and Harald Søndergaard (2015). “Optimisation and Relaxation in the

Situation Calculus”. In: Autonomous Agents and Multiagent Systems (AAMAS 15),
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pp. 1141–1149.

Chapter 5 is derived from the paper Toby O. Davies, Adrian R. Pearce, Peter J.

Stuckey, and Nir Lipovetzky (2015). “Sequencing Operator Counts”. In: Inter-

national Conference on Automated Planning and Scheduling (ICAPS 15), pp. 61–69.

This paper was also reproduced with permission from AAAI in abridged form

as Toby O. Davies, Adrian R. Pearce, Peter J. Stuckey, and Nir Lipovetzky (2016).

“Sequencing Operator Counts”. In: International Joint Conference on Artificial Intel-

ligence (IJCAI 16), pp. 4140–4144.

Chapter 7 is derived from the paper Toby O. Davies, Graeme Gange, and Pe-

ter J. Stuckey (2017). “Automatic Logic-Based Benders Decomposition with Mini-

Zinc”. In: AAAI Conference on Artificial Intelligence (AAAI).



Chapter 2

Knowledge and Conflict

This chapter focuses on placing the thesis in a broader context, specific technical back-

ground and notation will be introduced in chapters as needed.

This thesis assumes knowledge of deterministic planning to the level of the

textbook “A Concise Introduction to Models and Methods for Automated Plan-

ning” (Geffner and Bonet, 2013). Familiarity with Satisfiability (Biere, Heule,

and Maaren, 2009) and Mathematical Programming (Papadimitriou and Steiglitz,

1982) would also be an advantage.

2.1 Preliminaries of combinatorial optimisation

Combinatorial problems are characterised by the need to choose values for a set

or sequence of variables such that they satisfy some conditions. This means there

are a finite, though possibly enormous, number of possible solutions: every pos-

sible combination or sequence of values. The most basic algorithm solving this

class of problems is brute-force, where every one of these potential solutions is

generated and tested to see if it satisfies the required conditions.

Problems in this class are often NP-hard, so algorithms must make a trade-off

if they want to guarantee they will find a solution if one exists. Algorithms guar-

anteed to find a solution are called complete algorithms and, assuming P 6= NP,

must have super-polynomial runtimes. Incomplete algorithms in contrast make

5



6 Knowledge and Conflict

no such guarantee, but instead typically guarantee polynomial runtime and/or

bounded memory usage. This thesis focuses on complete algorithms.

The most common class of complete algorithm is search. Searching for a so-

lution consists of choosing variables to assign one at a time and guessing all pos-

sible values for that variable. Obviously the algorithm can only consider one of

these guesses at a time, so the other possibilities must be stored for later consid-

eration. The structure which stores such a partial assignment is called a “search

node”. The set of search nodes that still need to be considered is called an “open

set” or “open list”.

Search techniques can perform empirically better than brute force only when

they can either detect conflicts in these partial solutions and skip generating many

of the possible search nodes, or if they choose which partial solutions to extend

in such a way to find a solution early. Search algorithms primarily differ in the

data-structure used to implement the open list, and the types of reasoning they

use to detect conflicts.

The basic outline of a search algorithm is:

1. Add a search node representing having made no choices to the open set.

2. Pick some search node from the open set.

3. Reason about the consequences of the choices represented by that node.

4. Optionally discard the node if there is a conflict between these choices.

5. If all variables have been assigned, you have found a solution, terminate.

6. Choose one variable whose value is not known and add a search node to

the open list for each choice of value that variable can take.

7. Repeat steps 2-6 while there are any nodes remaining in the open set.

8. If there are no open nodes remaining, there is no solution.
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Technology Pruning method

Constraint Satisfaction Propagation implicitly prunes nodes that would be
in conflict within a single constraint. Additionally,
nodes containing a variable with no valid value after
propagation are pruned.

Branch-and-bound A relaxation of the problem is used to prune nodes
with objective lower-bounds no better than each so-
lution found.

IDA* A relaxation of the problem is used to prune nodes
with objective lower-bounds worse than a pre-
determined lower bound.

(Weighted-)A* A relaxation of the problem is used to implicitly prune
(i.e. never generate) nodes with objective lower-
bounds no better than the best solution found. Addi-
tionally, nodes representing paths to previously seen
states are pruned.

Table 2.1: Pruning in combinatorial search

Intelligently choosing the order to expand nodes, or discarding nodes, either

implicitly or explicitly, are the only ways for such algorithms to be faster than

brute-force. It is hoped that the cost of reasoning is paid for by a significant re-

duction in the number of nodes generated before a solution is found. The reason

that a node can be safely discarded is what we refer to as a conflict.1 A number

of combinatorial search pruning strategies are summarised in table 2.1. We hope

the reader is familiar with one or more of these techniques.

Satisfiability and Constraint Programming are two technologies which have

made the greatest use of conflict-based reasoning. Constraint Programming (CP)

is a generalisation of the Satisfiability problem (SAT) where a fixed finite set of

variables are each assigned an arbitrary value from a finite domain (as opposed

to just the values True or False for SAT). Both are NP-complete problems (Cook,

1Safely here means “without discarding the last optimal potential solution”
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1971).

In these problems, the majority of nodes are pruned implicitly by (unit-)propagation.

Additionally, a node may become “failed” when a variable has no values left in its

domain. In this case, there exists some propagation rule that could have pruned

the failed node earlier in the search tree. This rule is a consequence of some sub-

set of the constraints, and is typically learned as a Boolean clause. This type of

learning was originally introduced in the Chaff solver for SAT (Moskewicz et al.,

2001), and by Lazy Clause Generation for general constraint programming (Ohri-

menko, Stuckey, and Codish, 2009).

These learned clauses are often referred to as conflicts in the SAT and CP lit-

erature, but in this thesis we will show why it is interesting to maintain the dis-

tinction, especially in the context of planning and plan-space search.

2.1.1 Planning problems

Planning problems are characterised by the need to find a sequence of decisions

satisfying some properties, as opposed to a set of assignments whose order is

not significant.2 The length of this sequence is typically exponential (or even

unbounded) in the size of the problem description. A planning problem will

have an initial state, a goal condition, and a set of available operators (equiv.

actions). The solution to a planning problem is a sequence of operators called a

plan. The operators in a plan will have preconditions and effects, such that the

first operator’s preconditions hold in the initial state; each subsequent action’s

preconditions hold in the state resulting from applying the effects of all prior

actions in sequence; and the state resulting in applying the whole plan satisfies

the goal condition.

There are many planning formalisms considered in the literature, in particu-

2Not significant for correctness, but often crucial for performance.
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R : l r
move-r

move-l

grip-*-l

drop-*-l

grip-*-r

drop-*-r

Bi : l g r

grip-i-l drop-i-r

grip-i-rdrop-i-l

G : e n
grip-*-*

drop-*-*

Figure 2.1: Domain Transition Graphs in gripper.

lar the equivalent STRIPS (Fikes and Nilsson, 1971) and SAS+ (Bäckström, 1992)

classical formalisms. We describe the technical details of these formalisms in Part

II. Both formalisms describe PSPACE-complete planning problems, requiring at

most an exponential number of operators in a plan.

More expressive formalisms exist which incorporate programming-language

constructs such as loops and recursion, and as such are typically Turing-complete.

In particular we will describe the Golog-family of languages in Part I. Another

important formalism of this kind is Hierarchical Task Networks (Sacerdoti, 1975;

Tate, 1977), we expect the work described in Part I will have analogues in this

formalism, but exploring this is beyond the scope of this thesis.

A SAS+ planning problem can be visually represented by a set of Domain

Transition Graphs such as those seen in Figure 2.1. Domain Transition Graphs

can be very simply transformed into Deterministic Finite Automata (DFAs) by

adding a self-loop at every node in each graph for each operator that does not

appear anywhere else in that graph. A SAS+ planning problem can then be seen

as the problem of finding a sequence that is simultaneously accepted by all of the

DFAs.
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The simplified gripper domain shown in Figure 2.1 with 2 balls, B1 and B2

is a simple example of a classical planning problem. The goal is to move both

balls from the left room to the right, using a robot with a single “gripper” which

can hold only one ball at a time. The robot starts in the left room, and can only

pick up and drop balls in the room it is currently occupying. For each automaton

in Figure 2.1, the initial state is marked by an incoming arrow, and the states

consistent with the goal are double circled. The variable R represents the location

of the robot (in the left or right room) ; Bi represents the location of ball i, (in the

left or right room, or in the gripper); G represents the state of the gripper (empty

or non-empty).

State-space search has been the most widely-used and widely studied approach

to planning over the last decade. It is characterised by searching in the state-

space, starting with the initial state in the open list, search proceeds directionally

by adding successors of the current state to the open list.3 This effectively means

that state-space search considers partial plans only as prefixes, and inserts opera-

tors into the plan only at the end.

Heuristic search is a particularly common approach to state-based search, it

reasons about the cost from the current state to the goal, this focuses on intelli-

gently choosing plan prefixes to extend, instead of pruning. Heuristic functions,

or just heuristics, map states to an estimate of the remaining cost. Heuristics may

be “admissible”, meaning that their estimate is guaranteed to be a lower bound

on the true minimum cost to the goal. Such admissible heuristics can be used as

in a pruning method in addition to guiding the order of expanding nodes in the

open list.

Plan-space search is, broadly, any planning approach whose nodes do not map

directly to a state in the state-space, searching over the space of possible plans,
3This process also works in reverse, starting from the goal, but is typically less effective.
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rather than the state-space itself. Partial-order planning is the most widely known

plan-space search algorithm, commonly found in AI textbooks (Penberthy, Weld,

et al., 1992; Russell and Norvig, 2003). In partial-order planning, operators are in-

serted as supporters of unachieved goals and sub-goals, and ordering constraints

are added only between a subset of operators to resolve “threats”.

2.2 Types of conflict

A conflict is a flaw that can be detected at a search node. Obviously the conflicts

that can be detected are a function of the decisions encoded in each search node,

and the kind(s) of reasoning conducted at each node.

In CP and SAT, each search node encodes a restricted domain of the variables.

A conflict will occur iff some variable has no valid values after propagation (Mar-

riott and Stuckey, 1998). This is the only kind of failure that can be detected

given the representation of search nodes. Because of this limitation, it is common

for constraint programming models to introduce redundant variables and con-

straints which allow certain domain-specific conflicts to be detected earlier in the

search (Cheng et al., 1999). Thus effectively delegating the problem of identifying

the most useful kind of conflict to the modeller.

In Branch-and-Bound, each node stores the optimal solution to a relaxed prob-

lem. This allows nodes to be pruned when either the relaxation is infeasible, or

the objective of the relaxed solution is larger than the incumbent. Depending on

the kind of relaxation, it may be strengthened by further inference, such as cut

generation in Mixed-Integer Programming.

In (forward) state-space search, a search node is a state in the state space,

together with the cheapest path reaching that state from the initial state. Neces-

sarily then, any conflict that can be detected in such a planning algorithm must

be a function of the state variables, plus possibly the path cost (“g-value”) and/or
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heuristic estimate (“h-value”), as this is the only information represented in the

search node.

In contrast to SAT, CP, or state-space search, plan-space search does not have

a universally agreed-upon search-node representation. As a consequence, algo-

rithms can conceivably be designed that can detect types of conflict as yet un-

considered. We introduce a very general class of conflict for classical planning

(“unsequenceability”) in chapter 5.

2.3 Knowledge derived from conflict

Conflict-directed algorithms learn something from each conflict that occurs while

solving a single instance. This knowledge guarantees that the same conflict will

never be seen in any other search node.4

Importantly this is distinct from the relatively well studied problem of learn-

ing from separate but related instances. There have been several “learning tracks”

of the international planning competition dedicated to this latter problem, and is

typically solved by techniques such as algorithm configuration and portfolio con-

struction.

Effective conflict-derived knowledge must avoid an exponential amount of

future work. In order to do so, it must generalise to prune an exponential number

of future nodes; and resolve with other learned knowledge to prune whole sub-

trees, not just leaves. Ideally it will also synergise with the branching strategy

in some way, enabling the search to focus on the aspects of the problem that are

responsible for failure.

The ubiquitous A* algorithm can definitely be described as learning path dom-

inance relationships. However it does not do so based on conflicts: it learns a

4So long as that knowledge is kept: many algorithms “garbage collect” knowledge that is not
significantly pruning search. This knowledge can be re-learned if it becomes relevant again later.
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closed list regardless of whether multiple paths to a state exist. In this sense it

learns from (partial) success rather than conflict.

In table 2.2, we list several algorithms that have some conflict-directed prop-

erties. The earliest algorithms in the first part of table 2.2 learn only basic infor-

mation from conflict, specifically they do not attempt to generalise the learned

knowledge.

Iterative Deepening A* learns only about the initial state. With the addition

of a transposition table it eventually learns the perfect heuristic value for each

node on the optimal path (Reinefeld and Marsland, 1994), however the learned

knowledge applies only to states that have already been seen, and is not gener-

alised in any way. Alpha-Pruning (Korf, 1990) is substantially similar to IDA*

with a transposition table, introduced in the same paper as (Learning) Real-Time

A*, as the offline improvement procedure for those algorithms. It differs from

IDA* with a transposition table only in that it allows the specification of a finite

look-ahead depth to use to learn a better heuristic value. Since this distinction

is not particularly significant in the context of this thesis, we will focus on IDA*

with transposition tables over these more complex algorithms.

DFS-CL (Steinmetz and Hoffmann, 2016), and our “Conflict-Directed Heuris-

tic Learning” (CDHL, chapter 6) both attempt to solve planning problems depth-

first, similarly to IDA*. They are differentiated by DFS-CL focusing on finding a

solution, thus recognising only dead-ends as conflicts, whereas CDHL attempts

to find the optimal solution. It does this by learning the perfect heuristic, thus

treating particular kinds of inaccuracy in the heuristic as a conflict. In this sense

CDHL generalises IDA* with a transposition table by generalising the reason for

the heuristic’s value to states that have not necessarily been visited yet.

Planning as Satisfiability (Kautz and Selman, 1992; Rintanen, 2009) is a family

of approaches which compile the planning problem into a sequence of length-

limited SAT problems. These algorithms will test if the planning problem can be
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solved in n “steps”,5 if the answer is UNSAT, they will proceed to test if a plan

of n + k steps exists for some small constant k. Variants exist which test several

of these formula lengths concurrently. In all cases, all that is necessarily learned

from each conflict (UNSAT formula) is that the plan must be longer than n. Many

SAT solvers allow the use of assumptions which can be used to enable clauses

learned at shorter horizons to be reused. We describe how this is possible in our

simple SAT encoding used in chapter 5, however to our knowledge this approach

has not been investigated in traditional SAT-planners.

Other planning algorithms make use of SAT formulae. Most notably Prop-

erty Directed Reachability (PDR), a verification algorithm adapted to planning

by Suda (2014). PDR maintains a set of CNF formulas, where the i-th formula

represents an over-approximation of the set of states which are at most i steps

from a goal state. What really separates PDR from traditional SAT-planning tech-

niques is its ability to detect unsolvability: if, at certain points in the algorithm,

the formula representing the set of states at most n steps from the goal is identical

to the formula for states at most n + 1 steps from the goal, then all subsequent

formulae will be identical too, and the algorithm has reached a fixed-point. If

the initial state is not in the set of states n steps from the goal at fixed-point, it

will also not be in any set of states m > n steps from the goal, and the planning

problem is provably unsolvable.

Our “Operator Sequencing” approach (described in chapter 5) also falls into

this SAT-enabled category. This approach combines ideas from SAT-planning

with one of the most recent ideas from heuristic search: Operator Counting (Pom-

merening, Röger, et al., 2014). Operator Sequencing uses a state-of-the-art heuris-

tic to estimate an “operator count” that may be sequenceable into a plan, then

constructs a SAT-formula to test the sequencability of this operator count. A lin-

5In the simplest case, a “step” corresponds to exactly 1 action, but much more complex (and
effective) definitions exist that allow many actions to occur in a single step.(Wehrle and Rintanen,
2007)
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ear inequality is learned and added to the heuristic, encoded as a Mixed-Integer

Program, to improve future operator counts.

“Counter-Example Guided Abstraction Refinement” (CEGAR) is another conflict-

directed algorithm adapted from the verification community (Clarke et al., 2003;

Seipp and Helmert, 2013). CEGAR is both a complete algorithm, and a method

for constructing abstraction heuristics. An abstraction maps every state in the

state space to a small number of abstract states. It begins with the simplest pos-

sible abstraction which distinguishes only goal states from all other states. An

optimal path through the abstraction is tested in the real search space and, if it is

not a valid plan, the abstraction is refined by splitting one or more abstract states

on the optimal path in two.

In contrast to adapting ideas from the SAT and verification communities, other

learning algorithms have their roots in heuristic search, in particular the hm and

hC family of critical path heuristics. These heuristics include explicit conjunctions

of facts in their estimation of goal distance. As the set of conjunctions considered

approaches the full state space, these heuristics approach the perfect heuristic.

The hm heuristic considers all conjunctions of up to m facts, whereas hC considers

an explicit set C of conjunctions of arbitrary size. In addition to computing a crit-

ical path with these conjunctions, the conjunctions can be compiled into a new

planning problem, denoted ΠC, such that h1 in PC is equivalent to hC in the orig-

inal problem (Haslum et al., 2009; Haslum, Slaney, and Thiébaux, 2012a). This

compilation may exponentially increase the number of operators in the planning

problem,6 but allows other algorithms to be applied with potentially improved

results. Heuristic methods for choosing C are the primary focus in the litera-

ture, however one conflict-directed approach has been covered: h++ computes

an optimal delete-relaxed plan for ΠC, initially with only unit conjunctions in C,

and adds conjunctions to the plan which invalidate the previous optimal plan

6unless conditional effects are added in the compilation, leading to a compiled problem de-
noted ΠC

ce
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(Haslum, Slaney, and Thiébaux, 2012a). By iterating this process, h++ will even-

tually compute a delete-relaxed plan which is also a plan in the real state-space.

In addition to these techniques, we have introduced a number of plan-space

search algorithms whose inspiration comes from the fields of Operations Re-

search and Mathematical Programming. These fields are concerned with many

real-world resource allocation and scheduling problems, and the distinction be-

tween scheduling and planning in real-world domains is often blurry.

In particular we utilise incremental decompositions to Mixed-Integer Program-

ming problems. These decompositions are not typically described as conflict-

directed, simply because that term is not widely used in the OR or MP commu-

nities, but the widely used and supported technique of cut-generation bears a

strong resemblance to lazy clause generation. These decompositions rely on the

observation that while many variables and constraints may be required to ensure

the correctness of a MIP model, relatively few of these are actually necessary to

find a solution and prove its optimality.

Logic-Based Benders Decomposition (LBBD) is a class of cut generation de-

composition typically combining Mathematical Programming with Constraint

Programming or SAT. Two approaches in this thesis are based primarily on LBBD:

“Operator Sequencing” in chapter 5 and “Automatic LBBD” in chapter 7.

Automatic LBBD is not strictly speaking a planning algorithm, but an ap-

proach to solving general constraint programming problems specified in the Mini-

Zinc modelling language. LBBD is particularly well suited to alternative schedul-

ing problems, which are a useful middle-ground between traditional schedul-

ing problems and temporal planning. This framework is then exploited by our

“Operator Scheduling” approach in section 7.6 to try to bridge the gap between

CP-based scheduling and temporal planning, by defining a way to model open-

ended scheduling problems in CP so that the problem can be sensibly extended

incrementally and make use of important resource-constrained scheduling con-
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straints like “cumulative” and “alldifferent”.

Another Mathematical Programming decomposition: “Column-generation”,

in contrast does not have an obvious analogue in SAT or CP, as the approach re-

lies on the so-called “dual solution” of a linear program. The dual solution to a

resource allocation problem assigns prices to each resource in a way that encour-

ages agents to avoid resource bottlenecks, and thus to effectively cooperate. We

introduce a multiagent planning algorithm: “Fragment-Based planning” in Part

I of this thesis. This approach is a hybrid that uses state-space search as a sub-

problem solver within a plan-space algorithm that commits to one agent’s plan

at a time. At each iteration, the dual solution is used to learn better plans for

some subset of the agents which avoid conflicts seen in previous iterations and

improve the current relaxed solution.
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Multi-Agent Planning

19
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Introduction to Part I

We begin with our multi-agent conflict-directed algorithms. Multi-Agent plan-

ning has the distinct advantage of an obvious decompostion, allowing us to focus

on conflicts between agents.

Throughout this part we will use Golog variants to specify problems. Multi-

agent STRIPS (Brafman and Domshlak, 2008) should expose sufficient structure

to allow the application of the techniques described in the next two chapters,

however we use the more general Golog formalism to highlight that these tech-

niques work for teams of black-box agents.

Indeed the only requirements for agents is that finding each agents’ optimal

plan must be decidable; and each agent is aware of the state variables that might

be affected by other agents. No agent needs to know the specific capabilities, or

even the existence of any other agent.

Chapter 3 is an example-driven introduction to the basic “Fragment-Based

Planning” algorithm, which is generalized slightly in chapter 4. Chapter 4 focuses

on the necessary and sufficient conditions for modelling a domain in a way that

is appropriate for Fragment-Based Planning.

Fragment-Based planning is a plan-space search algorithm which picks the

optimal set of single-agent plans by exponential reduction to set-packing: It tries

to find the maximum number of agents’ plans (with minimum total cost) such

that no shared resources are over utilised.





Chapter 3

Fragment-Based Planning Using
Column Generation

We exploit the framework of column generation to tackle complex resource

constrained multi-agent planning problems by learning a set of agent

plans to avoid resource bottlenecks identified by a linear program.1

3.1 Introduction

The motivation for this work came from my experiences of modifying an existing

rail service scheduling tool to handle an apparently small change to the structure

of some generated services for a bulk-freight railway serving the Australian min-

ing industry. Modifying the 10,000 lines of C++ data structures and procedures

used to generate service plans took nine months. Planning formalisms such as

Golog and STRIPS are extremely general modelling techniques that make them at-

tractive given the constantly changing needs of industrial optimisation problems.

However, pure heuristic search is often insufficient to solve large-scale industrial

problems with hundreds of goals and thousands of time-points. We present the

Bulk Freight Rail Scheduling Problem as a simplified example of such a domain.

1The research presented in this chapter was published in Toby O. Davies, Adrian R. Pearce,
Peter J. Stuckey, and Harald Søndergaard (2014). “Fragment-Based Planning using Column Gen-
eration”. In: International Conference on Automated Planning and Scheduling (ICAPS 14), pp. 83–
91

23
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Multi-agent temporal Golog (Kelly and Pearce, 2006) and heuristic optimising

Golog (Blom and Pearce, 2010) have been investigated separately. The combina-

tion of these features have potential industrial applications in scheduling prob-

lems, and the ability to use domain knowledge to supplement the search for solu-

tions is attractive, however Golog’s lack of powerful search algorithms has limited

its applicability. In this chapter we deal with this shortcoming for an important

class of planning/scheduling problems.

Resource constrained planning problems are known to be challenging to solve

using current technology, even in non-temporal settings (Nakhost, Hoffmann,

and Müller, 2012). The Divide and Evolve meta-heuristic has been used to tackle

temporal planning problems (Schoenauer, Savéant, and Vidal, 2006), it too re-

peatedly solves guided sub-problems but, unlike our approach, cannot prove op-

timality.

One of the key techniques behind our approach is linear programming, in

particular the dual, which allows us to accurately predict the cost of resource con-

sumption. Linear programming has been used by a number of planning heuris-

tics (Van Den Briel et al., 2007) (Coles, Fox, Long, et al., 2008) (Bonet, 2013). How-

ever these heuristics have exploited only the primal solutions to the LP, whereas

we use both the primal and the dual. Additionally we use the information in a

way that cannot be described as a heuristic in the usual sense.

3.2 Preliminaries

The Situation Calculus and Basic Action Theories. The situation calculus is a

logical language specifically designed for representing and reasoning about dy-

namically changing worlds (Reiter, 2001). All changes to the world are the result

of actions, which are terms in the language. We denote action variables by lower

case letters a, and action terms by α, possibly with subscripts. A possible world
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history is represented by a term called a situation. The constant S0 is used to de-

note the initial situation where no actions have yet been performed. Sequences

of actions are built using the function symbol do, such that do(a, s) denotes the

successor situation resulting from performing action a in situation s. Predicates

and functions whose value varies from situation to situation are called fluents,

and are denoted by symbols taking a situation term as their last argument (e.g.,

Holding(x, s)).

Within the language, one can formulate basic action theories that describe how

the world changes as the result of the available actions (Reiter, 2001). These theo-

ries, combined with Golog, are more expressive than STRIPS or ADL (Röger and

Nebel, 2007). Two special fluents are used to define a legal execution: Poss(a, s) is

used to state that action a is executable in situation s; and Conflict(as, s) is used to

state that the set of actions as may not be executed concurrently.

High-Level Programs. High-level non-deterministic programs can be used to

specify complex goals: the goal of a Golog program is to find a sequence of actions

generated by some path through the program. We use temporal semantics from

MIndiGolog (Kelly and Pearce, 2006) which builds on ConGolog (De Giacomo, Les-

perance, and Levesque, 2000), and refer to these extensions simply as Golog. A

Golog program δ is defined in terms of the following structures:

α atomic action

ϕ? test for a condition

δ1; δ2 sequence

while ϕ do δ while loop

δ1|δ2 non-deterministic branch

πx.δ non-deterministic choice of argument x

δ∗ non-deterministic iteration

δ1‖δ2 concurrency
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In the above, α is an action term, possibly with parameters, δ is a Golog program,

and ϕ a situation-suppressed formula, that is, a formula in the language with

all situation arguments in fluents suppressed (e.g. Holding(x, s) would have s

suppressed and should be written Holding(x) in φ). Program δ1|δ2 allows for

the non-deterministic choice between programs δ1 and δ2, while πx.δ executes

program δ for some non-deterministic choice of a legal binding for variable x. δ∗

performs δ zero or more times. Program φ? succeeds only if φ holds in the current

situation. Program δ1‖δ2 expresses the concurrent execution of programs δ1 and

δ2. For notational convenience we add:

π(x ∈ X).δ equivalent to πx.(x ∈ X)?; δ

foreach x in vs do δ equivalent to δ[x/v1]; · · · ; δ[x/vn]

forconc x in vs do δ equivalent to δ[x/v1]|| · · · ||δ[x/vn]

Here δ[x/y] denotes the program δ where each occurrence of variable x has been

replaced with the value y, and vi is the ith element of the sequence vs.

Linear and Integer Programming. An Integer Program (IP) consists of a vector

of binary decision variables,2 usually denoted x̃, an objective linear expression

and a set of linear inequalities. We will refer to these inequalities as “resources”

throughout this chapter, and each decision represented by the variable xi can be

thought of as using ur,i units of some resources r ∈ R, each of which has an

availability of ar.

