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This thesis explores the intersection between planning and learning methods for autonomous

sequential decision-making. Planning is a model-based approach to autonomous sequential

decision-making where action policies are derived automatically through a model of an en-

vironment. Alternatively, learning methods learn action policies through interaction with an

environment. The planning and learning approaches can be likened to current theories of human

cognition which propose a fast and associative system works in conjunction with a slow and

deliberative one. From this observation previous work has conjectured that in order to create

intelligent systems that are more general and robust than existing ones, a combination of planning

and learning methods may be required.

Two common high-level approaches for combining planning and learning are to use learning to

help guide the search e�ort of planners and to use planners to teach learning algorithms. This

thesis examines these two high-level approaches through the topics of cost-to-go approxima-

tions, symbolic regression and imitation. We propose and study a number of new algorithms

which provide new insights into methods that combine planning and learning, namely, we intro-

duce methods for learning value and policy functions from lookeaheads; learning from single

demonstrations produced by planners; and learning heuristics for planning algorithms.
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Chapter 1

Introduction

This thesis is focused on the intersection of planning and learning methods for Autonomous

Sequential Decision Making (ASDM) problems. The ASDM problem can be described through

the agent-environment interaction, illustrated in Figure 1.1. An agent is an entity that can observe

the state of its environment and interact with it through selecting actions which yield resulting

rewards or costs from the environment. Planning and learning methods are two high-level

approaches for solving ASDM problems. The goal of both planning and learning methods is

to create an action policy that maximises the expected rewards received from an environment.

Learning and planning are distinguished by the method in which they create an action policy

for the agent. Learning approaches learn an action policy through agent interaction with the

environment (Sutton and Barto 2018). Conversely, Planning approaches are model-based meth-

ods where the action policy is not learned through interaction but instead derived automatically

through a model of the actions, senors, and goals of the agent and environment (Ge�ner and

Bonet 2013).

The planning and learning approaches to ASDM problems can be likened to current theories

of human cognition which propose that a fast and associative system (System 1) works in

conjunction with a slow and deliberative one (System 2). As described by Ge�ner (2018)

there are parallels between model-free based approaches like Reinforcement Learning (RL) with

System 1 and a model-based approach like Automated Planning with System 2. Following from

these observations is the idea that in order to create ASDM agents that are more general and

robust, a combination of the System 1 and System 2 like approaches may be required. In this

1
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F����� 1.1: The agent-environment interface.

thesis we explore the interaction between System 1 and System 2 approaches by exploring the

interface between planning and learning through proposing a number of new algorithms.

The AlphaGo (Silver et al. 2016), and AlphaZero (Silver et al. 2018) family of algorithms

are particularly famous examples of successfully combining planning and learning approaches.

The AlphaGo algorithm was able to defeat the world champion at the game of Go, a feat long

considered a grand challenge in the field of Artificial Intelligence research. At the core of the

family of algorithms are a couple of key interactions between the planning and learning systems.

First a policy function is learnt to guide a planner and a learnt value function is used to evaluate

states at the limits of the planner’s search tree. Second, the value and policy functions are learnt

from observations of the planner playing against itself with previous iterations of the learnt value

and policy functions. The success of AlphaGo and AlphaZero suggests that using and learning

policy and value functions in this way to guide a planner’s exploitation and exploration of the

search space is useful.

In many planning and learning methods (Guo et al. 2014; Anthony, Tian, and Barber 2017; Sun

et al. 2018; Ferber, Helmert, and Ho�mann 2020) it is common that the planning system, that is

slow and deliberative, is interfaced as a teacher to train a learning algorithm, just as the AlphaGo

and AlphaZero algorithms do. In this setup the learning algorithm aims to imitate the policy that

results from calling the planning algorithm. As discussed next this thesis explores the idea of

using a planner as a teacher for a learner as well as the idea of using learning to guide planning

algorithms.
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Cost-to-go
Approximations for

Planning

         Symbolic
         Regression Imitation   

Ch. 3 (RQ1) Width-based planning
augmented with base policies

Ch. 4 (RQ1) Width-based planning and
learning over the Atari-2600 benchmark

Ch. 6 (RQ2) Imitation learning via
symbolic pre-imaging

Ch. 5 (RQ2) Iterative Backwards
Learning with intrinsic motivation

Ch. 7 (RQ3) Learning a
heuristics via pre-images

F����� 1.2: Overview of the research areas explored in each Chapter that underpin the
research contributions.

1.1 Research questions and contributions

There are many di�erent ways that planning and learning methods for ASDM can interact with

one another. This thesis focuses on two high-level ideas for combining planning and learning.

The first of these ideas is to use learning to help guide and trade-o� the exploration versus

exploitation of a planner, and the second is using planners as teachers for learning algorithms.

We explore these high-level ideas through the topics of cost-to-go approximations, symbolic

regression, and imitation learning. Figure 1.2 illustrates the topics explored in each Chapter

which address the research questions introduced below.

Our first research question investigates exploration versus exploitation for black-box simulator-

based planning and learning methods,

RQ1 How can planning and learning interact to trade-o� exploration and exploitation

for model-free simulator-based problems?

We investigate this research question in Chapters 3 and 4. Chapter 3 proposes a new model-free

simulator-based planning algorithm RIW-_ for Stochastic Shortest Paths (SSPs) based upon

the state-of-the-art model-free simulator-based planner Rollout-IW (RIW). Chapter 3 shows the
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benefit of adding cost-to-go approximations to RIW and suggests that given tight simulator

budgets learning cost-to-go approximations could be advantageous in the exploration versus

exploitation trade-o�. Chapter 4 follows up from Chapter 3 by introducing a new planning

and learning algorithm, Novelty based Critical Path Learning (N-CPL), that learns cost-to-

go approximations and policies that can guide the search of RIW. The novelty mechanisms

of the RIW planner drives the exploration of N-CPL while the learnt policies and cost-go-

approximations that guide the planner exploit knowledge gained from previous episodes executed

by the N-CPL agent. We show that N-CPL’s trade-o� of exploration versus exploitation pays-

o� as N-CPL outperforms the previous best model-free simulator-based planning and learning

agents on the Atari-2600 games.

As previously discussed a clear intersection between planning and learning is using planners as

teachers for learning systems. There is vast literature on imitation learning algorithms, however

the algorithms often require complete demonstration trajectories of states, or state-action pairs

that are valid for the given environment (Abbeel and Ng 2004; Ho and Ermon 2016; Torabi,

Warnell, and Stone 2018b). There are many environments with underlying dynamics that are

too complex to plan over however through relaxing the environment’s dynamics we can create

relaxed solution trajectories. Our next research question tackles how symbolic regression with

a full, relaxed or partial demonstration can be exploited to learn e�ective action policies that

generalise over the state-space of an environment.

RQ2 To what extent can symbolic regression given a full, relaxed or partial demon-

stration trajectory assist learning?

We consider RQ2 in Chapters 5 and 6. Chapter 5 investigates and proposes improvements

to learning policies from states that are progressively further away from a goal by regressing

through a given demonstration. Following from the open questions and conclusions of Chapter

5, Chapter 6 proposes a new symbolic regression based learning algorithm which is shown to

outperform previous methods given full, relaxed and partial demonstrations trajectories.

Finally, we explore how to autonomously discover actions over which to perform regression as

opposed to using a given demonstration. We also investigate how symbolic regression can be

used by a learning algorithm to learn cost-to-go approximations for use by a forward search

planner.
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RQ3 To what extent can learning with symbolic regression produce useful cost-to-go

approximations?

We study RQ3 in Chapter 7, where we introduce a new method for learning cost-to-go approx-

imations using symbolic regression named Regression based Supervised Learning (RSL). We

measure the usefulness of the learnt approximations by RSL through forward planning and show

that RSL learns more useful cost-to-go approximations than previous learning-based methods

with two-orders of magnitude less compute.

1.2 Thesis outline

The thesis will be set out as follows,

• Chapter 2 will provide the necessary background of the concepts and related works which

underpin each of the research questions we address.

• Chapters 3 and 4 address RQ1,

– Chapter 3 proposes an improvement to a state-of-the-art planning algorithm through

using cost-to-go approximations,

– Chapter 4 extends the improvements laid out in Chapter 3 through learning cost-to-go

approximations and base policies.

• Chapters 5 and 6 address RQ2,

– Chapter 5 explores a learning from demonstration algorithm which uses regression

and proposes improvements,

– Chapter 6 addresses some of the issues discovered in Chapter 5 through introducing

a new symbolic regression algorithm for learning from demonstration.

• Chapters 7 addresses RQ3 through presenting and exploring a method which uses symbolic

regression to learn cost-to-go approximations.

• Chapter 8 concludes the thesis by summarising its key contributions, and suggesting ideas

for future work.



Chapter 2

Background

In this chapter we provide a broad overview of the concepts and related works which are central

to the thesis. A discussion of how previous works relate to the contents of each individual

Chapter is not discussed and is instead included in each relevant Chapter’s related work sections.

This chapter starts by defining how we model the ASDM problem and the ASDM benchmark

environments we use. Additionally, the Chapter covers some standard definitions that are used

throughout the thesis. Finally, we discuss methods used to solve for ASDM problems that include

Planning, Reinforcement Learning, Imitation Learning, and methods that combine Planning and

Learning.

2.1 Markov Decision Processes

We model the ASDM problems as Markov Decision Processes (MDPs). MDPs model problems

as having fully observable states and allow for stochastic actions. We formalise MDPs, as

described by Ge�ner and Bonet (2013),

Definition 2.1. A MDP is the tuple " = (S, B0, �,) , 2), containing,

• a state-space S ✓ R3 ,

• an initial state B0 2 S,

• sets of discrete or continuous applicable actions �, such that �(B) is a set of actions

applicable in B 2 S,

6
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• a set of distributions ) , such that ) (B, 0, B0) gives the probability of the transition from

state B 2 S to state B0 2 S given action 0 2 �(B),

• a cost function 2 such that, 2(B, 0) returns the cost for performing action 0 2 �(B) from

state B 2 S. Note that it is common for RL literature to use rewards instead of costs.

Rewards can easily be mapped to costs using the relationship 2(B, 0) = �'(B, 0), where '

is the reward function.

An action policy for an MDP, c, maps a state B 2 S and an action 0 2 �(B) into the probability

of the policy taking action 0 when in B. That is, c : B, 0 ! [0, 1] such that for any B 2 S,Õ
02�(B) c(0, B) = 1. The expected value function of an MDP describes the expected costs from

a state B, from following a given policy c, and is defined as,

+
c (B) =

’
02�(B)

c(B, 0)
✓
2(B, 0) +

’
B
02S

) (B, 0, B0)+ c (B0)
◆

(2.1)

The optimal policy c⇤ for a problem will produce an expected value function equal to the optimal

value function +⇤ as described through the Bellman optimality equation (Bellman 1957),

+
⇤(B) = min

02�(B)


2(B, 0) +

’
B
02S

) (B, 0, B0)+⇤(B0)
�

(2.2)

2.1.1 Finite-horizon MDPs

In this thesis we consider a special case of MDPs, finite-horizon MDPs, where accumulated

costs need to be minimised over a given number of stages : = 1, . . . ,�, starting at an initial

state, B0. Terminal states in finite-horizon MDPs are absorbing states. That is, if B is a terminal

state and we are at time step : , every action 0 will map (B, :) into (B, : + 1) and will be cost-free

i.e. 2(B, 0) = 0. Our goal is to produce a policy such that it minimises the expected accumulated

cost received for an episode of the MDP,

argmin
c
⇢

⇢
��1’
:=0

’
02�(B)

c(B: , 0)2(B: , 0)
�

(2.3)

where the expectation is over B:+1 ⇠ ) (B: , 0, B:+1).
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2.1.2 Goal MDPs: stochastic shortest path problems

We also consider another special case of MDPs, Goal MDPs which are used to describe stochastic

shortest path problems. Following the definition by Ge�ner and Bonet (Ge�ner and Bonet 2013),

Definition 2.2. A goal MDP is the tuple "⌧ = (S, B0,S⌧ , �,) , 2), where S, B0, �,) , 2 are as

defined in Definition 2.1 except that 2(B, 0) returns only positive costs for applying any action

and S⌧ ✓ S is a set of goal states which are considered as terminal states of "⌧ .

The expected value and optimal value function definitions remain as defined in Equations 2.1

and 2.2, except that for states B 2 (⌧ , + c = +⇤(B) = 0.

2.2 Planning models and languages

Planning methods derive action policies for MDPs through a given model of the action, transition

and cost functions of an environment. The planning model can be given explicitly through a

symbolic description or implicitly through a simulator of the environment.

2.2.1 Classical planning model

Classical planning is concerned with Goal MDPs with deterministic actions, that is ) (B, 0, B0)

can only equal 1 for one state B0 and 0 for any other state B00, where B, B0, B00 2 S, B0 < B
00

and 0 2 �(B). For classical planning problems there are a number of languages that explicitly

express their models in a compact form. In this thesis we use the classical planning language of

the STRIPS formulation (Fikes and Nilsson 1971).

Definition 2.3. STRIPS defines a planning problem as the tuple ⇧ = h�,$, �,⌧i, where � is a

set of atoms, $ is a set of actions, � ✓ � is the initial state and ⌧ ✓ � is the goal set.

Each action 0 2 $ is represented in STRIPS by the tuple h�33 (0),⇡4; (0), %A4(0)i which are

each a set of atoms over �. �33 (0) and ⇡4; (0) describe the atoms that are added and removed

from the state respectively, and %A4(0) describes the atoms that must be true in a state in order to

apply action 0. The STRIPS problem ⇧ implicitly represents in a compact form a deterministic

transition system (Ge�ner and Bonet 2013).
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Definition 2.4. The classical planning state-transition model for progression is S(⇧) =

h(, B0, (⌧ , �, 5 , 2i, where ( ✓ 2� , B0 is the initial state �, (⌧ is the set of goal states de-

scribed as the set {B | B ◆ ⌧, B 2 (}, the actions 0 2 �(B) are the actions in$ that are applicable

in B, that is %A4(0) ✓ B, 5 is the transition function where for action 0 and state B, the resulting

state is B0 = 5 (0, B) = (B \ ⇡4; (0)) [ �33 (0), and finally 2(0, B) is the cost of selecting the

transition out of B via action 0.

A solution for a classical planning problem is a sequence of actions 00,. . . ,0= that select tran-

sitions connecting the initial state B0 to a state within the goal set (⌧ . The progression state-

transition model can be used to find a solution through a forward search for a goal state from

B0.

Planners can also search backwards from the goal through the regression state-transition

model (Ge�ner and Bonet 2013).

Definition 2.5. The regression state-transition model is '(⇧) = h(, B0, (⌧ , �, 5 , 2i, where B0 is

the partially assigned state⌧, the goal set (⌧ is the set {B | B ✓ �, B 2 (}, �(B) are the actions in$

that are relevant and consistent for the partial state B, that is �33 (0) \ B < ; and ⇡4; (0) \ B = ;,

and the state transition function to pre-image state B is 5 (0, B) = (B \ �33 (0)) [ %A4(0).

A key di�erence between the regression and progression state-transition models is that the

regression model searches over partial truth assignments, which represent sets of states as

opposed to complete truth-assignments. For the progression state-transition model every atom

not in a state is false, while for the regression state-transition model the atoms not in a state are

simply undefined. The regression model is required to search over pre-images G ✓ � as the initial

pre-image G0 coincides with the set of goal states from the progression state-transition model

(⌧ . Regression operators also compute weaker preconditions so the only atoms being asserted

in a pre-image G are those in the precondition %A4(0), while retracting any commitments on the

truth value of atoms in �33 (0). Conversely, the progression state model will always search over

full states B 2 S(⇧) as � prescribes the truth value of every atom, and the progression transition

function 5 (0, B) provides an explicit mapping between states B, B0 2 S(⇧).

2.2.2 Simulators

Many problems can have transition functions that are di�cult to model using an expressive

symbolic planning formulation such as STRIPS, however a simulator of the transition function
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is readily available (Frances et al. 2017). One benchmark set of environments that we use are the

Atari-2600 video games which we discuss in further detail in 2.5.3. While compact symbolic

descriptions for each Atari-2600 game are not available, a black-box simulator of the Atari games

is readily accessible through the Arcade Learning Environment (ALE) (Bellemare et al. 2013)

interface.

Black-box simulators provide the agent with only the ability to call the �, ) and 2 functions

of an MDP (Definition 2.1) through the same interaction as the agent-environment interface

(Figure 1.1). That is, the agent can send an action to the simulator given the simulator’s current

state to receive the resulting state and cost.

There are a number of di�erent attributes a simulator of an ASDM environment can have.

A simulator can have the same transition function as the environment or it can provide an

approximation or relaxation of the environment’s true transition function. Throughout this thesis

we explore problems with simulators that use the same transition function as the environment,

that is )⇢ (B, 0, B0) = )
( (B, 0, B0), where )⇢ is the environment’s transition function and )(

is the simulators. Environment simulators typically used by RL algorithms allow for repeated

episodes of a Finite-Horizon MDP (2.1.1) problem to be executed, but do not allow the simulator

to be set to any state B 2 S. We refer to these simulators as non-settable black-box simulators.

Simulators that do allow for setting their state to any B 2 S, like that ALE Atari-2600 simulator,

we refer to as settable black-box simulators. In this thesis we mainly focus on methods that use

settable black-box simulators.

2.3 Defining sets of states: polytopes and bounding boxes

One way to define sets of states for MDPs is through polytopes or bounding boxes. We follow

definitions as presented by Borrelli et al. (2017).

Definition 2.6 (Convex Set). A set ( ✓ R3 is convex i� _I1 + (1�_)I2 2 ( for all I1 2 (, I2 2 (

and _ 2 [0, 1].

Definition 2.7 (Convex Hull). The convex hull of a set ( ✓ R3 , denoted as conv(S), is the set of

all convex combinations of the points in (. That is conv(S) �= {_1
G

1 + . . . + _:G: | G8 2 (, _8 �

0, 8 = 1, . . . , : ,
Õ

:

8=1 _
8 = 1}.
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A convex hull of a set ( has the property that if⇠ is any convex set with ( ✓ ⇠, then conv(S)✓ ⇠.

There are two equivalent definitions for polytopes, the H -representation and V-representation.

We define a polytope, % 2 R3 , in H -representation as the bounded intersection of a finite set of

< closed half-spaces in R3:

Definition 2.8 (Polyhedron). A polyhedron P 2 R3 is an intersection of a finite set of < closed

half-spaces in R3 , P �= {G 2 R3 | �G  1}, where � 2 R<⇥3 and 1 2 R<.

Definition 2.9 (Convex Polytope (H -representation)). A convex polytope, %, is a bounded

polyhedron P which does not contain any ray {I1 + CI2 | C � 0, I1 2 P, I2 2 P}.

Alternatively, a polytope can be defined by the V-representation as follows:

Definition 2.10 (Convex Polytope (V-representation)). A convex polytope % of any finite set of

points ( 2 R3 is %
�= conv(S).

Additionally we define extremes of a polytope as,

Definition 2.11 (Extremes of a Convex Polytope). The set of extreme points of the convex

polytope %, denoted as 4GCA4<4B(%) is the set, 4GCA4<4B(%) �= {4 2 % | 4 < _I1+(1�_)I2, _ =

(0, 1), I1 2 %, I2 2 % }.

We also define bounding boxes with an n-padding in each dimension as,

Definition 2.12 (n-Bounding Box). The n-Bounding Box for a set ( ✓ R3 is the hyper-rectangle

between the two points ; = [<8=0(() � n ,<8=1(() � n , . . . ,<8=3 (() � n] and D = [<0G0(() +

n ,<0G1(()+n , . . . ,<0G3 (()+n], where<8=<(() and<0G<(() are the minimum and maximum

values along dimension <, for the points in S.

2.4 Supervised Learning

Supervised Learning (SL) is a common approach for creating predictors from data samples

through empirical risk minimisation (Hardt and Recht 2021) with a goal of generalising to out-

of-sample data. That is, the objective of SL given a function class H ✓ X ! Y and a set of

data samples (Ḡ1, H1), (Ḡ2, H2), . . . , (Ḡ8 , H8) is defined as,

min
⌘2H

1
=

=’
8=1

loss(⌘(Ḡ8), H8) (2.4)
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We make use of SL approaches in Chapters 4 and 7.

2.5 Benchmark environments

In the worst-case solving for optimal policies for MDPs is known to be intractable (Mundhenk

et al. 2000), hence it is common practise to compare ASDM algorithms, not on worst-case

guarantees, but instead through their relative practical performance on a set of benchmark

environments. Here we discuss the di�erent benchmarks that we use throughout the thesis to

evaluate algorithms we explore and propose.

2.5.1 SSPs: GridWorld, Canadian Travelers Problem, and RL acid

GridWorld (Sutton and Barto 2018) domains, are instances of a SSP problem. The goal in

GridWorld is to move from an initial position in a grid to a goal position. In each state 4 actions

are available: to move up, down, left or right. Any action that causes a move outside of the

grid results in no change to the agent’s position. Actions have a cost of 1, with the exception of

actions that result in reaching the goal state, that have a cost of 0. The complexity of GridWorld

can be scaled through the size of the grid and the location and number of goals. GridWorld

also allows for extensions, which we use to have domains with a stationary goal, moving goals,

obstacles and partial observability all of which we explore in Chapter 3.

Having partially observable obstacles in GridWorld provides an instance of the stochastic Cana-

dian Traveller Problem (CTP) (Papadimitriou and Yannakakis 1991). The objective in CTP is to

find the shortest path between two locations in a road map, however, there is a known probability

for each road in the map being blocked due to weather conditions. A road in CTP can only be

observed as being blocked or unblocked by visiting a location connected to it, and once a road

status is observed the status remains unchanged. For CTP we model the partially observability

through representing the probabilities of the obstacles implicitly in the simulator.

John Langford designed two MDP problems1 described as Reinforcement Learning (RL) "Acid"

intended to be di�cult to solve using common RL algorithms, such as Q-learning. Langford’s two

problems are " tiled corridors which allow two actions from every state. The first of Langford’s

problems is named Antishaping and uses reward shaping to encourage actions away from the

1https://github.com/JohnLangford/RL_acid
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F����� 2.1: Mobile-Robot domain. The small blue square is the agent, red square is the goal
and the large blue object is a pit from which the WalkBot can not escape.

goal state. Antishaping has one consistent action which always moves the agent towards the goal

while the other action moves the agent away from the goal. At either end of the corridor one of

the actions cause no change in the agent’s location. The cost of each transition in Antishaping is

0.25 divided by the distance between the successor state and the goal, except when the resulting

state is the goal location which has a cost of 0. The motivation behind Langford’s second

problem, Combolock, follows from observing that if many actions lead back to a start state,

random exploration is inadequate. The Combolock problem has one action that moves the agent

to the end of the corridor that does not contain the goal and one action that results in the agent

progressing a single tile closer to the goal. The cost of each action in Combolock is 1 except for

the transition that leads to the goal tile where the cost is 0.

2.5.2 Motion planning

The Mobile-Robot domains are instances of motion planning with dynamical constraints. This

problem is known to be PSPACE-complete (Reif 1979). The Mobile-Robot domain, illustrated

in Figure 2.1 requires an agent to reach a goal square and have its velocities below a thresh-

old. Mobile-Robot’s observable state is (G, H, EG , EH) where (G, H) is the agent’s position in 2

dimensional space and (EG , EH) are first-order derivatives of the agent (velocities) in the x and
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y directions. The agent controls the second-order derivatives of its position through the action

space (0G , 0H), that is, the acceleration in each dimension. The range of acceleration in each

dimension is [�2, 2]. If the agent moves outside of the bounds (0 � G � 10, 0 � H � 10) or

moves into an obstacle, illustrated in Figure 6.2, it will remain there for the rest of the episode.

At each step when the agent is within the goal square and both abs(EG)  0.2 and abs(EH)  0.2

the cost of actions are 0, otherwise the cost is 1. We use 3 instances of Mobile-Robot, each

with a time horizon of 100 steps. The instances are: (1) Mobile-Robot is free of obstacles and

terminates when B 2 S⌧ , (2) Mobile-Robot-Ob has obstacles and terminates when B 2 S⌧ ,

(3) Mobile-Robot-Ob-Stay has obstacles and only terminates at time horizon. There are clear

high-level modes of behaviour required by each instance. The Mobile-Robot domain has to

accelerate towards the goal, then decelerate so that its velocity is below the required threshold

once in the goal square. When adding the obstacle, given the start state shown in Figure 6.2 the

agent needs to accelerate either right or upwards, turn around the obstacle, accelerate towards

the goal and then decelerate. Mobile-Robot-Ob-Stay requires all the previous behaviours and to

stay in the goal area once there.

2.5.3 Atari-2600

The Atari-2600 games have widespread use in literature for comparing and evaluating planning

and learning techniques (Bellemare et al. 2013; Machado et al. 2018). The Atari-2600 games

provide a challenging set of domains for ASDM agents, as they were designed to be a challenge

for humans and each game requires di�erent behaviours in order to maximise rewards. The

Atari-2600 games can be accessed through the Arcade Learning Environment (ALE) (Bellemare

et al. 2013) which provides a typical Reinforcement Learning (RL) environment interface where

given a state, the agent selects an action and receives a resulting state and reward. The Atari-2600

games require 60 actions per second of game play and also have a large branching factor, of

18 actions, making it unfeasible to use a brute-force Planning method (Bellemare et al. 2013).

Depending upon the setting, the states perceived by the agent can be either the game’s screen

pixels or RAM values.

2.5.4 Classical and probabilistic planning benchmarks

Classical planning problems are often specified using the Planning Domain Definition Language

(PDDL) (Aeronautiques et al. 1998). PDDL uses two parts to describe a problem. The first
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part describes the domain which defines a set of predicates and action schemas. The action

schemas define action e�ects on predicates concerning a single object or set of objects. The

other part specifies a particular problem instance of the domain by defining the objects that

exist as well as the problem’s initial state and goal description. Relational Dynamic Influence

Diagram Language (RDDL) (Sanner et al. 2010) is an alternative planning language which allows

for stochastic processes such that RDDL can model MDP problems where actions are stochastic.

Problems are defined in RDDL similarly to PDDL in that they contain separate domain and

instance descriptions.

The International Planning Competitions (IPC), which started in 1998 (McDermott 2000), pro-

vide sets of classical and probabilistic planning domains which are used to compare and determine

state-of-the-art classical and probabilistic planning algorithms. There are a number of di�erent

objectives/metrics that can be used when comparing planners on any given domain. Broadly,

metrics which are typically used to compare planning algorithms are coverage (how many prob-

lems the planner can solve), plan quality, and solving time. The classical planning tracks in the

most recent IPC in 2018 2 included an optimal track, bounded-cost track, satisficing track and

an agile track. Each di�erent track compares planner’s performance using di�erent metrics, the

optimal track focuses on the number of tasks solved optimally, the bounded cost track evaluates

the number of solved tasks with a cost equal to or less than a given bound, the satisficing track

rewards the number of tasks solved as well as lower cost solutions, and finally the agile track

evaluates the time to solve a task while ignoring the cost of the solution paths. In this thesis

when using probabilistic planning benchmarks in Chapter 3 and classical planning benchmarks

in Chapter 7 we focus on both coverage and the quality of the plans found which is directly

related to the satisficing track.

2.6 Planning: uninformed and heuristic search

A classical planning problem, described in 2.2.1 can be interpreted as a path finding problem using

weighted directed graphs where nodes represent states, edges are actions and the edge weights

correspond to action costs (Ge�ner and Bonet 2013). Therefore standard path finding algorithms

like Depth-First Search (DFS), Breadth-First Search (BFS) or the DÚkstra’s algorithm (DÚkstra

1959) can be used to solve for a planning problem. DFS, BFS and DÚkstra are all blind search

algorithms meaning that only information gathered from the nodes visited in the search a�ects

2https://ipc2018-classical.bitbucket.io/
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the future search behaviour. More specifically, blind search does not use any information from

the unexplored nodes/actions in the search space, including information about the goal, to guide

its search behaviour (Pearl 1984). In contrast to blind search, heuristic search algorithms use an

evaluation function called a heuristic to determine which actions provide the most promise of

reaching the defined goal (⌧ in Definition 2.3).

The selection of which heuristic and search algorithm to use depends on both the objective of the

search (some example objectives are discussed in 2.5.4) and structure of the problem. Heuristic

search algorithms often use Best-first Search methods, of which A* and Greedy Best First Search

(GBFS) are common instantiations, which we discuss below,

Best-first Search: Best-first Search methods use an OPEN list of nodes which are yet to be

expanded by the search and a CLOSED list which have been expanded. Nodes in the OPEN

list are sorted according to an evaluation function 5 (B) which varies across di�erent search

algorithms but in the case of an informed search 5 (B) makes use of a heuristic function ⌘(B).

Best-first starts with an empty CLOSED list and an OPEN list containing the initial state of the

problem. Nodes are removed from the OPEN list according to their sorted order and if they are

not already in the CLOSED list they are expanded, meaning all their successor states B0 and put

into the OPEN list, and the state is then put into the CLOSED list. Best-first Search continues

its process until a given termination condition which can that a goal state has been found or a

certain amount of compute has been consumed.

A*/WA*: A* (Hart, Nilsson, and Raphael 1968) is one instantiation of a Best-first search

where 6(B) is equal to the accumulated cost of the path to reach B and the evaluation function is

5 (B) = 6(B) +⌘(B). An admissible heuristic function ⌘(B) for A* is one such that ⌘(B) <= + ⇤ (B)

(for + ⇤ (B) see Equation 2.2). In the case that ⌘(B) is admissible, A* guarantees optimality, as a

goal state will not be expanded unless it is impossible for states in the open list to reach the goal

with a smaller cost. The Weighted A* (WA*) algorithm (Pohl 1970) trades o� the optimally

guarantee of A* for the speed of finding a plan by weighting the heuristic function term in the

evaluation function. WA* evaluation function is 5 (B) = 6(B) + l⌘(B), where for large l values

WA* priorities expanding states with smaller ⌘(B) values which diminishes the influence of 6(B).

GBFS: For the GBFS instantiation of the Best-first Search algorithm 5 (B) = ⌘(B). GBFS is

often able to solve problems faster than methods such as A* as GBFS prioritises speed of finding

a goal state over the plan quality found. GBFS prioritises speed as it orders the expansion of

nodes only according to the heuristic function, ignoring the cost of the path to a reach a node.
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Therefore, GBFS is commonly used over other best-first search methods when the objective of

the search algorithm is coverage and solving speed, and not optimally.

The accuracy of a heuristic function is key to the success of Heuristic Search algorithms because

as the accuracy of the heuristic decreases the number of states needed to be expanded for a problem

can increase exponentially (Helmert, Röger et al. 2008). The overall best performing heuristics

over the set of classical planning benchmarks discussed in 2.5.4 tend to be ones which use

information about the transition function ) , such as the Fast-Forward (FF) heuristic (Ho�mann

and Nebel 2001) which solves a delete-relaxation of the problem to provide heuristic values.

In the next section we discuss planning methods and heuristics for problems where a symbolic

description of the transition function is not provided and is instead provided through a black-box

simulator as described in 2.2.2.

In Chapter 3 we introduce a new heuristic search algorithm for online planning and in Chapter 7

we use GBFS to evaluate how informed a learnt heuristic function is.

2.7 Online planning over simulators

Planning over black-box simulators means that we can not use planning or heuristic methods that

rely upon a symbolic description of the transition function such as the FF heuristic (Ho�mann

and Nebel 2001). Instead, for black-box simulators cost-to-go approximations can be obtained

through simulation, which we explore in Chapter 3, or through learning methods which we

investigate in Chapters 4 and 7.

Online planning interleaves planning and acting. In online planning the planner iteratively works

on what move to do next with a certain planning budget for each time step in the environment.

Online planning methods have the advantage over o�ine methods that they do not require the

algorithm to compute a complete solution path upfront before interacting with the environment.

Online planning is especially advantageous when the simulator of the environment is inaccurate

as plans obtained from o�ine planning often assume the simulator provides a perfect model of

the environment and can not adapt to inaccuracies in the environment that are observed when

executing the plan. Online planning lends itself to environments where there is time to plan

between each move such as games like Chess or Poker. In Chapters 3, and 4 we explore the

online planning over a black-box simulator problem.
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F����� 2.2: Example lookahead showing the action selection process for the root node B0
following Definition 2.14. On the left, we have a fully built lookahead. From left to right, we
show the recursive process to determine what is the action to be executed. The transition with
action 00 from B0 shown in green in the last diagram on the right is the transition added to the
lookahead’s critical path (Definition 2.15). The + , &, and +) functions are as defined in
Definition 2.14.

2.7.1 Lookaheads for online planning

Lookaheads can be used to consider costs for di�erent action trajectories from the current state

into the future. An example of this is shown in Figure 2.2 where a lookahead is illustrated. We

define the notion of lookahead as,

Definition 2.13 (Lookahead). A lookahead is defined as L = (# , ⇠, BA ) where # is a set of nodes

defined as state-action paths starting at the root state of the lookahead BA , and ⇠ is a function

that given a node = 2 # and an action 0 2 �(B) returns the children of =, that is =2 2 ⇠ (=, 0)

and =2 2 # .

Through backing up the costs for each node in the lookahead, as shown in Figure 2.2, an expected

value can be found for each action applicable at the current state. That is, where =B is the last

state along the state-action path of node =, the operation of backing up the rewards and selecting

which action to execute is,

Definition 2.14 (Action selection of lookahead). Given a lookahead L= (# , ⇠, BA ) (Defini-

tion 2.13) the action to execute 0 is selected at the root =A , where =B
A
= BA , by argmin

02�(=BA ) {

&(=A , 0)}, where &(=A , 0) = 2(=BA , 0) +
Õ

=2⇠ (=A ,0) ) (=BA , 0, =B)+ (=), and + (=) = +) (=), with

+
) (=) being a termination cost, when

–
02�(=B) ⇠ (=, 0) = ;, otherwise + (=) = min0{2(=B, 0) +Õ

=
02⇠ (=,0) ) (=B, 0, =0B)+ (=0)}.

Once an action is selected for execution, the lookahead is updated to have its root at the selected

action’s resulting node and the lookahead continues being constructed from the new root node.

We define the action selected by the agent as a part of its critical path. That is,
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Definition 2.15 (Critical Path). Given the action selected 0C at each time step C = 0, 1, . . . ,<

following Definition 2.14, the critical path d is the sequence of states and actions d =

(B0, 00, B1, 01, . . . , 0<�1, B<), such that B8+1 ⇠ ) (B8 , 08 , ·) for 8 = 0, . . . ,< � 1.