A general form, assuming a set R of inequalities, where ci, ur,i and ar are con-

stants, is:

2In general decision variables can be integer but binary decision variables suffice for our pur-
poses.
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Minimise: ∑ ci · xi

Subject To: ∑ ur,i · xi ≤ ar ∀r ∈ R

Finding the optimal solution to an integer program is NP-hard, however the lin-

ear program (LP), constructed by replacing the integrality constraints xi ∈ {0, 1}

with a continuous equivalent xi ∈ [0, 1], can be optimised in polynomial time.

This LP is known as the linear relaxation of the IP.

A model of this form where some variables are continuous and some are in-

tegral is called a Mixed Integer Program (MIP). To limit confusion, we will de-

note binary variables xi and continuous ones vi, we assume all xi ∈ {0, 1} and

vi ∈ [0, 1] throughout this chapter.

The (M)IP is then solved using a “branch-and-bound” search strategy where

some xi which is fractional in the LP optimum is selected at each node and two

children are enqueued with additional constraints xi = 1 in one branch and xi = 0

in the other. Heuristically constructed integer solutions provide an upper bound,

and the relaxations provide a lower bound.

Solving the linear relaxation implicitly also optimises the so-called dual prob-

lem. Intuitively the dual problem is another linear program that seeks to min-

imise the unit price of each resource in R, subject to the constraint that it must

under-estimate the optimal objective of the primal. We use λr to denote this so-

called “dual-price” of resource r. 3 An estimate of the impact of consuming u

additional units of resource r on the current objective can then be computed by

multiplying usage by the dual price: u · λr.

These dual prices allow us to quickly identify bottlenecks in a system, and

3Typically π is used for dual variables, but to avoid confusion with the Golog operator we use
the less common λ.
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give us an upper bound on just how far out of the way we should consider going

to avoid them. This leads to the important concept of reduced cost: an estimate

of how much a decision can improve an incumbent solution. Informally, reduced

cost is the decision’s intrinsic cost ci, less the total dual price of the resources

required to make this decision.

Given an incumbent dual solution λ̃, a decision variable xi has a reduced-cost

γ(i, λ̃), defined as:

γ(i, λ̃) = ci − ∑
r∈R

λr · ur,i

This is guaranteed to be a locally optimistic estimate, so that, in order to improve

an incumbent solution, we only need to consider decisions xi with γ(i, λ̃) < 0.

Due to the convexity of linear programs, repeatedly improving an incumbent so-

lution is sufficient to eventually reach the global optimum, and the non-existence

of any xi with negative reduced cost is sufficient to prove global optimality.

Column Generation and Branch-and-Price. Most real-world integer programs

have a very small number of non-zero xi. This property, combined with the

need only to consider negative reduced-cost decision variables, allows us to solve

problems with otherwise intractably large decision vectors using a process known

as “column generation” (Desaulniers, Desrosiers, and Solomon, 2005). The name

reflects the fact that the new decision variable is an additional column in the ma-

trix representation of the constraints.

Column generation starts with a restricted set of decision variables obtained

by some problem-dependent method to yield a linear feasible initial solution.

With such a solution we can compute duals for this restricted master problem

(RMP) and use reduced-cost reasoning to prune huge areas of the column space.

Incomplete and suboptimal methods of constructing integer feasible solutions

are referred to in the Operations Research literature simply as “Heuristics”. To
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avoid ambiguity we will refer to them as “MIP heuristics”. These are essential

for both finding a feasible initial solution, and providing a worst bound on the

solution during the branch-and-bound search process. These are analogues to

fast but incomplete search algorithms in planning such as enforced hill climbing.

Column generation then proceeds by repeatedly solving one or more “pricing

problems” to generate new decision variables with negative reduced cost and re-

solving the RMP to generate new dual prices. Iterating this process until no more

negative reduced cost columns exist is guaranteed to reach a fixed point with the

same objective value as the much larger original linear program. We can then use

a similar “branch-and-bound” approach as in integer programming to reach an

integer optimum. This process is known as “branch-and-price”.

Branching rules used in practical branch-and-price solvers are often more

complex than in IP branch-and-bound and are sometimes problem dependent.

The branch xi = 0 does not often partition the search-space evenly: there are usu-

ally exponentially many ways to use the resources consumed by xi. Addition-

ally, disallowing the re-generation of the same specific solution xi by the pricing

problem is not possible with an IP-based pricing-problem without fundamentally

changing the structure of the pricing-problem.

Consequently, effectiveness of a branching strategy must be evaluated in terms

of how effectively the dual-price of the branching constraint can be integrated

into the pricing problem. This is another motivation for our hybrid IP/Planning

approach, as using a planning-based pricing problem allows us to disallow spe-

cific solutions and handle non-linear, time-dependent costs and constraints.

A concrete example of branch-and-price is presented in section 3.5.

Big-M Penalty Methods. We noted earlier that to start column generation an

initial (linear) feasible solution is required. There is no guarantee that finding

such a feasible solution is trivial. Indeed for classical Planning problems, finding
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a feasible solution is PSPACE-complete in general. No work we are aware of

determines the complexity of computing a linear relaxation of a plan.

We avoid this problem by transforming our IP into an MIP where for any

constraint having ar < 0 we add a new continuous variable vr ∈ [0, 1], represent-

ing the degree to which the constraint is violated, and replace the constraint with:

∑ ur,i · xi ≤ |ar| · vr− |ar| and cv = M where M is a large number. This guarantees

the feasibility of the trivial solution xi = 0 for all i and all vr = 1.

This represents a relaxation of the original IP with the property that, given

sufficiently large M, the optimal solution is a feasible solution to the original

problem, iff such a solution exists. This is known as a “penalty method” or “soft

constraint”. The process is similar to the first phase of the simplex algorithm for

finding an initial feasible solution to a linear program when all decision variables

are known in advance.

3.3 The Bulk Freight Rail Scheduling Problem

In the Australian mining industry, it is common for bulk commodities such as

coal and iron ore to be transported to ports on railways that are principally or

exclusively used for that purpose. This is in contrast to Europe and the US where

freight railways often share significant infrastructure with passenger trains. Ad-

ditionally, bulk freight is nearly always routed as whole trains and usually only

stockpiled at the mines and ports, avoiding many complex blocking and routing

problems addressed in the literature.

The Bulk Freight Rail Scheduling Problem (BFRSP) is solved by bulk freight

train operators and mining companies on a daily basis. The BFRSP can be an

operational or tactical problem depending on the degree of vertical integration

of the supply chain: where different above-rail operators share a track network

they may need to prepare an accurate schedule to be negotiated with the track
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network operator or other above-rail operators; alternatively schedules may be

prepared “just-in-time” to assign crew.

The term “train” is highly overloaded in this domain, as such we will avoid

using it. Instead we will use the words consist and service. These denote respec-

tively: a connected set of locomotives and wagons; and a sequence of movements

performed by a consist.

The above-rail operator has a set of partially-specified services collected from

its clients. We refer to such partially-specified services as “orders”. Each order is

a sequence of locations that must be visited in order with time-windows (e.g. a

mine, then a port, then the yard). Given this, schedulers must find a path for as

many services as possible on the rail network such that no two services occupy

the same “block” at the same time. A block is represented by a vertex in the

track-network graph.

The objective is to first maximise the number of orders delivered, then to min-

imise the total duration of services. The number of segments that a single service

must traverse varies with the path through the network. Services can dwell for

an arbitrary time on some edges to allow others to pass.

More formally, a BFRSP B = 〈G, τ, c, O, T〉 consists of: a track network graph

G = 〈V, E〉where each block is a vertex in V; a crosstime function τ(〈v, v′〉) which

represents the minimum time a consist may spend at the vertex v′ after traversing

the edge 〈v, v′〉 ∈ E; a capacity function c(v) which represents the maximum

number of services which may occupy v ∈ V concurrently; a set of orders O, each

of which is a sequence of waypoints of the form 〈v, tmin, tmax〉, where v ∈ V and

tmin and tmax represent the earliest and latest times the waypoint may be visited;

and a set of consists T.

The aim of the BFRSP is to satisfy as many orders as possible, with the mini-

mum sum of service durations. An order o is satisfied by a service s if that service

visits each waypoint within the specified time window. One service must satisfy
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Figure 3.1: A simple track network

one order and be performed by one consist.

3.4 Modelling the BFRSP

We model the problem as a planning problem in Golog. The actions available to

a consist c are: traverse an edge e with move(c, e); wait for some integral number

d of time points with wait(c, d); and perform whatever action is required at a

block b (e.g. loading at a mine or unloading at a port) that is a waypoint in some

order o with visit(c, o, b). We assume unit duration for these actions.

The following are effect axioms for the domain, which may be transformed

into successor state axioms to address the frame problem in the standard way

(Reiter, 2001). We assume the existence of some predicates to identify the first,

last and next waypoints in an order: first(o, b), last(o, b) and next(o, b, b′)

At(c, b, do(move(c, 〈 , b〉), )).

¬At(c, b, do(move(c, 〈 , b′〉), ))⇐ b 6= b′.

Started(c, o, do(visit(c, o, b), ))⇐ first(o, b).

Finished(c, o, do(visit(c, o, b), ))⇐ last(o, b).

Visited(c, o, b, do(visit(c, o, b), )).

We also need to keep track of allowable next visitable destinations for each
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consist. A consist c is allowed to visit the first waypoint of an order that no consist

has started, so long as c has not started any order; alternatively it may visit the

next waypoint in the order it has already started.

Dest(c, o, b, s0)⇐ f irst(o, b).

Dest(c, o, b, do(visit(c, o′, b′), s))⇐ first(o, b) ∧ last(o′, b′) ∧ ¬Visited( , o, b, s).

Dest(c, o, b, do(visit(c, o, b′), s))⇐ next(o, b, b′).

¬Dest(c, o, b, do(visit( , o, b), )).

Finally, we assume the existence of a time(s) fluent to define our time window

checks.

InWindow(o, b, s)⇐ ∃t, t′.〈b, t, t′〉 ∈ o ∧ t ≤ time(s) ≤ t′.

Obviously a consist cannot move on an edge that starts at a different node to

the end of the last edge it traversed, and a consist can only visit a block that it is

on. A waypoint (block) can only be visited once for an order and a consist cannot

visit another order’s waypoint until it has visited all the waypoints required for

any order it has visited any waypoints of (i.e. consists cannot interleave visiting

waypoints for different orders).

Poss(move(c, 〈b, b′〉), s)⇐ At(c, b, s) ∧ 〈b, b′〉 ∈ E.

Poss(visit(c, o, b), s)⇐ Dest(c, o, b, s) ∧ InWindow(o, b, s).

Poss(wait(c, n), s)⇐ n ∈ Z.

Solving for a single service with a single waypoint is a case of finding a minimum-
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cost path through G subject to the time-window constraints, where the edge cost

is given by τ.

The Golog program to solve this problem is:

proc travelto(c, o, b, t0, t1):

while ¬onblock(c, b) do

π(e ∈ E).move(c, e);

π(t ∈ [t0, t1].waituntil(t);

visit(c, o, b)

To deliver a more complex service with more waypoints we simply travelto

them in sequence:

proc deliverservice(c, o):

foreach (b, t0, t1) in o do

π(dt ∈ [0..t1− time()]).wait(dt);

travelto(c, o, b, t0, t1)

Up to this point, the problem is simple; existing implementations of Golog

are able to find high-quality plans on simple networks without even considering

action costs. Also most of the complex preconditions of the domain are irrelevant:

it is impossible to interleave the satisfaction of different orders and no two trains

can occupy the same block.

The Poss and Conflict clauses required to model these inter-order constraints

are easier to model in terms of shared resources. For this reason we introduce

usage(action, resource, situation) and availability(resource, situation) functions. These

can be considered as additional clauses of the definition of Conflict and Poss in the
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following way:

Conflict(as, s)⇐ ∃r. ∑
a∈as

usage(a, r, s) > availability(r, s)

¬Poss(a, s)⇐ ∃r.usage(a, r, s) > availability(r, s)

For the BFRSP domain we define these resources:

usage(enter(C, V), block(V, T), S) = 1⇐ time(T, S)

for block capacity constraints; and, in order to ensure that each order is delivered

at most once:

usage(visit(C, V, O), waypoint(V, O), S) = 1

When there are a set of orders, but only one consist, the consist must still

deliver the orders in some sequence, however there exist n! sequences in which

n orders may be satisfied. Any of these sequences is valid (as any service can

be dropped), so we begin to tackle the combinatorial optimisation aspect of the

BFRSP, in which the solver must pick an optimal sequence to satisfy orders.

proc deliverservices(c, O):

π(o ∈ O).

(deliverservice(c, o) | noop);

deliverservices(c, O\{o})

With more than one consist, each consist must deliver some non-overlapping set

of services. Choosing this set is an optimisation problem in its own right and
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existing implementations of Golog will not find any solution.

proc main(C, O):

forconc o in O do

π(c ∈ C).deliverservice(c, o) | noop

This program has an important structural property that will be exploited by our

algorithm: Given an assignment of orders, the joint execution is a set of fragments

generated by

π(o ∈ O).π(c ∈ T).deliverservice(c, o) | noop

3.5 Fragment-Based Planning

Given the set F of all possible executions of the fragment program

π(c ∈ T).deliverservice(c, o)

all joint executions of main are a subset of F where no two fragments visit the

same order or occupy the same track segment simultaneously.

Finding the optimal execution is then equivalent to finding the optimal solu-

tion to the Integer Program:

Minimise: ∑
f∈F

d f · x f + ∑
o∈O

M · vo

Subject To: ∑
f∈Fbt

x f ≤ c(b) ∀b ∈ B , ∀t ∈ T

vo + ∑
f∈Fo

x f = 1 ∀o ∈ O
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Here x f is 1 iff f should be executed in the joint plan. Fo ⊆ F is the set of fragments

that satisfy order o, Fbt ⊆ F is the set of fragments that are on block b at time t and

d f is the duration of fragment f .

Enumerating F is however prohibitive, and large numbers of potential frag-

ments are uninteresting, or prohibitively costly and will never be chosen in any

reasonable joint-execution, nor need to be considered in finding and proving the

optimal joint execution.

To avoid enumerating F, we can use delayed column generation as described

earlier. To use this approach, we need to re-compute action costs that minimise

the reduced cost of the next fragment generated given an optimal solution to the

restricted LP. Given dual prices λb,t for block/time resources and λb,o for way-

points, our fragment planner’s action costs become λb,t for move(c, e), actions ex-

ecuted at time t, given e ∈ b; and λb,o for visit(c, o, b) actions.

We provide pseudo-code for the FBP algorithm below, Quine quotes are used

around linear expressions such as [[expression ≤ constant]] to denote constraints

given to the LP solver to distinguish them from logical expressions.

To solve the linear relaxation of the joint planning problem, we call

LINFBP({vo | o ∈ O}, {o : [[vo = 1]] | o ∈ O}, O, δ)

Note that the [[expr = a]] form of constraints can be considered a shorthand for

two constraints [[expr ≤ a]] and [[−expr ≤ −a]].

We assume that the Golog search procedure Do returns the fragment f with

the least reduced cost γ( f , λ̃), rather than just any valid execution. Our imple-

mentation uses uniform-cost search to achieve this.

function LINFBP(Frags, Res, Goals, δ)

LowBound← 0

UpBound← M · ‖Goals‖
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while (1− ε) ·UpBound > LowBound do

θ, x̃, λ̃← SolveLP(Frags, Res)

F ← Do(π(g ∈ Goals).δ|noop, λ̃)

Frags← Frags∪ {F}

dθ ← ‖Goals‖ · γ(F, λ̃)

UpBound← θ

LowBound← max(LowBound, θ + dθ)

for all r ∈ F do

[[e ≤ a]]← Res[r]

Res[r]← [[e + uF,r · xF ≤ a]]

return θ, Frags, Res, x̃

We then use the LINFBP column generation implementation inside a branch-and-

price search. We assume that fragments use redundant resources for the purposes

of branching. In particular we rely on each fragment to use 1 unit of a resource

that uniquely identifies that fragment, so that we eventually find an integral so-

lution if one exists.

function FBP(Gs, δ)

Fs← {vg | g ∈ Gs}

Rs← {g : [[1 · vg = 1]] | g ∈ Goals}

LowBound← 0

UpBound← M · ‖Goals‖

Queue← {∅}

Fs← Fs∪ initfrags(Gs, δ)

while (1− ε) ·UpBound > LowBound do

BranchRs← Pop(Queue)

LRs← Rs∪ BranchRs

θ, Fs, Rs, x̃← LINFBP(Fs, LRs, Gs, δ)

if any resources have fractional usage then



3.5 Fragment-Based Planning 39

Iteration π̃ Fragments
1. θ = 200 f1, f2

γ( f1) = −91
γ( f2) = −91

2. θ = 109 πd,0 = −91 f3, f4
γ( f3) = −90
γ( f4) = −90

3. θ = 19 πd,3 = −1
πp1,o1 = −90
πp2,o2 = −90

Table 3.1: LINFBP iterations. M = 100

if soft constraints satisfied i.e. θ < M then

X ← some fractional resource

Branches← branch on dXe and bXc

Queue← Queue∪ Branches

UpBound← SolveIP(Fs, LRs)

LowBound←minimum θ in Queue

This process can be modified to incrementally return each solution to SolveIP(Fs, Rs)

as it is computed, and make this an effective anytime algorithm.

We illustrate the iterations of the LINFBP algorithm in Table 3.1 using a goal

non-satisfaction penalty (Big-M) of 100. We solve a BFRSP on the network in

figure 3.1 with two orders:

o1 = [〈m1, 0, 20〉, 〈p1, 0, 20〉, 〈y, 0, 20〉]

and

o2 = [〈m2, 0, 20〉, 〈p2, 0, 20〉, 〈y, 0, 20〉]

We omit the first consist argument to all actions and the duals of the goal satis-

faction constraints for brevity.

Initially, the dual vector has no non-zero elements other than the goal non-
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satisfaction constraints. The lowest reduced-cost plans for the two sub-goals are

then simply the shortest paths from y to one of the mines m1 or m2, then one of

the ports p1 or p2, then to the yard. That is,

f1 =


move(〈y, d〉); move(〈d, m1〉); visit(m1, o1);

move(〈m1, d〉); move(〈d, y〉); move(〈y, p1〉);

visit(p1, o1); move(〈p1, y〉); visit(y, o1)



f2 =


move(〈y, d〉); move(〈d, m2〉); visit(m2, o2);

move(〈m2, d〉); move(〈d, y〉); move(〈y, p2〉);

visit(p2, o2); move(〈p2, y〉); visit(y, o2)


Given these two new columns, the dual vector detects one of the bottlenecks at

block d at time 0, overestimating that over-use of this resource costs 91 units. Us-

ing this information the new minimum cost way to achieve each goal now avoids

this shared resource by initially waiting, generating fragments f3 = [wait(1)] ++

f1 and f4 = [wait(1)] ++ f2.

With these two additional fragments, the dual vector shows us that the un-

loading visit actions at p1 and p2 are a bottleneck (as we now have two ways to

satisfy each goal). Obviously these bottlenecks cannot be avoided, however they

have a cost of only 90, so if there is a fragment with cost < 10 which also does not

use block d at time 3, there could exist a fragment with negative reduced cost. The

search shows that no such fragment exists, and this proves (linear) optimality.

Within the FBP algorithm we then solve the IP with the 4 fragments f1 to

f4, we find one of the primal integral solutions x1 = 1 and x3 = 1 and all other

variables 0. Since this solution has the same objective of 19 as the linear relaxation,

we have proved this solution optimal.
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3.6 Fragment-Based Planning in other domains

The resources we use in the BFRSP are only consumed by actions, and have a fi-

nite, non-renewable availability. Additionally, fragments can only have negative

interactions between one another. The choice of one fragment can only prevent

the choice of another. However we would like to be able to choose fragments

such that one may satisfy an open precondition of another.

We handle this case in a similar way to goal-satisfaction constraints by gener-

alising our resources so that they can be generated in addition to being consumed.

While we did not call our goal-satisfaction constraints resources, it can be consid-

ered that the fragments in the BFRSP generated 1 unit (i.e. consumed−1 units) of

a “goal-satisfied” resource, which had a requirement of 1 unit (i.e. an availability

of −1 unit).

If we consider the case where a set of fragments Fpre satisfies a precondition

of Fpost, then a constraint of the form

∑ Fpost −M ·∑ Fpre ≤ 0

is sufficient to guarantee that fragments from Fpost can only be chosen if the pre-

condition has been satisfied. If Fpost fragments immediately invalidate this pre-

condition then a constraint of the form

∑ Fpost −∑ Fpre ≤ 0

is more appropriate, and forces at most a single fpost to be chosen per time the pre-

condition is satisfied. In either case, as most resources (including preconditions)

will be time-indexed (like the block constraints in BFRSP) in many domains there

will likely be constraints forcing ∑ Fpost ≤ 1.

Which form to choose is an exercise for the modeller, and an algorithm for

turning a basic action theory into resource-based constraints is beyond the scope
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of this chapter.

Both of the forms fall into our existing resource framework, and can be han-

dled without modification to the FBP procedure. However the Poss fluent now

needs to be relaxed to allow fragments to assume that a precondition has been

satisfied by another fragment, at a cost derived from the πpre dual variables.

If we know each action’s resource consumption from the usage function de-

scribed above, and the usage is independent of the actions performed in other

fragments, then the usage of a resource r by a fragment f is the sum over all

actions a performed in that fragment of usage(a, time( f ), f ).

Given this, a Golog program of the form forallconc x in G do δ, can

generate an equivalent FBP model:

Minimise: ∑
f∈F

c f · x f + ∑
g∈G

M · vg

Subject To: ∑
f∈F

u f r · x f ≤ ar ∀r ∈ R

vg + ∑
f∈Fi

x f = 1 ∀g ∈ G

Fg is the set of all legal fragments generated by the Golog program δ[x/g]. F is the

union for all g ∈ G of Fg . R is the set of all resources used by any fragment in

F. c f is the cost of executing the actions contained in fragment f . x f ∈ {0, 1} is

1 iff f should be executed in the joint plan. u f r is the net usage of resource r by

fragment f . ar is the total availability of resource r. λr will denote the optimal

dual prices of each resource r in the solution of this problem.

We refer to the set G as the “fragmentation dimension” and δ as the “fragment

program”.

If these resources totally describe the potential interactions between the dif-

ferent sub-goals δ[x/g], then the optimal solution to this FBP model is the optimal

joint execution.
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We present results in the next section for a multi-agent variant of blocks-

world. We use the set of blocks as the fragmentation dimension, and pseudo-code

for the fragment program in this example is:

proc handleblock(hand, block):

wait(1)∗;

(pickup(hand, block);drop(hand, table)|noop);

wait(1)∗;

(pickup(hand, block);drop(hand, dest(block))|noop);

On(block, dest(block))?

Given this fragment program, we can see that other fragments will be required

to satisfy the Clear fluent required by pickup and drop. Consequently Clearb,t

becomes a generatable resource for each block at each time point, with initial

availability of 1 if both t = 0 and b is initially clear; and 0 otherwise.

Performing the action pickup(h, b) at time t consumes one unit of Clearb,t and

generates one unit of Clearb′,t+1, assuming b was on b′.

Similarly, Occupiedh,t is a (non-generatable) resource with availability 1 which

is consumed by picking up a block with hand h or waiting when h is holding a

block.

The actions we have described thus far produce Clear resources at specific

time points, however the clearness of a block persists if it is not picked up and

nothing is put down on it. To handle this we introduce an explicit zero-duration

persist(r) action, which consumes one unit of rt and generates one unit of

rtime() for some non-deterministically chosen t < time(). These persist(Clearb)

actions are inserted immediately before the pickup and drop actions in handleblock

above.

We discuss some of the necessary and sufficient conditions for the correctness
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of this approach in chapter 4.

3.7 Experiments

We compare our FBP implementation in these two domains with: MIndiGolog

(Kelly and Pearce, 2006), a temporal Golog interpreter; POPF2 (Coles, Coles, et

al., 2010) and YAHSP2 (Vidal, 2011) two heuristic satisficing planners; CPT4 (Vi-

dal and Geffner, 2006), a temporal planner based on constraint programming;

and CPX, a constraint programming solver using Lazy Clause Generation (Ohri-

menko, Stuckey, and Codish, 2009). All experiments were performed on a 2.4

GHz Intel Core i3 with 4GB RAM running Ubuntu 12.04. Our implementation

used Gurobi 5.1, CPython 2.7.3. We used the binary version of cpx included with

MiniZinc 1.6. All of the temporal planners were the versions used in the 2011

IPC.

We present results from a simple variant of the BFRSP with a fixed number of

waypoints per order: a mine, a port and then the train yard. Results in Tables 3.2

and 3.3 represent results on the track network depicted in Figure 3.1 and a high

level network of an Australian mining company. We assume the capacity at all

nodes except y is 1, and the y has unbounded capacity, and there are as many

consists as orders. The “m/p” column is the number of mines each port makes

orders for. All models of the problem were given symmetry-breaking constraints

regarding assignment of consists to orders. We report “time to first solution” in

these experiments, meaning the time taken to generate a schedule that delivered

all orders.

Table 3.2 shows that the FBP approach scales to problems more than an or-

der of magnitude larger than either a MiniZinc model based on scheduling con-

straints solved with the lazy clause generation solver cpx, or a temporal PDDL

model solved with popf2. The constraint-programming technique of Lazy Clause
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Generation is state-of-the-art for many scheduling problems, and cpx is compet-

itive with our approach until memory limits were reached.

There is a significant overhead of the FBP algorithm in the smaller models,

this is likely explained by our pure python implementation when compared with

the highly engineered, compiled implementations of both popf2 and cpx. Un-

scientifically, interpreted python can expect a 30× to 100× slowdown compared

to an equivalent algorithm in C or C++.

The temporal planner popf2 was chosen because it was the best performing

of the temporal satisficing planners in IPC 2011 with support for numeric fluents

or initial timed literals one of which is required to model time-windows.

popf2 performs very poorly when there is more than one order to any mine or

port. We presume this is because standard planning heuristics cannot effectively

detect the bottleneck in the track network at block d in Figure 3.1.

To test this theory, we relax the complicating time-window constraints, which

allows us to test other temporal planners on this domain. Table 3.3 shows that,

as contention for block d increases, solution times in the heuristic search planners

increase very sharply. This leads to the somewhat surprising result that a decom-

position approach outperforms heuristic search as interaction increases. We also

outperform the constraint programming approach used in cpt4, note that this is

an optimal planner rather than the anytime algorithms implemented in yahsp2

and popf2.

This result is not seen in the blocks-world domain where both enforced hill

climbing and WA* find solutions very quickly. However we still see significant

speedups in proof of optimality versus both popf2 and yahsp2 even in this

quite sequential domain. It should be noted that neither are optimal planners,

but as both are complete anytime algorithms, like FBP, we believe this is still

a meaningful comparison. FBP also proves optimality faster than the optimal

temporal planner cpt on the largest instance.
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This is obviously not a totally fair comparison, as the Golog model can en-

code more domain knowledge, however we believe this is a desirable property

in a modelling language, and closer to a real-world optimisation setting, where

modellers can and will provide as much useful information to any solver they

use as is feasible. Additionally, existing Golog implementations do not perform

well on either of these problems, and PDDL planners are among the most well

studied alternatives and provide the fairest comparison that can be considered

state-of-the-art.

|V| |O| m/p Golog popf2 cpx FBP

6 2 1 0.4 0.3 0.7 1.6
6 4 1 — — 2.3 3.3
6 4 2 — — 1.7 2.0
6 8 2 — — 7.5 7.6
6 16 2 — — 37.9 29.7
6 32 2 — — — 50.3
6 64 2 — — — 150.3
6 128 2 — — — 418.8
6 256 2 — — — 589.7
16 44 11 — — — 315.0
16 88 11 — — — 363.0

Table 3.2: Time to first solution for increasing track network vertices, |V|, and
orders, |O|, in seconds (1800s time limit, 4GB memory)

|V| |O| m/p popf2 yahsp2 cpt4 FBP*
6 2 1 0.3 0.0 0.0 1.6
6 4 1 8.4 0.0 0.8 3.3
6 4 2 — 0.0 0.7 2.0
6 8 2 — 0.3 — 7.6
6 16 2 — 42.5 — 29.7
6 32 2 — — — 50.3

Table 3.3: BFRSP without time windows: Time to first solution in seconds (time
limit 1800s, 4GB memory, FBP results are from the non-relaxed problem)
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Blocks popf yahsp2 cpt FBP

3 0.0 3.5 0.0 0.0 0.0 0.0 0.3 0.5
4 0.0 53.0 0.0 0.0 0.0 0.0 0.3 0.7
5 0.0 — 0.0 0.1 0.0 0.1 0.2 0.6
6 0.1 — 0.0 6.4 0.1 0.1 0.5 0.8
7 0.9 — 0.1 — 0.2 0.2 0.6 0.8
8 0.1 — 0.0 — 0.4 0.4 1.0 1.9
9 17.9 — 0.0 — 1.7 1.7 5.0 6.2
10 0.3 — 0.0 — 1.7 1.7 1.3 2.0
11 1.4 — 0.0 — 5.2 5.2 2.0 3.8
12 — — 0.0 — 12.6 12.6 4.9 6.8

Table 3.4: Blocks-world: Time to first / optimal solutions in seconds (time limit
120s, 4GB memory)

3.8 Conclusions and Further Work

We see from our experimental results that our Fragment-Based Planning approach

scales to an important class of industrial problems while sacrificing little of the

flexibility of the underlying planning formalism, and Golog language.

Our approach fares significantly better on the BFRSP than on blocks world.

We believe this is because this domain combines the strength of the two core tech-

nologies of state-based search and MIP: the MIP detects global, largely sequence-

independent bottlenecks and guides the overall search; and state-based search

handles the sequential aspects of shortest path finding that might otherwise re-

quire a large number of variables to encode as an LP. Whereas, in blocks world,

the LP detects the desired sequence of block handling, and the search solves the

relatively trivial problem of how much waiting is required to ensure the blocks

are picked up and put down at the optimal time. We suspect that this is a bad

model for FBP, as it splits the work unevenly between master and sub-problems,

and relies on the LP to detect impossible sequences, something that even unin-

formed search should be better at. More work is required to explore what fluents

are best to relax into linear constraints; what forms those constraints should take;
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the choice of fragmentation dimension; and the fragment program. Nonetheless,

this approach has proven effective in this sequential domain.

Our implementation lacks a number of significant engineering improvements

that could be applied, most significantly: better MIP heuristics; and better branch-

ing strategies. We use a simple variant of the general diving MIP heuristics de-

scribed in (Joncour et al., 2010), though problem specific MIP heuristics could

yield better performance, such as (Jampani and Mason, 2008).

Additionally we use very simplistic branching rules: we branch only on indi-

vidual fragments being included, rather than e.g. pairs of resources as in Ryan-

Foster branching (Ryan and Foster, 1981). This leads to a very unbalanced branch-

and-price tree and can lead to exponentially increased runtimes if the problem

is not proven optimal at the root. Note that while the FBP algorithm we de-

scribe allows Ryan-Foster branching, our implementation does not branch on

such “good” redundant resources.

Cost-optimal planning in Golog is required to solve the pricing problem in

FBP. This is not a problem considered in the existing literature, and FBP might

benefit from analogues to classical planning heuristics. Alternatively, as the pric-

ing problem has a cost bound, bounded cost search algorithms for Golog might

be beneficial. This is still an open area of research even for STRIPS planning

(Haslum, 2013).

Existing fast but incomplete algorithms such as enforced hill climbing or causal

chains (Lipovetzky and Geffner, 2009) might compute a better starting set of frag-

ments and/or inspire FBP-specific MIP heuristics.

Many of these enhancements are well studied and implemented in STRIPS

planners, and only the Do call in the FBP algorithm is Golog-specific. If similar

explicit relaxations and fragment goals can be provided, this could be replaced

by a call to an optimal planner, with additional assume-[fact](?time, . . .)

actions for each fact with the action cost derived from the dual prices.
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The effect of these time-dependant costs on the performance of STRIPS plan-

ners would also need to be investigated. Few resources will normally have non-

zero dual prices, which could help limit the branching factor.

How to select the fragment goals is less obvious. Planning with preferences

could be used to choose some subset of goals to achieve, however it is not obvious

how to ensure this planning problem is easier than the original.

Additionally, for FBP to work directly with PDDL work is required to auto-

matically identify: a “fragmentation dimension”; “fragment generator”; and the

fluents to relax.





Chapter 4

Optimisation and Relaxation in the
Situation Calculus

In the previous chapter we introduced Fragment-Based Planning including some example

domains where it can be applied. In this chapter we slightly generalise that algorithm

and explore the necessary and sufficient conditions for agents to cooperate through the

FragPlan framework.1

4.1 Introduction

Reasoning about quality is essential in many domains, as agents must often make

economical use of one or more resources, be it money, fuel, time, or some other

domain-specific resource.

We consider multiagent planning problems expressed in Golog, an agent lan-

guage based on the situation calculus. Golog is Turing complete—the use of a

Golog interpreter comes without any guarantee of termination. We can, however,

identify a restricted class of problems (or associated Golog programs) that have

a “bounded benefit” property. We show that budget-limited planning is decid-

able for this class. We also introduce relaxations that let us reason about how far

from optimal a candidate solution is. Relaxations can be viewed as specialised

1The research presented in this chapter was published in Toby O. Davies, Adrian R. Pearce,
Peter J. Stuckey, and Harald Søndergaard (2015). “Optimisation and Relaxation in the Situation
Calculus”. In: Autonomous Agents and Multiagent Systems (AAMAS 15), pp. 1141–1149
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algorithms to prove statements of the form “no solution is more than a multiple

of ε better than solution x” without the need to enumerate the solution space.

Technically our approach is close to the use of Lagrangian relaxation techniques

in operations research.

Delete relaxation has previously been applied to Golog, to generate heuristically

improved execution (Blom and Pearce, 2010). In contrast with that work, we fo-

cus on precondition relaxation, as this is particularly appropriate for multi-agent

teams where each agent ideally helps others achieve the preconditions they face.

The kind of relaxation we have in mind is much more sophisticated than an “ig-

nore precondition” relaxation. Our precondition relaxations can avoid combina-

torial explosions by ignoring the multiple ways concurrent action sequences can

be interleaved. To guide search for optimal solutions we apply costs to assum-

ing, and bonuses to causing, the relaxed preconditions. Thus preconditions are

treated as a type of shared resource that can be traded between agents at a cost.

This is key to the performance improvements we achieve.

Utilisation of shared resources has previously been treated in the situation cal-

culus, but in the context of an explicit interleaved semantics of concurrency (De

Giacomo, Lespérance, and Levesque, 2000). Our approach can frequently minimise—

sometimes even ignore—explicit inter-agent action interleaving, heuristically find-

ing high-quality joint executions directly from high-level specifications.

Contribution The relax-&-merge algorithm described in this chapter generalises

the fragment-based planning approach of chapter 3 which shows orders of mag-

nitude improvements over state-of-the-art temporal planners. We define the nec-

essary conditions for modelling domains in this generalised formalism. We pro-

pose a new kind of relaxation for planning problems; “precondition relaxations”

which adapt Lagrangian relaxation to dynamic logic-based optimisation prob-

lems. The technique is of particular interest in a multi-agent setting, because it
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offers a blackbox approach to planning via collaborative search: An agent is not

required to know about other agents’ programs or effect axioms for “private” flu-

ents; all that is required is the ability to query those agents for their optimal plans

under a given penalty function. We show that well-chosen relaxations can pro-

vide large increases in the speed of planning, scaling linearly with the number of

interacting agents. Our work allows optimisation using a wider range of search

techniques in the situation calculus than previously possible.

Outline We recapitulate Golog and relaxation broadly, in sections 4.2 and 4.3,

respectively. section 4.4 introduces bounded-benefit programs and section 4.5

introduces precondition relaxation. section 4.6 shows how to combine individual

agents’ relaxed plans and section 4.7 shows how to use the result to construct a

feasible joint execution.

4.2 Preliminaries

We assume familiarity with the situation calculus and reasoning based on regres-

sion, at the level of Reiter (Reiter, 2001), from which we also (mostly) borrow

notation and terminology. We use R for the regression operator; � for the pre-

history relation; Φ f as the regressable successor-state axiom for a fluent f ; and

φ+
f and φ−f for the positive and negative effect axioms of a fluent f respectively.

We use a fragment of ConGolog (De Giacomo, Lespérance, and Levesque, 2000),

which includes most constructs of the language, except for (recursive) proce-

dures. Hereafter we will simply refer to Golog, ConGolog and its extensions simply

as Golog:

α atomic action

ϕ? test for a condition

δ1; δ2 sequence
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if ϕ then δ1 else δ2 conditional

while ϕ do δ while loop

δ1|δ2 non-deterministic branch

πx.δ non-deterministic choice of argument

δ∗ non-deterministic iteration

δ1‖δ2 concurrency

In the above, α is an action term, possibly with parameters, and ϕ is a situation-

suppressed formula, that is, a formula in the language with all situation argu-

ments in fluents suppressed. We denote by ϕ[s] the situation calculus formula

obtained from ϕ by restoring the situation argument s into all fluents in ϕ.

Program δ1|δ2 allows for the non-deterministic choice between programs δ1

and δ2, while πx.δ executes program δ for some non-deterministic choice of a legal

binding for variable x. δ∗ performs δ zero or more times. Program δ1‖δ2 expresses

the concurrent execution (interpreted as interleaving) of programs δ1 and δ2. We

assume without loss of generality that each occurrence of the construct πx.δ in a

program uses a unique fresh variable x.

Formally, the semantics of Golog is specified in terms of single-step transitions,

using the following two predicates (De Giacomo, Lespérance, and Levesque,

2000): (i) Trans(δ, s, δ′, s′), which holds if one step of program δ in situation s may

lead to situation s′ with δ′ remaining to be executed; and (ii) Final(δ, s), which

holds if program δ may legally terminate in situation s.

The definitions of Trans and Final we use are as in (Sardina and De Giacomo,

2009); these are standard (De Giacomo, Lespérance, and Levesque, 2000), except

that, following (Classen and Lakemeyer, 2008), the test construct ϕ? does not

yield any transition, but is final when satisfied. Thus, it is a synchronous version of

the original test construct (it does not allow interleaving). Note that the definition

of Trans(δ, s, δ′, s′) has only one successful non-recursive case, where s′ is exactly

one action longer than s; any successful transition adds exactly one action to the
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current situation.

Trans and Final are used to define the single-step semantics of Golog; they are

used to look ahead, to solve the planning problem. We define Trans∗ to be the

transitive reflexive closure2 of Trans. Trans∗ is used to define the reachable states:

we wish to limit the search to states that are both reachable, and for which any

residual program is Final. For this purpose we define

Do(δ, s, s′) ≡ ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

4.3 Reasoning about Optimality

A key technique used in operations research to prove solution quality is relaxation.

Given a problem with a set X of solutions and cost function to be minimised C,

a relaxation is a new problem with solutions X′ and cost function C′ such that

X ⊆ X′ and for any solution x ∈ X, the relaxed cost is a lower bound on the real

cost, that is, C′(x) ≤ C(x).

A useful relaxation is one that is easier to solve to optimality, compared to the

original problem, and which additionally provides a tractable way to establish

how far from optimal a candidate solution is. Let x be a feasible solution to the

original problem and let x′∗ be an optimal solution to the relaxed problem. The

optimality gap is then defined as η = C(x)/C′(x′∗)− 1. When the gap is 0, the

solution x is optimal. Where multiple relaxations are available, the tightest can be

used to compute η. This approach is used with Lagrangian relaxation of integer

programs.

In many optimisation problems it is easier to optimise a variant of the prob-

lem with fewer constraints. For example the resource constrained shortest path

problem (Mehlhorn and Ziegelmann, 2000) is NP-complete, whereas there are

2Trans is a binary relation but we follow convention, writing Trans(δ, s, δ′, s′) rather than
Trans((δ, s), (δ′, s′)).
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well-known polynomial-time algorithms, such as Dijkstra’s, for the classical, un-

constrained shortest path problem.

Lagrangian relaxation softens complicating constraints and incorporates them

into the objective function (Lemaréchal, 2001; Fisher, 2004). The idea is to capi-

talise on algorithms designed for the easier problem while penalising violations

of the complicating constraints. Careful variation of the penalties (the so-called

Lagrange multipliers) allows solutions to the relaxed problem to be guided to-

wards feasible areas of the original problem.

Traditionally Lagrangian relaxation is applied to Integer Programming (IP)

models. A major contribution of this chapter is the extension of Lagrangian re-

laxation to logic-based optimisation in dynamical systems.

Consider a set R of inequalities to relax in an IP model:

Minimise: z(x̃)

Subject To: cr(x̃) ≤ 0 ∀r ∈ R

cn(x̃) ≤ 0 ∀n ∈ N

x̃ ∈ Zn

We transform it into a relaxed problem:

Minimise: z(x̃)+ ∑
r∈R

λr · cr(x̃)

Subject To: cn(x̃) ≤ 0 ∀n ∈ N

x̃ ∈ Zn

Note that the effect is to increase the objective when constraints are violated, and

decrease it when constraints are strictly satisfied. To solve the original problem,

the relaxed problem is optimised and for each violated constraint r, the penalty

λr is increased. The relaxed problem is then re-optimised, and so the process
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is iterated. In general, branching is also required to find solutions to discrete

problems.

4.4 Cost-Aware Search

Consider the problem of finding a path for agent a from 〈0, 0〉 to 〈x, y〉 on an

infinite Manhattan grid. The agent is allowed to move in each of the cardinal

compass directions N, S, E, and W.

A naive Golog program to solve this problem is:

proc travelto(a, x, y):

while ¬At(a, x, y) do

π(d ∈ [N, S, E, W]).move(a, d);

A satisfying solution to this problem is uninteresting as there are infinitely many

and an optimal path is trivial to compute. However a simple depth first search

for solutions to this program might not terminate. To guarantee termination, a

significantly more complex and less flexible program may restrict the search to

only move towards 〈x, y〉. Such a program will find an optimal path between

two points, but the approach will fail in general, if any obstacles are introduced

into the grid.

We introduce a restricted class of Golog program and cost functions that allow

the simpler and more general Golog program to always terminate. Algorithms

from classical planning then allow us to compute the optimal solution. We refer

to the restrained programs as “bounded-benefit”.

Definition 4.1 (Bounded Benefit). A bounded-benefit program is a Golog program δ,

for which there exists some plan length l0 and ε > 0 such that some lower bound lb(l) on

the cost of any reachable situation of length l satisfies ∀n ∈N : lb(l0 + n) ≥ lb(l0)+ nε,
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and lb(l0) is finite.

That is, there are a finite number of beneficial actions that can be performed,

and all other actions increase cost by at least ε. Note that this is a property of the

program and cost function, and may not depend on the precondition axioms of

the domain.

Bounded benefit programs are related to the problems addressed by classi-

cal planning, but are slightly more general. In particular, planning algorithms

assume monotonically increasing costs where l0 = 0 and lb(0) = 0. Bounded

benefit programs can be converted into this form when lb(l0) is known (rather

than merely guaranteed to exist) by defining a new cost function similar to re-

moval of soft-goals in classical planning (Keyder and Geffner, 2009). Optimal

algorithms for this class of problems are well studied in the automated planning

literature, and include both “uninformed” search, such as uniform cost search,

and “informed” search such as A∗, which is reliant on a heuristic or relaxation.

The simplest class of bounded-benefit programs results when all actions in-

crease cost. In the Manhattan grid example, if all actions have unit cost, every

program has bounded-benefit. A less obvious, but interesting class of bounded-

benefit programs results when the cost function defines a finite set of “soft goals”

that decrease the objective when achieved. For example, in the Manhattan grid

example, some grid points may be points of interest for which a reward is avail-

able as they are visited the first time (similar to the prize-collecting travelling

salesman problem (Balas, 1989)). We use this kind of soft-goal in later sections to

guide agents to achieve preconditions for others.

We have introduced bounded-benefit programs in response to the undecid-

ability of planning in Golog. In aid of our proof of decidability we introduce the

following definitions:

Definition 4.2 (Agent State). An agent state is a pair 〈s, δ〉 comprising a situation s

and a residual program δ.
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Definition 4.3 (Reachable State). An agent state 〈s′, δ′〉 is reachable from 〈s, δ〉 if it

satisfies Trans∗(δ, s, δ′, s′).

Definition 4.4 (Applicable Transitions). The set of applicable transitions T(s, δ) is the

set of agent states reachable by using exactly one action from 〈s, δ〉

T(s, δ) = {〈s′, δ′〉 | Trans(δ, s, δ′, s′)}

Definition 4.5 (Branching Factor). A Golog program δ in some domain D has branch-

ing factor b = max(|T(s′, δ′)|) over all reachable states 〈s′, δ′〉 of finite length.

To have a finite branching factor merely requires that the set of possible actions

in any given situation is bounded. This is not an unreasonable restriction, and

would be required for a Prolog-based Golog implementation.

Theorem 4.1. Let m ∈N and let δ be a bounded-benefit program with finite branching.

The query D |= Do(δ, S0, s) ∧ (∀s′ : s′ � s⇒ cost(s′) ≤ m) is decidable.

Proof. For any finite length l, the situations reachable from S0 in at most l steps

can be enumerated (there are at most bl solutions), for example, by a breadth-first

search.

By Definition 4.1 we can assume the existence of a length l0 beyond which cost

grows linearly, at least. The length of a reachable situation s with cost(s) ≤ m is

then bounded by l0 + (m− lb(l0))/ε.

More practically, we can perform any search algorithm with an additional

test for the condition cost(s) ≤ m when nodes are expanded, and guarantee that

either we exhaust the successors of s, or the cost of the successors eventually

exceeds the budget m, by defining a budget-limited Trans:

Transm(δ, s, δ′, s′) ≡ Trans(δ, s, δ′, s′) ∧ Cost(s′) ≤ m.
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Importantly this approach does not require a computable lower bound, merely

the guarantee that one exists.

4.5 Relaxing Preconditions

Relaxing delete effects (by ignoring them) is common in automated planning. The

result is “easier” than the original problem because the application of an action

without delete effects monotonically increases the set of true facts. Ignoring pre-

conditions is the regression analogue: the regression of a goal formula through

an action with no preconditions monotonically decreases the set of open precon-

ditions, guaranteeing the regressed formula will eventually become true in the

initial situation, if any such action sequence exists.

Instead of simply ignoring preconditions, we attach costs to assumptions. In

a collaborative setting, an agent has a choice between the pursuit of achieving its

own precondition, or relying on others to do this. Whichever is easier depends on

circumstances but the choice can be informed by using cost to express a benefit

to achieving another agent’s preconditions.

For a very simple example, consider Figure 4.1 which depicts an instance of a

“cooperative navigation” problem. (We will vary the initial conditions through-

out this chapter, but Figure 4.1’s graph will remain unchanged in subsequent

examples.) The dashed edge denotes an edge that is in a “locked” state; it can

be unlocked only by certain agents, and only if they are at appropriate locations.

For now assume there are two agents, a and b, with the joint goal for a to reach z.

The edge from y to z can only be unlocked by b if it is at y. We assume unit cost

to unlock an edge and to traverse any edge. Note that the shortest path for one

agent to travel from x to z depends on other agents enabling it.

Primitive actions in this domain are move(Agt, From, To) and unlock(Agt, From, To).

Fluent At(Agt) = Loc gives an agent’s current location; Unlocked(From, To) rep-
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x y

p q

z

Figure 4.1: Cooperative navigation with unlockable edges. Initially the edge from
y to z is locked. The shortest path from x to z is dependent on the location of other
agents capable of unlocking the edge.

resents a usable From-To edge while HasKey(Agt, From, To) represents a potential

From-To edge.

The cost function in this domain is equivalent to plan length. Note that any

program has bounded-benefit with this cost function: l0 = 0 and ε = 1.

First consider the initial situation where agent a is at x, agent b is at y, and b

has a key to unlock y → z. The minimum cost joint execution is for b to unlock

y→ z, and a to travel from x to y to z. If however b is initially at z, the minimum

cost path is for x to travel via p and q. Note carefully that a sum of per-agent

relaxation will not be admissible here in general: a’s optimal path over-estimates

the true cost.

Preconditions persist in general, and the best time to allow another agent to

achieve our precondition is not necessarily the situation immediately preceding

the action requiring that precondition. There are two options as to where we can

allow this necessary choice: where we assume a fluent becomes true; and when

we allow a fluent we cause to be used by another agent.

We choose to use the first of these, as there will always be a bounded choice

of situations in which we can assume a fluent. We then force agents to take the

benefit associated with causing a fluent at the point it was actually caused.

That is, in do([move(a, x, y), move(a, y, z)], S0) agent a can assume that y → z

was unlocked in S0 or after a’s first action, and thus may choose either of these

two penalties to apply. However in do([move(b, p, y), unlock(b, y, z)], S0) agent b

has no choice and must take the bonus available after the first action.
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In the cooperative navigation domain nothing negates the preconditions we

are relaxing. However, in general an agent could negate an assumed precondi-

tion before the point at which it was required. To avoid this, we introduce some

analysis functions that allow us to determine the situations from which an as-

sumed fluent would have persisted. We assume that fluents have successor state

axioms transformed from effect axioms φ+ and φ− in the standard way (Reiter,

2001). lasteff ( f , s) = s′ computes the last situation which would have had either

a positive or negative effect on f :

lasteff ( f , S0) = S0

lasteff ( f , do(α, s)) =

 do(α, s) if φ±f (α, s)

lasteff ( f , s) otherwise

Here φ±f (α, s) ≡ φ+
f (α, s)∨φ−f (α, s). For example, in the situation s = do(move(a, x, y), S0):

lasteff (At(a), s) = s

lasteff (Unlocked(y, z), s) = S0

We then restrict situations in which f can be assumed before situation s, to situa-

tions s′ with lasteff ( f , s) � s′ � s.

To transform a regressable query in a basic action theory in such a way that

we can apply penalties, we need to detect which assumptions ∆ are made. For

this purpose we define Precondition Relaxed Regression PRR∆
R in terms of a set

of relaxable fluents R. This can be considered a kind of abductive reasoning, but

differs in that any relaxable fluent F(s) must be explicitly assumed if it is ever

true, even if it is caused by some action already present in s.

In the cooperative navigation example, Unlocked(y, z) must be assumed (recorded

in ∆) to ensure that agent a can find the optimal plan. That is, a must assume that

the (y, z) edge becomes unlocked before attempting move(a, y, z).
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Precondition relaxed regression is defined like usual regression, except for the

cases for atomic fluents:

PRR∆
R( f (S0)) =

([[ f (S0)]] 6∈ R ∧ f (S0)) ∨ ([[ f (S0)]] ∈ R ∧ [[ f (S0)]] ∈ ∆)

PRR∆
R( f (s)) =

(s = do(α, s′)) ∧ [[ f (s)]] 6∈ R ∧ PRR∆
R(Φ f (α, s′)) ∨

[[ f (s)]] ∈ R ∧ ∃s′′.(lasteff ( f , s) � s′′ � s ∧ [[ f (s′′)]] ∈ ∆)

Here Φ f is the successor state axiom for f . The brackets [[. . .]] have no semantic

significance; we use them simply as a reminder that ∆ and R store representations

[[ f (s)]] of fluents f to evaluate at situations s. In the definition, any relaxable

fluent f ∈ R required to be true to satisfy the formula is in ∆, evaluated at some

point between when it is required and the last effect on f .

We assume that any regressed formula is in negation normal form, that is, only

atomic fluents are negated, not whole expressions. Additionally we assume that

the negation of a fluent is represented as a separate fluent with opposite effect

axioms, i.e., ¬ f (s) is replaced with f ′(s) where f ′ has effect axioms φ+
f ′ = φ−f and

φ−f ′ = φ+
f . This is simply syntactic sugar that simplifies our formulae and proofs.

We can now use the assumptions, ∆, computed in the precondition relaxed

problem to compute penalties (Lagrange multipliers). We define an AssumptionCost

function that computes the total cost of those assumptions:

AssumptionCost(λ, ∆) = ∑
f (s)∈∆

λ( f , s)

We also define a Bonuses function that calculates the benefit of causing a fact, by
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summing those relaxed fluents that actually hold in s:3

Bonuses(R, λ, s) = − ∑
f (s)∈R

λ( f , s) · 〈Φ f [s]〉 · 〈lasteff ( f , s) = s〉

We combine these components with the original cost to define a penalised cost

function:

Costλ(R, ∆, s) = Cost(s) + AssumptionCost(λ, ∆)− Bonuses(R, λ, s)

We illustrate this concept on a handful of situations in the cooperative navigation

domain using the following penalties:

λ1(Unlocked(x, y), s) = 9 ⇐ time(s) = 0

λ1(Unlocked(x, y), s) = 1 ⇐ time(s) = 1

λ1( , s) = 0 otherwise

The assumption necessary to perform

do([move(a, x, y), move(a, y, z)], S0))

is just ∆ = {Unlocked(x, y, do(move(a, x, y), S0))}. Using it, we compute the penal-

ties: AssumptionCost(λ1, ∆) = 1 and no bonuses. Importantly,

do([move(b, p, y), unlock(b, y, z), move(b, y, z)], S0)

still requires the assumption

Unlocked(x, y, do([move(b, p, y), unlock(b, y, z)], S0))

3We use 〈 and 〉 as Iverson brackets. 〈P〉 denotes a 0-1 variable which takes the value 1 iff
condition P holds.
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in spite of the fact that the action sequence causes this assumed fluent. This en-

sures that all relaxable fluents are treated uniformly across all agents.

In many domains, the only rational choice is to assume the fluent in the least

penalised situation where that fluent would persist to s:

min
λ( f ,s)

(s′ | lasteff ( f , s) � s′ � s)

This observation is important in reducing the computational burden of the plan-

ning problem. The obvious exception to this is when a fluent has already been

assumed in order to enable an earlier action, in which case there may be no need

to assume the same fluent twice. E.g., if an agent takes the route y → z → q →

p → y → z, the agent need only assume that y → z is unlocked once, before

starting the circuit.