2.7.2 The rollout algorithm

A particularly e�ective online planning approach that uses a lookahead to obtain suboptimal

controls is rollout. The rollout algorithm approximates the optimal cost-to-go from the current

state B: , +⇤(B:), by the cost of some suboptimal policy and a 3-step lookahead strategy. The

seminal Real Time Dynamic Programming (RTDP) (Barto, Bradtke, and Singh 1995) algorithm,

is an instance of the rollout strategy where the lookahead is uniform, 3 = 1, and actions c̄(B:)

selected at stage : and for state B: are those that attain the minimum

min
0: 2�(B: )

⇢

⇢
2(B: , 0:) + +̃:+1(B:+1)

�
(2.5)

where the expectation is over B:+1 ⇠ ) (B: , 0: , B:+1) and +̃:+1 is an approximation of the optimal

cost-to-go at time step : + 1, +⇤
:+1. If +̃:+1  +⇤

:+1, that is the approximation is from below,

we will refer to it as a base heuristic, and can either be problem specific (Eyerich, Keller, and

Helmert 2010), domain independent (Bonet and Ge�ner 2003; Yoon, Fern, and Givan 2007) or

learnt from interacting with a simulator (Mnih et al. 2015). Alternatively, +̃:+1 can be defined

as approximating the cost-to-go of a given suboptimal policy c, referred to as a base policy,

where estimates are obtained via simulation (Rubinstein and Kroese 2017). We will denote the

resulting estimate of cost-to-go as �: (B:)3. The result of combining the lookahead strategy

and the base policy or heuristic is the rollout policy, c̄ { ¯̀0, ¯̀1, . . ., ¯̀#�1} with associated cost

+̄ (B:). Such policies have the property that for all B: and :

+̄: (B:)  �: (B:) (2.6)

when �: is approximating from above the optimal cost-to-go +⇤
:
, as shown by Bertsekas (2017)

from the DP algorithm that defines the costs of both the base and the rollout policy. To compute

at time : the rollout control ¯̀(B:), we minimize over the values of the &-factors of state and

3We use the subindex : to emphasize that the result of simulating a policy depends on the time step.
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action pairs (B;, 0;),

&; (B;, 0;) = ⇢
�
2(B;, 0;) + min

02�(B;+1)
&;+1(B;+1, 0)

 
(2.7)

over the expectation B;+1 ⇠ ) (B;, 0;, B;+1) and for admissible controls 0; 2 �(B;), ; = : + 8, with

8 = 0, ..., 3 � 1, and

&; (B;, 0;) = ⇢
�
�; (B;)

 
(2.8)

for ; = : + 3 and all 0; 2 �(B;). Note that Equations 2.7 and 2.8 are equivalent to the action

selection of a lookahead (Definition 2.14) where +) (=) = �; (=B).

2.7.3 Cost-to-go approximation via simulation

The most successful methods for obtaining cost-to-go approximations have revolved around the

idea of running a number of Monte Carlo simulations of a suboptimal base policy c (Ginsberg

1999; Coulom 2006), when used within the rollout algorithm this is referred to as Monte Carlo

Tree Search (MCTS). The Monte Carlo simulations amount to generating a given number of

samples for the expression minimized in Equation 2.5 starting from the states B; over the set

of admissible controls 0; 2 �(B;) in Equation 2.8, and averaging the observed costs. Three

main drawbacks (Bertsekas 2017) follow from this strategy. First, the costs associated with the

generated trajectories may be wildly overestimating +⇤(B;) yet such trajectories can be very rare

events for the given policy. Second, some of the controls 0; may be clearly dominated by the

rest, not warranting the same level of sampling e�ort. Third, initially promising controls may

turn out to be quite bad later on.

One of the most striking properties of rollout algorithms is the cost improvement property in

Equation 2.6, suggesting that upper bounds on costs–to–go can be used e�ectively to approximate

the optimal costs +⇤. Stochastic enumeration (SE) (Rubinstein and Kroese 2017) sampling

techniques can be used to obtain an unbiased estimator for upper bounds on costs-to-go, or in

other words, estimates of the maximal costs a stochastic rollout algorithm with a large depth

lookahead can incur. SE algorithms have been used very successfully to approximate counts of

models for CNF models and other #P problems (Rubinstein and Kroese 2017).

SE methods are inspired by a classic algorithm by D. E. Knuth to estimate the maximum search

e�ort by backtracking search (1975). Knuth’s algorithm estimates the total cost of a tree ) with
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root D keeping track of two quantities, ⇠ the estimate of the total cost, and ⇡ the expectation on

the number of nodes in ) at any given level of the tree, and the number of terminal nodes once

the algorithm terminates. Starting with the root vertex D, the algorithm proceeds by updating ⇡

to be ⇡  |S(D) |⇡ and choosing randomly a vertex E from the set of successors S(D) of D.

The estimate ⇠ is then updated ⇠  ⇠ + 2(D, E)⇡ using the cost of the edge between vertices

D and E. These steps are then iterated until a vertex E0 is selected s.t. S(E0) = 0. While Knuth’s

algorithm estimates are an unbiased estimator, the variance of this estimator can be exponential

on the horizon, as the accuracy of the estimator lies on the assumption that costs are evenly

distributed throughout the tree (Rubinstein and Kroese 2017).

2.7.4 Minimising regret

The regret of a policy is its loss from not selecting the optimal action at every time-step. Popular

instantiations of the rollout algorithm involve using a selective strategy for the d-step lookahead

that make use of upper confidence bounds (Auer, Cesa-Bianchi, and Fischer 2002) like Kocsis

and Szepesvari’s (2006) Upper Confidence bounds applied to Trees (UCT) algorithm, which

aims to minimise regret. For each rollout of the states within the d-step lookahead UCT selects

actions greedily according to the current &; (B;, 0;) values as calculated in Equations 2.7 and 2.8

plus a bonus term based upon the upper bound confidence limits. The upper bound confidence

limits bonus term uses the number of visits to the node in the lookahead and the number of

times action 0; has been selected by the UCT algorithm. Using the bonus term to encourage

exploration aims to minimise the cumulative regret of exploiting state-action trajectories that

lead to promising Q values versus exploring new or rarely visited state-action trajectories in the

search thus far.

2.7.5 Width-based search

Width-based search algorithms both focus the lookahead and have good any–time behaviour.

When it comes to prioritisation of applicable actions, width–based methods select first those

that lead to states with novel valuations of features defined over states (Lipovetzky, Ramírez,

and Ge�ner 2015; Ge�ner and Ge�ner 2015). The original width-based measure introduced by

Lipovetzky et al. 2012 is that the novelty of a state is evaluated by the smallest tuple of atoms

C ✓ B, where B is the first state that makes C true in the search.
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The most basic of the width–based search algorithms is �,(1) (Lipovetzky and Ge�ner 2012),

a plain breadth–first search, guaranteed to run in linear time and space as it only expands novel

states. �, (1) classifies a state B; as novel if and only if it encounters a state variable 4 B8 ⇢ R,

whose value E 2 ⇡ (B8) has not been seen before in the current search. Note that novel states are

independent of the objective function used, as estimated cost-to-go or the accumulated cost is

not used to define the novelty of the states, although there have been follow up works that have

explored alternative definitions of novelty that incorporate costs-to-go heuristics (Lipovetzky

and Ge�ner 2017; Katz et al. 2017; Tuisov and Katz 2021).

2.7.6 Rollout-IW

Bandres et al. (2018) introduced a depth-first version of the IW(1) planner, named Rollout-IW(1)

(RIW). RIW(1) is as an instance of a rollout algorithm, and aims to contain the same nodes that

are expanded by the IW(1) planner. As RIW(1) performs depth-first search it was argued by

Bandres et al. that it has better any-time performance than IW(1). The hypothesis for the better

any-time performance of RIW(1) is that its search visits states that are further away from the

initial state earlier in the search than its breadth-first search counter-part IW(1).

Algorithm 1 Overview of the RIW(1) Algorithm
Input : A lookahead ! = (# ,⇠, BA ), and a base policy c1
Output
:

Updated lookahead !

1 while ¬ has_solved_label(BA ) do
2 B BA // complete depth-first rollout from the root node’s state

3 while is_novel(s) ^¬ is_terminal(s) do
4 B

0
, 0  sample_unsolved_child(B, c1)
!  update_lookahead(!, B, 0, B0), B B

0

5 end
6 update_solved_labels(B)
7 end

Algorithm 1 provides an overview of RIW(1) using the base policy c1. RIW(1) was originally

defined to use a random uniform base policy c1, however any given policy can be used instead.

The function sample_unsolved_child, samples an action 0 ⇠ c1 (B) and a transition B0 ⇠

) (B, 0, ·) provided that B0 has not been marked as solved. If the selected transition does not

already exist in the lookahead update_lookahead adds it. The update_solved_labels

function adds a solved label to the given state and back-propagates the solved label to its parents

4In order to use the notion of novelty, we assume state spaces ( to be stationary.
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if the parent’s children have all been marked as solved. Bandres et al. results showed that RIW(1)

outperformed IW(1) over the Atari games greatly when almost real-time budgets for planning

were applied.

In Chapters 3 and 4 we investigate and extend the Rollout-IW planning algorithm, and in Chapter 7

we introduce a novelty-based regression algorithm inspired by the family of width-based search

algorithms.

2.8 Reinforcement Learning

RL is a trial and error based approach to learning an action policy for ASDM problems. RL uses

feedback from the agent’s interaction with the environment to update the action policy with the

objective of maximising the reward signal (or minimising the costs depending on the problem

definition) (Sutton and Barto 2018).

2.8.1 Temporal di�erence learning

Temporal di�erence (TD) learning is a method for incremental learning through bootstrap-

ping (Sutton 1988; Sutton and Barto 2018). TD(0) is the simplest TD method where the target

value for+ (B:), given the action 0: selected by the agent and the resulting cost and state 2: , B:+1,

is 2: + W+B:+1, where W is the discount factor. An update of TD(0) is,

+ (B:)  + (B:) + U[2: + W+ (B:+1) �+ (B:)] (2.9)

where U is a constant step size parameter.

Sarsa is another TD method for learning Q values on policy through updates using the target

value,

&(B: , 0:)  &(B: , 0:) + U[2: + W&(B:+1, 0:+1) �&(B: , 0:)] (2.10)

Note that for on policy methods TD’s task is to estimate the expected accumulated costs from the

given state following the policy which underlies the transitions that it is trained on. Alternatively,

Q-learning, which is an o�-policy TD method, directly approximates the optimal Q function Q*
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through updates using the target values,

&(B: , 0:)  &(B: , 0:) + U[2: + W min
02�(B:+1)

&(B:+1, 0) �&(B: , 0:)] (2.11)

2.8.2 Policy optimisation methods

Policy optimisation methods consist of optimising for the parameters of the action policy c

directly. These methods usually optimise the policies parameters through gradient descent using

feedback from the agent’s interaction with the environment.

One of the most commonly used policy optimisation methods and one we use in Chapters 5

and 6 is Proximal Policy Optimisation (PPO) (Schulman et al. 2017). PPO is a policy gradient

method which iteratively uses data sampled from the environment using the policy to optimise

an objective function which is a surrogate of the policy gradient theorem (Sutton et al. 1999).

The surrogate objective function which PPO maximises via stochastic gradient descent is,

! (\) = ⇢̂C

⇢
!
⇠!� %

C
(\) � 21!

+ �

C
(\) + 22([c\ ] (BC )

�
(2.12)

where 21 and 22 are coe�cients, \ represents the parameters of the policy c and the value

function + , ( is an entropy bonus, !+ �

C
is the value function loss that is +\ (BC ) �+ C0A6

C
, and,

!
⇠!� %

C
(\) = min(AC (\) �̂C , clip(AC (\), 1 � n , 1 + n) �̂C ) (2.13)

where AC (\) = c\ (0C |BC )
c\>;3 (0C |BC ) , n is a parameter and the estimator of the advantage function is,

�̂C = XC + (W_)XC+1 + · · · + (W_)) �C+1
X) �1 (2.14)

where XC = 2C + W+ (BC+1) �+ (BC ) and 2C is the cost at time C.

2.8.3 Count-based exploration

The problem of addressing how RL methods should explore is very di�cult, as observed by

Tang et al. (2017) there are no fully satisfying exploration techniques for problems with high

dimensional state spaces. Currently many of the state-of-the-art RL algorithms rely upon

simulating random policies at the start of learning. When rewards are sparse, RL algorithms
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relying on random policies can su�er from "cold starts", as the training process requires a

considerable number of episodes to improve over random action selection as there is little to no

reward signal. There have been a number of attempts to create RL algorithms tailored to deal

with sparse rewards and slow learning, which are very often tested on Atari-2600 games like

Montezuma’s Revenge.

One method that encourages exploration of RL algorithms are the so-called count-based RL

algorithms (Bellemare et al. 2016a). Count-based methods are of particular relevance to this

thesis, due to their relationship with width-based planning, additionally we also explore using

count-based methods in Chapter 5. The intuition for count-based algorithms is to encourage

exploration by augmenting the given cost function, which can be evaluated on any state but

its structure is not known. Count-based methods add intrinsic rewards to state-action pairs

inversely proportional to the number of times they have been visited. That is, where # (B, 0) is

the state-action count and V is an exploration hyperparmeter, the augmented Bellman’s equation

(Equation 2.2) for count-based methods is as follows:

+c (B) =
’

02�(B)
c(B, 0)

✓
2(B, 0) +

’
B
02(
) (B, 0B0) [+c (B0) � V# (B, 0)�1/2]

◆
(2.15)

A number of issues have been observed that a�ect the applicability and generality of tabulating

the visit counts. First, for large state spaces tabulation of state counts can become infeasible

due to memory constraints. On top of that, there is no connection between states that are very

similar. That is, even if a state is trivially di�erent, for example in the case where the state is

screen pixels and there are "background" pixels which provide no useful information as their

values change randomly, a state that is otherwise identical besides the "background" pixels will

have independent state counts. Bellemare et al. (2016a) and Martin et al. (2017) both tackle the

di�culties of tabulating state visit counts by introducing two di�erent methods for producing

approximate counts, or pseudo-counts, for states. Bellemare et al. use a density model for states

to produce a pseudo-count, while Martin et al. use feature space counts. Another approach to

this issue was presented by Tang et al. (2017) where states are mapped to hash codes which are

then used for the state counts. This method is particular e�ective on the Atari-2600 games when

set up to represent the hashing function with an autoencoder which is trained online.
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2.8.4 Imitation Learning

Three core approaches of Imitation Learning are Inverse Reinforcement Learning (IRL) (Ng

and Russell 2000), Generative Adversarial Imitation Learning (GAIL) (Ho and Ermon 2016),

and Behavioural Cloning (BC) (Bain and Sammut 1995). IRL aims to find a cost function that

explains the observed behaviour. This cost function is used with RL to train a policy that imitates

the observed behaviour. GAIL trains a policy on a cost function that is being simultaneously

learnt to reward actions selected by the demonstration and not those generated by the policy. That

is, each iteration GAIL samples trajectories from the environment using the imitator’s policy

and uses this data to train a discriminator that identifies if a state-action pair is from the imitator

policy or the experts. The discriminator is then used in a cost function that is used to update

the imitator policy. BC approaches imitation as a SL problem with demonstration states as input

data and its actions as labels. BC is usually implemented by splitting the state-action pairs into

a training set and a validation one. Training epochs are then run until the error rate on the

validation set starts increasing.

2.8.5 Learning from demonstration and learning backwards

Salimans and Chen (2018) introduced a method for learning from a single demonstration, that

instead of having the objective to imitate the demonstration’s actions like imitation learning

techniques, the objective of Salimans and Chen’s (2018) work is to maximise rewards directly

from states along a demonstrated trajectory. Salimans and Chen (2018) do this by running

PPO learning iterations starting at states which are close to the end of the demonstration. Once

the policy performs at least as good as the demonstration for a given threshold percentage

of episodes, the starting states for the learning iterations move closer to the beginning of the

demonstration. Through this method Salimans and Chen were able to achieve a score on the Atari

game Montezuma’s Revenge that at the time was the highest published score. A similar method

developed independently around the same time as Saliman and Chen is Backplay (Resnick et al.

2018). Backplay di�ers in that the learning schedule is predefined manually such that the initial

learning states progress towards the beginning of the demonstration depending upon the training

epoch and not the policy’s performance in comparison to the demonstration. Backplay was

shown to be e�ective for Gridworld problems and a multiplayer zero-sum game. It should be

noted that Hosu and Rebedea (2016) first proposed the idea of starting learning iterations from
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states provided by a human demonstration, however Hosu and Rebedea randomly sampled the

starting state from the demonstration as opposed to using a learning schedule.

Floerensa et al. (2017) also used a backwards schedule in order to learn robotic manipulation

but instead of relying upon a demonstration for the states from which to learn they automatically

generated the starting states. Floerensa et al. automatically generate the states by starting at the

goal state and then sampling random actions from the goal state in order to get a set of starting

states from which to learn from. As training progresses the set of starting states is expanded

further by sampling more random actions from states in the set of starting states. Floerensa et

al.’s method relies upon the assumptions that at least one goal state is given and that all starting

states have a non-zero probability of reaching the goal states and vise versa.

2.8.6 Options and Skill Chaining

The options framework (Sutton, Precup, and Singh 1999) allows for an RL agent to select both

the primitive actions of the environment, that is the actions 0 2 �(B), as well as closed-loop

policies for taking actions which are called options. Options are also often referred to as skills.

Skill chaining learns one option at a time. An option describes the rules around an execution

of skill through a description of a skill’s initialisation set (where it can be executed from), its

termination set, the policy to be executed and the maximum duration of the skill’s execution.

Konidaris and Barto (2009a) introduced a method for option discovery that builds chains of skills

that start close to the goal and are progressively learnt for states closer to the MDP’s initial state.