Definition 4.6 (Precondition-relaxed planning). The precondition relaxed planning

problem with a set R of relaxed fluents, ∆ ⊆ R of fluents assumed within the execution

s, and a penalty function λ, is defined

PRDoλ(R, ∆, δ, S0, s) ≡ PRR∆
R(Do(δ, S0, s))

Lemma 4.1. For any choice of relaxed fluents R, any legal execution is legal in the

precondition-relaxed problem, i.e.,

(D |= Do(δ, S0, s))⇒ ∀R.∃∆.(D |= PRDo(R, ∆, δ, S0, s)),

Proof. ∆ ⊆ { f (s) ∈ R | R[ f (s)]}, the set of assumptions required is at most the

set of relaxed fluents that actually hold in the original problem.

Lemma 4.2. For any choice of relaxed fluents R and penalty function λ satisfying

∀ f , s.λ( f , s) ≥ 0 the penalised cost of any solution s∗ to the original problem is no

more than the non-penalised cost.
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Proof sketch. By contradiction.

Since s∗ is a solution to the non-relaxed problem, for each f which is a pre-

condition of any action in s∗, it must hold that ∀s � s∗ : f (lasteff ( f , s)), as any

subsequent effect would either negate f , causing s∗ not to be a solution, or it

would cause f in which case that subsequent situation would be the cause of f .

Assume the penalised cost is greater than the non-penalised cost. Then there

exists some precondition f assumed in some situation s � s∗ where the cost of

assuming f exceeds the bonus for causing f (because the restriction on λ means

there cannot be a penalty for causing f ):

min(λ( f , s′) | lasteff ( f , s) � s′ ≺ s) > λ( f , lasteff ( f , s))

But it is impossible that the minimum of a set that includes the value λ( f , lasteff ( f , s))

exceeds that value, hence we have a contradiction.

Theorem 4.2. For any choice of relaxed fluents R and penalty function λ satisfying

∀ f , s.λ( f , s) ≥ 0,

min
Costλ(∆,S)

{S | D |= PRDo(R, ∆, δ, S0, S)}

is a relaxation of

min
Cost(S)
{S | D |= Do(δ, S0, S)}

Proof. Directly from Lemmas 4.1 and 4.2.

For our relaxation to remain decidable, we place a slightly different restriction

on the penalty function: it should have finitely-many ways that actions can have

negative cost. An action can have negative cost if any precondition or postcondi-

tion has a non-zero penalty.

Theorem 4.3. Let δ be a bounded-benefit program and R a set of fluents to relax such that

the branching factor of δ remains bounded. For any choice of relaxed fluents R (where the

branching factor remains bounded) and penalty function λ and bounded-benefit program
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δ. If the penalty function λ has a finite number of solutions to λ( f , s) 6= 0, and a

finite total magnitude M = ∑|λ( f , s)|, then the precondition relaxed problem is itself a

bounded-benefit program.

Proof sketch. By assumption there is a bounded total benefit that can be gained,

given an initial lower bound. Defining lb′(l) = lb(l)−M gives a lower bound for

the relaxed problem with the necessary properties.

When lb and M are computable and known, we can use lb′ to apply informed

search algorithms in sub-problems.

Note that when R satisfies the requirements of Theorem 4.3, an infinite num-

ber of penalty functions can be systematically generated. Importantly, to estimate

the joint cost, one need not know any agent’s program, merely be able to query

agents for their optimal relaxed plan given a set of relaxed fluents and penalty

function.

4.6 Multi-Agent Relaxations

We now have a mechanism to generate per-agent relaxed plans from penalties.

The next logical step is to merge these into a relaxed joint execution. There are

several approaches to merging agent plans, the most general approach is to treat

agent i’s plan as a literal program: do([α1, . . . , αn], S0) becomes δi ≡ α1; · · · ; αn;

then to merge a pair of such literal programs for agents i and j by taking the

minimum cost plan generated by Do(δi‖δj, S0, s). Other merge operators cannot

have solutions that are not also solutions to this general merge operator.

We assume that the actions in s originating from s1 are distinguishable from

those in s2 using a function agent(α) that returns the agent responsible for this

action. We can then define a predicate to un-merge a joint execution into a per-
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agent equivalent:

m−1(agt, S0, s′) =S0

m−1(agt, do(α, s), s′) =(s′ = do(α, s) ∧ agent(α) = agt)

∨ (s′ = s ∧ agent(α) 6= agt)

This is an inverse of any merge operator, regardless of its definition. This also

allows us to determine the agent causing a fluent in a joint execution:

CausedBy( f , s, agt) ≡ lasteff ( f , do(α, s)) = do(α′, s′) ∧ agent(α′) = agt

A more practical approach to merging, which we use in our implementation,

is temporal merging based on the temporal semantics of MIndiGolog (Kelly and

Pearce, 2006). Each agent’s plan maintains a per-agent notion of time, and the

merged plan must ensure that the actions in the resulting plan are a topological

sort of the actions in the agent plans that is consistent with the timestamp for that

action. that is, if two agents, i and j perform actions αi and αj then, for each s and

s′ representing a prefix of the merged joint execution,

do(αi, s) � do(αj, s′)⇒ timei(do(αi, s)) ≤ timej(do(αj, s′)).

must hold for the merge to be temporally consistent.

In the cooperative navigation domain, under the assumption that each action

takes one unit of time, a temporal consistent merge of do([move(a, x, y), move(a, y, z)], S0)
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and do([unlock(b, x, y), move(b, x, p), move(b, p, q)], S0) would be

do([move(a, x, y), unlock(b, x, y),

move(a, y, z), move(b, x, p), move(b, p, q)],

S0)

but

do([move(a, x, y), unlock(b, x, y),

move(b, x, p), move(b, p, q), move(a, y, z)],

S0)

would not be temporally consistent. Namely, move(a, y, z), performed at time 2 in

the per-agent plans, is performed after move(b, x, p) in the merged plan, but this

second action was performed at time 1 in the per-agent plan.

This approach massively reduces the computational overhead of merging plans,

and also allows us to apply penalty functions more consistently between agents

by taking time into account. For example, in the multi-agent navigation domain

from Figure 4.1, the penalty for assuming x → y is unlocked at time 0 is high, as

this is un-achievable.

In computing a multi-agent relaxation, we would like to totally avoid merging

plans to compute a lower bound. To this end we define a class of (penalised) cost

functions that allow us to simply sum the per-agent costs. We refer to such cost

functions as “merge-consistent”.

Definition 4.7 (Merge-consistent cost). The penalty function λ( f , s) and the cost

function Costλ are consistent with a merge operation m(δ1, δ2) under a relaxed set R
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of fluents if for all relaxed plans s1 and s2, with assumption set ∆ = ∆1 ∪ ∆2 ⊂ R,

Costλ(R, ∆, m(s1, s2)) = Costλ(R, ∆1, s1) + Costλ(R, ∆2, s2)

Merge-consistent penalties are quite easy to develop in practice within tempo-

ral domains, when penalties and costs are consistently applied at the same time

points. Unfortunately this approach alone is not always sufficient to guarantee

that the per-agent relaxed optima (which are the only solutions we want to con-

sider ideally) can be merged to produce the optimal joint execution.

Referring again to Figure 4.1, now assume that a needs to plan a path from

x to z and b one from p to z. As usual b may unlock the locked edge, and

Unlocked(y, z) is relaxed in all situations except S0. The optimal solution is for

both agents to travel via y → z. We see the two non-penalised per-agent optima

are do([move(a, x, y), move(a, y, z)], S0) and do([move(b, p, q), move(b, q, z)], S0).

No penalty function we can give to b can give any incentive to travel via y →

z, as b will necessarily pay the same penalty for assumption as it gets in bonuses,

unless b performs some intermediate action, which would be sub-optimal. The

reason for this is that the precondition can benefit multiple agents simultane-

ously. Hence we duplicate Unlocked(y, z) as Unlockeda(y, z) and Unlockedb(y, z)

with identical successor state axioms. Each agent then requires only its own copy

of this fluent to perform the action, and this allows the bonuses to exceed the

penalties. Importantly, this transformation also guarantees that the ∆s for each

agent do not overlap, and therefore no assumption costs will be double counted

when a single assumption could be used in the relaxed joint program δ1‖δ2.
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Definition 4.8 (Shared Relaxation). A shared relaxation is a domainD, a set of fluents

R and merge operator m such that

D |=Do(δ1‖δ2, S0, s)⇒

∃∆1, ∆2 : PRDo(R, ∆1, δ1, S0, s1)

∧ PRDo(R, ∆2, δ2, S0, s2) ∧m(s1, s2) = s

∧ ∀ f¬∃s′ � s :

f (m−1(1, s′)) ∈ ∆1 ∧ f (m−1(2, s′)) ∈ ∆2

That is, it is a relaxed domain where sufficiently many fluents are relaxed to

ensure that each agent can operate independently in the relaxed domain and thus

all legal executions in the original can be generated by merging relaxed single-

agent plans, with no assumptions shared between agents. This non-overlap re-

striction guarantees that penalties cannot be “double counted”.

Theorem 4.4. Let λ be a penalty function, merge-consistent with a merge operator m

under a shared relaxation R. Let A be a set of agents numbered 1 to n, let ∆i be the set of

assumptions made by agent i, and let si be agent i’s relaxed plan. For all joint executions

s which are legal in the original domain:

∃s1 . . . sn : s = m(s1, . . . , sn) ∧ ∑
i∈A

Costλ(R, ∆i, si) ≤ Cost(s)

Proof sketch. By Definition 4.8, s1 . . . sn exist. By Definition 4.7, ∑
i∈A

Costλ(R, ∆i, si)

is equivalent to Costλ(R, ∆, s). Namely, as no two ∆i overlap, no penalties can be

double counted. So by Lemma 4.2, Costλ(R, ∆, s) ≤ Cost(s).

Obviously, to be practically useful such a relaxation must be computationally

easier than the original problem. Choosing such a set is an exercise for the mod-

eller. Table 4.1 compares the precondition-relaxed runtime with a non-relaxed
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implementation in MIndiGolog and observe speedups in excess of 9000× in some

cases. Importantly, we can see both from Definition 4.7 and our experimental

results that the complexity of computing the relaxation for n agents is in O(n)

assuming the penalty function and remaining domain are unchanged.

4.7 Constructing Joint Executions

We now have methods to guide agents towards behaviours that benefit the over-

all objective in the precondition relaxed problem. We would like to use a similar

approach to achieve the same aim in the original problem.

We can also guide other agents away from hard to satisfy assumptions, and to-

wards causing helpful preconditions. By violating the non-negativity assumption

in Lemma 4.2, we can also do the converse: guide agents towards assumptions,

and away from causing interfering effects.

Theorem 4.5. Given a feasible joint execution sj such that Do(S0, δ1‖δ2, sj) ∧ sj =

m(s1, s2), there exist relaxed precondition sets R1 and R2 such that PRDo(R1, ∆1, S0, δ1, s1)∧

PRDo(R2, ∆2, S0, δ2, s2).

Proof sketch. By Lemma 4.1, PRDo(R, ∆, S0, δ1‖δ2, s) must hold for any R. If we

then constrain Ri to be a superset of each precondition f of any action whose last

effect was caused by a different action, that is, for all agents agt the following

should hold for each fluent f true in any situation s � sj:

CausedBy( f , s, agt′) ∧ f (s) ∧ agt′ 6= agt⇒

m−1(agt, s, s′) ∧ [[ f (s′)]] ∈ Ri ∧ [[ f (s)]] ∈ R

Each Ri is sufficient to allow each agent to perform the action sequence required

using PRR. Any superset of Ri allows at least the same solution set.



4.7 Constructing Joint Executions 73

To construct a feasible joint execution we use a form of Lagrangian relaxation.

We solve the relaxed problem for each agent and then check whether there is a

feasible interleaving. If not, we will discover some relaxed fluents that are as-

sumed but not caused by any agent. The penalty for these fluents will then be

increased and the process iterated.

Consider the situation in the cooperative navigation domain, where a is at x

and b is at y initially and can unlock y → z. If we relax the Unlocked(y, z) flu-

ent with penalty 0, a’s optimal relaxed plan is do([move(a, x, y), move(a, y, z)], S0),

which is exactly the plan a should execute. However, with the same penalty, b’s

optimal plan is to do nothing. We observe that these action sequences cannot be

interleaved to form a legal joint execution. The reason for this is that there is a re-

laxed fluent assumed by a that is not generated by any agent. If instead we relax

the same fluent with a penalty of 2, a will perform the same action sequence (but

incur 2 additional cost units of penalty), and b will perform do(unlock(b, y, z), S0),

gaining 2 units in bonuses. Importantly, agent a has no knowledge whatsoever

of agent b, and vice-versa. Even the central planner setting the penalties has no

specific a priori knowledge of b’s capability to unlock y → z, only by giving b

sufficient incentive to achieve this precondition for a is this capability discovered.

All that each agent knows is that there may exist an agent capable of causing

Unlocked(y, z), and an agent that may rely on the same fluent.

Table 4.1 shows results from the relaxations used in the agent-based rail schedul-

ing application described in chapter 3. In this application we schedule a set of

train services on a shared rail network subject to mutual exclusion constraints

(two trains cannot simultaneously occupy the same track section). In the re-

sults we present, these mutual exclusion constraints are relaxed, and we apply

a temporal penalty function and merge operator. As this represents a schedul-

ing problem, we compare our approach to a state-of-the-art solver for scheduling

problems, cpx (Schutt et al., 2013).
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Agents Golog cpx Relaxed* Relax-&-Merge
2 0.4 0.7 0.1 1.6
4 — 1.7 0.2 2.0
8 — 7.5 1.1 7.6

16 — 37.9 4.6 29.7
32 — — 12.5 50.3
64 — — 25.3 150.3

Table 4.1: Time to first solution in seconds of the Bulk Freight Rail Scheduling
Problem described in chapter 3. (— denotes runtime exceeds 1800s, or memory
usage exceeds 4GB). (* time to optimal solution of the precondition relaxed prob-
lem)

The penalties were determined by the optimal dual solution to a linear pro-

gram modelling the mutual exclusion constraints. The per-agent relaxed plans

were then incrementally added to a pool, the linear program was re-solved, and

the process was iterated. This process is an application of Branch-and-Price (Barn-

hart et al., 1998)—for details, see chapter 3. The results illustrate the speedup that

can be gained by relaxing the right preconditions, and that relax-&-merge can be

used to find feasible joint executions significantly faster than existing approaches.

Table 4.1 shows the effectiveness of using the relax-&-merge approach to con-

structing feasible joint executions. It also shows the average time to solve a full

joint relaxation extrapolated from the average time to solve a single agent’s relax-

ation. The time is extrapolated because the relaxation was stopped early when-

ever an agent plan that changed the violated constraints was generated. In the

table we compare a special case of relax-&-merge (fragment-based planning chap-

ter 3) with (column 2) MIndiGolog (Kelly and Pearce, 2006), a Prolog-based multi-

agent Golog interpreter; and (column 3) cpx, a constraint programming solver

using Lazy Clause Generation (Ohrimenko, Stuckey, and Codish, 2009). The im-

plementation from chapter 3 was instrumented to find the proportion of time

spent on relaxation (column 4). All experiments were performed on a 2.4 GHz
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Intel Core i3 with 4GB RAM running Ubuntu 12.04. Our implementation used

Gurobi 5.1, CPython 2.7.3. We used the binary version of cpx included with

MiniZinc 1.6.

4.8 Related Work

Baier et al. (Baier et al., 2008) have considered the compilation of a restricted

class of Golog programs using an intermediate language for capturing tempo-

ral logic preferences. This could allow PDDL3-compliant classical planners to

tackle problems of a similar nature, utilising a range of well studied tractable re-

laxations. However, PDDL is less expressive than Golog in general (Röger and

Nebel, 2007). Moreover, the application of classical approaches to multi-agent

planning problems requires knowledge of each agent’s goals and transition func-

tion. In contrast, the approach proposed in this chapter requires only that agents

can generate optimal plans given a penalty function.

Delete relaxation is the most common of these relaxations and has been ap-

plied to Golog to generate a heuristically good execution (Blom and Pearce, 2010).

However (Blom and Pearce, 2010) does not use the delete relaxation to generate

lower bounds as no attempt is made to approximate the optimal solution to the

relaxed problem, this could limit the accuracy of information derived from this

heuristic. The alternative search strategies that are applicable to the bounded-

benefit programs we introduce in this chapter could allow this issue to be ad-

dressed.

In contrast to delete relaxation, our approach introduces precondition relax-

ation and demonstrates its applicability to both computing relaxations in multi-

agent problems, and constructing feasible joint executions.

Abduction has been used extensively in planning, however only one pub-

lished approach the authors are aware of uses abduction to synthesise plans. In
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this approach planning is achieved using predicates distinguished as abducible,

and is formalised in the event calculus (Shanahan, 2000), however this work does

not consider optimisation or multi-agent applications. The use of costs in con-

junction with abduction has also been used in multi-agent reasoning for plan

recognition (Appelt and Pollack, 1992).

4.9 Conclusions

We have introduced a notion of cost to the situation calculus, and described a

logical framework to prove the relative quality of solutions to planning problems

in Golog without the need to enumerate the solution space. These enable more

control of the search algorithm, and with further work could allow the integration

of informed search techniques from automated planning.

Our main contribution is precondition relaxations, a class of relaxations that

are particularly applicable to multi-agent domains. Our experimental results

show that relaxations can be chosen which yield dramatic speedups and scale lin-

early with increasing numbers of interacting agents. These relaxations can be use-

fully and systematically varied, so as to not only improve the lower bounds they

generate, but also to generate feasible joint executions from relaxed per-agent

plans.

We have explained the restrictions on domains where these relaxations can

be applied and described some simple transformations that can be applied, to

ensure these properties hold. Additionally we describe temporal merging which

represents additional constraints that can be added to a domain such that the

overhead of merging per-agent plans can be effectively reduced.

Importantly, these relaxations and approaches to search can be applied with-

out knowledge of any agent’s program, so long as those agents can be queried

for their optimal plan under a given penalty function.



Part II

Cost-Optimal Classical Planning

77





Introduction to Part II 79

Introduction to Part II

Cost-optimal classical planning has been dominated by heuristic search algo-

rithms in recent decades, and the A* algorithm and its symbolic analogues in

particular. We introduce two algorithms in this part: a novel plan-space search

approach which generalizes the concept of landmarks; and a depth-first approach

which adapts recent ideas from satisficing planning to the optimal case.

The algorithms in this part of the thesis can be seen as attempting to incre-

mentally learn the perfect heuristic h∗, learning from two quite different notions

of conflict.

Chapter 5 introduces “operator sequencing” which iteratively computes an

optimal set of operators which may be sequencable into a plan, the sum of the

costs of these operators being an admissible heuristic estimate. If that set is not

sequencable, a “generalized landmark” is computed, forcing the next set of op-

erators to contain at least one copy of an operator that was missing from the

previous iteration.

Chapter 6 presents “Conflict-Directed Heuristic Learning”, the only completely

state-based algorithm in this thesis. This approach generalizes IDA*, and inte-

grates heuristic evaluation, successor generation and dominated path detection

in a single satisfiability problem using our novel “clausal heuristics” that can be

used to incrementally learn the perfect heuristic.





Chapter 5

Sequencing Operator Counts

In this chapter we introduce “Generalised Landmarks”, and integrate them into the re-

cently developed framework of operator-counting heuristics. We use a SAT-MIP hybrid

approach to incrementally learn Generalised Landmarks that encode the perfect heuris-

tic, h∗, stopping when it finds a plan having the same set of operators as the admissible

operator counting heuristic.1

5.1 Introduction

We investigate the problem of sequencing operator counts obtained from an oper-

ator counting heuristic. The algorithm will find a feasible sequence, if it exists, or

obtain an explanation why there is no plan that uses only the operators counted.

We refer to these explanations as generalised disjunctive action landmarks.

Disjunctive action landmarks are a core feature of many admissible heuris-

tics (Helmert and Domshlak, 2009; Bonet and Helmert, 2010; Haslum, Slaney,

and Thiébaux, 2012b; Imai and Fukunaga, 2014). Admissible heuristics based on

these landmarks count the occurrence of any operator at most once. Most are

1The research presented in this chapter was published in Toby O. Davies, Adrian R. Pearce,
Peter J. Stuckey, and Nir Lipovetzky (2015). “Sequencing Operator Counts”. In: International Con-
ference on Automated Planning and Scheduling (ICAPS 15), pp. 61–69, and reproduced in abridged
form as Toby O. Davies, Adrian R. Pearce, Peter J. Stuckey, and Nir Lipovetzky (2016). “Sequenc-
ing Operator Counts”. In: International Joint Conference on Artificial Intelligence (IJCAI 16), pp. 4140–
4144.
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dominated by the optimal delete relaxation h+ (Helmert and Domshlak, 2009).

We generalise this notion of disjunctive action landmarks to count operators

multiple times, and show that admissible heuristics using generalised landmarks

are capable of defining the perfect heuristic h∗. As disjunctive action landmarks

are the only kind of landmark we consider in this chapter, we will refer to them

simply as “landmarks”.

We present a complete, incremental algorithm for generating generalised land-

marks, prove that generalised landmarks can encode h∗, and experimentally ver-

ify that this algorithm computes h∗. We show that even if we compute h∗, the

corresponding operator count does not necessarily represent a valid plan. Our

approach can be used both as an incremental lower bound function and as an

optimal planner, much like h++ (Haslum, Slaney, and Thiébaux, 2012a), as our

approach does not terminate until it finds a proof that it has computed h∗, i.e.

finds a plan with optimal cost.

We explain this approach to planning in terms of Logic-Based Benders Decom-

position (LBBD). LBBD partitions an optimisation problem in terms of a Mixed

Integer Programming master problem, and one or more combinatorial sub-problems

used to explain flaws in the master problem.

This approach to planning is particularly promising for two reasons. Firstly,

it introduces a principled interaction between operator-counting heuristics and

SAT. This interaction can be applied to any explanation-based combinatorial search

approach including SAT Modulo Theories (SMT) (Nieuwenhuis, Oliveras, and

Tinelli, 2006) and constraint programming using Lazy Clause Generation (LCG)

(Ohrimenko, Stuckey, and Codish, 2009). Constraints or theories capable of gen-

erating clausal explanations can be added to the SAT model we present, poten-

tially allowing direct integration of cost-optimal planning with SMT and state-of-

the-art scheduling approaches based on LCG. Planning Modulo Theories prob-

lems (Gregory et al., 2012) could therefore potentially be tackled using the exten-
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sive range of existing theories and constraints already implemented by the SMT and

constraint programming communities.

Secondly, this approach decomposes the planning problem into problems for

which there exist well-suited optimisation technologies: Mixed Integer Program-

ming handling the linear counting constraints; and Conflict-Directed Clause Learn-

ing for the problem of operator sequencing given operator counts. This allows

planning to take advantage of the ever improving performance of both of these

widespread and industrially applied technologies.

5.2 Preliminaries

SAS+ planning A SAS+ planning task is a tuple 〈V, O, s0, s∗, c〉 where V is a set

of finite domain state variables, O is a set of operators, s0 is a full assignment of

each variable to one of its values representing the initial state, and s∗ is a partial

assignment of some subset of V representing the goal states. Finally c is a function

O→N+ that assigns a non-negative cost to each operator.

Each variable X ∈ V has a domain D(X), we sometimes abuse notation

and write X = x ∈ V which should be read X ∈ V ∧ x ∈ D(X). Each op-

erator o has a set of preconditions pre(o) which is a partial assignment repre-

senting the preconditions of that operator, and a set of postconditions post(o)

which is a partial assignment representing the effects of the operator. Producers,

prod(X=x) = {o | X=x′ ∈ pre(o) ∧ X=x ∈ post(o) ∧ x′ 6= x} are the operators

which cause X=x to become true.2

A state s in the search space is a full assignment of every variable to a value.

State s is said to satisfy a partial assignment F if all assignments in F are also in s,

i.e. X=x ∈ F ⇒ X=x ∈ s. A state is said to be a goal state if it satisfies the partial

2Note for readers familiar with the planning literature, for simplicity, we do not distinguish
between preconditions and prevail conditions in this thesis.
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assignment s∗.

An operator o ∈ O is applicable in s if s satisfies the partial assignment pre(o).

If o is applicable in state s, applying o yields a new state s′ which is the same as s

except that all assignments X=x ∈ post(o) replace any assignment to X.

A plan π is a sequence of operators o1, · · · on such that o1 is applicable in s0,

each subsequent operator is applicable in the state resulting from applying the

previous operators in sequence, and the final state satisfies s∗. An optimal plan

has the minimum sum of operator costs of all plans, a SAS+ planning task may

have many optimal plans.

Mixed Integer Programming A Mixed Integer Program (MIP) is a representa-

tion of a combinatorial optimisation problem in terms of linear constraints over

some finite set of integer and continuous variables. Finding a solution to a MIP

is an NP-complete problem, however its linear relaxation, (which replaces all in-

teger variables with continuous ones) can be optimised in polynomial time.

In recent years many admissible planning heuristics have been proposed that

use linear programs (Van Den Briel et al., 2007; Coles, Fox, Long, et al., 2008;

Bonet, 2013; Pommerening, Röger, et al., 2014; Bonet and Briel, 2014).

Of particular interest is the family of operator-counting heuristics. Operator-

counting uses a linear programming framework with a common set of variables

Yo representing the count of occurrences of each operator o in some relaxed rep-

resentation of a plan. One or more component heuristics can be encoded as linear

constraints on these variables such that the combined operator-counting heuristic

dominates each of the component heuristics, often strictly (Pommerening, Röger,

et al., 2014). Pommerening, Röger, et al. describe how to encode a variety of

heuristics within this framework, including optimal cost partitioning (Katz and

Domshlak, 2008) of LM-Cut landmarks (Helmert and Domshlak, 2009).

As presented in the original paper, operator-counting heuristics may be linear



5.2 Preliminaries 85

programs, by requiring operator count variables to be integer, we obtain a MIP

that is at least as tight as the LP. As we wish to obtain perfect operator counts,

branching on operators will be essential in general, and in the remainder of this

chapter we will assume that any operator-counting heuristics are in fact MIPs,

and we will be explicit when we solve only the linear relaxation.

Operator Counts The solution to an operator-counting heuristic assigns a count

to each operator o whenever the MIP is optimised. To distinguish the count as-

signed to each operator by a solution to an operator-counting heuristic from the

variable Yo, we refer to a solution to the heuristic as an operator-count C.

We primarily treat an operator-count as a function from operators to their

count assigned in the last solution of the MIP. The values of each Yo will change

throughout any solving process, conversely an operator count C should be con-

sidered an immutable copy of the assignments. We also refer to operator counts

as multisets: a count C is said to be a superset of another count C ′ if ∀o ∈ O :

C(o) ≥ C ′(o).

An operator-count C is said to be a projection of a plan π if for each distinct

operator o, there exist exactly C(o) copies of that operator in π. We say an opera-

tor count is perfect if it is the projection of an optimal plan.