Along with a policy a skill has an initialisation set of states from which the skill can be chosen

and a termination set of states from which the skill’s policy stops executing and the RL agent

is required to select a new action. Skill chaining starts first with a global policy which can be

executed anywhere in the state space and executes a single action at a time. The global policy is

run until the goal of the problem is found a given number of times. Using the last # transition

of successful trajectories that reached the goal a skill is learnt. Then a new skill is learnt with

a termination set equal to the initialisation set of the previously discovered skill. This method

is repeated until a skill is learnt with an initialisation set that contains the initial state of the

problem. In the original skill chaining paper (Konidaris and Barto 2009a), logistic regression

classifiers were used to learn the initialisation and termination sets. Deep skill chaining (Bagaria
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and Konidaris 2020) follows up skill chaining with policies defined through neural networks and

trained using Deep Deterministic Policy Gradient (Lillicrap et al. 2015).

The skill chaining algorithm has strong links to learning backwards methods discussed in the

previous section, however unlike the learning backwards methods skill chaining only learns from

the initial state of the MDP and does not set training episodes to have initial states close to the

goal. In Chapter 6 we introduce a method that learns piece-wise policies starting backwards

from the goal which is particularly related to skill chaining.

2.9 Planning and learning

2.9.1 Learning models to plan over

Sutton’s Dyna-Q architecture is one of the earliest integrations of Planning and learning (Sutton

1990, 1991). Dyna-Q uses the transitions generated during training to create a model of the

environment that maps a state and an action into a new state and a reward value. This model

is then used to plan over, generating new trajectories where actions are chosen rather than

randomly, on the basis of their expected outcomes. While the Dyna architecture is general, it

is limited by how well the policy used to acquire experience with the environment can capture

appropriately transitions relevant to optimal policies. Sutton proposed the epsilon-greedy policy,

for the Dyna-Q algorithm. The epsilon-greedy policy is performed over the value function that

is being trained, which is often poorly informed in the early stages of training. Learning a model

to plan over is a di�cult task. The works by Chiaapa et al. (2017) and Oh et al. (2015) used a

Recurrent Neural Network (RNN) architecture to learn a model of the Atari-2600 environments

through interaction. The learned model was shown to be accurate on the Atari-2600 games over

a large number of time steps, thus enabling a planner to be used on the Atari-2600 games without

having access to the simulator. However, the evaluation of the RNN model is significantly

slower than simulating the environment directly (Machado et al. 2018). In 2.9.3 we discuss

MuZero (Schrittwieser et al. 2020) which successfully learnt a latent model of the Atari-2600

simulator over which it could plan.
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2.9.2 AlphaGo and AlphaZero

AlphaGo (Silver et al. 2016) is a Planning and Learning agent that accomplished the long standing

challenge of developing an autonomous agent that could defeat a professional human player in

the game of Go. AlphaGo uses two Neural Networks to represent a policy and value function

which are incorporated into a lookahead policy. Silver et al. bootstrapped AlphaGo’s policy

network through SL on moves made by human experts and subsequently used RL to train the

network through self-play. The value function of AlphaGo is trained to predict the winner of the

policy network self-play games. The learnt policy and value function were subsequently used

within a Monte Carlo Tree Search (MCTS) lookahead through sampling actions according to the

policy network and evaluating the states within the lookahead with the value function network.

Silver et al. (2017) followed up AlphaGo with AlphaZero which represents both the value function

and policy network through a single Neural Network which outputs both action probabilities and

a value estimation of the probability that the current player wins the game. AlphaZero unlike

AlphaGo does not require bootstrapping of the policy network learning with human expert moves

but instead trains only on data from self-play. AlphaZero’s self-play uses the MCTS lookahead

utilising the policy and value function networks as previously described. It then trains the policy

and value network using the probability outputs from the MCTS lookahead at each game state

and information about which player won the game. The updated policy and value network are

then used in the next iteration of self-play games. Through this method AlphaZero was able to

defeat AlphaGo 100-0. AlphaZero was later generalised to achieve state-of-the-art performance

in the games of Chess and Shogi (Silver et al. 2018).

2.9.3 MuZero

Schrittwieser et al. (2020) followed up on the AlphaGo (Silver et al. 2016) and AlphaZero (Silver

et al. 2017) algorithms with MuZero. Unlike AlphaGo or AlphaZero, MuZero does not require

a simulator or model of the game environment but instead learns a model of the environment

through interaction. MuZero uses the learnt model to perform MCTS lookaheads similar to

AlphaZero. MuZero also extends beyond the zero-sum games that AlphaZero was designed

for to typical single-agent MDP environments like the Atari-2600 games. MuZero achieves

state-of-the-art performance in the Atari-2600 games when compared to existing model-free RL

algorithm performances.
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2.9.4 Width-based planning and learning

Junyent et al. (2019) follow up on Bandres et al.’s (2018) use of a random policy for the base

policy (c1) of RIW (discussed in 2.7.6) with c-IW(1), an algorithm that replaces c1 with a

trained policy defined over a NN. The intended e�ect is to orient the lookahead to promising

areas of the state space. The NN from the trained policy is also used to extract features from

the screen pixels for the computation of state novelty. Recently Junyent et al. (2021) introduced

c-IW(1)+ and c-HIW(n, 1) as follow ups of c-IW(1). c-IW(1)+ modifies c-IW(1)’s random

breaking of ties for the action selection (Definition 2.14) to select the action with the branch of the

lookahead that contains the most nodes. c-IW(1)+ also adds a learnt value function, +̃ , which is

used in the action selection (Definition 2.14) by modifying + (B) to be min{+̃ (B),+⇤(B)}, where

+
⇤(B) is + (B) as described in Definition 2.14. c-HIW(n, 1) is a hierarchical algorithm that has a

high-level planner which uses a coarse down-sampling of the screen pixels as a feature set and a

low-level planner which uses c-IW(1)+ with the feature set defined through the policy network

as previously described. The high-level planner uses a modified stochastic exploration policy,

that selects actions with probability inversely proportional to state visitation counts.

2.9.5 Learning Neural Network defined heuristic functions

Ferber et al. (2021) describe two di�erent methods for learning heuristics for classical planning

problems. The first is per domain learning, where a heuristic is learnt that is applicable to any

instance of a particular domain, where a domain defines a set of action schemas and predicates

which are used to formulate instances ⇧. The second framework introduced by Ferber et

al. (2021), is to learn instance-based heuristics. That is, given some instance S(⇧) with initial

state B0, per instance learning seeks heuristics ⌘ that apply to instances S(⇧1), S(⇧2), . . . ,

S(⇧8) where all the instances S(⇧8) share all structural elements with S(⇧) but initial states.

That is, each S(⇧8) features a distinct initial state B80, which is reachable from B0 in S(⇧).

Ferber et al. (2020) provide a great study of learning per instance Neural Network defined

heuristic functions for classical planning. Ferber et al. (2020) explore a method, we refer to as

Teacher-based Supervised Learning (TSL), which constructs a training set of states that are along

solution paths generated from a teacher planner. TSL performs 200 step random walks from the

initial state of an instance and then uses a GBFS with ⌘FF to search for a plan. The states along

each solution path are labeled with an estimate of their distance from the goal according to the
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solution path. Ferber et al.’s method then performs SL on the states and goal-distance estimates

in order to learn a heuristic.

Yu et al. (2020) introduced an alternative SL method for learning per-instance heuristic functions.

Yu et al.’s algorithm (SING) performs backwards searches starting from a randomly sampled

goal state B6 2 (⌧ . SING uses multiple depth-first searches (DFS) that prune duplicate states.

The DFS use fixed node expansion expansion budgets, to search backwards from fully assigned

randomly sampled goal states. SING then uses SL on all states visited within the DFS labelled

with the depth at which the states were visited in the search as an estimate of their distance to

the goal.

More recently Ferber et al. (2021) introduced three new NN defined heuristics functions for

classical planning problems trained with RL inspired approaches. Two of the approaches intro-

duced, ⌘Boot and ⌘BExp, are based on the idea of bootstrapping originally introduced by Arfaee

et al. (2011), which entails training a heuristic on successively harder to solve states. ⌘Boot and

⌘
BExp, perform regressions from the goal following random walks, and then solve a fully assigned

state randomly sampled from the partially assigned state discovered by the regression. At the

state found from the regression, a GBFS is run using the current ⌘Boot or ⌘BExp heuristic. ⌘Boot

uses the plan’s length as the training label for the state’s estimated distance from the goal and

discards any state where a plan is not found by GBFS. ⌘BExp uses the number of states expanded

by the GBFS as the state’s label and does not discard unsolved states from the training data. ⌘Boot

or ⌘BExp use the states and labels to iteratively train their NNs, and once the GBFS is solving 95%

of the states found from the random-walk regressions, the maximum length of the regression

is doubled. Ferber et al. also introduced the ⌘AVI heuristic which is trained using approximate

value iteration. ⌘AVI, similar to the bootstrapping heuristics, discovers states through random

length regressions clipped at a constant maximum length. Instead of solving the sampled states,

⌘
AVI performs Bellman updates on a 2 step lookahead from the state, evaluating the leaf states of

the lookahead with the current ⌘AVI heuristic or as 0 if they are goal states. Ferber’s motivation

for the RL inspired approaches versus SL approaches is that the SL approaches are limited to

instances small enough for training data generation.

Beyond learning per-instance NN defined heuristics, Shen et al.’s STRIPS Hypergraphs Networks

(HGNs) learns per-domain and even domain independent NN defined heuristics. The STRIPS

HGN (Shen, Trevizan, and Thiébaux 2020) is an extension of Graph Networks to Hypergraphs

used to capture and learn the relationships of atoms within the problems current state, the
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goal and the action schemas. Shen et al. (2020) showed STRIPS-HGN is able to generalise

across di�erent domain instances and even across di�erent domains on small classical planning

instances. Similar to TSL, STRIPS-HGN also requires a planner to provide the distance of

training states from the goal, and in particular, Shen et al. (2020) use an optimal planner.

In Chapter 7 we introduce a new method for learning per instance heuristics that are defined over

Neural Networks.



Part I

Cost-to-go approximation for

model-free planning
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Introduction to Part 1
Cost-to-go approximations for MDPs problems can help focus a search method on promising

areas of the search-space, and many state-of-the-art planning algorithms use such heuristic

search methods. For model-free planning problems the task of e�ciently creating useful cost-

to-go approximations is made di�cult as the agent does not have access to the underlying

transition or reward functions of the environment. In Chapter 3 we present a modification to

the state-of-the-art model-free planning algorithm RIW (Bandres, Bonet, and Ge�ner 2018) that

incorporates cost-to-go approximations via simulation. We show cost-to-go approximations are

crucial for ability of RIW, and width-based planning algorithms more generally, to e�ciently,

in terms of search e�ort, find solutions to SSP problems. However, computing useful cost-to-go

approximations via simulation can require large amounts of compute, particularly in settings with

computationally expensive simulators. We follow up on this issue in Chapter 4 by introducing

a method that learns cost-to-go approximations through the information collected from the

environment in previous episodes executed by agent. Ultimately we address RQ1 in this Part by

showing the e�ective combination of the learnt cost-to-go approximations with a modified RIW

planning algorithm. This planning and learning algorithm achieves state-of-the-art results in the

Atari-2600 benchmark in terms of compute e�ciency.



Chapter 3

Width-based planning augmented with

base policies1

3.1 Introduction

This Chapter is concerned with model-free lookahead algorithms over simulators for SSP prob-

lems. SSPs are introduced in 2.1 and are one of the three basic types of MDP problems along with

problems over an infinite horizon with discounted costs and average cost problems (Bertsekas

2017). As explained in 2.7, model-free lookahead algorithms over simulators can autonomously

solve a large variety of ASDM problems without requiring a symbolic model of action e�ects.

We consider the width-based family of planning algorithms, introduced by Lipovetzky and

Ge�ner (2012), that prioritise the exploration of novel areas of the state space. Two width-

based planners, Lipovetzky and Ge�ner’s IW(1) breadth-first search, and the depth-first search

Rollout-IW(1) (Bandres, Bonet, and Ge�ner 2018), are investigated. We first elaborate on the

background information provided in 2.7.5 and 2.7.6 for width-based algorithms, in order to

formalise width-based algorithms as instances of the rollout algorithm (Bertsekas 2017) (2.7.2).

We then illustrate the reasons to augment width-based lookaheads with cost estimates, define the

width of SSP problems and propose a novel width-based algorithm that estimates costs-to-go

by simulating a general base policy. Our experimental study shows that the algorithm compares

1This chapter is adapted from the article "Width-Based Lookaheads Augmented with Base Policies for Stochastic
Shortest Paths" published in the proceedings of the 11th Workshop on Heuristics and Domain Independent Planning
at the International Conference on Automated Planning and Scheduling 2019, pg 37-45.
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favourably to the original Rollout-IW(1) algorithm and other state-of-the-art instances of the

rollout algorithm.

3.1.1 The rollout algorithm

In this Chapter we explore the online planning framework of the rollout algorithm, introduced

in 2.7.2, with cost-to-go approximation via simulation, introduced in 2.7.3. We make a number

of assumptions about the d-step selective lookahead rollout algorithm to ensure the viability of

lookaheads with 3 > 1. We will assume that we have a settable black-box simulator as introduced

in 2.2.2 that can simulate the system,

B:+1 = ⇢
⇢
) (B: , `(B:), ·)

�
, : = 0, 1, . . . , # � 1 (3.1)

under the base policy `, so we can generate sample system trajectories and corresponding costs

consistent with probabilistic data of the problem. Performing the simulation and calculating

the rollout control still needs to be possible within the real-time constraints of the application,

which is challenging as the number of &-factors to estimate and minimisations to perform in

&; (B;, 0;) = ⇢
�
2(B;, 0;) +min

02�(B;+1) &;+1(B;+1, 0)
 

(Equation 2.7) and&; (B;, 0;) = ⇢
�
�; (B;)

 
(Equation 2.8) is exponential on the average number of controls available per stage and 3, the

maximum depth of the lookahead. We avoid the blowup of the size of the lookahead by cutting the

recursion in Equation 2.7 and replacing the right hand side by that of Equation 2.8. As detailed

in the next sections, we will do this when reaching states B; that are deemed not to be novel

according to the notion of structural width by Lipovetzky and Ge�ner (2012). This results in a

selective strategy alternative to the upper confidence bounds (Auer, Cesa-Bianchi, and Fischer

2002) used in popular instances of MCTS algorithms like Kocsis and Szepesvari’s (2006) UCT,

that also are instances of the rollout algorithm (Bertsekas 2017).

3.2 Width-based lookaheads

We instantiate the rollout algorithm with an ;-step, depth-selective lookahead policy using

Width-based Search (Lipovetzky and Ge�ner 2012). These algorithms focus the lookahead and

have good any-time behaviour. For the prioritisation of expanding states, width-based methods

select first states with novel valuations of features defined over the states (Lipovetzky, Ramírez,
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and Ge�ner 2015; Ge�ner and Ge�ner 2015). As introduced in 2.7.5 the most basic width-based

search algorithm is �,(1), a plain breadth-first search, guaranteed to run in linear time and space

as it only expands novel states. A state B; is novel if and only if it encounters a state variable 2

B
8 , whose value E 2 ⇡ (B8), where ⇡ (B8) is the domain of variable B8 , has not been seen before

in the current search. Note that novel states are independent of the objective function used, as

the estimated cost-to-go + is not used to define the novelty of the states. IW(1) has recently

been reformulated as a depth-first search algorithm, and has been shown to perform well with

respect to learning approaches with almost real-time computation budgets over the Atari games

(Bandres, Bonet, and Ge�ner 2018).

3.2.1 Depth-first width-based rollout

The breadth-first search strategy underlying IW(1) ensures a state variable B8 is seen for the first

time in a lookahead through the shortest sequence of control steps, i.e. the shortest path assuming

uniform costs 2(B, 0)3. On the other hand, depth-first rollout algorithms cannot guarantee this

property in general. RIW, introduced in 2.7.6, changes the underlying search of IW into a

depth-first rollout. In order to ensure that RIW(1) considers a state to be novel i� it reaches

at least one value of a state variable B8
;

through a shortest path, we need to adapt the definition

of novelty. Intuitively, we need to define a set of state features to emulate the property of the

breadth-first search strategy. Let 3 (B8 , E) be the best upper bound known so far on the shortest

path to reach each value E 2 ⇡ (G8) of a state variable from the root state B: . Initially 3 (B8 , E) = ⌘

for all state variables, where ⌘ is the horizon, i.e. the maximum search depth allowed for the

lookahead, denoting no initial knowledge. When a state B; is generated, 3 (B8 , E) is set to ; for all

state variables where ; < 3 (B8 , E).

Since RIW(1) starts each rollout from the current state B: , in order to prove a state B; to be novel

we have to distinguish between B; being already in the lookahead tree and B; being new. If B; is

new in the tree, to conclude it is novel, it is su�cient to show that there exists a state variable

B
8 whose known shortest path value 3 (B8 , E) > ;. If B; is already in the tree, we have to prove

the state contains at least one state variable value B8 whose shortest path is ; = 3 (B8 , E), i.e. state

B; is still novel and on the shortest path to B8 . Otherwise if the state is non-novel the rollout is

terminated.

2In order to use the notion of novelty, we assume state spaces ( to be stationary.
3This can easily be generalized to non-uniform costs by using DÚkstra’s algorithm instead.
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F����� 3.1: 3x3 GridWorld problem in which the blue square is the agent’s initial position and
the red squares are goal locations. The yellow lines represent two action trajectories the agent
can perform from the initial state.

In order to ensure the termination of RIW(1), terminal and non-novel states are marked with

a solved label. The label is back-propagated from a state B;+1 to B; if all the admissible action

inputs 0 2 �(B;) yield states B;+1 already labeled as solved. RIW(1) terminates once the root

state is labeled as solved (Bandres, Bonet, and Ge�ner 2018). Non-novel states B; are treated as

terminals and their cost-to-go is set to 0. This can induce a bias towards non-novel states rather

than true terminal states. In the next section we give an example of the pathological-behaviour

of RIW(1) when a state B; is non-novel and discuss the importance of estimating upper-bounds

on the cost-to-go �; (B;) instead of assigning termination costs. Both turn out to be essential for

RIW(1) over SSPs.

3.3 Width-based lookaheads on SSPs

Despite the successes of width-based algorithms on a variety of domains including the Atari-

2600 games (Lipovetzky, Ramírez, and Ge�ner 2015; Bandres, Bonet, and Ge�ner 2018), the

algorithms, as will be shown, have poor performance on SSP problems. We demonstrate below

that width-based lookaheads prefer trajectories leading to non-novel states over longer ones that

reach a goal. Let us consider a SSP problem with uniform and unitary action costs, shown in

Figure 3.1. The task is to navigate to a goal location using the least number of left, right, up or

down actions. Any action that would result in the agent moving outside of the grid produces no

change in its position. The two features used by the width-based planners are the coordinates

(x), (y) of the agent’s position. Both IW(1) and RIW(1) algorithms, given a su�cient budget,

would result in the lookahead represented by yellow lines in Figure 3.1. As expected, both

lookaheads contain the shortest paths to make each feature of the problem true. For both IW(1)

and RIW(1), we backpropagate the costs found in the lookahead starting from terminal and
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non-novel states to get the cost-to-go estimates for each action from the current position. In

this instance a move down or left from the agent’s initial state has no e�ect, thus immediately

producing a non-novel state.When backpropagating values, down and left have an expected cost

of 1, which is less than the optimal cost of 2 for up, the action that leads to the top left goal state.

This prevents both IW(1) and RIW(1) from ever achieving the goal, as they keep selecting those

useless actions. Furthermore if the only goal is the top right square the trajectories produced

provide no feedback from a goal position. In this section we propose a method to overcome this

pathological-behaviour through cost-to-go approximations.

3.3.1 Novelty, labeling and width of SSPs

Bandres et al. (2018) introduced the algorithm RIW in the context of deterministic transition

functions. In this section we discuss its properties in the context of SSPs.

The set of features used to evaluate the novelty of a state is � = {(E, 8, 3) | E 2 ⇡ (B8)} where

⇡ (B8) is the domain of variable B8 , and 3 is a possible shortest path distance. Note that the search

horizon ⌘ is the upper-bound of 3. The maximum number of novel states and therefore expanded

states is $ ( |� |), as the maximum number of possible shortest paths for a feature (E, 8, ·) 2 � is

⌘. At worst we can improve the shortest path for (E, 8, ·) by one step at a time.

The labeling of nodes as introduced by Bandres et al. propagates solved labels up the tree once

all children of a node have been generated and marked as solved. In the deterministic setting,

the number of children a node of state B; has is equal to |�(B;) |, thus ensuring the number of

rollouts from the initial state in RIW(1) is at most $ ( |� | ⇥ 1), where 1 = <0GB; |�(B;) | is the

maximal branching factor, the maximum number of control inputs admitted by a state. For

the SSP setting the number of children a node can have is
Õ

02�(B;) VB; (0), where VB; (0) is the

number of possible unique resulting states B;+1 from applying action 0 from state B;. However

in the model-free SSP setting VB; is unknown, so we introduce a new labelling strategy that

approximates VB; with _ which we call RIW(1)-_.

Definition 3.1. (_-labelling). RIW(1)-_ back-propagates a solved label to a state B; i� 1) all

admissible control inputs 0 2 �(B;) that have been applied for the state B; result in states labelled

as solved, and 2) the tree contains at least _ resulting states for each control input 0 2 �(B;)

applied.
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If for any state B; in the lookahead tree and any 0 2 �(B;) _ > V(B;, 0), RIW(1)-_ will terminate

only when the computational budget is exhausted. Note that for the deterministic setting using

_ = 1 will produce the same labelling behaviour as Bandres et al.’s definition. Furthermore,

we can reconcile the notion of width over classical planning problems (Lipovetzky and Ge�ner

2012) with SSPs.

Definition 3.2. (Width 1 terminal t and trajectory [). A width 1 terminal state t is a state such

that there exists a width 1 trajectory [ = B0, 00, . . . , 0=�1, B= for =  ⌘, where ⌘ is the search

horizon and B= = t, such that for each B 9 in the trajectory [ the following three properties are

true. First, the prefix B0, 00, . . . , 0 9�1, B 9 reaches at least one feature 5 9 = (E, 8, 3) 2 � where all

(E, 8, 3 0) 2 � for 3 0 < 3 are unreachable, i.e., 3 is the length of the shortest path to reach value

E in G8 . Second, any shortest path to 5 9 can be extended with one additional step to become a

shortest path for a feature 5 9+1 complying with the first property in state B 9+1. Third, the shortest

path for 5= is also a shortest path for t.

Definition 3.3. (Width 1 tuple set,1). The set,1 contains all the state, action, resulting state

tuples, (B;, 0;, B1+1), along all width 1 [ trajectories as described in Definition 3.2.

Definition 3.4. (Escape probability n). The maximum probability of a width 1 trajectory escape,

that is, for any state action pair, B;, 0; in a tuple (B;, 0;, ·) 2 ,1 having successor B;+1 such that

(B;, 0;, B;+1) 8 ,1, is n = max
(B; ,0; , ·)2, 1

(1 �Õ
(B; ,0; ,B;+1)2, 1 ) (B;, 0;, B;+1)).

Theorem 1. Let )1 be a non-empty set of width 1 terminals. If _ � 1, the probability d of

RIW(1)-_ finding a width 1 terminal t 2 )1 is d � (1 � n_)⌘, where ⌘ is the search horizon.

Proof sketch. Given a problem with a non-empty set of )1 width 1 terminals states, by definition

for RIW(1)-_ to not find a state t 2 )1, every width 1 trajectory [ requires a solved label to

be backpropagated to a state B; along the trajectory before reaching the state t 2 )1. For this

backpropagation to occur all admissible controls 0 2 �(B;) need to be applied, each reaching

at least _ di�erent successor states, B;+1, that have been marked as solved. Given that we need

to apply each 0 2 �(B;) � _ times there is a � 1 � n_ chance of the resulting state B;+1 being

(B;, 0;, B;+1) 2 ,1, along a [ trajectory to t 2 )1. Therefore, the probability of RIW(1)-_

reaching a state t 2 )1 � (1 � n_)⌘, since the maximum length of a trajectory to a state in )1 is

⌘. ⇤

For problems where every tuple (B;, 0;, B;+1) 2 ,1 has a high ) (B;, 0;, B;+1), n will be small. In

this case, given a reasonable ⌘ value, the probability of RIW(1)-_ reaching a width 1 terminal
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will also be reasonable. We discuss next two examples from the literature where the latter

can be observed. The first example is self-loop MDPs (Keyder and Ge�ner 2008) where the

probability ) (B, 0, B0) is non-zero for at most one B0 < B. A width one terminal will only be

found on trajectories consisting of the B0 < B transitions. Therefore the lower the probability for

) (B, 0, B) the higher the lower bound of the probability of RIW(1)-_ finding a width 1 terminal

is. The second example is the Atari-2600 games with the so-called sticky actions as introduced

by Machado et al. (2018), that modify the games to be stochastic by having a 0.25 chance of

repeating the action used for the previous frame instead of the actual action.

3.3.2 RIW(1)-_ with cost-to-go approximation

MCTS algorithms aim at combining lookaheads with stochastic simulations of policies and

trading o� computational economy with a small risk of degrading performance. We add a

new method to the MCTS family, by combining the multi-step, width-based lookahead strategy

discussed in the previous section with simulation-based cost-to-go approximations subject to a

computational budget that limits the number of states visited by both the lookahead and base

policy simulation. We use as the base policy a random walk, a stochastic policy that assigns the

same probability to each of the controls 0 admissible for state B, and is generally regarded as the

default choice when no domain knowledge is readily available. A rolling horizon ⌘ is set for the

rollout algorithm that follows from combining the RIW(1)-_ lookahead with the simulation of

random walks from non-novel states. The maximal length of the latter is set to ⌘ � ;, where ;

is the depth of the non-novel state. While this can result in trajectories sometimes falling short

from a terminal, it avoids extremely long trajectories that eat into the computational budget, and

allows sampling other potentially useful non-novel states B;. Both simulations and the unrolling

of the lookahead are interrupted if the computational budget is exhausted.
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3.4 Experimental study

3.4.1 Domains

For evaluation we use the SSP benchmark environments introduced in 2.5.1, which include

a number of GridWorld (Sutton and Barto 2018) domains, including the stochastic CTP (Pa-

padimitriou and Yannakakis 1991), and John Langford’s RL "Acid" domains4. Additionally, we

present results for the Atari-2600 game Skiing, which is a SSP problem. We use the OpenAI

gym’s (Brockman et al. 2016) interface of the ALE (Bellemare et al. 2013) and use the slalom

game mode of Skiing. In the slalom mode the aim is to ski down a mountain as fast as possible

while going through gates. Once at the finish line, a 5 second time penalty is applied for each

gate that is missed. The reward values, provided by ALE are the negative value of the time

taken plus any time penalties in centiseconds. We use the environment settings as described by

Machado et al. (2018) with a frame skip of 5 and sticky actions as described in 3.3.1. The state

representation, and therefore features for RIW(1)-_, is the pixel values of the current gray scaled

screen at full 180 ⇥ 210 resolution.

Finally we provide results for the 2018 IPC (introduced in 2.5.4) domains for the probabilistic

planning track.

3.4.2 Methodology

We evaluate the depth-first width-based rollout algorithm, RIW(1)-_, with and without being

augmented using base policies. _ = 1 is used for the label back-propagation. We did not observe

statistically significant changes with _ = 1.

Two additional rollout algorithms are also considered, the one-step rollout algorithm, RTDP (Barto,

Bradtke, and Singh 1995) and the multi-step, selective, regret minimisation, rollout algorithm

UCT (Kocsis and Szepevari 2006). The exploration parameter of UCT is set to 1.0. For the

GridWorld domains that use obstacles we also report the algorithms using Manhattan distances

as a heuristic.

Each method is evaluated at di�erent levels of complexity by varying the number of states of the

domains, and the simulation budget, which is the simulator calls allowed at each time step. For

4https://github.com/JohnLangford/RL_acid
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each algorithm and domain setting we evaluate performance over 10 di�erent initial states with

20 episodes per initial state, equalling a total of 200 episodes. The values reported here for each

algorithm and domain are the average and 95% confidence interval of the costs across the 200

episodes. Each episode was run using a single AMD Opteron 63xx class CPU @ 1.8 GHz, with

an approximate run time of 0.75 seconds per 1,000 simulator calls across the di�erent algorithm

and domain settings.

The Atari-2600 game Skiing has a maximum episode length of 18,000 frames, with a frame skip

of 5 the maximum episode length equals 3,600 actions. The Atari simulator is around an order

of magnitude slower than the GridWorld simulator with an approximate run time of 1 second per

100 simulator calls. Therefore, for the evaluation of Skiing we use a simulator budget of 100

and partial caching as described by Bandres et al. (2018), in that we cache simulator state-action

transitions, thus assuming determinism, but clear the cached transitions when executing an action

in the environment. However, the lookahead tree itself is not cleared when executing an action

in the environment as is done for the other domains trialed. Using a simulation-based cost-to-go

approximation is infeasible with a simulator budget of 100 and maximum episode length of

3,600 actions. Therefore we report the algorithms using a heuristic, which is the number of gates

missed or remaining times the time penalty of 500 centiseconds.

For comparison of RIW(1) with model-based planners, we use the latest International Prob-

abilistic Planning Competition (IPPC) benchmarks. The baselines this time are, the MCTS

model-based planner Prost-DD (Geißer and Speck 2018), the winner of the latest competition,

and again, RIW(1) without cost-to-go approximations. We use the library from the IPC competi-

tor A2C-Plan (Fern et al. 2018), in order to integrate RDDL environments into the OpenAI gym

ones (Brockman et al. 2016), as required by our model-free planner. We use the competition

settings, namely, an average computation budget of 2.5 seconds per action.

All experiments were run within the OpenAI gym framework (Brockman et al. 2016) and the

code used for the algorithms and domains is available through GitHub 5.

3.4.3 Results

The di�erent� functions reported here are�NA = 0, the random policy�Rnd, and the Manhattan

distance�Man. The algorithms were also evaluated using Knuth’s algorithm (introduced in 2.7.3)

5https://github.com/miquelramirez/width-lookaheads-python
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Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 29.6 ± 2.5 13.5 ± 1.6 7.5 ± 0.9
UCT Rnd. 29.0 ± 2.6 17.1 ± 2.0 13.3 ± 1.5

RIW
NA 39.1 ± 2.8 38.1 ± 2.9 38.4 ± 2.9
Rnd. 33.7 ± 2.5 6.9 ± 0.7 4.7 ± 0.4

20

1Stp Rnd. 89.6 ± 3.7 59.8 ± 5.2 29.6 ± 3.1
UCT Rnd. 85.2 ± 4.3 72.7 ± 5.8 45.7 ± 4.4

RIW
NA 79.8 ± 5.5 79.8 ± 5.5 80.2 ± 5.5
Rnd. 88.2 ± 3.9 55.3 ± 5.2 10.5 ± 0.9

50

1Stp Rnd. 215.2 ± 11.5 201.8 ± 13.5 177.9 ± 13.5
UCT Rnd. 220.4 ± 10.8 199.2 ± 13.5 190.6 ± 13.9

RIW
NA 200.2 ± 13.8 200.2 ± 13.8 200.2 ± 13.8
Rnd. 223.2 ± 10.4 199.9 ± 13.6 145.5 ± 12.9

T���� 3.1: Average and 95% confidence interval for the cost on GridWorld with a stationary
goal. Costs reported are from 200 episodes over 10 di�erent initial states (20 episodes per
initial state) of the GridWorld with a square grid with width and length equal to the dimension
(Dim.) value. The problem horizon of each problem is 5 times the dimension value.

with a di�erent range of rollouts for the cost-to-go estimate, however, the results are not reported

here as they are either statistically indi�erent or dominated by the results using �Rnd with a single

rollout. Bertsekas (2017) suggests that MCTS algorithms should readily benefit from stronger

algorithms to estimate costs-to-go by simulation of stochastic policies. Our experiments shows

that if this synergies exists it does not manifest when using o�-the-shelf stochastic estimation

techniques like the ones discussed by Rubinstein and Kroese (2017).

The results on the stationary goal GridWorld domain shown in Table 3.1 provide a number of

insights about the rollout algorithms reported. First, RIW(1)-_ benefits from using �Rnd as

simulator budgets are increased. On the contrary, with �NA, RIW(1)-_’s performance remains

constant across the di�erent budgets. The explanation for this can be found in the example of

RIW(1) on SSPs we gave previously with the agent preferring shorter trajectories that drive into

the boundaries of the grid. Tables 3.1, 3.2 and 3.3 clearly show that using RIW(1)-_ with �Rnd

and the largest budget outperforms all other methods.

For the largest simulator budget on CTP reported in Table 3.4 RIW(1)-_ using �Rnd is dominant

and for smaller budgets �Man often dominates the �Rnd methods.

Tables 3.5 and 3.6 show that, on the smaller 10 state domains, RIW(1)-_with�Rnd is statistically

dominant over all other methods on Antishaping and Combolock for the 500 and 1000 simulator

budgets. However, for the more complex 50 state domains, the results of all algorithms using

�Rnd are statistically indi�erent. It can be observed that using �Rnd with RIW(1)-_ does improve

its performance compared with �NA across all the domain settings with simulator budgets of

500 and 1000, besides Antishaping with 50 states.
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Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp Rnd. 17.9 ± 2.1 10.1 ± 1.0 6.8 ± 0.5
UCT Rnd. 18.9 ± 2.2 11.0 ± 1.3 10.2 ± 1.1

RIW
NA 39.8 ± 2.7 38.6 ± 2.8 38.9 ± 2.8
Rnd. 21.3 ± 2.3 5.7 ± 0.5 4.4 ± 0.3

20

1Stp Rnd. 81.5 ± 4.2 45.0 ± 4.4 25.5 ± 2.8
UCT Rnd. 81.5 ± 4.3 44.9 ± 4.7 38.6 ± 3.7

RIW
NA 83.5 ± 4.8 82.6 ± 5.0 82.8 ± 4.9
Rnd. 83.4 ± 4.2 39.8 ± 4.2 10.8 ± 0.7

50

1Stp Rnd. 230.5 ± 7.8 195.3 ± 11.8 141.5 ± 12.1
UCT Rnd. 232.7 ± 7.6 196.7 ± 11.6 175.2 ± 11.9

RIW
NA 212.9 ± 11.3 215.9 ± 10.8 223.5 ± 9.8
Rnd. 236.2 ± 6.5 200.4 ± 11.4 110.6 ± 11.8

T���� 3.2: Same experimental setting as Table 3.1 over GridWorld with a moving goal.