Delete Relaxation The delete relaxation changes the SAS+ transition function

such that applying an operator o does not replace previous assignments to vari-

ables, but accumulates them.

Imai and Fukunaga (2014) introduce a new MIP encoding of the optimal delete

relaxation heuristic h+. Their model uses 0-1 variables U (o) for each operator o

to represent the fact that at least one o appears in the delete-relaxed plan. They

also present an extension to h+ which they call “counting constraints” which are

roughly equivalent to the lower-bound constraints in single-variable flow mod-
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els (Van Den Briel et al., 2007). These constraints utilise additional integer vari-

ables N (o) which count occurrences of an operator o. For consistency with Pom-

merening, Röger, et al. (2014), we will denote N (o) as Yo.

Incremental lower bounding Incremental lower bounding is a general tech-

nique for obtaining high-quality lower bounds, which can be useful in proving

the quality of an existing plan. Incremental lower bounding was most promi-

nently used in planning by Haslum, Slaney, and Thiébaux (2012), however the

technique is used throughout the various optimisation communities, referred to

as “dual” techniques, reflecting the dual (lower) bound obtained from a linear

program. Haslum, Slaney, and Thiébaux (2012) describe a distinctive property

of incremental lower bounding techniques as “informed by flaws in the current

[optimum]”.

5.3 Generalised Landmarks

The constraints in the h+ model of Imai and Fukunaga (2014) rely on operator

variables being binary. In general this does not hold with operator counting

heuristics. In particular, flow-based heuristics (Van Den Briel et al., 2007; Bonet,

2013; Bonet and Briel, 2014) can count arbitrarily many executions of an oper-

ator. Imai and Fukunaga use N (o) variables to handle this in their “counting

constraint” extension. Changing these N (o) variables to Yo leads us to a simple

but interesting alternative notation for their core U (o) variables, which we de-

note [Yo ≥ 1].3 We generalise this notion by separating variables representing

the number of times an operator o occurs, Yo, from variables representing if an

operator occurs at least k times, [Yo ≥ k], which we refer to as bounds literals.

3Iverson brackets denote binary variables of the form [P] that take the value 1 iff the condition
P holds.
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R : l r
move-r

move-l

Bi : l g r

grip-i-l drop-i-r

grip-i-rdrop-i-l

G : e n
grip-*-*

drop-*-*

Figure 5.1: Domain Transition Graphs in gripper.

Bounds literals can be used to form linear constraints of the form [Yo1 ≥ k1] +

· · · + [Yon ≥ kn] ≥ 1 which we call generalised landmark constraints. Note that

only one bounds literal need occur per operator within the same landmark. If the

same operator o had two literals [Yo ≥ k1] and [Yo ≥ k2] in the same landmark

with k2 > k1, then [Yo ≥ k2] can be omitted without changing the solutions, as

[Yo ≥ k1] ≥ [Yo ≥ k2].

Definition 5.1. A generalised landmark constraint is a linear inequality of the form:

∑
i∈L

[Yoi ≥ ki] ≥ 1

for some L ⊆ O.

We call these generalised landmarks because any traditional disjunctive action

landmark can be encoded as a generalised landmark by setting all ki = 1.

Consider an instance of the simplified gripper domain shown in Figure 6.2

with 2 balls. The goal is to move both balls from the left room to the right, using

a robot with a single “gripper” which can hold only one ball at a time. The robot

starts in the left room, and can only pick up and drop balls in the room it is

currently occupying.
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The operator count obtained by h+ on this domain counts the following.

C(o) = 1 if o ∈ {move-l, move-r, grip-1-l, grip-2-l, drop-1-l, drop-2-l}

C(o) = 0 otherwise

Note that there is only one occurrence of the move-r operator, however all feasible

plans must contain two of this operator. We can add the constraint

[Ymove-r ≥ 2] ≥ 1

to explain this requirement. With the addition of this constraint the MIP returns

the optimal operator count for this instance.

If there existed an alternative path for the robot R to move between rooms

the constraints are more complex. Consider an additional operator move-r’ iden-

tical to move-r. The constraint we described above would no longer be valid: it

is possible to solve the planning problem with one of each of the two identical

operators.

However adding both of the following constraints:

[Ymove-r ≥ 2] + [Ymove-r’ ≥ 1] ≥ 1

and

[Ymove-r ≥ 1] + [Ymove-r’ ≥ 2] ≥ 1

captures the requirement that two of the move operators must occur in any fea-

sible plan. These can be read as “either move-r occurs at least twice, or move-r’

occurs at least once”; and “either move-r occurs at least once, or move-r’ occurs at

least twice.” The conjunction of these implies that a total of at least two of these

operators must occur.

To enforce the correct behaviour of bounds literals we need to add the follow-



5.3 Generalised Landmarks 89

ing domain constraints4 to our model:

[Yo ≥ k] ≤ [Yo ≥ k− 1] if k > 0 (5.1)

Yo ≥
∞

∑
i=1

[Yo ≥ i] (5.2)

Yo ≤ M[Yo ≥ k] + k− 1 (5.3)

Where M is a sufficiently large number such that no feasible plan could contain

more than M of any individual operator. In practice this number need only be as

large as the longest plan the solver could feasibly solve. Constraint 5.1 ensures

that a bound can’t hold unless the next smallest bound also holds; 5.2 ensures

that if k bounds literals are set, then at least k operators must occur; and finally

5.3 ensures that if k or more operators occur, the bounds literal [Yo ≥ k] must be

set.

Note that the constraint

[Ymove-r ≥ 1] + [Ymove-r’ ≥ 1] ≥ 1

is semantically equivalent to the traditional landmark constraint

Ymove-r + Ymove-r’ ≥ 1

however the former has a tighter linear relaxation since Yo ≥ [Yo ≥ 1] always

holds for any o. For example, the linear relaxation could assign [Yo ≥ 1] = 0.5,

[Yo ≥ 2] = 0.5, Yo = 1. In this case the constraint [Yo ≥ 1] ≥ 1 is violated,

but Yo ≥ 1 is not. Consequently if any operator-counting heuristic uses bounds

literals, it is always preferable to encode landmark constraints using the bounds

4Domain constraints reflect the fact that Yo variables are finite domain variables, and the
bounds literals we use are closely related to bounds literals used in lazy clause generation (Ohri-
menko, Stuckey, and Codish, 2009), where the same term is used.
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literals.

Lemma 5.1. A SAS+ problem’s cost function c can be replaced by c′(o) = c(o) + ε

where ε > 0 leaving at least one identical optimal plan.

Proof. There exists an upper bound on optimal plan length l. Either all actions are

uniform cost and any ε will not change the relative solution costs of minimum-

length plans, or there exists a minimum cost difference between operators δ =

min(c(o)− c(o′) | o, o′ ∈ O ∧ c(o) > c(o′)).

If 0 < ε < δ
l , the sum of ε terms for an optimal plan must be less than δ, and

thus can only change the cost-order of plans which are either both suboptimal, or

of equal cost according to c.

Theorem 5.1. For any solvable SAS+ planning problem having strictly positive action

costs, there exists a set of generalised landmark constraints (with the domain constraints

for all the bounds literals involved) such that solving a MIP with these constraints will

compute h∗(s0).

Proof. An optimal operator count C (which may initially be empty) can be ob-

tained by solving the MIP. If C does not represent the projection of a plan, then

the generalised landmark constraint:

∑
o∈O

[Yo ≥ C(o) + 1] ≥ 1

can be added.

This constraint can be read “at least one operator must be applied at least one

more time”. This is clearly violated by C, and can only possibly invalidate subsets

of C. If any strict subset of C were feasible, C would not be optimal. Consequently

this new constraint changes the optimum solution without affecting the admissi-

bility of the MIP.

There are only finitely many distinct operator counts with the same cost, and

each iteration of this process invalidates exactly one operator count.
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Consequently this process will eventually terminate with: an operator count

that is the projection of an optimal plan, if any plan exists; an infeasible MIP; or an

operator count containing more operators than states in the state space, implying

that no solution exists.

This process will generate sufficiently many generalised landmarks to com-

pute h∗, but each landmark invalidates only one new operator count. Conse-

quently, using these landmarks in a heuristic would likely be inefficient. If we

were to omit bounds literals for some operators from the landmark, it would in-

validate many more operator counts. This is similar to traditional landmarks

which are stronger when they contain a small subset of operators. To obtain

smaller, more focused landmarks we turn to the conflict analysis built into mod-

ern “Conflict-Directed Clause Learning” SAT solvers.

5.4 SAT Encoding for Operator Sequencing

Assumptions are a feature of most SAT solvers’ incremental interfaces. These

allow the user to temporarily assert unit clauses. Importantly, if the resulting

formula including these unit clauses is not satisfiable, the final conflict in the

unsatisfiability proof can always be re-written in terms of a subset of the assump-

tions. This conflict clause represents a necessary (though not in general sufficient)

property required of any model. In our SAT encoding assumptions will be used

to ensure that only the operators selected by the operator counting heuristic are

actually used.

The most important high-level constraint in achieving this is the at-most-k

constraint (denoted ≤k). ≤k (S) enforces that k or fewer literals from a set S are

simultaneously true. This is a well studied constraint in satisfiability, and we use

the sequential counter encoding by Sinz (2005), which is identical to the O(n)

encoding of Rintanen (2006) in the ≤1 case.
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We denote by X =i x that X = x holds after operator layer i and by oi that

operator o occurs in layer i.

Given an operator count C and a number of layers L = ∑
o∈O
C(o), the following

constraints for each layer l form the core SAT model:

≤1 ({ol | o ∈ O})

∀X ∈ V : ≤1 ({X=l xi | xi ∈ D(X)})

∀X=x ∈ s0 : X=0 x

∀o ∈ O :
∧

X=x∈pre(o)

(¬ol ∨ X=l−1 x)

∀o ∈ O :
∧

X=x∈post(o)

(¬ol ∨ X=l x)

∀X=x ∈ V : X=l+1 x ⇒ X=l x ∨
∨

o∈prod(X=x)

ol

∀X=x ∈ s∗ : X=L x ∨ [ΣC(o) ≥ L + 1]

∀o ∈ O : ≤C(o) ({ol | l ∈ [1, L]}) ∨ [Yo ≥ C(o) + 1]

Additionally we add the following assumptions: ¬[ΣC(o) ≥ L + 1] (i.e. that the

goal is achieved by layer L); and ¬[Yo ≥ C(o) + 1] for each operator o. Any

resulting conflict clause will be written in terms of the negation of a subset of

these assumptions.

The conflict clause will thus contain [ΣC(o) ≥ L + 1] and some subset of the

bounds literals implied by the operator count. Specifically it will be of the form:

[ΣC(o) ≥ L + 1] ∨ [Yo1 ≥ C(o1) + 1] ∨ · · · ∨ [Yon ≥ C(on) + 1]

This clause must be a necessary condition on all plans of length L or less. Since

it is also satisfied by any operator count having more than L actions in total, it is

also a necessary condition on all plans. This translates to a generalised landmark
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cut by replacing ∨ with + and appending ≥ 1. The only complication is the

¬[ΣC(o) ≥ L + 1] literal, which we tackle by adding an artificial operator T with

zero cost (representing the total operator count) to the MIP, constrained such that:

YT = ∑
o∈O

Yo

Using this new operator, we can replace the total operator count literal [ΣC(o) ≥

L + 1] with the bounds literal for the artificial operator T:

[ΣC(o) ≥ L + 1] ≡ [YT ≥ L + 1]

It should be noted that the SAT formula we describe only ensures that no more

operators occur than were chosen in the operator count. Thus it can sequence any

subset of an operator count, allowing it to be used with approximate solutions

while guaranteeing that the same proof of admissibility as in Theorem 5.1 applies.

We described earlier the two “hand-made” generalised landmarks one would

add in order to improve the delete relaxation in the gripper domain. However

the first generalised landmark generated from the SAT solver was:

[Ygrip-1-l ≥ 1] + [Ydrop-1-r ≥ 1] + [Ymove-l ≥ 2]

+ [Ydrop-2-r ≥ 1] + [Ygrip-2-l ≥ 1] + [Ymove-r ≥ 2]

+ [YT ≥ 7] ≥ 1

In spite of the conflict analysis in MiniSAT (Eén and Sörensson, 2004), this cut

clearly contains irrelevant bounds literals, and “cut strengthening” (removing ir-

relevant parts of generated cuts) will definitely be an important improvement

to techniques using generalised landmarks. In some scheduling domains, cut

strengthening has been shown to be responsible for orders of magnitude de-

creases in run-time (Ciré, Coban, and Hooker, 2013).
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Each operator omitted from a conflict roughly doubles the number of opera-

tor counts that conflict applies to, drastically decreasing the number of iterations

needed to find a perfect operator count. In our experiments, most of the conflicts

learnt included no more than 10% of the total operators. While this sounds good,

in practice this still means many conflicts were over 200 operators long, so there

is clear room for improvement.

5.5 Planning using Logic-Based Benders

Logic-Based Benders Decomposition (LBBD) (Hooker and Ottosson, 2003) is an

approach to decomposing combinatorial search problems into a master MIP and

one or more combinatorial sub-problems. The master and sub-problems share

some variables such that the sub-problem becomes easier to solve or prove in-

feasible once those variables it shares with the master are fixed. Importantly,

LBBD allows for mixing of different optimisation technologies which may be bet-

ter suited to the master problem and sub-problems.

The master problem represents a relaxation of the original problem, and the

sub-problem checks for and explains flaws in that relaxation. Explanations in this

context are constraints on the variables in the master problem. By incrementally

adding these explanations, the master problem incrementally approaches the true

solution.

First the master MIP is solved, and the optimal values of the shared variables

are taken from the master, and this optimal assignment is assumed within the

sub-problem, which is then solved. If the sub-problem is satisfiable then a so-

lution to the original problem has been found. If, as in our case, the objective

function is fully modelled in the master problem, then this solution is optimal.5

5In general, where the sub-problem requires optimisation this is not true, but we omit this
case for simplicity as it does not apply to our decomposition. See Hooker and Ottosson (2003).
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Operator Counting
MIP Model

Operator Sequencing
SAT Model

Operator Counts

Generalised Landmarks
Master Problem Subproblem

Figure 5.2: A Logic-Based Benders Decomposition Approach to Optimal Plan-
ning

If the sub-problem is not satisfiable, some violated necessary condition on the

shared variables is detected, and a constraint (the Benders cut) representing this

condition is added to the master problem. The process is then iterated until the

master problem’s relaxation becomes satisfiable.

In our case, the master MIP is any operator-counting heuristic, the operator

counts (strictly speaking the bounds literals) are shared variables, and the termi-

nation condition is that the optimal operator count is perfect.

Canonical planning (where each operator can be applied at most once) is NP-

complete (Vidal and Geffner, 2006), meaningfully easier than the full planning

problem. Many domains in planning are canonically plannable, that is there ex-

ists a plan containing only one instance of each operator. Our sub-problem of

sequencing the operators is pseudo-polynomially reducible to a canonical plan-

ning problem, by replacing each operator o with C(o) copies of itself, since C(o)

is usually small in optimal plans the sub-problem is often much easier than the

full problem in practice.

In our problem solving the master MIP problem takes considerably longer

than the SAT sub-problem. Hence we wish to consider how to speed up the

LBBD solving process by using approximate answers to the master problem.

Solving the linear relaxation of the master MIP problem is considerably faster

than solving it to integrality. Given an optimal solution to the linear relaxation,

rounding up the variables will simply increase the operator counts available to
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the sequencing sub-problem (compared to the MIP optimal). Since the SAT sub-

problem only makes use of the upper bounds on operator counts, if it finds this

relaxed sub-problem is unsatisfiable, it will generate a cut which removes the

current LP optimum. If on the other hand it finds a solution to this relaxed se-

quencing sub-problem, then we have a feasible plan to the original problem. If

this plan has the same cost as the (rounded up) lower-bound found by the LP,

then we have optimally solved the planning problem. If the plan cost is more

than the lower bound, this solution can be used to bound the search process: the

MIP no longer needs to explore branches where the lower bound exceeds the cost

of the best suboptimal plan found.

If a plan is found from a rounded-up operator count from an LP optimum, the

MIP needs to branch before we can continue adding cuts. Importantly all modern

MIP solvers provide user-specified cut generation and heuristic solution facilities

via callbacks. We call our SAT sequencing procedure inside the python callback

interface of Gurobi 5.6 (Gurobi Optimization, 2013) if both the cardinality and

objective of the rounded-up operator count is within 20% of the linear count. We

test for this to avoid generating SAT formulas for counts that are too far from the

linear optimum, as the memory cost of adding layers to the formula is quite high.

If we call the sequencing procedure, we either add a violated cut or a heuristic

solution.

We do not modify Gurobi or MiniSAT’s default branching behaviours, though

it should be noted that state-of-the-art planning-as-satisfiability solvers use heuris-

tics to simulate backward-chaining (Rintanen, 2012). We expect similar improve-

ments could be possible by tailoring branching strategies in a MIP solver for the

operator counting problem.

There is one caveat to using callbacks to add cuts to the MIP: it is impossible

to lazily add bounds literals during the MIP’s search. Consequently we do two

things: pre-allocate bounds literals up to [Yo ≥ 2]; and add a relaxed version
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of the cut where each absent literal [Yo ≥ k] is replaced by Yo/k. This happens

in only a small percentage of cuts as even rounded-up operator counts rarely

contain more than one of each operator. Cuts containing such Yo/k terms are

weaker than the normal landmarks, as for any value of Yo:

[Yo ≥ k] ≤ Yo/k

However unless there is more than one missing bounds literal, this constraint still

invalidates the current linear optimum. If a weakened constraint is generated that

does not invalidate the current linear optimum, the MIP search is restarted after

any weakened terms are replaced with the correct bounds literals.

This general approach of computing constraints violated by a close-to-optimal

solution has many similarities with the improved landmark generation proce-

dure of Haslum, Slaney, and Thiébaux (2012). In particular the incremental lower-

bounding procedure h++ is very similar to our approach: both maintain a relax-

ation of the planning task (a delete-free problem with conjunctive conditions or

an operator-counting MIP respectively); both incrementally refine their relaxation

by finding flaws in the current relaxation’s optimum (required conjunctive condi-

tions or generalised landmarks respectively); and both exclusively find necessary

properties of all plans, rather than focusing on extending promising plan prefixes,

as in A∗-based planners.

5.6 Experiments

The main purpose of the experiments is to experimentally validate Theorem 5.1

and to investigate how sequencing performs on a wide array of near-optimal

operator counts. We use IPC-2011 benchmarks, since our current prototype does

not handle conditional effects required by IPC-2014 benchmarks, and since the
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implementation is preliminary it scales poorly to the significantly larger IPC-2014

benchmarks.

From the IPC-2011 benchmarks, we omit the floorplan domain as hpp’s

parser rejects the domain file, and the tidybot and parking domains as OpSeq’s

Python base heuristic encoder exceeds the 1-hour time limit in more than 90% of

instances.

The initial MIP master problem contains constraints from the dynamically-

merged flow heuristic (Bonet and Briel, 2014) (including LM-Cut landmarks (Helmert

and Domshlak, 2009)), and the h+ base encoding of Imai and Fukunaga (2014).

Since sequencing considers all subsets of an operator count, rounding the lin-

ear optimum up makes for harder-to-sequence solutions than the true MIP op-

tima most of the time. Nonetheless, Figure 5.3 shows that 99% of all the sequence

calls take less than 1 second, although there is a significant long-tailed distribu-

tion: 0.01% of sequence calls took over 5 minutes. Some of this variance should

be reduced by modifying the SAT solver’s variable choice heuristics: the sequen-

tial counter implementation of ≤1 which we use can be made significantly more

robust using such techniques (Marques-Silva and Lynce, 2007).

We show breakdowns for the sequence times in each domain in the left-hand

part of Table 5.1. The “Seqs” column shows the number of sequence calls made

in all instances of a domain. The “Dom SeqTime” columns show the average

sequence times for all sequence calls made in that domain. The “Inst SeqTime”

columns show the arithmetic mean of instance averages. This biases the results

towards the behaviour seen in larger instances where fewer sequence calls occur.

For example, in barman, the overall average sequence time was 0.38 seconds, but,

as should be expected, most of the nearly 80,000 sequence calls occurred in easier

instances so the average sequence times for each instance, treating each instance’s

average as a single data point, show the average was 13 seconds. The first fifteen

instances of barman have sub-second geometric mean sequence times, the largest
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five however have geometric means between 4 and 47 seconds, but under 400

sequence calls were made.

We observe similar sub-second geometric means in most domains in both

cases, though the arithmetic means are noticeably larger in larger instances. We

believe there are two reasons for this: firstly the sequence times include generat-

ing the SAT formula, which often takes longer than solving in the first sequence

call; and secondly, earlier calls have fewer learned clauses to aid solving.

To evaluate our technique as a dual (incremental lower-bounding) algorithm,

we use a dual of the standard IPC quality score, where instead of dividing the

best known plan cost by the plan cost found by the planner, the lower bound

found by the planner is divided by the best lower bound proved by any planner.

We compare against hpp, a comparable incremental lower bounding solver; and

SymBA*-2 the winner of the most recent IPC optimal track (Torralba et al., 2014).

We use the versions of both planners submitted to the IPC 2014 optimal track.

As observed by Haslum, Slaney, and Thiébaux (2012), optimal planners us-

ing admissible heuristics in state-based (or symbolic) search can also be used as

lower-bounding procedures by observing the smallest f value of nodes in the

open list. Since SymBA*, like most other planners, regularly prints its best known

lower bound, it is trivial to obtain a lower bound from its output, even if it has

not successfully solved the planning problem. Table 5.1 shows for each solver

the number of instances solved optimally (column “C”); the number of instances

where the solver found the best bound of any solver (column “=”); and the dual

quality score described above (column “Q”).

We see from these results that SymBA*-2 is extremely effective, beating both

dual techniques in all three metrics in all but 5 domains, although in 4 of these

5 domains, OpSeq earns the best dual quality score, and in 3 domains even beats

SymBA* in coverage. OpSeq also beats the previous state-of-the-art in incremental

lower bounding in 9 of the 11 domains investigated.
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Figure 5.3: Cumulative Frequency of Sequence Times

We see from the quality scores in the “Q” columns, that even when OpSeq fails

to solve it usually finds good lower bounds. This can be seen particularly in the

nomystery and transport domains. For primal techniques it is far quicker to

find a plan than to prove that a plan is optimal. Similarly for a dual technique it

is much quicker to find h∗ than it is to prove that we have found it by finding a

plan.

Combinations of primal and dual techniques are among the most effective op-

timisation techniques: commercial mixed integer programming solvers use both

lower bounding from the linear relaxation and sophisticated primal heuristics to

find solutions close to the linear optimum. It could be argued that this is to some

extent what SymBA* does too: it interleaves spending time on improving ab-

stractions (dual bounds) with searching in the original search space (Edelkamp,

Kissmann, and Torralba, 2012).



5.6 Experiments 101

D
om

Se
qT

im
e

In
st

Se
qT

im
e

O
pS

eq
H

pp
Sy

m
BA

*-
2

Be
nc

hm
ar

k
Se

qs
A

ri
th

G
eo

m
A

ri
th

G
eo

m
C

=
Q

C
=

Q
C

=
Q

b
a
r
m
a
n

79
39

2
0.

38
0.

06
13

.0
6

4.
84

0
0

9.
37

0
0

9.
14

11
20

20
.0

0
e
l
e
v
a
t
o
r
s

74
37

2.
55

0.
09

2.
08

0.
26

11
11

19
.3

8
0

0
16

.4
7

19
20

20
.0

0
n
o
m
y
s
t
e
r
y

87
61

0.
04

0.
01

0.
25

0.
03

5
10

18
.3

3
5

8
8.

00
15

18
19

.8
2

o
p
e
n
s
t
a
c
k
s

16
55

11
.2

1
0.

12
63

.1
9

1.
60

0
0

5.
52

0
0

5.
52

20
20

20
.0

0
p
a
r
c
p
r
i
n
t
e
r

10
2

1.
65

0.
09

2.
38

0.
19

20
20

20
.0

0
20

20
20

.0
0

17
17

18
.6

3
p
e
g
s
o
l

91
46

6
0.

45
0.

02
13

.5
3

0.
12

2
5

15
.9

7
0

0
12

.4
3

19
20

20
.0

0
s
c
a
n
a
l
y
z
e
r

57
02

3
0.

04
0.

02
6.

36
0.

15
1

3
7.

99
3

14
18

.9
3

9
10

14
.3

2
s
o
k
o
b
a
n

12
11

17
0.

38
0.

11
1.

77
0.

34
0

2
10

.7
0

1
2

11
.2

7
20

20
20

.0
0

t
r
a
n
s
p
o
r
t

52
23

4.
42

0.
17

33
.7

6
8.

38
5

13
19

.4
7

0
0

12
.4

1
11

14
17

.8
1

v
i
s
i
t
a
l
l

97
15

.8
4

0.
08

14
.4

9
0.

27
14

20
20

.0
0

5
13

19
.2

1
12

12
15

.7
0

w
o
o
d
w
o
r
k
i
n
g

16
0

11
.8

3
0.

61
11

.5
7

0.
97

20
20

20
.0

0
18

18
19

.9
5

19
19

19
.7

4
To

ta
l

—
—

—
—

—
78

10
4

16
6.

74
52

75
15

3.
33

17
2

18
9

20
6.

02

Ta
bl

e
5.

1:
A

ve
ra

ge
se

qu
en

ce
ti

m
es

,C
ov

er
ag

e
(C

),
N

um
be

r
of

be
st

bo
un

ds
(=

),
an

d
D

ua
lq

ua
lit

y
sc

or
es

(Q
)

fo
r

IP
C

-
20

11
se

qu
en

ti
al

op
ti

m
al

tr
ac

k
be

nc
hm

ar
ks

.(
1

ho
ur

ti
m

e-
ou

t,
4G

B
m

em
or

y
lim

it
)



102 Sequencing Operator Counts

5.7 Related Work

We have discussed in several places the relationship between our work and h++.

Counter-example guided Cartesian abstraction refinement (Seipp and Helmert,

2013), which incrementally refines abstractions, rather than landmarks or a delete

relaxation, could also be considered an incremental lower-bounding technique.

The only other approach using SAT-based planning techniques in cost-optimal

planning that the authors are aware of uses MaxSAT combined with a SAT en-

coding of the delete relaxation (Robinson, Gretton, Pham, and Sattar, 2010). SAT

planning has also been used to generate upper bounds to improve performance

of state-based search (Robinson, Gretton, and Pham, 2008).

There have also been a number of “Optimal” SAT encodings, which find cost-

optimal plans only when those plans happen to have the same makespan as the

makespan-optimal plan (Chen, Lu, and Huang, 2008; Giunchiglia and Maratea,

2010). However this is clearly not the same as true cost-optimal planning.