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 38.1 ± 2.8 39.0 ± 2.7 38.8 ± 2.7
Rnd. 43.9 ± 1.9 35.9 ± 2.5 25.3 ± 2.4

UCT
Man. 37.0 ± 2.9 36.4 ± 2.9 36.4 ± 2.9
Rnd. 43.8 ± 1.9 38.5 ± 2.5 25.9 ± 1.9

RIW
Man. 36.4 ± 2.9 36.4 ± 2.9 36.4 ± 2.9
NA 49.8 ± 0.4 48.8 ± 1.0 49.3 ± 0.8
Rnd. 44.9 ± 1.7 34.5 ± 2.8 19.3 ± 2.1

20

1Stp
Man. 76.7 ± 5.5 77.1 ± 5.4 76.7 ± 5.5
Rnd. 97.9 ± 1.6 88.0 ± 3.4 62.7 ± 4.8

UCT
Man. 78.0 ± 5.4 78.4 ± 5.3 73.4 ± 5.7
Rnd. 98.7 ± 1.2 96.4 ± 1.9 77.2 ± 4.2

RIW
Man. 79.7 ± 4.9 76.7 ± 5.5 76.7 ± 5.5
NA 100.0 ± 0.0 100.0 ± 0.0 99.6 ± 0.8
Rnd. 98.5 ± 1.3 88.0 ± 3.4 29.3 ± 3.1

T���� 3.3: Same settings as Table 3.1 over GridWorld with fully observable obstacles and a
stationary goal.

Dim. Alg. Heu.
Simulator Budget

100 1000 10000

10

1Stp
Man. 36.6 ± 2.9 35.0 ± 3.0 35.9 ± 2.9
Rnd. 40.4 ± 2.1 27.2 ± 2.5 15.4 ± 1.6

UCT
Man. 28.4 ± 2.9 29.5 ± 3.1 18.5 ± 2.7
Rnd. 41.5 ± 2.0 36.1 ± 2.3 22.2 ± 2.0

RIW
Man. 28.1 ± 3.0 28.3 ± 3.0 26.5 ± 3.0
NA 49.5 ± 0.7 49.1 ± 0.9 49.8 ± 0.4
Rnd. 43.5 ± 1.9 23.4 ± 2.6 11.1 ± 1.3

20

1Stp
Man. 71.8 ± 5.8 74.0 ± 5.7 71.9 ± 5.8
Rnd. 97.0 ± 1.7 82.3 ± 3.9 49.8 ± 4.6

UCT
Man. 53.8 ± 5.7 60.9 ± 6.2 38.0 ± 5.5
Rnd. 98.0 ± 1.3 87.4 ± 4.0 63.0 ± 4.8

RIW
Man. 53.5 ± 5.6 44.1 ± 5.5 44.1 ± 5.6
NA 100.0 ± 0.0 99.5 ± 1.0 99.5 ± 1.0
Rnd. 97.6 ± 1.5 79.7 ± 4.4 20.7 ± 1.9

T���� 3.4: Same settings as Table 3.1 over GridWorld with partially observable obstacles and
a stationary goal.

For the Skiing Atari-2600 game results in Table 3.7 �Heu is the heuristic value based on the

number of gates missed and remaining as described in the previous section. RIW(1)-_ using

�Heu dominates all other methods. Comparing RIW(1)-_ using �Heu results with those reported

by Machado et al. (2018), it has similar performance to the DQN algorithm (Mnih et al. 2015)

after 100 million frames of training. Since the simulation budget per action we use here is
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Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
UCT Rnd. 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1

RIW
NA 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1
Rnd. 0.5 ± 0.1 0.3 ± 0.0 0.3 ± 0.0

50

1Stp Rnd. 1.7 ± 0.1 1.2 ± 0.1 1.1 ± 0.1
UCT Rnd. 1.7 ± 0.1 1.3 ± 0.1 1.2 ± 0.1

RIW
NA 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0
Rnd. 1.7 ± 0.1 1.3 ± 0.1 1.1 ± 0.1

T���� 3.5: Average and 95% confidence interval for the cost on Antishaping. Costs reported
are from 200 episodes over 10 di�erent initial states (20 episodes per initial state). The
problem horizon of each problem is 4 times the number of states.

Number
Alg. Heu.

Simulator Budget
of States 100 500 1000

10

1Stp Rnd. 23.4 ± 2.5 13.5 ± 2.1 10.4 ± 1.7
UCT Rnd. 23.6 ± 2.5 12.7 ± 2.0 9.6 ± 1.6

RIW
NA 27.4 ± 2.6 27.0 ± 2.6 27.9 ± 2.5
Rnd. 22.9 ± 2.2 3.6 ± 0.4 3.6 ± 0.4

50

1Stp Rnd. 200.0 ± 0.0 196.1 ± 3.8 191.2 ± 5.7
UCT Rnd. 199.0 ± 1.9 196.1 ± 3.8 190.2 ± 6.0

RIW
NA 200.0 ± 0.0 200.0 ± 0.0 199.0 ± 1.9
Rnd. 199.0 ± 1.9 193.1 ± 5.0 190.2 ± 6.0

T���� 3.6: Same settings as Table 3.5 over Combolock.

Alg. Heu.
Simulator Budget

100
1Stp Heu. 16,524.8 ± 396.1
UCT Heu. 16,220.5 ± 310.0

RIW
Heu. 14,222.2 ± 373.9
NA. 15,854.0 ± 332.9

T���� 3.7: Average and 95% confidence interval for the cost on the Atari-2600 Skiing game
over 100 episodes.

Domains
Sum

AA CD CR EO M PL RF WP
PRT-DD .70 1.00 1.00 .40 .50 .92 .66 1.00 6.18

RIW .00 .39 .00 .06 .10 .05 .52 .00 1.12
RIWRnd. .14 .04 .03 .90 .00 .16 .89 .59 2.75

T���� 3.8: 2018 IPC domains, Academic Advising (AA), Chromatic Dice (CD), Cooperative
Recon (CR), Earth Observation (EO), Manufacturer (M), Push Your Luck (PL), Red-finned
Blue-eye (RF), Wildlife Preserve (WP). Values reported are the average IPC scores over the
first 10 instances of each domain. The RIW algorithms had 30 trials for each instance, while
Prost-DD (PRT-DD) used 75 trials.

equivalent to 500 frames, and given that the maximum episode duration spans 3,600 actions,

RIW(1)-_ achieves the performance in Table 3.7 considering 1.8 million frames.

The 2018 IPC domains results in Table 3.8 show that RIW(1) with �Rnd improves over RIW(1)

with �NA in 6 out of 8 domains. In all these domains RIW(1) with �Rnd outperforms the

model-free baseline, RIW(1) with �NA. We also observe that in the Earth Observation (EO) and

Red-finned Blue-eye (RF) domains RIW with �Rnd outperforms the competition winner Prost-

DD. However, it is worth noting that Prost-DD was outperformed in the EO and RF domains by

� 50% of algorithms in IPC 2018 competition. Additionally for the EO domain Prost-DD failed
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to execute on 6 of the 10 instances, yet for the RF domain Prost-DD successfully executed for all

instances. As discussed by Geißer et al. (2019), the RF domain has the largest median number

of actions, action preconditions and planning horizon.

3.5 Related work

Bertsekas (2017) considers AlphaGo Zero (Silver et al. 2017) to be state-of-the-art in MCTS

algorithms. It combines the reasoning over confidence intervals first introduced with UCT (Koc-

sis and Szepevari 2006) and the classic simulation of base policies (Ginsberg 1999), adding to

both supervised learning algorithms to obtain, o�ine, parametric representations of costs-to-go

which are e�cient to evaluate. The resulting algorithm achieves super-human performance at

the game of Go, long considered too hard for AI agents. Rather than using descriptions of

states directly as we do, AlphaZero uses a NN to extract automatically features that describe

spatial relations between game pieces. Like us, AlphaZero’s lookahead uses a stochastic policy

to select what paths to expand, but rather than &-factors, uses estimated win probabilities to

prioritise controls, and simulates the opponent strategy via self-play to generate successor states.

Given we are interested in real-time solutions with limited computational budgets, the training

phase is precluded and AlphaZero reduces to a similar version of the UCT algorithm used in our

experiments.

The PROST (Keller and Eyerich 2012) and UCT* (Keller and Helmert 2013) algorithms make

a number of improvements over the UCT algorithm and achieve state-of-the-art performance

on many probabilistic planning problems. However the improvements made require a model,

and therefore are not applicable to our setting, although we still provide a comparison with the

PROST-DD planner in Table 3.8.

Trevizan et al. (2017) showed how to compute domain independent heuristics for SSPs that do

not rely upon determinising the problem. However the heuristics presented by Trevizan et al.,

like heuristics that determinise the problem, require a model. Any such heuristics that rely upon

a model are not applicable to the model-free simulator-based setting, which allows us to apply

the algorithms to domains di�cult to model but easy to simulate such as the Atari-2600 games.
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3.6 Discussion

MCTS approaches typically combine lookaheads and cost-to-go approximations, along with

statistical tests to determine what are the most promising directions and focus their sampling

e�ort. The width-based methods described in this chapter do so too, but in ways which are, at

first sight, orthogonal to existing strategies. It remains an area of active research to map out

exactly how the width-based methods described in this chapter and Chapter 4, as well as those

described elsewhere by Junyent et al. (2019; 2021) too, provide alternatives to the limitations

of existing MCTS approaches. Having said this, there is no general theory guiding the design

of MCTS algorithms either (Bertsekas 2017). As shown in our experiments, it is important to

follow strict protocols that alert a potential lack of statistical significance in results, while relying

on a diverse set of benchmarks that can be both easily understood and highlight limitations of

existing state-of-the-art methods.

This chapter addressed RQ1 through exploring a limitation in state-of-the-art width-based search

algorithms for online planning. We showed that a simple approximation of costs-to-go via

simulation, improves the performance of Rollout IW significantly. We compared too with

model–based planners on the challenging IPC benchmarks, again improving often on the original

algorithm by Bandres et al. and surprisingly enough, performing comparably to the winner of

the competition in one domain. The next Chapter follows up on this work by exploring more

alternative methods for cost-to-go-approximation, that do not require calling the simulator, but

instead use a training phase to learn cost-to-go-approximations.



Chapter 4

Width-based planning and learning

over the Atari-2600 benchmark1

In this chapter we introduce and explore a new width-based planning and learning algorithm

that we benchmark over the Atari-2600 games. The planning and learning algorithm follows up

from Chapter 3 by introducing and evaluating a method for learning cost-to-go approximations

that are used within a RIW search. Additionally in this chapter, we will introduce a framework

for training a planning and learning method and explore the characteristics of Atari-2600 games

that a�ect the performance of planning and learning algorithms.

4.1 Introduction

The Atari-2600 games provide useful environments for benchmarking autonomous agents due to

the diversity of behaviour required across the di�erent games. The two main approaches used by

autonomous agents applied to the Atari-2600 games have been RL methods (Mnih et al. 2015;

Liang et al. 2016; Hessel et al. 2018) and Planning methods (Lipovetzky, Ramírez, and Ge�ner

2015; Bandres, Bonet, and Ge�ner 2018). The RL approaches have had great success surpassing

the performance of human players for many of the Atari-2600 games. However, RL approaches

require long training times in order to train the NNs used for policy and value functions. Planning

agents do not require training time and instead use a bounded, fixed computational budget to

1This chapter is adapted from the article "Width-based Lookaheads with Learnt Base Policies and Heuristics Over
the Atari-2600 Benchmark" published in the proceedings of the Advances in Neural Information Processing Systems
2021, vol 34, pg 26536–26547.

49
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decide which action to take at each time step of the game. The budget allowed for planning for

each action is set as part of the experimental setting and can be set in such a way that the agent

can play a game in real-time. Through the ALE interface, the agent is not provided a description

of the transition or reward functions as is the case of models described through languages such

as the PDDL (Haslum et al. 2019). Instead, planning agents applied to the Atari-2600 games are

required to work with a simulator, treating the environment’s transition and reward functions as

a black-box (Lipovetzky, Ramírez, and Ge�ner 2015).

Width-based planning agents, introduced in 2.7.5 and 2.7.6, have been shown to be particularly

successful on the Atari-2600 games when compared to other planning agents (Lipovetzky,

Ramírez, and Ge�ner 2015; Bandres, Bonet, and Ge�ner 2018). Width-based planners prioritise

search e�ort on states deemed to be novel. The novelty of a state can be defined in a number

of ways. Previously, novelty tests have been obtained from the RAM of the game (Lipovetzky,

Ramírez, and Ge�ner 2015), handcrafted features computed from screen pixels (Bandres, Bonet,

and Ge�ner 2018) and learnt features extracted from the screen pixels through a NN (Junyent,

Jonsson, and Gomez 2019; Dittadi, Drachmann, and Bolander 2021; Junyent, Gómez, and

Jonsson 2021). In this chapter we consider planners with a novelty measure that does not require

extensive feature engineering, or the internal state of the simulator, but is instead defined directly

over the values of screen pixels.

Recent approaches have combined the RL and planning methods into single agents that are

applied to the Atari-2600 games (Junyent, Jonsson, and Gomez 2019; Schrittwieser et al. 2020;

Junyent, Gómez, and Jonsson 2021). As introduced in 2.9.4 Junyent et al. (2019) combined

a width-based planner with a learnt policy defined over a NN in order to guide the planner to

promising areas of the search space. The learnt NN was also used to extract features from which

the novelty of states were defined over. In this chapter we introduce new width-based planning

and learning methods that learn both policy and value networks using a methodical learning

schedule.

Through analysing previous width-based methods we construct and benchmark new width-based

approaches for the Atari-2600 games. We also classify the Atari-2600 games according to

their particular characteristics. The resulting game taxonomy helps us to gain insight into the

performance of the algorithms we propose and benchmark. The Chapter contributions are: (1) an

analysis of the previous width-based planning methods that have been applied to the Atari-2600
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games, (2) introducing new width-based planning and learning approaches for playing the Atari-

2600 games, (3) defining a methodical learning schedule for planning and learning methods,

and (4) identifying characteristics of the Atari-2600 games that influence the performance of

di�erent planning approaches.

4.2 Related work

The MuZero algorithm introduced by Schrittwieser et al. (2020) and discussed in 2.9.3, achieved

state-of-the-art performance in the Atari-2600 games when compared to existing model-free

RL algorithm performances. Similar to MuZero we also explore using learnt value and policy

networks within a lookahead but consider width-based methods as opposed to MCTS. MuZero’s

experimental setting is di�erent to the one considered in this chapter as we require access to a

simulator in the planning phase and use significantly less computing power.

Width-based planning methods, which are introduced in 2.7.5 and 2.7.6, have had particular

success over other planning agents when applied to the Atari-2600 games. Width-based planners

were first benchmarked over the Atari-2600 games by Lipovetzky et al. (2015), where they applied

IW(1) over the RAM values of the game state as features. Lipovetzky et al., and subsequent

works that use IW(1) (Shleyfman, Tuisov, and Domshlak 2016; Jinnai and Fukunaga 2017), show

that it outperforms breadth-first search and UCT (Kocsis and Szepevari 2006) planners. Bandres

et al. (2018) later introduced the RIW planner, discussed in 2.7.6, and showed it outperformed

IW(1) greatly when almost real-time budgets for planning were applied over the Atari-2600

games. Most recently as discussed in 2.9.4, Junyent et al. (2019; 2021) introduced the width-

based planning and learning methods, c-IW(1), c-IW(1)+ and c-HIW(n, 1), with c-HIW(n, 1)

outperforming all the previous planning methods over the Atari-2600 games.

4.3 Width-based planning and learning for the Atari-2600 games

In this section we step through di�erent design considerations when constructing a width-based

planning and learning algorithm. We compare the design decisions made by previous works and

propose new algorithms to test over the Atari-2600 games.
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4.3.1 Novelty definitions: classic and depth-based

The novelty definition of a width-based lookahead dictates which states to prune. In Algorithm 1

the novelty definition determines the output of the is_novel function. We refer to IW(1)’s

novelty definition as discussed in 3.2 as the "Classic" definition and define it as,

Definition 4.1 ("Classic" Novelty). Given a feature set � = { 51, . . . , 58 , . . . , 5: } s.t. 58 : ( !

{>,?}, and a lookahead L= (# , ⇠, BA ), a node = is novel, if = contains the first state generated

s.t. 5 (=B) = > for some 5 2 �, that is, 8=0 2 # , 5 (=0B) = ? and =0 < =.

The "Depth" novelty definition introduced for RIW(1) by Bandres et al. (2018) and also discussed

in 3.2, is,

Definition 4.2 ("Depth" Novelty). Given a lookahead L= (# , ⇠, BA ), a newly generated node,

= 8 # , reached after doing 3 (=) actions from BA , is novel, if 5 (=B) = > for some 5 2 �, and

8=0 2 # , such that 3 (=0)  3 (=), 5 (=0B) = ?.

Note that the e�ect of the "Classic" pruning definition can change depending on the type of search

algorithm used. For example, unlike BFS, DFS using the "Classic" definition may prune states

that are along a shorter path to a feature that has previously been generated in the search. Later

we show that in a width-based planning and learning algorithm based upon the RIW(1) algorithm

the original "Classic" novelty is competitive and can sometimes outperform the depth-based one

over the Atari-2600 games. In what follows, we refer to Bandres et al.’s original configuration

of RIW(1) as RIW⇡ and refer to RIW(1) where one replaces the "Depth" novelty definition with

the "Classic" one as RIW⇠ .

4.3.2 Features for novelty from graphical game outputs

Width-based methods require a feature set � to be defined over the observable state-space (.

There are two types of observations that can be used for the Atari-2600 games, the internal states

of the Atari-2600 machine (the RAM), and the colours of screen pixels. Either of these enable

features to be defined, as arbitrary Boolean functions over the observable variables. For the

internal state observables we have b ⇥ x variables, where b is the size of the Atari memory word

(8 bits) and x is the size of the physical RAM given by the number of distinct memory addresses

(128 addresses). There are c ⇥ w ⇥ h screen observable variables, where c is 128, w is 160, and
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h is 210, corresponding to the colour depth, and the number of screen pixels along the horizontal

and vertical directions.