Other generalisations of landmarks have been proposed including “multival-

ued landmarks” (Zhang et al., 2013), which identify operator sets which must

collectively be executed more than once: ∑ Yo ≥ k. These can be encoded in

our generalised landmarks using an artificial operator to group the operators in

the landmark (just as for the total operator count) leading to a constraint like

[∑ Yo ≥ k] ≥ 1; or directly as set of O(( N
k−1)) “standard” generalised landmarks.

There exist other heuristics bounded only by h∗, including many heuristics

enhanced by the PC and PC
ce compilations (Haslum, Slaney, and Thiébaux, 2012a;

Keyder, Hoffmann, and Haslum, 2012) and abstraction heuristics such as merge-

and-shrink (Helmert, Haslum, et al., 2014). Merge-and-shrink like most heuristics

in optimal planning provides only a lower bound to guide search; whereas if an

optimal operator count is sequenced successfully, the planning problem is solved.

Similar behaviour is also seen in the PC and PC
ce compilations: when no flaws can
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be extracted the planning problem is solved optimally.

There are more sophisticated planning-as-SAT encodings that we could have

added our counting constraint to, in particular the ∃-step and ∀-step encodings

(Rintanen, Heljanko, and Niemelä, 2006; Wehrle and Rintanen, 2007), and the

SASE encoding (Huang, Chen, and Zhang, 2012). However the absence of a

tighter upper bound than simply the total number of operators required to refute

any possible sequence of an operator count made the core advantage of these en-

codings less obvious. It would be interesting to compare these base encodings

with ours, and a theorem giving such an upper bound would likely be an impor-

tant breakthrough for the LBBD approach to planning.

5.8 Conclusions and Further Work

We have defined a simple generalisation of landmarks which allows the encod-

ing of admissible heuristics upper-bounded only by h∗. We also introduce a SAT-

based, complete algorithm for generating a generalised landmark violated by a

given operator count which is usually very fast. We experimentally confirmed

that h∗ can be computed using only this algorithm, and demonstrated that it out-

performs the previous state-of-the-art in incremental lower bounding: h++.

Our approach can usually generate violated constraints from solutions to the

linear relaxation of an operator count heuristic, rather than the NP-hard MIP. Im-

portantly, if such a cut can be generated, it is guaranteed to invalidate the current

linear optimum, and the current rounded solution, ensuring such heuristically

generated cuts are relevant. This is in contrast to a similar improvement to a

complete algorithm for generating traditional landmarks (Haslum, Slaney, and

Thiébaux, 2012b), which relies on approximate hitting sets, with no guarantee

that the generated landmark invalidates the current optimum hitting set, nor in-

deed that the landmark will change the next approximate hitting set generated.
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This suggests a more traditional use for our generalised landmark generation al-

gorithm: applying our algorithm to the delete relaxation can generate traditional

landmarks, and the relative performance of this approach would be interesting

to investigate.

There are other more conventional applications for generalised landmarks as

well, such as pre-processing to generate an initial set of generalised landmarks

which can then be used in an analogue of Incremental LM-Cut (Pommerening

and Helmert, 2013). We expect this to provide improved heuristic guidance near

the root of the search where it is most valuable. While we use a complete algo-

rithm to generate landmarks, there is an obvious fast but incomplete algorithm

obtained by simply terminating early when long-tailed behaviour is observed.

Such an approach could also potentially be used as a kind of look-ahead in

an optimal planner: if an operator counting heuristic returns a sufficiently small

operator count, our approach could test if the operator count is sequenceable, and

if so, terminate the search early with an optimal plan.

We plan to investigate an extension to our approach which explains the states

in which generalised landmarks apply, such that landmarks generated in the ini-

tial state can be easily re-used in a state-based search when they become applica-

ble again.

However we chose to explore the more novel LBBD approach to planning us-

ing generalised landmarks in the hope that this decomposition between counting

and sequencing will lead to cost-optimal planning algorithms capable of han-

dling richer constraints such as numeric state variables, resources and scheduling

constraints. These ideas have been extensively addressed, including techniques

taking advantage of SMT (Nareyek et al., 2005; Hoffmann et al., 2007; Gregory

et al., 2012).

We believe this approach is interesting and promising because it allows a prin-

cipled interaction between state-of-the-art heuristics and explanation-based com-
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binatorial search approaches including SAT, SMT and LCG. Any constraint capa-

ble of explaining its inferences can be added to the SAT sub-problem, potentially

allowing direct integration of cost-optimal planning with SMT and state-of-the-

art scheduling approaches based on constraint programming with lazy clause

generation. This means that, by extending the approach we present, we should be

able to solve similar problems to Planning Modulo Theories (Gregory et al., 2012)

by taking advantage of the extensive range of existing theories and constraints

already implemented by the SMT and constraint programming communities.





Chapter 6

Conflict-Directed Heuristic Learning

In this chapter we introduce Conflict-Directed Heuristic Learning, which incrementally

learns a near-perfect heuristic using an IDA*-like depth-first state-space search.

6.1 Introduction

There have been a number of recent algorithms developed which learn from con-

flicts encountered during search, notably PDR (Suda, 2014) and DFS-CL(Steinmetz

and Hoffmann, 2016). Neither of these algorithms find cost-optimal plans, al-

though PDR can be configured to produce minimum length plans.

These two algorithms differ slightly in the nature of conflicts they detect and

can learn to avoid. Each search node in PDR (also called a “proof obligation”)

consists of a state in the state space and a count of actions.

Conflicts in PDR are detected when the goal is not achievable from the state

in at most the specified number of actions. From such a conflict, PDR learns

a clause and action count, blocking a set of states which cannot reach the goal

in the specified number of actions. In contrast, search nodes in DFS-CL do not

include any count of future actions and thus recognise conflict only when a state

cannot reach the goal at all.

It appears at first glance that PDR could be trivially generalised by replacing

the limit on the number of actions with a limit on the total action cost. How-

107
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ever, PDR terminates when the clauses representing the set of states which cannot

reach the goal are the same in two adjacent layers. This recognises a fixed point

which occurs when adding actions is not increasing the reachable set of states. It

is not obvious how to generalise this termination condition to the cost-optimal

case.

The idea of limiting the total cost of actions used to reach the goal is however

the same fundamental idea behind the IDA* algorithm (Korf, 1985). In this case

conflicts are inaccuracies in the heuristic function identified when the minimal f

value of a state’s successors is greater than the f -value of that state. IDA* can be

augmented with a so-called “transposition table”, which stores improved heuris-

tic estimates for previously expanded states (Reinefeld and Marsland, 1994).

IDA* with a transposition table eventually learns the perfect heuristic for reach-

able states on the optimal path, and despite not generalising this knowledge, the

transposition table can still be used to avoid an exponential amount of work be-

cause the same state can occur on an exponential number of paths.

This chapter introduces “Conflict-Directed Heuristic Learning” (CDHL), which

generalises IDA* by using regression to analyse why a state’s heuristic value is

too low and learning a clause that generalises to many states which may be seen

in the future.
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IDAStarTT(h, s, hmax)
if(Goal(s))

return h
while(h(s) ≤ hmax)

o := argmino(h(s[o]) + c(o)|o ∈ O)
if(h(s[o]) + c(o) > h(s))

h := UpdateH(h, s, h(s[o]) + c(o))
else

h := IDAStar(h, s[o], h(s)− c(o))
if(h(s[o]) + c(o) ≤ hmax)

return h
return h

Figure 6.1: Pseudo-code for learning IDA* (including IDA* with a transposition
table and CDHL)

6.2 Preliminaries

SAS+ planning A SAS+ planning task is a tuple 〈V, O, s0, s∗, c〉 where V is a set

of finite domain state variables, O is a set of operators, s0 is a full assignment of

each variable to one of its values representing the initial state, and s∗ is a partial

assignment of some subset of V representing the goal states. Finally c is a function

O→N+ that assigns a non-negative cost to each operator.

Each variable X ∈ V has a domain D(X), we sometimes abuse notation

and write X = x ∈ V which should be read X ∈ V ∧ x ∈ D(X). Each op-

erator o has a set of preconditions pre(o) which is a partial assignment repre-

senting the preconditions of that operator, and a set of postconditions post(o)

which is a partial assignment representing the effects of the operator. Produc-

ers, prod(X = x) = {o | X = x 6∈ pre(o) ∧ X = x ∈ post(o)} are the operators

which cause X=x to become true. Note that for simplicity, we do not distinguish

between preconditions and prevail conditions in this chapter.

A state s in the search space is a full assignment of every variable to a value.

State s is said to satisfy a partial assignment F if all assignments in F are also in s,
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i.e. X=x ∈ F ⇒ X=x ∈ s. A state is said to be a goal state if it satisfies the partial

assignment s∗.

An operator o ∈ O is applicable in s if s satisfies the partial assignment pre(o).

If o is applicable in state s, applying o yields a new state s[o] which is the same as

s except that all assignments X=x ∈ post(o) replace any assignment to X.

A plan π is a sequence of operators o1, · · · on such that o1 is applicable in s0,

each subsequent operator is applicable in the state resulting from applying the

previous operators in sequence, and the final state, s0[o1, · · · , on], satisfies s∗. An

optimal plan has the minimum sum of operator costs of all plans, a SAS+ plan-

ning task may have many optimal plans.

STRIPS planning is an equivalent formalism to SAS+ which represents a plan-

ning problem as a tuple 〈F, O, I, G〉, where F is the set of facts that can become

true in some state in the state space, I and G are subsets of F representing the

initial and goal states respectively. While the initial state is fully specified, any

state s such that s ⊇ G is a goal state.

The set of operators, O, is defined by four functions, pre(o), add(o) and del(o),

each of which return a subset of F representing, respectively: the minimum set of

facts that must be true to apply o; the facts that are added to the state after o was

applied; and the facts deleted from the state after o was applied.

From this definition it follows that any state having strictly more facts than

another cannot be further from the goal. Indeed, in STRIPS planning especially, it

is what is not true in a state that defines its heuristic value. The “Clausal Heuris-

tics” we will define in later sections of this chapter exploit this observation.

SAS+ problems can be transformed fairly straightforwardly into STRIPS prob-

lems by defining F = {[X = x]|X ∈ V, x ∈ D(V)}. We also exploit the isomor-

phism between subsets of finite sets and assignments to sets of boolean variables

to model STRIPS states as partial models of boolean formulae which are then
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R : l r
move-r

move-l

Bi : l g r

grip-i-l drop-i-r

grip-i-rdrop-i-l

G : e n
grip-*-*

drop-*-*

Figure 6.2: Domain Transition Graphs in gripper.

extended or refuted by a satisfiability problem solver.

The satisfiability problem is the NP-complete problem of trying to find an as-

signment to a set of boolean variables such that the assignment is consistent with

an arbitrary boolean formula. Throughout this chapter we will assume that any

formula is in conjunctive normal form (CNF): meaning the formula is a conjunc-

tion of disjunctions (clauses).

Note that a formula of the form

p1 ∧ · · · ∧ pn ⇒ q1 ∨ · · · ∨ qn

is equivalent to the clause:

¬p1 ∨ · · · ∨ ¬pn ∨ q1 ∨ · · · ∨ qn

by transformation using De Morgan’s laws.

Bounds literals are boolean literals of the form [i ≥ k] (encoding the fact that

the variable i takes a value no less than the constant k). Bounds literals can encode

integers as a set of boolean variables linear in the integer’s range. In this chapter



112 Conflict-Directed Heuristic Learning

all integer variables encoded this way have the property that assigning a larger

value allows a strictly larger set of models of the formula. Consequently we only

ever care about the lower bound of integer variables, and the set of bounds lit-

erals can be theoretically infinite in size, and we merely instantiate the ones that

participate in some constraint. We can then safely assign the variable the smallest

k such that the formula is not provably unsatisfiable.

Potential heuristics map each atomic fact in a domain to a (possibly negative)

cost which can be summed to find an admissible heuristic estimate for the state:

h(s) = ∑
f∈s

w( f )

In our gripper example where actions all have a cost of 1, an admissible potential

heuristic could have w([Bi = l]) = 2, and w([Bi = h]) = 1, and all other weights

are zero.

6.3 Reduced-cost

In order to explain the intuition behind the introduced algorithm and to facilitate

proofs we introduce the notion of reduced cost of operators. Reduced-cost is

closely related to consistency, and measures the increase in f value caused by

applying an operator in a specific state.

Using our example potential heuristic from section 6.2, the “move-r” action

would have a reduced-cost of 1 in the initial state as applying this action does

not reduce the heuristic value. However “grip-1-l” and “grip-2-l” would both

have reduced costs of zero because they decrease the heuristic value by the same

amount as their cost.

Definition 6.1 (Reduced cost). The reduced cost of an operator o in state s with respect



6.3 Reduced-cost 113

to a heuristic h is defined to be:

γ(h, s, o) =

h(s[o]) + c(o)− h(s) if pre(o) ⊆ s

∞ otherwise

From this definition we can see that if h is consistent, no operator will have

negative reduced cost in any state.

Iterations of IDA* with a consistent heuristic can be seen as a search for a solu-

tion considering only operators having zero reduced cost.1 Subsequent iterations

then use a new heuristic with an increased value for h(s0). IDA* is often enhanced

with a so-called transposition table, in which case it learns a new heuristic with

an increased value for each state it backtracks over.

In the pseudo-code from figure 6.1, this is equivalent to UpdateH(h, s, v) re-

turning h′ where:

h′(s′) =

v if s′ = s

h(s) otherwise

If we have some insight into the algebraic structure of h, it may be possible to

explain why a state has no zero-reduced-cost operators and encode this in a new

heuristic in such a way that it will not only increase the value for the state being

pruned, but many future states.

To this end we introduce a new class of heuristics, “Clausal heuristics”, which

are highly amenable to explanation, and incrementally learning new features.

This clausal representation is not necessarily the optimal one for learning suc-

cinct, accurate heuristics, but is possibly the simplest for proving why the tech-

nique works and exploring the relationship with related learning techniques in

1Any admissible heuristic can be made consistent by maximising over that state’s f -value and
that of its parent.
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SAT and CP. We briefly discuss alternatives in section 6.7.

6.4 Clausal heuristics

In our gripper example, the following clauses are obviously true of all states:

¬[B1 = r]⇒ [h ≥ 1] ∧ ¬[B2 = r]⇒ [h ≥ 1]

Finding the minimum value of h consistent with this particular SAT formula for

a state assigns a cost-estimate of one to all non-goal states, and zero to any goal.

However more complex formulae can encode more powerful heuristics.

For example, if a ball is neither in the right room, nor in the robot’s hand, we

know we must be at least 3 moves from achieving that goal: the robot must pick-

up the ball; move into the right room; and finally drop it. This could be added to

a clausal heuristic as the clause:

¬[Bi = r] ∧ ¬[Bi = g]⇒ [h ≥ 3]

The focus of this section is on how to automatically derive such clauses from

the conflicts encountered in a IDAStarTT-like search.

Definition 6.2 (Simple clausal heuristics). A simple clausal heuristic consist of a con-

junction of boolean clauses, C each of the form:

¬ fx ∧ · · · ∧ ¬ fz ⇒ [h ≥ ki]

where each fi is a fluent in the state space, and ki is some constant.
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h can be evaluated in a state s as

h(s) = min(k|C ∧ ¬[h ≥ k + 1] ∧
∧

f∈F\s
¬ f )

An important property of a clausal heuristic is that only one clause in C is

actually ever necessary to obtain the same heuristic estimate for any particular

state. We refer to that clause as the explanation for the bound.

eh(s) = oneof(c|c ∈ C ∧UNSAT(¬[h ≥ h(s)− 1] ∧ c ∧
∧

f∈F\s
¬ f ))

any deterministic function can be used for “oneof”.

Because of this, evaluating a clausal heuristic for a state is at worst polynomial

in the number of clauses, even though we are using a satisfiability solver. This is

because the solver does not need to make any decisions (except for the value of

h) as they are all fixed by the state being evaluated.

A clausal heuristic can be used to construct an abstract state space by mapping

each state to its explanation. An operator o is applicable in an abstract state ¬ f1 ∧

· · · ¬ fn ⇒ [h ≥ p] if pre(o) ∩ { f1 · · · fn} = ∅. This is a useful way to understand

and visualise the updates made to heuristics.

6.4.1 Integrating successor-generation

In our IDAStarTT pseudo-code in figure 6.1, we choose to apply an operator with

minimal reduced cost. A naive implementation of this would need to evaluate

the heuristic many times, and a lot of these evaluations would be redundant.

To simplify the integration of the successor generator, we define some arbi-

trary strict total ordering≺ on operators, and enhance our heuristic to also return

the minimum operator with zero reduced-cost.2

2In our experiments we sort first by maximum cost, then disambiguate arbitrarily. This causes
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Clauses in our heuristics can now take the form:

¬ fx ∧ · · · ∧ ¬ fz ⇒ [h ≥ wi] ∨ [o � xi]

remembering that [o � ||O||+ 1] ≡ False, and [o � min(O)] ≡ True.

From our combined heuristic and successor-generator, the next action to at-

tempt in a state s, denoted succ(s), is defined as:

succ(s) = min(q|q ∈ O ∧ C ∧ ¬[h ≥ h(s) + 1] ∧ [o � q] ∧
∧

f∈F\s
¬ f )

The principal advantage of defining a total order on actions is that it enables

a single additional clause per state on the stack to prune all of the paths that

have already been explored. This makes incrementally improving the heuristic-

estimate of a state significantly easier, and simplifies garbage collection of un-

helpful clauses without sacrificing completeness.

This single explanation is:

esucc(s) = argmin
c

({q|

q ∈ O ∧ c ∈ C∧

UNSAT(¬[o � q] ∧ ¬[h ≥ h(s) + 1] ∧ c ∧
∧

f∈F\s
¬ f )})

6.4.2 Incrementally refining clausal heuristics

The key idea in refining these heuristics is to prune each possible successor in a

generalisable way by identifying a set of states where applying that action will

always lead to the same clause applying.

Consider our gripper example. A simple total order would be lexicographical

the depth-first search to expand children with smaller h-values first.
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a
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a

b

c

de

Iteration Node Clause
0 a ¬[B1 = r]⇒ [h ≥ 1]
0 b ¬[B2 = r]⇒ [h ≥ 1]
1 c ¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ 2]
2 d ¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ 2]
2 e ¬[B1 = r] ∧ ¬[B1 = g] ∧ ¬[R = r]⇒ [h ≥ 3]

Figure 6.3: Improving a clausal heuristic for gripper

in the name of the operators. If we start with the blind heuristic figure 6.3 shows

several iterations of improvements to that heuristic. Visualised by transforming

the heuristic into an abstraction.

Improving a clausal heuristic is possible exactly when either:

• succ(s) operator is not applicable in s; or

• succ(s) has positive reduced cost in s.

To achieve this update several steps occur: Initially the clausal heuristic con-

sists of the two clauses encoding the blind heuristic:

¬[B1 = r]⇒ [h ≥ 1] ∧ ¬[B2 = r]⇒ [h ≥ 1]

This heuristic can be visualised as the first automaton if figure 6.3, correspond-

ing to iteration 0. Unfortunately edges in these automata cannot necessarily be

mapped directly to operators, but should be read as “there exists an operator that

connects these two abstract states”..

IDAStarTT evaluates the heuristic value for the initial state as 1, and arbitrar-

ily picks the first of the above clauses as the explanation. It then attempts to
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compute the minimum reduced cost operator by trying the operators in order.

The lexicographically minimal operator is “drop-1-l”, which is both inapplicable

in the initial state, and has a positive reduced cost in any state because the same

explanation clause would apply in the state after applying the operator.

We can add either

¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ ∞] ∨ [o � drop-1-r]

or

¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ ∞] ∨ [o � drop-1-r]

or

¬[B1 = r]⇒ [h ≥ 2] ∨ [o � drop-1-r]

to the clausal heuristic to progress. Our implementation would choose the first

of these, but this choice is arbitrary.

The first two clauses are correct because all actions lexicographically less than

“drop-1-r” cannot be applied in any state where the left hand side of the implica-

tion holds. In general we can choose any precondition of the action being blocked

to add to the left hand side of the implication. The last clause holds because the

heuristic estimate for any states where ball 1 is not already in the right room is ob-

viously not decreased by any action less than “drop-1-r”. Note that even though

no state’s h-value would decrease after applying this operator, we cannot simply

say

> ⇒ [h ≥ 2] ∨ [o � drop-1-r]

as the goal may already be achieved. We must keep at least one reason that the

goal is not yet achieved in the explanation clause.

Having added one of these clauses, we recompute the lexicographically-minimal

operator consistent with h(s) = 1. Any of the above clauses makes o = drop-1-l
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inconsistent with h = 1, however we will assume the first of these clauses is

added. The next smallest operator is “drop-1-r”, which again is inapplicable.

¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ ∞] ∨ [o � drop-2-l]

This clause strictly dominates the previously learned clause, meaning that the

previous clause can be deleted with no loss of information.

The next seven actions: “drop-2-l”, “drop-2-r”, “grip-1-l”, “grip-1-r”, “grip-2-

l”, “grip-2-r”, and “move-l-r” all have positive reduced cost as [B1 = r] is still not

achieved. Consequently we can learn:

¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ 2] ∨ [o � move-r-l]

Each of the four clauses we learn from trying these actions strictly dominates its

preceding clause, allowing us to delete them.

The next action, “move-r-l”, also has positive reduced cost for the same rea-

son, but is interesting as it is the lexicographically last operator, and so there is no

next action so the [o �?] term can be omitted as it is equivalent to false, allowing

us to learn

¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ 2]

Which is the new explanation for the heuristic-estimate of the initial state h(s0) =

2. At this point, the heuristic can be visualised as the second automaton in figure

6.3, corresponding to iteration 1.

As yet we have not done any search, merely having reasoned about the heuris-

tic and the initial state to find properties of that state that prevent us from finding

zero-reduced-cost successors.

Having increased the heuristic estimate at the root from 1 to 2, we enter the

second major iteration of IDA*. We now attempt to compute the minimum reduced-
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cost action again. We can start with “drop-2-l” because of the previously learned

clause:

¬[B1 = r] ∧ ¬[B1 = g]⇒ [h ≥ ∞] ∨ [o � drop-2-l]

Neither “drop-2-l” nor “drop-2-r” add [B1 = r] or [B1 = g], and thus cannot

reduce the heuristic value of the state, so we learn:

¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ 3] ∨ [o � grip-1-l]

After applying “grip-1-l” however, the h value of the resulting state has de-

creased by 1, meaning the operator had zero reduced cost. We can now recurse

after applying this operator with a maximum h-value of 1.

We now search for a zero-reduced cost operator in this new state starting with

“drop-1-l”, and learn that it increases the heuristic value to 2.

¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ 3] ∨ [o � drop-1-r]

We then find that “drop-1-r” is inapplicable in this state because [R = r] does

not hold, and thus learn:

¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ 3] ∨ [o � drop-2-l]

None of the remaining operators add [B1 = r] and so cannot change the

heuristic value, and must have positive reduced cost. The cost after each of these

operators is however only 1, so we reduce the “next heuristic value” to 2 and

learn:

¬[B1 = r] ∧ ¬[R = r]⇒ [h ≥ 2]

This corresponds to node d in figure 6.3.

The recursive call of IDAStarTT returns as we have proved the goal is not
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reachable with an h-budget of 1 after applying “grip-1-l”.

¬[B1 = r] ∧ ¬[B1 = g] ∧ ¬[R = r]⇒ [h ≥ 3] ∨ [o � grip-1-r]

We now return to the top level of the stack and continue searching for zero-

reduced-cost operators. None of the remaining operators add either [B1 = r] or

[B1 = g] and therefore must have positive reduced cost at the initial state, so we

can learn:

¬[B1 = r] ∧ ¬[B1 = g] ∧ ¬[R = r]⇒ [h ≥ 3]

corresponding to node e in figure 6.3. At this point, the heuristic can be visualised

as the third automaton in figure 6.3, corresponding to iteration 2.

This process of identifying and correcting flaws in the heuristic continues until

a sequence of zero-reduced-cost operators is found connecting the initial and goal

states.

Formally, we improve the heuristic by applying two rules in any order repeat-

edly until fixed-point:

1. When pre(succ(s)) 6⊆ s we learn a new clause φ ∧ p ⇒ [h ≥ wi] ∨ [o �

succ(s) + 1] for some p ∈ pre(succ(s))

2. Alternatively when γ(h, s, succ(s)) > 0, we learn a new clause (φ0 ⇒ [h ≥

wi] ∨ [o � succ(s) + 1]) ∨R(eh(s[succ(s)]), succ(s)).

Here φ0 ⇒ [h ≥ wi][o � succ(s)] = esucc(s); and R(φ ⇒ [h ≥ wi], o) is the

regression operator, which regresses a clause φ through a single action o, and

returns a clause representing a property of the set of states S s.t. for all ∀s′ ∈ S :

h(s′[o]) ≥ wi.

R is defined as:

R(φ⇒ [h ≥ wi], o) =
∧
(¬ fi ∨ fi ∈ add(o))⇒ [h ≥ wi + cost(o)]
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6.4.3 Integrating duplicate-detection

In order to handle zero-cost actions we must avoid expanding duplicate states

on the current path. To do this we add one more type of variable to our clauses:

[〈g, d〉 ≤ 〈yi, zi〉]. Immediately before applying any zero-cost action, a clause of

the form ¬ fx ∧ · · · ∧ ¬ fz ⇒ [〈g, d〉 ≤ 〈g(s), d(s) + 1〉] is added to the heuristic,

where g represents the “g-value” of the node, and d the depth of the node being

expanded.

Consider a variant of our gripper example where movement actions have zero

cost. In the initial situation it would be possible to “move-r” then “move-l” and

return to the same state. We could however add the clause:

¬[R = r] ∧ ¬[B1 = r] ∧ ¬[B1 = g] ∧ ¬[B2 = r] ∧ ¬[B2 = g] ∧ ¬[G = n]⇒

[〈g, d〉 ≤ 〈0, 1〉] ∨ [h ≥ ∞]

Before expanding the initial state then when evaluating the heuristic after the

cycle, the h-value of the node would be too high because g = 0 and d = 3 and

IDAStarTT would backtrack.

This clause could then be regressed through the “move-l” operator in much

the same way as usual. The only special handling is of the [〈g, d〉 ≤ 〈0, 1〉] term,

which is handled analogously to [h ≥ k] terms by decrementing g by the cost of

the operator, and d by 1. Causing us to learn:

φ ∧ ¬[B1 = r] ∧ ¬[B1 = g] ∧ ¬[B2 = r] ∧ ¬[B2 = g] ∧ ¬[G = n]⇒

[〈g, d〉 ≤ 〈0, 0〉] ∨ [h ≥ k] ∨ [o ≥ move-r]

Assuming that the previous esucc(s0[move-r]) was:

φ⇒ [h ≥ k] ∨ [o ≥ move-l]
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Note that [g ≤ 〈0, 0〉] ≡ False, as we count depth starting at 1. This means

we have effectively learned that, to be allowed to move right, we must first have

advanced the state of one of the balls in some way.