When RIW(1) was introduced (Bandres, Bonet, and Ge�ner 2018), Bandres et al. stated that

features capturing "meaningful structure" would yield better results than using raw features.

Hence, Bandres et al. mapped the observable screen variables into the feature set B-PROST,

first proposed by Liang et al. (2016). The B-PROST feature set attempts to capture temporal and

spatial relationships between the past and present screen pixel values. In order to compute the

set of B-PROST features there are a number of steps required. First a set of basic features needs

to be computed through dividing the screen into 16 ⇥ 14 tiles comprised of 10 ⇥ 15 pixels. For

each tile, (F, ⌘), where F 2 {1, . . . , 16} and ⌘ 2 {1, . . . , 14}, there are  features where  is

equal to the colour depth of the Atari-2600 pixels (128). The basic feature in the B-PROST set is

5F ,⌘,2 , where 2 2 {1, . . . , } is true if the tile (F, ⌘) contains at least one pixel with the colour

value 2. A second tier of features, the Basic Pairwise Relative O�sets in Space (B-PROS) set,

is computed from the basic ones. A B-PROS feature 521,22,8, 9 , is true if 5F ,⌘,21 ^ 5F+8,⌘+ 9 ,22 for

any F, ⌘. Finally, a third tier of features, the Basic Pairwise Relative O�sets in Time (B-PROT)

set, are computed. A B-PROT feature considers the current screen’s tiles (F, ⌘) and the previous

game screen’s tile (F0, ⌘0) so that a feature 5 C
21,22,8, 9

is true if 5F ,⌘,21 ^ 5F0+8,⌘0+ 9 ,22 for any F, ⌘

where F0 = F and ⌘0 = ⌘. The B-PROST set is the union of basic, B-PROS, and B-PROT

feature sets.

The feature set can also be defined dynamically through a NN (Junyent, Jonsson, and Gomez

2019). c-IW, c-IW(1)+ and the lower level planner of c-HIW(n, 1) use a feature set that is

defined as the output values of the rectified linear units from the last hidden layer of the policy

NN treating zero values as ? and positive as >. The policy NN input are the last four screens,

processed to map colours to a suitably defined grayscale, and down sampled to a size of 84⇥ 84.

While the policy network is being trained the features extracted through it will also change. This

is similar to Dittadi et al. (2021), who use Variational Autoencoders (VAE) to learn a set of

features from the Atari game screen using a training set of game screens created from a RIW(1)

execution using B-PROST. RIW(1) using the VAE features was shown to outperform RIW(1)

using the B-PROST features.

While width-based planning methods using both the BPROST and NN extracted feature sets

have been shown to perform well over the Atari games, previous width-based methods have not

tested simpler feature sets defined directly over the screen pixel values. With the motivation of
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presenting a simpler width-based algorithm, we define our feature set directly over the values of

the current down sampled 84 ⇥ 84, 8-bit grayscaled, observable screen variables. Each feature

is defined as 58, 9 ,2 and is true if the downsampled pixel (8, 9) has the grayscaled colour c, where

8, 9 2 {1, . . . , 84} and 2 2 {1, . . . , 256}. Despite using a simpler feature set than previous work,

in the next section we show that our algorithm outperforms the methods that use dynamically

defined NN based features.

Algorithm 2 Novelty guided Critical Path Learning (N-CPL)
// Perform  training iterations

8 for i = 0, . . . , K do
9 T 8  ;, ⇢ 8  ; // Iteration’s critical path transitions and episode rewards

10 while ¬ train_interval_exhausted() do
11 B B0, '  0, !  initialise_lookahead(B0)

while ¬ is_terminal(s) do
12 !  RIW(!, c1) // Algorithm 1 in Chapter 2
13 0, A, B

0
, !  select_next_transition(!,+ C ) // Selected using Def. 2.14

14 T 8  T 8 [ (B, 0, A, B0), B B
0, '  ' + A

15 end
16 ⇢

8  ⇢
8 [ ' // Episode rewards from current iteration

17 end
// Train and update network parameters according to learning schedule

18 c1,+
C  update_network_parameters(T 8

, ⇢
8)

19 end

4.3.3 Learning base policies and termination costs

AlphaGo (Silver et al. 2016) and c-IW (Junyent, Jonsson, and Gomez 2019) showed the power of

using a learnt base policy defined through a NN in order to guide a lookahead search. Similarly,

AlphaGo and c-IW(1)+ (Junyent, Gómez, and Jonsson 2021) also use a learnt value function

defined through a NN. c-IW(1)+ used its learnt value function to modify the definition of

+ (=) (Definition 2.14) allowing the rewards received from the transitions in the lookahead to

sometimes be ignored in preference of the value network’s valuation.

We propose a new algorithm based on Algorithm 1, Novelty guided Critical Path Learning or

N-CPL for short, that incorporates both a learnt policy and value function network. An outline

of N-CPL is shown in Algorithm 2. Like c-IW does, N-CPL defines the base policy used by

Algorithm 1 to be a policy network. Besides that, N-CPL uses a cost-to-go approximation which

we implement with a NN as a value function, which is evaluated at the non-terminal leaf nodes

of the lookahead. As shown in Chapter 3 using cost-go-approximations significantly improve the

performance of width-based lookaheads over SSPs, but rather than using simulations to obtain
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the cost-to-go estimates, we rely on a learnt heuristic function. That is, instead of assigning

termination costs, +) , of 0 as done by previous width-based methods, if the state is not terminal

the valuation of the learnt value function network is used. We note that unlike c-IW(1)+ we do

not use the learnt value function to modify the + (B) definition as defined in Definition 2.14.

4.3.4 Learning from critical paths

The policy network of N-CPL uses the state action pairs, (B 9 , 0 9) for 9 = 0, . . . ,� � 1, of

previous episodes performed by N-CPL with NN parameters, <\ c
8
, \

+

8
>, in order to train new

NN parameters \ c
8+1. This is similar to how c-IW(1) trains its policy function, except for the fact

that c-IW(1) uses the Q values within the lookahead tree. If multiple actions in c-IW’s lookahead

have the same Q value for a given state, instead of the training vector assigning a probability of

one to the executed action, c-IW uniformly distributes the probability across the actions with

the same Q values. We have taken the simpler approach of just using 1-hot encodings for the

single selected action along the critical path (Definition 2.15) of the N-CPL algorithm. Curating

the training data set in this way also means N-CPL does not need access to the internal data

structures of the planning agent itself but instead can externally observe any agent interacting

with the environment in order to acquire the training data.

Influential deep RL algorithms such as DQN (Mnih et al. 2015) which have been applied to

the Atari-2600 games rely on evaluating an n-greedy policy defined over the parameters of its

network in order to sample transitions and use Q-learning updates on the parameters of the

network. We follow this strategy and perform Temporal Di�erential (TD) (Sutton 1988) learning

to train the value network. The selection of the transitions that are used for the TD learning

determines what the value function is estimating. That is, TD’s task is to estimate the expected

accumulated rewards from the given state following the policy which underlies the transitions

that it is trained on. In N-CPL the transitions within the lookahead follow the base policy, c1

which is being learnt by aiming to mimic the policy induced from the N-CPL lookahead, cN-CPL.

The N-CPL lookahead through selecting actions according to Definition 2.14 can be seen as

a policy improvement operator over c1 and hence the execution of cN-CPL is not necessarily

equivalent to the c1. Therefore it does not make sense to approximate the expected accumulated

reward of the lookahead with the expected accumulated reward of c1. Instead, as shown in

Line 8 of Algorithm 2, N-CPL trains only the transitions on the critical path of the lookahead
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N1 2 ... M1 2 ...

N-CPL N-CPL
Episodes executed with Episodes executed with

F����� 4.1: Illustration of the schedule for the network parameter updates, <\ c , \+ >, of
N-CPL. The ⇢ arrays contain episodes executed by N-CPL and each episode in the array is
represented by a square in the diagram. The t_test function returns the p-value for Welch’s
t-test (Welch 1947) of the episode rewards executed with the old 8 � 1 parameters being better
than the new ones. Xc

8
and X+

8
are real vectors of the same dimensions as \ c

8
and \+

8

respectively. Xc
8

and X+
8

are functions over ⇢8 .

(Definition 2.15), that is, the transitions selected by cN-CPL. This results in the value function

approximating the expected accumulated reward of executing cN-CPL from a given state.

4.3.5 Adding a learning schedule

The previous width-based planning and learning methods continuously learn and update their

policy and value networks, while a key mechanism of the Alpha-Zero algorithm (Silver et al.

2017) is the use of a learning schedule. Alpha-Zero evaluates each new set of network param-

eters \ 0 that are trained against the current set of network parameters \ to ensure \ 0 improves

AlphaZero’s performance. Here we introduce a general learning schedule mechanism that is

applicable to sequentially executed and trained planning and learning methods applied to single-

player domains, that N-CPL uses for updating its network parameters for its policy network, \ c

and value function network, \+ . As illustrated in Figure 4.1, the learning schedule determines

whether network parameter updates <\ c
8
, \

+

8
> can be accepted or if the <\ c

8�1, \
+

8�1> parameters

are kept, by evaluating their performance when used within N-CPL. This test is implemented

in the update_network_parameters function shown in Algorithm 2. For the test N-CPL

performs a Welch’s t-test (Welch 1947) on its performance with the new 8 parameters vs. the

old 8 � 1 parameters. The update is rejected if the t-test suggests, with a ?-value of less than

0.1, that performance could deteriorate if the new parameters were accepted. This training and

parameter update schedule allows learning steps to be completed at each time step like done by

c-IW (Junyent, Jonsson, and Gomez 2019), except that the updated parameters are not used for

data generation by N-CPL until they have been accepted by the proposed learning schedule.
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4.4 Experimental study

We benchmark width-based planning and learning methods with variations of the design deci-

sions explained in the previous section. Here we explain our experimental methodology and

provide results across the di�erent algorithms over the Atari-2600 games.

4.4.1 Methodology

Given vast compute resources it would be preferable to conduct a full ablation study over

the Atari-2600 benchmark on each element of a width-based planning and learning algorithm

discussed in the previous section. However, due to computational constraints we instead select

five planners which will provide the most insight. Two of the planners we evaluate are based on

RIW(1) without learnt policy or value function networks. One of the planners uses the "Depth"

definition of novelty (Definition 4.2) and the other uses the "Classic" definition (Definition 4.1),

we name these version RIW⇡ and RIW⇠ respectively. Note that RIW⇡ is as described in

Bandres et al.(2018), except that the features are defined directly over the screen’s pixel values

as discussed in the previous section. The other 2 width-based planners we benchmark are two

versions of N-CPL, as previously described. Again we test both the "Classic" and "Depth"

novelty definitions (Definitions 4.1, 4.2), and refer to them as N-CPL and N-CPL⇡ respectively.

For the policy networks of N-CPL and N-CPL⇡ we use the same architecture used by Mnih

et al. (2015). The value network uses the same architecture as the policy network except that

instead of the output layer being a dense softmax layer with an output for each action, the output

layer of the value network is a dense linear layer with a single output value. Additionally we

test a version of N-CPL that does not prune for novelty, we refer to as CPL, i.e. for CPL the

is_novel function in Algorithm 1 always returns true.

We compare RIW⇡ , RIW⇠ , CPL, N-CPL, and N-CPL⇡ to the c-IW, c-IW(1)+ and c-HIW(n,

1) planners with the results as given by Junyent et al. (2021). We do not directly compare our

results to those given in the original RIW(1) planner as Bandres et al. (2018) use a di�erent

experimental design. That is, Bandres et al. and previous works such as Lipovetzky et al. (2015)

benchmarked their width-based planners over the Atari-2600 games all using the full action

set of 18 actions per state. We found in the code provided for the c-IW(1) work that it was

benchmarked against the games using the minimal action set for each game. Using the minimal

action set results in many games having much smaller branching factors, for example, instead of
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Breakout having a branching factor of 18, it has a branching factor of just 4. Additionally it is

worth noting that the true average branching factor of each game is often much smaller than the

minimal action set (Nelson 2021) and learning the minimal action set can help avoid unnecessary

simulator interactions (Jinnai and Fukunaga 2017). Due to computational constraints we could

not benchmark our algorithms over the games with full, minimal and learnt minimal actions sets.

Instead, we decided to benchmark using the minimal action set as Junyent et al. (2021) do.

The results are also not directly compared with those from MuZero due to discrepancies in

the evaluation protocols and computing resource requirements. For example, MuZero uses a

smaller frameskip for the environment time steps and uses a longer allowed episode length of

108,000 frames compared to the 18,000 frame maximum episode length we impose. While

our experiments run on a single vCPU for each trial for both training and evaluation, MuZero

required 40 third generation Google Cloud TPUs for each run, 8 for training and 32 for its

self-play. Furthermore the results for MuZero on each domain were only made available for a

20 billion frame training budget. However in tables 4.9, and 4.10 we do provide a comparison

to the RL algorithms DQN (Mnih et al. 2015) and Rainbow (Hessel et al. 2018) and we note the

di�erences in the evaluation protocols used for each algorithm in Table 4.8.

For the evaluation of each algorithm on each game we run 5 independent trials. Once training

has completed we evaluate each trial over 10 episodes. Following previous width-based planning

papers (Bandres, Bonet, and Ge�ner 2018; Junyent, Jonsson, and Gomez 2019; Junyent, Gómez,

and Jonsson 2021) we use a frameskip of 15. We keep our experimental settings the same as

Junyent et al. (2021) including a training budget of 2 ⇥ 107 simulator interactions and allowing

100 simulator interactions at each planning time step, which allows almost real-time planning.

Note that previous width-based algorithms have varied in how they apply planning budgets,

Lipovetzky et al. enforce a budget of 30,000 simulator interactions with a frameskip of 5, while

Bandres et al. enforce time budgets of 0.5 and 32 seconds with a frameskip of 15. We ran 80

independent trials at once over 80 Intel Xeon 2.10GHz processors with 720GB of shared RAM,

limiting each trial to run on a single vCPU. The average vCPU run-time per time step needed

across both the planning and learning steps were 1.28 and 1.11 seconds for N-CPL, and N-CPL⇡

respectively, resulting in each trial taking just under 3 days to complete. For RIW⇠ and RIW⇡ ,

which do not require any learning steps or evaluation of NNs, the average run-times per step

were 0.55 and 0.54 seconds respectively. Note that given Atari operates at 60 frames per second

and we use a frameskip of 15 a real-time planner would be required to execute with a run-time

of 0.25 seconds per time step.
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Lookahed Parameters
Sim. Interactions Budget 100
Lookahead Horizon 100

Value and Policy Network Parameters
Batch size 128
Learning Rate 2.50 ⇥ 10�4

Epochs 8
Loss Function for Policy Categorical crossentropy
Loss Function for Value Function Huber
Discount factor used in TD Learning 0.99
Time steps between target network updates (for value network) 10,000
Interval size of learning schedule 1 ⇥ 106 sim. interactions

T���� 4.1: N-CPL hyperparameters.

The transitions within the lookahead are cached inline with previous width-based plan-

ners (Lipovetzky, Ramírez, and Ge�ner 2015; Bandres, Bonet, and Ge�ner 2018; Junyent,

Jonsson, and Gomez 2019; Junyent, Gómez, and Jonsson 2021). That is, when the search

revisits a transition between two nodes of the lookahead within the same episode, the simulator

does not need to be recalled and hence does not a�ect the simulator budget. Also following

previous work, transitions that are cached from previous time steps are not considered by the

novelty Definitions 4.1, and 4.2, and hence will never be pruned.

Table 4.1 shows the di�erent hyperparameters of N-CPL along with the selected values used

for the experiments. Due to computational restraints we could not tune the hyperparameters

of N-CPL. The lookahead horizon is the maximum search depth allowed, that is the maximum

number of actions allowed from the root node of the lookahead. For the value and policy network

parameters both the batch size and number of epochs used a�ects the training time. We selected

both the batch size and number of epochs such that the time spent training the networks using a

single vCPU is around the same time as the planning steps of N-CPL. We used the same learning

rate, loss function (for the value function) and discount factor for the TD learning as used by

DQN (Mnih et al. 2015). Following Junyent et al.(2019) we use a crossentropy loss function for

the policy network. The interval size of the learning schedule dictates the size of the data set

used to update the networks and how often to reject or accept parameter updates. The interval

size of the learning schedule is illustrated in Figure 4.1 to be of a size of N episodes. Instead of

setting the interval size to be a set number of episodes we set it as 1⇥ 106 simulator interactions.

4.4.2 Results

Table 4.2 summarises the results of N-CPL, N-CPL⇡ , CPL, RIW⇠ , RIW⇡ , c-IW(1), c-IW(1)+

and c-HIW(n, 1), additionally tables 4.3 and 4.4 show the performance of each algorithm on each
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Number of games with higher average score than
N-CPL N-CPL⇡ CPL RIW⇠ RIW⇡ c-IW c-IW+ c-HIW Total (ave. win %)

N-CPL 26 35 49 47 32 39 32 260 (70.1%)
N-CPL⇡ 26 29 48 46 32 38 30 249 (67.1%)
CPL 18 24 43 45 31 39 27 227 (61.2%)
RIW⇠ 3 4 10 23 19 18 17 94 (25.3%)
RIW⇡ 5 6 8 29 20 18 17 103 (27.8%)
c-IW 20 20 22 33 32 30 25 182 (49.1%)
c-IW+ 14 15 14 35 35 23 23 159 (42.9%)
c-HIW 21 23 26 36 36 28 30 200 (53.9%)

T���� 4.2: A pairwise comparison of the width-based planning algorithms over the full
benchmark set made up of 53 Atari Games. Numbers represent the number of games an
algorithm had a higher average evaluation score over the 5 learning trials than the algorithm it
is being compared to.