Definition 6.3 (Clausal heuristic). A clausal heuristic consists of a set of clauses of the

general form:

¬ fx ∧ · · · ∧ ¬ fz ⇒ [h ≥ wi] ∨ [o � xi] ∨ [〈g, d〉 ≤ 〈yi, zi〉]

Note that [h ≥ ∞] ≡ [o � max(O)] ≡ [〈g, d〉 ≤ 〈0, 0〉] ≡ False, so all elements

on the right of the implication are optional.

6.4.4 Garbage collection

As briefly noted earlier, only 3 clauses per state on the stack are necessary to

guarantee completeness. As long as eh(s), esucc(s), and eg(s) are retained for all s

on the current path, all other clauses can be removed, and CDHL will not explore

the same path with the same f -bound again.

6.5 Lazily explaining arbitrary heuristics

Any heuristics’ lower-bound in a particular state can be explained in terms of

some subset of the fluents that do not hold in a state. In the worst case, the

explanation can be exactly the false fluents: adding more facts can only increase

the set of plans originating in that state, and thus cannot increase the distance to

the goal. However more succinct explanations are sometimes possible than this

naive encoding. All heuristics can then be translated to abstractions using at most

one such explanation per reachable state in the state space.

Theorem 6.1. Any consistent heuristic h encoded into some conjunction clauses of the



124 Conflict-Directed Heuristic Learning

form

¬ fi ∧ · · · ∧ ¬ f j ⇒ [h ≥ h(si)]

for any reachable states si will define a consistent clausal heuristic.

Note that although we can encode any heuristic in this clausal abstraction

formalism, it may require as many clauses as states in the state-space.

Potential heuristics are a particularly interesting class of explainable heuristic.

These heuristics are typically defined in terms of SAS+ rather than STRIPS prob-

lems, however SAS+ problems are easily transformed into STRIPS. Given this

transformation, the problem’s fluents can be partitioned into disjoint mutually

exclusive sets F0 · · · Fn.

In gripper, we may want to explain h(s0) = 4. Using our potentials described

in section 6.2, we can see that the variables R and G are irrelevant to the heuristic

value and can be ignored entirely. We could therefore generate a clause:

¬[B1 = r] ∧ ¬[B1 = h] ∧ ¬[B2 = r] ∧ ¬[B2 = h]⇒ [h ≥ 4]

Perhaps more interestingly, in the state immediately after “grip-1-l”, we can

generate a similar clause:

¬[B1 = r] ∧ ¬[B2 = r] ∧ ¬[B2 = h]⇒ [h ≥ 3]

Note that we omit the [B1 = l] literal as this has a higher weight than the true

value of this variable: [B1 = h]. If [B1 = l] were true, we would necessarily be in

a worse state, so the assertion that h(s) ≥ 3 would still hold.

In general, we need only include a literal in a potential heuristic explanation if

that fluent being true in a state is strictly better than the value of the same variable

that is actually true in the current state.

Formally, given a state s, a potential heuristic h with weights w([Xi = xj]) for
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each fluent [Xi = xj] ∈ F, h(s) can be explained by φ⇒ [h ≥ h(s)] where

φ =
∧

[Xi=xj]∈F

(∃k.[Xi = xk] ∈ s ∧ w([Xi = xj]) < w([Xi = xk])⇒ ¬[Xi = xj])

The right-hand side of each implication can be evaluated completely at explana-

tion time, reducing φ to a simple conjunction of negated fluents.

6.5.1 Emulating IDA*

If when learning new clauses we replace φ with exactly the set of false fluents

we explicitly turn-off generalisation, making the resulting algorithm equivalent

to IDA* with a transposition table. If, further, we immediately discard all non-

essential clauses, we also forget the learned heuristic values once they are popped

from the stack, effectively making the algorithm a variant of IDA*. Our imple-

mentation uses a hash-table to store any clause where φ entails exactly one syn-

tactic state, making comparison to typical transposition-table implementations

more fair.

6.6 Experiments

In table 6.1 we compare our implementation in 3 modes: IDA*, IDA* with a

transposition-table, and CDHL. All 3 started with a potential heuristic optimised

to maximise the heuristic estimate at the initial state. We can see from this table

that the generalised explanations do confer some benefit. In particular, we can

see from figure 6.4 that the number of expanded nodes is often greatly reduced,

however this comes at the cost of increased processing time per node, sometimes

outweighing the benefit as seen in figure 6.5. There exists one instance where

IDA*-TT uses fewer nodes, we presume this is due to garbage collection.
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Figure 6.4: Nodes expanded in search for CDHL and IDA* with a transposition
table
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Figure 6.5: Time to optimal solution for CDHL and IDA* with a transposition
table
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Domain IDA* IDA*-TT CDHL
barman 0 0 0
elevators 0 7 7
floortile 0 0 0
nomystery 4 6 7
openstacks 0 5 7
parcprinter 2 5 2
parking 0 1 0
pegsol 0 6 2
scanalyzer 3 3 2
sokoban 0 3 2
tidybot 1 3 11
transport 0 0 0
visitall 14 15 14
woodworking 0 1 4
Total 24 55 58

Table 6.1: Coverage of IDA* and CDHL on the 2011 IPC benchmarks. (Max time:
30 minutes, Max memory: 100 MB)

6.7 Conclusions and Future Work

Our results show that the number of expanded nodes can be reduced by several

orders of magnitude compared to IDA*, some of this benefit can be achieved us-

ing a simpler (and much faster) transposition table, however reductions in nodes

explored as significant as three orders of magnitude can be achieved by general-

ising the knowledge learned during search, even when starting with a state-of-

the-art potential heuristic.

These reductions come at a significant increased processing time per node.

We hypothesise that traditional watched-literal data-structures (Moskewicz et al.,

2001) used to store clausal information may be poorly suited to this use: watched

literals perform best when some literals are “cold” (never true) so their watch lists

can become long at little cost to the search. However in planning, most fluents

are both true and false on the optimal path to the goal. Other data-structures

(perhaps based on decision diagrams or match-trees) may be better suited to this
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use-pattern.

Additionally recent work by Pommerening, Helmert, and Bonet (2017) opens

up the possibility of learning higher-dimensional potential heuristics which ap-

pear to often be perfect with quite small numbers of features.
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Introduction to Part III

Temporal planning and scheduling are closely related problems with a blurry

boundary. The first algorithm we present in this part of the thesis is Automatic

Logic-Based Benders Decomposition. This algorithm tackles alternative schedul-

ing problems, which are part-way between temporal planning and scheduling

problems.

Traditional scheduling problems require a solution to choose when to perform

a fixed set of actions; alternative scheduling adds to this some choice of which

actions to perform; temporal planning then further adds the choice of how many

actions to perform.

We also propose a theoretical extension to this approach, Operator Schedul-

ing, which would enable us to take that final step.





Chapter 7

Automatic Logic-Based Benders
Decomposition with MiniZinc

This chapter introduces a general approach to applying Logic-Based Benders Decompo-

sition to an arbitrary constraint program. We evaluate this approach on variations of

alternative scheduling problems, and show how it might be extended to tackle more gen-

eral temporal planning problems.1

7.1 Introduction

Logic-based Benders decomposition is among the most effective approaches for

finding optimal solutions to complex configuration and scheduling tasks, fre-

quently two or three orders of magnitude faster than pure MIP or CP approaches

(Hooker and Ottosson, 2003).

The essence of logic-based Benders decomposition is to take the problem P,

and derive a relaxed master PM (typically a MIP) which relaxes or omits some

constraints in P, and a set of independent sub-problems P1, . . . , Pk such that P ⇔

PM ∧ P1 ∧ · · · ∧ Pk. The master solves PM and the solution µ is checked by each

sub-problem solver for Pi. If µ does not satisfy Pi a cut is added to the master to

eliminate µ and other solutions which will not satisfy Pi for the same reason.

1The research presented in this chapter (except section 7.6) was published in Toby O. Davies,
Graeme Gange, and Peter J. Stuckey (2017). “Automatic Logic-Based Benders Decomposition
with MiniZinc”. In: AAAI Conference on Artificial Intelligence (AAAI).
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However, designing a concrete instantiation of this framework is typically

nontrivial. The first difficulty is in choosing the relaxation PM. If the master

omits important constraints entirely, the candidate solutions are too optimistic,

and the method converges slowly. Conversely, if the constraint is not substan-

tially relaxed, solving the master becomes unmanageable (effectively regressing

to a pure MIP approach).

A second issue is the extraction of feasibility cuts from infeasible sub-problems.

Logic-based Benders cuts are typically couched in terms of the inference dual (Hooker

and Ottosson, 2003). However typical sub-problem solvers (in particular, classi-

cal CP solvers) do not provide sufficient information to reconstruct a compact

justification of failure, so in practice cuts are derived by exploiting the indepen-

dence of the sub-problems and knowledge of their structure (Ciré, Coban, and

Hooker, 2013).

In this chapter, we present a fully automatic approach for solving constrained

optimisation problems via logic-based Benders decomposition. The automated

decomposition diverges from typical instances of logic-based Benders decompo-

sition in a key respect: it constructs only a single complete ‘sub-problem’. Rather

than explicitly decomposing our problem into independent sub-problems (either

manually or heuristically), we instead rely on the conflict analysis capabilities of

lazy clause generation solvers to identify relevant subsystems.

Though this approach makes the sub-problem considerably more difficult, it

offers several advantages. Unlike classical LBBD, it can cope with subsystems

which are not fully disjoint. There is no need to design problem- or objective-

specific cuts; cut derivation is entirely generic. And while generating cuts, the

sub-problem solver also acts as a primal heuristic.

This formulation reveals an interesting duality. From the perspective of the

MIP solver, this is an instance of logic based Benders decomposition where the

sub-problem solver doubles as a primal heuristic. But from the perspective of the
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CP solver, our framework is an instance of large neighbourhood search (LNS) (Pisinger

and Ropke, 2010) – the MIP proposes promising candidate regions, which the CP

solver progressively explores and expands – in which the neighbourhood selec-

tion heuristic also supplies valid lower bounds. We will refer to the search space

implied by a set of assumptions as a neighbourhood throughout this chapter.

The contributions of this chapter are as follows:

• A variant of logic-based Benders decomposition which reveals a duality

between LBBD and large-neighbourhood search (LNS)

• An automated approach for applying LBBD techniques to arbitrary con-

straint models

• A simple way of integrating traditional CP optimisation-as-repeated-satisfaction

into the LBBD framework.

7.2 Preliminaries

7.2.1 Constraint Programming and Lazy Clause Generation

Constraint programming (CP) systems solve a problem of the form ∃V.D∧C, D is

a conjunction of unary constraints (a domain) constraining each integer variable2

v ∈ V to take a finite set of values, and C is an arbitrary collection of constraints

on variables V. A domain D that entails a single value for each variable in V is

a valuation which we denote by µ. We use notation µ(v) to return the value of

variable v given by valuation µ. Each constraint c ∈ C is implemented using a

propagator which given a domain D infers new unary constraints d which must

hold, i.e. D ∧ c ⇒ d. The domain is then updated to D′ = D ∧ d. Failure is

detected if d = false. Success is detected if D′ is a valuation (under reasonable

2Here we treat Boolean variables as 0/1 integers.
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assumptions about the strength of propagator inferences). Otherwise when no

further inference is possible, the system guesses a new unary constraint l, and

recursively considers the two systems ∃V.(D ∧ l) ∧ C and ∃V.(D ∧ ¬l) ∧ C.

A lazy clause generation (LCG) solver in addition tracks the reasons for its in-

ferences. For each inference D ∧ c ⇒ d it stores a reason clause d1 ∧ · · · ∧ dn ⇒ d

which is a consequence of c, that explains the inference. When failure is detected

it uses the reasons to construct a nogood by resolution which explains the failure.

The nogood is then added to the solver to prevent the same failure re-occuring.

An LCG solver can be extended to support an assumption interface. Given a

set of unary constraint assumptions µ the solver solves ∃V.(D ∧ µ) ∧ C. If the

solver determines the problem has no solution it can return a clause of the form

µ1 ∧ · · · ∧ µn ⇒ false where µi ∈ µ, that explains which assumptions were re-

sponsible for the failure, i.e. such that ∃V.(D ∧ µ1 ∧ · · · ∧ µn) ∧ C is unsatisfiable.

7.2.2 The MINIZINC solver pipeline

MINIZINC (Nethercote et al., 2007) is a high-level declarative modelling language

for constrained optimisation problems. Underlying solvers typically do not sup-

port MINIZINC directly. Instead, an instance of the high-level MINIZINC model

is compiled down to a simpler FLATZINC. During this flattening step, existential

quantification and complex Boolean structure are eliminated. Each solver pro-

vides a library of predicate definitions to control this flattening; global constraints

are handled in one of three ways:

• If the solver provides a declaration but no definition, the constraint call is

passed directly to the solver.

• If a definition for the predicate is provided, the definition is expanded (and

recursively flattened).
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• Otherwise, the default flattening is expanded.

This flattened model is then fed to the solver, paired with directives for formatting

output. This architecture provides a uniform framework for allowing high-level

model specifications while exploiting the heterogeneous capabilities of different

solvers.

In Section 7.3, we shall demonstrate how to (mis-)use this framework to sup-

port a logic-based Benders approach.

7.2.3 Classical and Logic-based Benders Decompositions

Logic-based Benders decomposition (Hooker and Ottosson, 2003) replaces the

linear programming dual used in classical Benders decomposition with the more

general inference dual – the problem of inferring the tightest objective bound from

a set of constraints, its solution being a proof of the optimal bound. This proof is

then translated into a sound bounding function suitable for addition to the mas-

ter – in the case of a MIP master problem, the optimality proof must be translated

into one or more linear inequalities over variables occurring in the master. Un-

fortunately, most sub-problem solvers cannot provide information to reconstruct

the inference dual, supplying only the primal solution. In this case, it is common

to instead design specialised cuts based on problem structure, identifying some

subset E of assignments to shared variables such that f (E) ≤ z. In contrast, we

use a clausal cut of the form: E ⇒ f alse (or equivalently E ⇒ [[z > k]] in place of

optimality cuts), these cuts are explained in more detail in section 7.3.1.

7.2.4 Cut strengthening and MUS construction

Without explicit dual information, the generated Benders cuts are quite coarse.

These may then be strengthened, using the sub-problem solver as a feasibility ora-
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cle – progressively discarding assumptions, and checking that the (now relaxed)

sub-problem remains infeasible.

When the master assignment is viewed as a conjunction of propositions, this

“cut strengthening” process corresponds exactly to minimal unsatisfiable subset

(MUS) construction: given an unsatisfiable conjunction C of constraints, identify

one or more minimal subsets C′ ⊆ C which preserve infeasibility.

MUS construction arises in various contexts, and has received particular at-

tention in SAT and CP (Dershowitz, Hanna, and Nadel, 2006; Liffiton and Malik,

2013; Junker, 2004; Hemery et al., 2006). As in the LBBD case, SAT MUS construc-

tion algorithms use a decision procedure (here a SAT solver) as an oracle, repeat-

edly choosing P ⊂ C and testing satisfiability of C \ P until an MUS has been

identified. These algorithms differ in their strategy for choosing subsets to test –

sequential (Bakker et al., 1993), dichotomic (Felfernig, Schubert, and Zehentner,

2012) and geometric progression (Marques-Silva, Janota, and Belov, 2013) strate-

gies have been proposed. One general refinement to these approaches, clause-set

refinement (Dershowitz, Hanna, and Nadel, 2006), is directly applicable to the CP

case.

Clause-set refinement exploits the capability of SAT solvers to return an un-

satisfiable core. When a query C \ P returns UNSAT(C′) (showing there is some

MUS excluding P), MUS construction may simply replace C \ P with C′ before

continuing.

Figure 7.1 illustrates a sequential approximate MUS algorithm, with clause-set

refinement and resource limits. The algorithm maintains 3 sets of literals origi-

nating from the unsatisfiable subset C to be minimised, C contains clauses which

we have not yet attempted to prove must be in the final MUS; M contains clauses

which we have successfully proved must be in the final MUS; and U contains

clauses which we have tested, but could not prove must belong in the MUS within

the specified resource limit lim. At the end of each iteration, the set C ∪M ∪U is
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MUS-seq(C, lim)
M := ∅; U := ∅
while(∃c ∈ C)

C := C \ c
case(is-sat(M ∪U ∪ C, lim))

[SAT]:
M := M ∪ {c};

[UNSAT(C′)]:
C := C ∩ C′

U := U ∩ C′

[UNKNOWN]:
U := U ∪ {c}

return M ∪U

Figure 7.1: Pseudo-code for sequential MUS construction with conflict-set refine-
ment and resource limits. M contains those propositions definitely in the MUS,
and U those which could not be eliminated. We may terminate this procedure at
any time, returning M ∪U ∪ C as an unsatisfiable core.

a valid unsatisfiable subset.

The algorithm tests each clause c in sequence to see if it must be in the un-

satisfiable subset by testing if C \ c is still an unsatisfiable subset using is-sat as

a satisfiability oracle. This procedure takes an argument lim, which limits the

computational effort allowed to solve the SAT problem. lim could be a limit on

runtime, number of propagations, or number of branches, we assume a limit on

the number of branches in this chapter.

Because it has a resource limit, is-sat can return UNKNOWN, in addition to SAT,

or UNSAT(X). If C \ c is satisfiable, then c must be in the MUS. If we can prove

that C \ c is unsatisfiable, we know c is not a member of the MUS and can be

discarded, additionally we can use clause-set refinement to intersect C and U

with the newly identified unsatisfiable core. Finally if is-sat returns UNKNOWN, we

assume that c is necessary for the formula to remain unsatisfiable and add c to U.
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Figure 7.2: Architecture of the automatic Logic-based Benders Decomposition.

7.3 Automating Logic-based Benders Decomposition

The key idea behind this approach is quite simple, and is shown in Figure 7.2.

During flattening, any constraints not supported by a solver are replaced by an

equivalent (modulo introduced variables) solver-specific decomposition. If we

discard any subset of these constraints, what remains is necessarily a valid relax-

ation.

The master problem M is constructed directly from the existing flattened model,

retaining those constraints for which compact encodings exist – primarily element

and (reified) linear constraints – and discarding the rest of the model.

Similarly, we do not attempt to identify independent sub-problems, or par-

tition variables between master and sub-problem. The single “sub-problem” S

consists of the full flattened model, and the master and sub-problem are solved

over all variables appearing in any master constraint; and all variables respec-

tively.

The high-level LBBD procedure is shown in Figure 7.3: we first solve the mas-

ter M to optimality, then try to extend the partial solution µ to a full solution µ∗

of the sub-problem S. We then extract and minimise one or more cuts C′ from

the sub-problem and re-solve the (now tighter) master. We use X to track literals

that have appeared in any clause so far, and omit these from subsequent solves

to guarantee cuts are independent. Note: µ, µ∗, C and C′ are all sets of bounds
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solve-lbbd(obj, M, S):
µ∗ := ⊥
while(solve-master(M) = SAT(µ))

S := S ∧ [[obj ≥ µ(obj)]]
case(solve-lcg(S, µ, µ∗, ∞))

[UNSAT(∅, µ∗)]
return(µ∗)

[UNSAT(C, µ∗)]
X := ∅
while(solve-lcg(S, µ− X, µ∗, lim) = UNSAT(C, µ∗))

(C′, µ∗) := minimise-cut(S, C, µ∗, lim)
M := M ∧ (C′ ⇒ f alse)
if(C′ = ∅) return(µ∗)
M := M ∧ [[obj < µ∗(obj)]]
X := X ∪ C′

return µ∗

Figure 7.3: Pseudo-code for Logic-based Benders decomposition with a complete
subproblem.

literals, and µ and µ∗ are valuations.

The algorithm in 7.3 solves a constraint program using LBBD. It repeatedly

solves the master MIP to optimality, and obtains a partial assignment µ to all

variables that participate in some linear constraint. It then attempts to extend the

partial assignment into a full assignment by solving the sub-problem using lazy

clause generation.

The sub-problem solver solve-lcg(S, µ, µ∗, lim) takes the constraints S and as-

sumptions µ, the current best solution µ∗, and a (possibly infinite) decision limit.

It then searches for the optimal solution consistent with the assumptions. This

means the sub-problem never returns SAT, but instead always returns either UN-

KNOWN (if lim is not infinite) or a (potentially new) model, together with an un-

satisfiable core. Whenever a new model µ∗ is found, it is immediately invalidated

by adding a new constraint to S: [[obj < µ∗(obj)]].

When the subproblem returns an empty unsatisfiable subset of µ, we termi-

nate immediately with the best solution found. This result means that no as-
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signment in µ was responsible for the sub-problem being unable to find a better

solution than µ∗, so we must have found the optimum.

When a non-empty clause can be learned, we try to learn several indepen-

dent clauses from this MIP assignment. We identify an inconsistent part of the

assignment, C, and minimize it using a process broadly similar to figure 7.1, re-

membering that the subproblem solver used in cut minimization can find new

solutions, which will be returned as µ∗. This minimized cut is then added to the

master problem. We iterate (as described in more detail in section 7.3.2) to gener-

ate independent cuts, excluding parts of the assignment already found to occur

in previous cuts.

Because the sub-problem never returns SAT, the termination condition is dif-

ferent to traditional LBBD: search terminates when the master fails (typically after

being returned an empty cut).

This allows our variant of LBBD to exploit CP optimisation: If a new incum-

bent is found, we may now tighten the objective bound in both the master and

sub-problem in the hope that the sub-problem can utilise this bounds informa-

tion to generate more succinct cuts. In particular, the sub-problem can generate

an empty cut as soon as it finds any model with an objective equal to the lower

bound.

In classical LBBD, the master can be seen as incrementally building a MIP

model representing a projection of the problem onto the master variables. By

adding these objective-based cuts, and allowing the sub-problem to use them

to simplify its cuts, we can instead view the master as building a projection of

the subset of solutions strictly better than the incumbent. The inner while loop

represents an approximation of looping over sub-problems, described more fully

in Section 7.3.3.
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7.3.1 Deriving and encoding cuts

In the above formulation, we have not explicitly decomposed the CP model into

disjoint sub-problems; indeed, the sub-problem is exactly the model that would

be used to solve the problem with a direct CP approach.

Using a classical CP solver, this is not an ideal approach; the solver can-

not readily pinpoint the unsatisfiable sub-problem. However, conflict directed

clause learning allows the solver to identify potentially infeasible subsystems,

and activity-driven search heuristics direct the solver to explore those subsys-

tems.

The LCG sub-problem detects infeasibility when it is forced to backtrack past

the most recent assumption. From the final conflict, we can traverse the implica-

tion graph (in the same manner as conflict analysis) to derive a cut C of the form

[[x1 ≥ k1]] ∧ · · · ∧ [[xn < kn]] ⇒ false consisting only of (possibly relaxed) as-

sumptions. This can be added to the master as: (1− [[xi ≥ ki]]) + · · ·+ (1− [[xn <

kn]]) ≥ 1. If these cuts happen to be over Boolean variables, then no further action

is needed, but for more general cuts such (e.g. [[x > 30]]∧ [[y ≤ 10]]⇒ false), we

must first introduce fresh Boolean variables encoding these atoms.

In the case that all bounds literals from the lower to upper bound have been

instantiated, these new literals can be encoded in the MIP by the following con-

straints:

[[x ≥ k + 1]] ≥ [[x ≥ k]] ∀k ≥ lb (7.1)

x = lb(x)+
ub(x)

∑
i=lb(x)+1

[[x ≥ i]] (7.2)

However it is desirable to be able to lazily generate these bounds literals only

when they appear in some cut. Consequently we define upper and lower bounds

for equation 7.2 which are correct for any subset B of bounds literals belonging
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to variable x. Assume B = {[[x ≥ k1]], · · · , [[x ≥ kn]]}, and ki < ki+1, and let

k0 = lb(x) and kn+1 = ub(x).

x ≥ k0 +
n

∑
i=1

(ki − ki−1)[[x ≥ ki]] (7.3)

x ≤ k1 − 1 +
n

∑
i=1

(ki+1 − ki)[[x ≥ ki]] (7.4)

When B is the full set of bounds literals, we can see that the RHS of both equa-

tion 7.3 and equation 7.4 converge to the RHS of equation 7.2. The encoding is

revised as fresh bounds are introduced as adding additional bounds literals can

only tighten the inequalities. Observe that this encoding permits x to take values

between introduced bounds.

7.3.2 Cut minimisation

The nogoods (C ⇒ false) derived by the LCG solver will typically involve only

a small subset of problem variables – in the case of independent sub-problems,

the nogoods will refer to only one sub-problem. These form valid cuts, but are not

necessarily minimal. These cuts can be reduced by applying any of the MUS con-

struction approaches outlined in Section 7.2.4, we use MUS-seq (Figure 7.1). This

achieves much the same effect as the cut strengthening outlined by Hooker (2007).

Here we see some side-effects of sub-problem completeness. During cut min-

imisation, the sub-problem solver may find a model µ∗. As we have only a single

complete sub-problem containing all the constraints, this model is a feasible so-

lution to the overall problem.

We can then add a constraint to the sub-problem constraining the objective to

be strictly better than this new solution, potentially allowing the cut to be further

simplified. An interesting side effect is that during cut minimisation the sub-

problem solver will find new incumbent solutions, tighten the objective bound
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and continue searching until it either proves no solutions better than the new

incumbent exist in this neighbourhood or it exceeds its resource budget. Conse-

quently, if the sub-problem solver were executed with an unbounded resource

limit, it would always return an empty cut (essentially just running the LCG

solver to completion). In the algorithm of Figure 7.1, this means we never posi-

tively identify a bound as being in the MUS; instead, constraints may always be

eliminated by a later conflict.

7.3.3 Deriving multiple independent cuts

Typically in LBBD, each sub-problem can be used to learn a cut per iteration. We

approximate this using the observation that a minimal cut often contains vari-

ables exclusively from one sub-problem. Thus, after obtaining a cut C ⇒ f alse,

we attempt to generate additional independent cuts by removing all assumptions

which occur in C, and asking the CP solver for a new cut over the remaining as-

sumptions. It is possible that this process will learn multiple independent cuts

from the same subsystem before moving on to the next, however it is not obvious

that this is a bad thing.

Similar to cut minimisation, it is necessary to limit the resource budget of the

sub-problem solver (solve-lcg-lim), as the search space implied by the reduced

set of assumptions can become arbitrarily large, and the while loop only stops

generating cuts when the sub-problem solver returns UNKNOWN or an empty cut.

7.3.4 Cut generation as large neighbourhood search

As we noted in Section 7.1, removing assumptions corresponds to growing the

neighbourhood explored by the sub-problem. In both cut-minimisation, and mul-

tiple cut generation, we remove assumptions that caused failure from the initial
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neighbourhood generated by the MIP. This leads to an exploration strategy simi-

lar to explanation-based LNS (Prud’homme, Lorca, and Jussien, 2014).

The number of assumptions provided to the sub-problem solver will vary

hugely during the solving process, so we rely on the resource limits to prevent

long-tailed solve times. So long as one cut is generated then the MIP is guaran-

teed to generate a different solution, and the search space will be fully explored

eventually. Since the initial solve given the full MIP assignment is run without

any limit, this is guaranteed to terminate eventually.

7.4 Experiments

We have implemented the described approach, modifying the assumption inter-

face of CHUFFED, a lazy clause generation solver, to report feasibility cuts.

We evaluated the approach on several sets of scheduling problems, described

below. For each class, we tested Chuffed (CP) (Chu, 2011), Gurobi 6.5 (MIP) (Gurobi

Optimization, 2013) and our logic based Benders decomposition approach (LBBD).

For LBBD, cut minimisation was run with a budget of 512 conflicts, after which

the current cut was returned.

The problem classes we consider are described in the next four paragraphs. In

each case identical MiniZinc models were provided to each solver.

Planning and Scheduling This problem requires scheduling independent tasks

on a set of machines with capacity limits, and machine-dependent task dura-

tions. These instances have been used to evaluate the effectiveness of logic-based

Benders decomposition in a number of prior works (Hooker, 2007; Heinz, Ku,

and Beck, 2013; Ciré, Coban, and Hooker, 2013), minimising cost, makespan or

tardiness. We report on models minimising cost (PS-cost) and makespan (PS-

makespan) in our results tables.
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Alternative Resource Scheduling with Sequence Dependent Setups This prob-

lem, like the planning and scheduling problem, requires scheduling independent

tasks on a set of machines. However machines cannot run tasks in parallel, and

tasks require setup time which varies with machine and preceding task. The

LBBD approach of Tran and Beck (2012) separates the machine allocation from

scheduling, resulting in a per-machine TSP which is solved with a dedicated TSP

solver. There are 3 sub-classes of this benchmark: production-dominated (ARS-

p-dom), setup-dominated (ARS-s-dom), and balanced (ARS-balanced).

Single-source capacitated plant location problem The SSCPLP (Barcelo, Fer-

nandez, and Jörnsten, 1991) is a discrete plant location problem, where each cus-

tomer is assigned to a single facility, such that the combined cost of open facilities

and customer service is minimised. This is not an ideal candidate for LBBD, hav-

ing a natural MIP encoding, but an LBBD approach in which the master decides

which plants to open and the sub-problem assigns customers to plants is similar

to the classical Benders approach which has been used for variants of this prob-

lem (Geoffrion and Graves, 1974). The SSCPLP is also interesting as it is the basis

for the following problem.

Capacity- and distance-constrained plant location problem The CDCPLP (Albareda-

Sambola, Fernández, and Laporte, 2009) extends the SSCPLP, adding a fleet of

distance-limited vehicles required to service customers. An LBBD approach was

presented in (Fazel-Zarandi and Beck, 2011) which allocates customers to facil-

ities in the master, leaving a bin-packing sub-problem per facility to be solved

with a CP solver (after first trying a greedy heuristic).

Experiments Table 7.1 compares our LBBD approach (using Gurobi 6.5 and Chuffed)

to MIP (Gurobi 6.5) and CP (Chuffed) on 3 metrics: average solution quality; aver-

age time to prove optimality; and the number of instances proved optimal, for
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Quality % Time Num. Optimal
Count LBBD MIP CP LBBD MIP CP LBBD MIP CP

PS-makespan 335 100.0 57.4 89.0 61.7 369.4 101.3 311 +25 150 286
PS-cost 335 100.0 80.7 88.8 95.7 400.1 122.3 301 +29 131 281
SSCPLP 57 89.9 100.0 72.6 271.9 95.8 589.6 34 +0 50 1
CDCPLP 300 73.2 99.8 57.0 424.4 426.7 597.3 99 +23 140 3
ARS-balanced 270 100.0 100.0 83.6 144.3 47.0 180.1 224 +0 269 211
ARS-p-dom 270 100.0 100.0 83.6 106.8 73.9 179.9 255 +2 261 206
ARS-s-dom 270 100.0 100.0 72.9 207.0 100.7 265.8 189 +0 253 171
Total 1837 95.3 88.7 79.3 173.8 245.6 248.6 1413 +79 1254 1159

Table 7.1: Quality score, mean runtime, and number of instances proved optimal
in 600s.
+N indicates LBBD solved N instances unsolved by either MIP or CP.

each of the benchmark sets described above.

We can see in Figure 7.4 that Chuffed performs very well on some small in-

stances, but for a time-budget of over 13 seconds, LBBD is the fastest to prove

optimality of the 3 techniques tested. This is supported by Table 7.1, where we

see that LBBD is both fastest on average to prove optimality, and proves the largest

number of instances optimal.

In addition to LBBD’s expected strength at proving optimality, Table 7.1 shows

that our implementation (including the LNS primal heuristic which naturally

occurs from our single-sub-problem formulation) makes for an excellent primal

solver, finding higher quality solutions on average than both other techniques.

Solution quality obtained by a solver s for each instance i is defined to be

ctbp(i)/cs(i) where cs(i) is the objective of the best solution to instance i found

by s in the time limit, and tbp is the theoretical best portfolio of all 3 solvers. We

report this as a percentage, which can be seen as a ratio of the performance of the

theoretical best portfolio of the 3 solvers. We see that our approach achieves 95%

of the performance of the theoretical best portfolio, giving us the best of both of

these contrasting optimisation technologies.

However our approach is more than just a portfolio, in Figure 7.5 we can see
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that many optimality proofs are faster using our LBBD approach than MIP or CP.

In particular note the 79 instances which were only proved optimal by LBBD.

Table 7.2 examines the hard “c” instances from the planning and scheduling

benchmarks in detail. These instances are some of the most studied in the LBBD

literature (Hooker, 2007; Heinz, Ku, and Beck, 2013; Ciré, Coban, and Hooker,

2013; Ciré, Coban, and Hooker, 2015), and this table is designed to be reason-

ably comparable to tables in previous work (Ciré, Coban, and Hooker, 2013;

Ciré, Coban, and Hooker, 2015). Our experiments use a much shorter time limit

than those papers, however we can still make broad comparisons: most notably

Chuffed performs much better than the traditional CP approaches considered in

previous work. To our knowledge, this is the first time a LBBD approach has

been directly compared with an LCG CP solver. This strong performance may

suggest that the clausal learning of LCG, and cut-generation in LBBD have sim-

ilar strengths. It is also interesting to note that the custom LBBD solver of Ciré,

Coban, and Hooker (2015) was only able to solve 6 more instances in 2 hours than

our LBBD approach solved in 10 minutes.
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Num. Optimal Mean Runtime
LBBD MIP CP LBBD MIP CP

2m-10j 5 5 5 0.218 17.288 0.148
2m-12j 5 5 5 0.304 51.444 0.162
2m-14j 5 5 5 0.412 85.742 0.288
2m-16j 5 5 5 1.13 211.964 0.508
2m-18j 5 2 5 1.876 406.58+ 0.782
2m-20j 5 2 5 1.95 402.704+ 0.814
2m-22j 5 0 5 143.898 — 103.226
2m-24j 4 0 4 197.684+ — 194.526+
2m-26j 2 0 3 385.768+ — 447.648+
2m-28j 4 0 1 134.132+ — 546.024+
2m-30j 3 0 2 418.734+ — 451.346+
2m-32j 3 0 0 255.462+ — —
3m-10j 5 5 5 0.26 17.626 0.154
3m-12j 5 5 5 0.414 49.222 0.24
3m-14j 5 5 5 0.614 111.21 0.298
3m-16j 5 1 5 1.156 488.596+ 0.474
3m-18j 5 0 5 2.82 — 2.328
3m-20j 5 0 5 2.686 — 4.392
3m-22j 5 0 4 4.476 — 125.788+
3m-24j 5 0 5 17.948 — 70.838
3m-26j 5 0 3 44.138 — 251.972+
3m-28j 5 0 2 67.198 — 404.374+
3m-30j 2 0 2 405.072+ — 476.176+
3m-32j 3 0 1 421.492+ — 597.066+
4m-10j 5 5 5 0.294 15.592 0.19
4m-12j 5 5 5 0.392 35.982 0.246
4m-14j 5 4 5 0.608 188.058+ 0.294
4m-16j 5 5 5 0.94 213.0 0.618
4m-18j 5 1 5 1.452 560.298 0.62
4m-20j 5 0 5 2.534 — 1.272
4m-22j 5 0 5 5.622 — 13.858
4m-24j 5 0 4 34.734 — 127.848+
4m-26j 5 0 4 119.762 — 158.276+
4m-28j 5 0 5 168.614 — 29.424
4m-30j 3 0 3 411.584+ — 380.55+
4m-32j 3 0 5 361.884+ — 326.076

Table 7.2: Planning and Scheduling “c” instances: “Xm-Yj” schedules Y jobs over
X machines.
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7.5 Conclusion and Further Work

We have introduced the first “model-and-run” LBBD solver, which additionally

uses a natural LNS-like primal heuristic. This solver may not be able to outper-

form all custom LBBD implementations, e.g. ARS with a dedicated TSP solver,

but can tackle any problem with no additional implementation cost. The result-

ing hybrid combines the strengths of MIP and CP and can be superior to both of

them on appropriate problems.

One important feature of many LBBD solvers that we have not addressed is

relaxations of the sub-problem encoded in the master, especially using continu-

ous variables. We expect this can be achieved by defining relaxations for global

constraints using fresh variables (which cannot then cause conflict in the sub-

problem). We expect these to be important for evaluating this approach against a

broader array of benchmarks.

7.6 Extension: Operator Scheduling

Temporal planning solves a similar class of problems to alternative scheduling,

but is typically modelled differently. In this section we will show how temporal

planning problems modelled in a temporal SAS+ formalism can be transformed

into a sequence of alternative scheduling problems.

Temporal SAS+ is an extension of classical SAS+ where durative actions are

treated as a pair of start and end events, each having preconditions and postcon-

ditions just like regular SAS+ (Eyerich, Mattmüller, and Röger, 2009). In addition

to these instantaneous preconditions, durative actions can have invariants: pre-

conditions which must hold for the duration of the action.

Other planners use a Linear Program to solve a simple scheduling problem as

part of a forward search, most notably the related popf and optic planners (Coles,
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Coles, et al., 2010; Benton, Coles, and Coles, 2012).

Of more immediate relevance are planners which compile to constraint pro-

gramming formulations, of particular interest is CPT, which tackles temporal

problems (Vidal and Geffner, 2006) and the recently introduced PaP and TCPP

planners which treat each SAS+ variable as an independent timeline which are

explicitly synchronised (Barták, 2011; Ghanbari Ghooshchi et al., 2017).

7.6.1 A linear-size CP encoding of partial-order planning

We present an encoding that combines aspects of these approaches in a way

that enables the addition of resource constraints that can be tackled with exist-

ing scheduling constraints. We observe that each variable must take exactly one

value at any time. This might be represented in a typical scheduling problem as

a disjunctive constraint.

Given this observation we can treat the planning problem given a fixed set of

actions as a scheduling problem, and we can use an estimate of the number of

required copies of an operator generated, for example, by an operator-counting

heuristic. We use C(o) to denote the number of copies in the current restricted

problem. We also slightly abuse notation to use C(X) to denote the total number

of actions which change the value of variable X.

We then encode the scheduling model as a set of events: the start and end of

the application of each action. We use oi,` and oi,a to denote the events corre-

sponding to the start and end of the i-th application of operator o.

We use prec(o`), prec(oa) for the preconditions of the start and end of opera-

tors, and post(o`), post(oa) for their postconditions. We assume that any “over-

all” precondition X = x of an operator o is also a precondition of the end event,

and satisfies the predicate invar(o, X). We will sometimes use events in place of

operators in these functions as a shorthand, so, for example, prec(oi,a) should be
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considered equivalent to prec(oa).

These events define the starts and ends of various time-windows in which

each variable takes a specific value.

We use the following variables in our model:

• Seq(X, i), the i-th event effecting variable X.

• Val(X, i), the value of X after the i-th event effecting it.

• S(X, i), the time the i-th value of X is added.

• E(X, i), the time the i-th value of X is deleted.

• InPlan(e), true iff e is included in the plan.

• SI(X, e), the i such that Seq(X, i) is the supporter of precondition X =

Val(X, i) for event e.

• EI(X, e), the i such that Seq(X, i) is the effect of event e on X.

• T(e), the time at which e occurs.

• ∆(o, i) = T(oi,a)− T(oi,`), the duration of the i-th application of operator o.

All of these variables which are a function of an event are optional integers (Mears

et al., 2014), conditional on InPlan(e).
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These variables then participate in the following constraints:

∀X ∈ V : increasing([S(X, i)|i ∈ {1..CX}]) (7.5)

∀X ∈ V : increasing([T(o`,i)|i ∈ 1..C(o)]) (7.6)

∀e ∈ E, X = x ∈ prec(e) : InPlan(e)⇒ S(X, SI(X, e)) < T(e) ≤ E(X, SI(X, e))

(7.7)

∀e ∈ E, X = x ∈ post(e) : InPlan(e)⇒ S(X, EI(X, e)) = T(e) (7.8)

∀X ∈ V, i ∈ {1..C(X)} : E(X, i) ≤ S(X, i + 1) (7.9)

∀oia ∈ E, X = x ∈ prec(e) : invar(o, X)⇒ TS(X, oi,a) ≤ T(oi,`) (7.10)

∀e ∈ E, X = x ∈ prec(e) : InPlan(e)⇒ Val(X, SI(X, e)) = x (7.11)

∀e ∈ E, X = x ∈ post(e) : InPlan(e)⇒ Val(X, EI(X, e)) = x (7.12)

∀o ∈ O, i ∈ {1..C(o)} : InPlan(oa,i) ≡ InPlan(o`,i) (7.13)

∀X ∈ V, i ∈ {1..C(X)} : ¬InPlan(Seq(X, i))⇒ Val(X, i) = Val(X, i− 1)

(7.14)

∀X ∈ V, i ∈ {1..C(X)− 1} : ¬InPlan(Seq(X, i))⇒ ¬InPlan(Seq(X, i + 1))

(7.15)

∀X = x ∈ s0 : Val(X, 0) = x (7.16)

∀X = x ∈ s∗ : Val(X, C(X)) = x (7.17)

The objective is then to minimise max({T(Seq(X, C(X)))|X ∈ V}).

Equation 7.5 ensures that the start times for each window in the timeline for

variable X are in order. Equation 7.6 breaks symmetries between the order in

which different copies of an action can occur. Equation 7.7 ensures that an event

must occur strictly after its preconditions are satisfied, and before they next be-

come unsatisfied. Equations 7.8, and 7.9 ensure that the time-windows in which

variables take a specific value are equal to the event times of the causes of these

changes. Equation 7.10 ensures that any “over all” preconditions of actions are
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satisfied no later than the start of the action. Equations 7.11 and 7.12 ensure that

preconditions and postconditions of an event hold on all relevant variables be-

fore and after each event. Equation 7.13 ensures that any operator that starts

must also finish, and vice-versa. Equations 7.14 and 7.15 ensure respectively that

actions not occuring in the plan have no effect on the value of a variable, and that

such non-occuring actions occur at the end of the sequence. Equations 7.16 and

7.17 ensure the initial and final values of each timeline are consistent with the

initial and goal states respectively.

Note that the number of variables and constraints in this encoding both grow

linearly in E. This is in contrast with CPT’s similar encoding which requires a con-

straint for every pair of potentially conflicting actions (Vidal and Geffner, 2006).

This is not necessarily asymptotically faster, as the domain of the variables in our

encoding also increases linearly with E, but requires less memory and is typically

faster in practice, all else being equal.

The remaining challenge is to choose appropriate action counts. In this choice

we have two options based on ideas developed in this thesis: Use an operator

counting heuristic and learn generalised landmarks as discussed in chapter 5;

or, relax the scheduling sub-problem in such a way that the relaxation may be

refined by restricting any relaxed operators chosen in the solution, and adding

more events.

The former approach is theoretically straightforward assuming the reader is

familiar with chapter 5. The alternative involves relaxing the precondition con-

straints for events supported by the last event in a variable sequence. This can

be considered similar to the work of Robinson, Gretton, Pham, and Sattar (2010)

in optimal SAT planning which adds a delete-relaxed suffix to a layer-based SAT

formula.

The latter approach requires that we first transform our CP model from a re-

striction of the full planning problem into a relaxation. To this end we add a
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delete-relaxation to our model.

7.6.2 Partial-order relaxation

We can’t simply apply a delete-relaxed “suffix” to our plan as there isn’t neces-

sarily a single state where we can sensibly start using delete-relaxed operators.

Instead we allow delete-relaxed actions to be interleaved with regular actions. To

achieve this we add one delete relaxed copy of each operator to our action counts,

we refer to the set of these relaxed events as E+, and o+` and o+a to represent the

start and end events derived from relaxing operator o.

In order to accommodate relaxed actions in our partial-order formulation, we

modify constraint 7.9 to read:

∀X ∈ V, i ∈ {1..C(X)} : (Seq(X, i) 6∈ E+)⇒ E(X, i) ≤ S(X, i + 1) (7.18)

(7.19)

This change allows the effect of an event to persist indefinitely, in-spite of X tak-

ing other values at later times. We must also modify the goal achievement con-

straint, equation 7.17 to read

∀X = x ∈ s∗ : ∃i.Val(X, i) = x ∧ (i = C(X) ∨ Seq(X, i) ∈ E+) (7.20)

(7.21)

This is slightly different to a traditional delete-relaxation where previous val-

ues remain true after the relaxed action, but this variant makes it simpler to prove

that this is in fact a relaxation of the full planning problem. Nonetheless the re-

sulting relaxation is sufficiently similar we do not feel it warrants a distinct name.

However this is not sufficient: the optimal solution to this program would

simply compute the optimal delete relaxed plan, regardless of the other opera-
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tors available. This precludes the use of this model in a relaxation-refinement

approach as it will not converge to a true solution to the problem.

To address this we must add two new constraints:

∀o ∈ O : T(o`,C(o)) < T(o+` ) (7.22)

∀o ∈ O : ¬InPlan(o`,C(o))⇒ ¬InPlan(o+` ) (7.23)

This requires the solution to use real operators before any delete-relaxed opera-

tors of the same type.

This model is a relaxation of the original planning problem regardless of the

action count: any plan for the original problem can be transformed into a plan for

this model by replacing the C(o)+ 1-th application of an operator o in the original

plan with o+ in the relaxed plan, and omitting all subsequent applications of o.

All operators omitted this way are redundant, as all of the positive effects will

already be available earlier as a result of the relaxed action.

This partially-relaxed model allows us to apply a relaxation-refinement ap-

proach: First the optimal solution to the relaxed model is obtained. If this con-

tains any delete-relaxed actions, a new model is constructed with one more real

copy of each relaxed operator used. Otherwise the solution to the relaxed model

is also a solution to the original problem, and thus must be optimal.

This approach has no fixed-points other than solutions: if an operator’s count

is incremented, the previous solution is no-longer valid in this or any future

model because at least one more real copy of the operator must be used strictly

before a delete-relaxed version may be applied.

7.6.3 Conclusions and Further Work

We have introduced a relaxation-refinement approach to temporal planning that

solves the planning problem by solving a series of optional scheduling problems.
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The results of these solves inform the way that the relaxation is refined. Our

model requires only a linear number of variables in the number of events being

scheduled.

Unlike CPT, our approach does not rely on a specialised solver to carefully

propagate some constraints only in certain directions (Vidal and Geffner, 2006).

Having such a compilation of temporal planning to general CP allows us to con-

sider new ways to integrate existing scheduling constraints used in resource-

constrained scheduling problems.

One such approach is to add envelope-actions (Coles, Fox, Halsey, et al., 2009)

which could be annotated to indicate resource consumption, allowing us to add

constraints like:

∀R : cumulative([〈T(oi,a), ∆(o, i), k〉|〈o, k〉 ∈ requires(R), i ∈ C(o)], capacity(R))

where requires(R) is the set of 〈o, k〉 pairs where operator o that consumes k units

of a reusable resource with a total concurrent usage limit of capacity(R). In our

running gripper example, we could use an envelope action to represent “hold-

ing(ball)”, which could allow us to represent the capacity to hold several balls

simultaneously. This constraint could safely be applied to the delete-relaxed ac-

tions in addition to real actions. However care will need to be taken in consid-

ering the interaction between such constraints and the delete relaxation in the

general case.

We had hoped that the linear-size encoding would counteract the overhead

of the MiniZinc modelling language, as compared to CPT’s highly specialised

and optimised CP system. However, since CPT only supports basic concurrency

with fixed action duration and no required concurrency, our preliminary experi-

ments suggest that the additional overhead of supporting required concurrency

largely eliminates this benefit. Additionally existing temporal planning bench-
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marks are not ideally encoded for this approach, and we would need to investi-

gate specialised domains which truly exploit the potential for adding scheduling

constraints in order to demonstrate the true value of this approach.





Chapter 8

Conclusion

Here we reiterate the contributions, conclusions and further work identified in this thesis.

In this thesis we set out to explore the ways in which knowledge derived from

conflict can be exploited to find and prove optimal plans in three key variants of

the planning problem.

We introduced a number of algorithms, listed in table 8.1, in the development

of these algorithms, several new notions of conflict and representations of knowl-

edge were also introduced. In many cases these conflicts and representations of

knowledge have potential applications in different algorithms, which we have

not yet explored.

We also examined a number of existing algorithms through the lens of conflict-

directed learning.

Algorithm Conflict Knowledge Learned
FragPlan (Ch. 3+4) Resource limitations Improving agent plan
OpSeq (Ch. 5) Unsequencable Generalised Landmark
CDHL (Ch. 6) Suboptimality Clause
MznLBBD (Ch. 7) Unschedulable Benders Cut
OpSched (Sec. 7.6) Unschedulable Add Events

Table 8.1: Summary of introduced algorithms
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8.1 Part I

In Part I we examined multi-agent planning, introducing Fragment-Based Plan-

ning (FragPlan in table 8.1), certainly the most empirically effective of the al-

gorithms introduced in this thesis. FragPlan is an anytime multi-agent plan-

space planning algorithm for real-world resource constrained problems which

can solve problems orders of magnitude larger than state-of-the-art planning or

scheduling approaches.

Fragment-Based planning relies on shared resources to model agents’ inter-

actions, agents then plan independently and over-used resources are conflicts,

which are subsequently assigned prices. Agents will then tend to avoid using

these resources in subsequent plans. FragPlan can thus either be seen as learn-

ing the true cost of resources, or as learning an optimal set of per-agent plans.

We prefer the latter view because there are domains in which there is not one set

of prices from which we can derive the optimal joint plan, but a different set of

prices for each agent.

In defining this algorithm we introduced the notion of “bounded-benefit” pro-

grams, a decidable subclass of Golog program. These have to potential to simplify

modelling in traditional Golog dialects by exploiting a notion of cost to prune ar-

eas of the search.

We also introduced “precondition relaxations”, an application of Lagrangian

Relaxation to dynamic multi-agent systems. These have the potential to enable

a principled way to combine per-agent heuristics into an admissible multi-agent

heuristic, while preserving some degree of privacy.
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8.2 Part II

In Part II we consider classical planning, and introduce two significant algo-

rithms Operator Sequencing (OpSeq), and Conflict-Directed Heuristic Learning

(CDHL). OpSeq is an application of Logic-Based Benders Decomposition to the

classical planning problem. It exploits the observation that the cost of a plan

is independent of the order in which the actions are applied, in order to build

an ever-improving lower-bound on plan cost. At each iteration a Mixed-Integer

Program is solved to generate an estimate of an optimal set of actions (called a

plan projection or operator count). This projection is then either sequenced into

a plan, or refuted and a “generalised landmark” is learned and added to the MIP

to refine future operator counts.

We introduced a SAT-based sequencing/refutation sub-problem, but one can

easily imagine a state-based algorithm that attempts to explore the reachable

state-space restricted to using only the projected actions. Such a sub-problem

solver could allow some of the learned landmarks to be re-used recursively in

similar states. We believe this kind of sub-problem solver may be more effective

(if more complex) than the SAT-based approach we present in this thesis.

More traditional applications of generalised landmarks remain unexplored.

For example, one can imagine a fixed heuristically-generated set of these land-

marks could be computed at the start of a search and exploited in a traditional

heuristic similar to LM-cut, operator counting, or potential heuristic.

In this part we also introduce Conflict-Directed Heuristic Learning (CDHL),

which generalises IDA* with a transposition table. We first analyse the addition of

a transposition table to IDA* as a non-generalising, but nonetheless surprisingly

effective learning algorithm, using the notion of reduced-cost of operators as the

root of the type of conflict that IDA* detects and prunes.

Given this understanding, we exploit regression to examine which proper-
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ties of a state are actually responsible for it being further from the goal than the

heuristic initially estimated, and update the heuristic estimate for a set of states,

not just the one we have actually seen. Specifically we learn a clause in terms of

facts that do not hold in a state, and integrate into this clausal database a suc-

cessor generator that is aware of reduced cost, allowing CDHL to learn to prune

sub-trees earlier.

8.3 Part III

Part III explores temporal planning and scheduling problems. Learning from

conflict in traditional scheduling problems is well explored in the constraint pro-

gramming literature, and we introduce an Automatic Logic-Based Benders De-

composition (AutoLBBD), which out-performs a state-of-the-art conflict-directed

learning CP system, at least on the expressive alternative scheduling problems

we investigate.

AutoLBBD is the first “model-and-run” LBBD solver, capable of solving an ar-

bitrary unannotated constraint program using this highly-effective conflict-directed

algorithm. Our results show that this approach, while far from perfect, outper-

forms both traditional CP and MIP formulations of several alternative scheduling

problems. This chapter is, to our knowledge, the broadest comparison of logic-

based Benders with MIP and CP. Our automatic decomposition enabled us to

investigate many different domains without significant additional engineering

effort.

This work also highlighted the duality of Logic-Based Benders Decomposition

and the local search technique Large Neighbourhood Search.

To exploit this AutoLBBD framework, we also described Operator Scheduling

(OpSched), a CP model of expressive temporal planning, unfortunately, disap-

pointing preliminary results suggest that the overhead of the MiniZinc modelling
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language is significant. Additionally, we suspect that the types of problems con-

sidered in existing temporal planning benchmarks do not exploit the potential

strengths of this approach.

We are particularly interested in investigating domains which could poten-

tially exploit the rich resource-constrained scheduling constraints that can be

added to a temporal problem in this framework. In developing this extension

we also introduced a partial-order delete relaxation which may have applications

in more traditional partial-order planners.

8.4 Summary

Our results show that conflict-directed reasoning is a highly effective approach to

cost-optimal planning in industrial domains when appropriate decompositions

and explanations are known.

We have introduced a number of novel notions of conflict, particularly within

plan-space search, and algorithms which learn and exploit knowledge that can

be learned from these conflicts. Several of these algorithms derive decomposi-

tions and explanations automatically from unannotated problem descriptions in

the standard modelling languages PDDL and MiniZinc. We believe there is sig-

nificant future work to be done in investigating more efficient ways to derive and

exploit these decompositions and explanations.

We are excited about the directions for future research our investigations into

conflict in plan-space planning has opened. It is our hope that new, more ex-

pressive modelling approaches for planning can be built upon the algorithms

introduced in this thesis.
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