Atari-2600 game tested. Using the pairwise comparison of the di�erent algorithms across the

53 games it is clear that N-CPL⇡ and N-CPL are the most performant. Comparing the "Depth"

vs. "Classic" novelty definition methods as RIW⇡ vs. RIW⇠ , the former performs better than

the latter. The superiority of the "Depth" over the "Classic" definition of novelty does not follow

when using our CPL method. The "Classic" method of N-CPL slightly outperforms the "Depth"

method N-CPL⇡ , with Table 4.2 indeed showing that N-CPL is the best performing algorithm

overall. Interestingly our CPL method that does not use novelty pruning, still outperforms all

previous methods which shows the large contribution learning and using the policy and value

function networks, as described in the previous section, has on performance.

To better understand the performance of the algorithms we segment the benchmark set according

to a couple of di�erent characteristics. The game characteristics we examine are the branching

factor, and the sparseness of meaningful reward feedback (SMRF). We consider rewards as

meaningful when they provide information to a player about how to maximise the accumulated

reward of an episode. For a given game, SMRF is determined by executing a random policy and

a Real-Time Dynamic Planner (RTDP) (Barto, Bradtke, and Singh 1995) over each of the games.

RTDP is an online planner that uses a one step lookahead (Definition 2.13) and an approximation

for the termination cost + C at each of the leaf nodes. For the approximation of + C (B0) we use the

accumulated reward from a random policy executed from B
0 for 10 time steps. We run both the

random policy and RTDP for 50 time steps (750 frames). If the results from the RTDP planner

are not better than the random policy according to Welch’s t-test (Welch 1947) with p < 0.1, the

game is classified as having SMRFs. It should be noted that this classification does not guarantee

that a domain classified as having a SMRF actually has a SMRF, for instance the returns from

RTDP and a random policy could be similar due to their stochasticity. The results of the random

policy vs. RTDP can be seen in Table 4.5. For example, in the game of Pong, RTDP will be able
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GAME RIW⇡ RIW⇠ CPL N-CPL⇡ N-CPL c-IW c-IW+ c-HIW(n,1)
Alien 4,365.20 4,478.40 6,209.00 7,640.60 6,943.40 3,969.78 2,585.77 4,609.18

Amidar 1,014.84 897.00 1,433.68 2,404.60 2,118.32 950.45 374.20 1,076.17
Assault 764.80 768.00 3,222.98 3,185.44 3,079.92 1,574.91 922.30 2,344.28
Asterix 52,940.00 54,090.00 39,860.00 48,364.00 48,226.00 346,409.11 247,063.36 90,017.25

Asteroids 1,480.20 1,397.20 6,145.20 9,000.80 9,152.80 1,368.55 1,490.87 990.95
Atlantis 48,930.00 46,464.00 173,786.00 120,650.00 119,636.00 106,212.63 143,177.73 17,539.22

BankHeist 453.46 436.90 336.40 957.12 709.00 567.16 256.29 501.68
BattleZone 102,780.00 88,560.00 220,680.00 165,340.00 153,880.00 69,659.40 30,848.95 309,137.79
BeamRider 4,124.37 3,521.80 6,164.64 3,743.80 3,560.88 3,313.11 8,428.96 11,931.41

Berzerk 600.00 620.00 3,148.00 4,642.20 4,120.60 1,548.23 960.03 7,417.26
Bowling 65.38 63.10 161.06 101.40 103.24 26.28 78.18 50.09
Boxing 52.44 54.58 80.96 84.30 86.40 99.88 88.19 6.81

Breakout 64.34 53.36 197.82 320.64 302.04 92.07 107.64 252.88
Centipede 52,685.12 55,495.78 53,608.80 60,157.38 62,654.16 126,488.35 141,070.19 80,685.48

ChopperCommand 3,768.00 3,466.00 17,908.00 4,570.00 3,786.00 11,187.44 3,431.74 70,787.12
CrazyClimber 40,520.00 39,387.50 78,266.00 90,332.00 91,912.00 161,192.01 138,648.58 102,205.99
DemonAttack 8,499.88 8,449.00 10,560.00 10,829.90 10,876.00 26,881.13 35,022.64 16,007.64
DoubleDunk 6.72 6.00 19.76 23.76 23.96 4.68 -16.80 3.51

Enduro 1.90 1.34 231.44 250.88 220.28 506.59 63.83 44.47
FishingDerby -67.76 -62.46 -23.94 -29.22 -7.62 8.89 -28.02 -53.76

Frostbite 280.00 273.80 9,956.80 5,255.60 6,508.00 270.00 1,636.51 7,242.60
Gopher 6,311.43 5,990.83 11,181.60 13,326.40 12,539.60 18,025.91 7,061.76 15,001.18
Gravitar 1,755.00 1,725.00 2,382.00 2,246.00 2,284.00 1,876.80 1,532.33 1,154.01

Hero 17,438.30 17,159.70 29,200.40 34,083.40 36,099.80 36,443.73 22,097.39 36,231.21
IceHockey 21.48 21.92 19.62 29.58 26.96 -9.66 -4.02 -2.36
Jamesbond 2,378.00 2,485.00 18,666.00 17,572.00 18,790.00 43.20 104.91 1,380.13
Kangaroo 1,556.00 1,504.00 5,332.00 9,222.00 9,202.00 1,847.46 2,918.98 6,861.57

Krull 2,176.58 2,127.60 5,631.22 4,900.90 4,422.88 8,343.30 13,014.77 4,121.81
KungFuMaster 5,668.00 5,886.00 27,288.00 43,520.00 42,388.00 41,609.03 24,871.94 20,680.65

MontezumaRevenge 0.00 0.00 2.00 0.00 0.00 0.00 810.49 5,275.89
MsPacman 15,697.56 15,729.28 11,922.22 16,150.08 18,285.18 14,726.33 5,916.86 4,523.47

NameThisGame 6,247.50 6,145.25 8,287.40 8,017.20 8,339.40 12,734.85 18,167.55 9,977.12
Phoenix 4,992.80 4,912.60 6,616.40 8,033.40 8,777.40 5,905.12 7,647.67 7,508.63
Pitfall -44.86 -62.66 -0.48 -1.68 -0.42 -214.75 -2.46 -128.82
Pong -4.52 -4.92 -12.28 6.18 10.94 -20.42 2.14 -9.70

PrivateEye 625.72 1,249.68 153.22 120.00 100.00 452.40 1,766.13 29,548.76
Qbert 4,499.50 4,426.50 28,182.50 31,625.50 30,618.50 32,529.60 23,337.90 40,449.72

RoadRunner 17,326.00 20,580.00 86,650.00 49,828.00 57,212.00 38,764.81 43,813.29 87,953.53
Robotank 31.03 31.33 31.04 37.94 36.16 15.66 9.68 10.63
Seaquest 1,609.60 1,576.20 3,523.00 2,878.60 3,922.80 5,916.05 559.28 867.51
Skiing -31,013.00 -22,234.22 -20,510.82 -29,080.30 -20,041.24 -19,188.32 -13,852.04 -15,417.86
Solaris 3,110.00 3,085.00 7,741.60 3,106.40 4,704.00 3,048.78 1,832.93 3,524.69

SpaceInvaders 2,592.40 2,622.50 3,447.40 3,680.40 4,289.40 2,694.09 1,622.49 2,946.18
StarGunner 17,510.00 17,597.56 18,340.00 20,700.00 20,320.00 1,381.24 1,642.82 1,864.64

Tennis 1.40 -0.53 -2.80 1.24 0.00 -23.67 -8.26 -20.00
TimePilot 24,455.00 24,342.50 22,780.00 24,950.00 24,150.00 16,099.92 11,126.86 34,610.25
Tutankham 159.40 154.86 184.94 181.48 203.54 216.67 181.44 199.06
UpNDown 39,834.00 40,649.00 59,650.80 58,783.00 58,867.20 107,757.51 59,497.75 80,991.07

Venture 22.00 32.00 1,732.00 1,466.00 1,564.00 0.00 15.68 10.73
VideoPinball 136,531.50 138,748.35 148,995.14 134,489.58 139,799.22 514,012.51 387,308.60 184,720.01
WizardOfWor 26,956.25 27,991.11 54,988.00 43,556.00 43,436.00 76,533.18 30,383.68 12,027.43
YarsRevenge 59,779.48 60,940.90 133,647.42 142,568.26 135,089.68 102,183.67 64,544.51 159,496.20

Zaxxon 9,342.00 9,520.00 28,102.00 33,268.00 30,818.00 22,905.73 10,159.01 21,135.58
Total times best 1 0 7 10 8 12 5 10

T���� 4.3: Comparing averages directly over 53 Atari-2600 games, as no confidence interval
or standard deviation data is provided for the results of c-IW(1), c-IW(1)+, c-HIW(n, 1). The
highest average score is highlighted in green. Freeway is excluded from this table as Junyent et
al. (2021) do not report the results for it due to its slow simulator time. See Table 4.4 for the
Freeway results of RIW⇡ , RIW⇠ , N-CPL⇡ , and N-CPL.

to discover states through its 10 step approximation of + C (B0) where either player has scored.

Using information from +
C (B0) about which players have scored, RTDP will be able to have a

better informed policy than the random policy, so Pong would not be considered a SMRF game.

In a game like Skiing, where a skier is required to ski down a mountain and pass through gates

on its path down, RTDP will not discover any meaningful rewards in its 10 step rollouts. This is

because in Skiing, despite a constant negative reward at each time step, there is no meaningful

reward feedback until the skier reaches the bottom of the mountain where a negative reward is

applied for each gate the skier missed.

Table 4.6 groups the games according to their branching factor. Comparing Table 4.6 and 4.2

we can see that for games with larger branching factors, the relative performance gap between
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GAME RIW⇡ RIW⇠ CPL N-CPL⇡ N-CPL
Alien 4,365.20±471.95 4,478.40±375.51 6,209.00±415.77 7,640.60±615.52 6,943.40±507.28

Amidar 1,014.84±70.76 897.00±70.28 1,433.68±123.49 2,404.60±69.72 2,118.32±114.28
Assault 764.80±49.88 768.00±68.03 3,222.98±98.37 3,185.44±123.18 3,079.92±122.33

Asterix
52,940.00
±1,486.56

54,090.00
±1,323.40

39,860.00
±410.25

48,364.00
±1,844.10

48,226.00
±1,184.51

Asteroids 1,480.20±75.48 1,397.20±113.97 6,145.20±318.23 9,000.80±143.15 9,152.80±189.24

Atlantis
48,930.00
±4,017.54

46,464.00
±3,132.23

173,786.00
±2,343.28

120,650.00
±892.42

119,636.00
±830.95

BankHeist 453.46±31.86 436.90±40.51 336.40±25.25 957.12±105.73 709.00±76.09

BattleZone
102,780.00
±22,127.98

88,560.00
±16,866.49

220,680.00
±14,274.79

165,340.00
±28,612.76

153,880.00
±28,305.50

BeamRider 4,124.37±384.99 3,521.80±371.92 6,164.64±287.17 3,743.80±466.05 3,560.88±415.25
Berzerk 600.00±32.84 620.00±32.37 3,148.00±386.38 4,642.20±367.59 4,120.60±423.64
Bowling 65.38±1.66 63.10±2.00 161.06±5.46 101.40±3.22 103.24±3.32
Boxing 52.44±2.00 54.58±2.86 80.96±2.63 84.30±2.10 86.40±0.97

Breakout 64.34±17.89 53.36±10.91 197.82±33.59 320.64±8.03 302.04±18.31

Centipede
52,685.12
±2,811.22

55,495.78
±1,398.86

53,608.80
±1,567.38

60,157.38
±1,726.88

62,654.16
±1,107.16

ChopperCommand 3,768.00±634.47 3,466.00±378.06 17,908.00±1,432.95 4,570.00±602.78 3,786.00±601.16

CrazyClimber
40,520.00
±550.63

39,387.50
±486.25

78,266.00
±3,572.79

90,332.00
±2,414.91

91,912.00
±2,184.99

DemonAttack 8,499.88±252.38 8,449.00±320.73 10,560.00±188.97 10,829.90±274.19 10,876.00±193.47
DoubleDunk 6.72±0.84 6.00±0.94 19.76±1.02 23.76±0.15 23.96±0.07

Enduro 1.90±0.57 1.34±0.38 231.44±10.04 250.88±8.23 220.28±9.71
FishingDerby -67.76±1.96 -62.46±2.20 -23.94±4.32 -29.22±4.30 -7.62±5.99

Freeway 5.50 ± 0.24 5.52 ± 0.28 28.86±0.45 29.02 ± 0.45 28.96 ± 0.30
Frostbite 280.00±4.56 273.80±3.72 9,956.80±1,066.62 5,255.60±389.33 6,508.00±588.79
Gopher 6,311.43±440.94 5,990.83±479.70 11,181.60±72.70 13,326.40±240.79 12,539.60±158.58
Gravitar 1,755.00±171.35 1,725.00±192.75 2,382.00±228.46 2,246.00±201.67 2,284.00±231.37

Hero
17,438.30
±1,011.92

17,159.70
±949.20

29,200.40
±1,804.42

34,083.40
±938.86

36,099.80
±553.32

IceHockey 21.48±0.73 21.92±0.83 19.62±1.09 29.58±0.90 26.96±1.03
Jamesbond 2,378.00±1,224.25 2,485.00±1,210.76 18,666.00±598.37 17,572.00±820.54 18,790.00±907.58
Kangaroo 1,556.00±203.70 1,504.00±151.18 5,332.00±727.16 9,222.00±546.79 9,202.00±572.19

Krull 2,176.58±89.61 2,127.60±88.85 5,631.22±272.50 4,900.90±141.45 4,422.88±149.38

KungFuMaster
5,668.00
±425.75

5,886.00
±521.52

27,288.00
±1,908.35

43,520.00
±1,108.67

42,388.00
±643.13

MontezumaRevenge 0.00±0.00 0.00±0.00 2.00±3.26 0.00±0.00 0.00±0.00

MsPacman
15,697.56
±1,148.98

15,729.28
±1,138.48

11,922.22
±1,044.99

16,150.08
±1,064.72

18,285.18
±703.36

NameThisGame 6,247.50±98.52 6,145.25±91.49 8,287.40±117.61 8,017.20±129.51 8,339.40±109.81
Phoenix 4,992.80±242.42 4,912.60±262.97 6,616.40±316.44 8,033.40±687.80 8,777.40±776.53
Pitfall -44.86±22.53 -62.66±26.84 -0.48±0.78 -1.68±1.33 -0.42±0.52
Pong -4.52±1.49 -4.92±1.28 -12.28±1.29 6.18±1.29 10.94±1.22

PrivateEye 625.72±685.72 1,249.68±938.31 153.22±22.74 120.00±9.30 100.00±0.00
Qbert 4,499.50±756.07 4,426.50±688.09 28,182.50±2,855.33 31,625.50±406.22 30,618.50±693.66

RoadRunner
17,326.00
±3,626.95

20,580.00
±3,760.02

86,650.00
±3,065.43

49,828.00
±3,244.08

57,212.00
±4,094.90

Robotank 31.03±1.16 31.33±1.33 31.04±0.63 37.94±0.73 36.16±0.84
Seaquest 1,609.60±291.85 1,576.20±281.51 3,523.00±255.00 2,878.60±285.43 3,922.80±245.47

Skiing
-31,013.00
±700.82

-22,234.22
±872.31

-20,510.82
±1,199.55

-29,080.30
±1,034.25

-20,041.24
±1,139.52

Solaris 3,110.00±232.31 3,085.00±532.56 7,741.60±825.51 3,106.40±169.24 4,704.00±615.29
SpaceInvaders 2,592.40±301.45 2,622.50±303.10 3,447.40±269.92 3,680.40±310.85 4,289.40±301.15

StarGunner 17,510.00±240.75 17,597.56±397.74 18,340.00±217.12 20,700.00±178.37 20,320.00±335.94
Tennis 1.40±1.53 -0.53±1.52 -2.80±0.93 1.24±1.45 0.00±1.51

TimePilot 24,455.00±615.53 24,342.50±544.82 22,780.00±839.59 24,950.00±528.00 24,150.00±670.57
Tutankham 159.40±4.77 154.86±4.86 184.94±4.59 181.48±3.80 203.54±4.82
UpNDown 39,834.00±830.87 40,649.00±822.57 59,650.80±1,078.03 58,783.00±604.10 58,867.20±752.05

Venture 22.00±20.96 32.00±23.00 1,732.00±49.99 1,466.00±176.15 1,564.00±149.66

VideoPinball
136,531.50
±8,459.01

138,748.35
±8,349.10

148,995.14
±8,492.72

134,489.58
±7,483.99

139,799.22
±7,019.84

WizardOfWor
26,956.25
±2,793.49

27,991.11
±2,907.59

54,988.00
±1,906.42

43,556.00
±4,275.90

43,436.00
±4,142.91

YarsRevenge
59,779.48
±2,070.84

60,940.90
±2,234.00

133,647.42
±4,698.49

142,568.26
±3,934.50

135,089.68
±4,813.68

Zaxxon
9,342.00
±944.44

9,520.00
±1,221.31

28,102.00
±1,264.90

33,268.00
±1,192.32

30,818.00
±1,722.99

Best algorithm
(t-test, p <0.1) 0 0 11 9 9

T���� 4.4: Average scores with 90% confidence intervals over the set of 54 Atari Games.
Algorithm scores that are the best according to the Welch’s t-test (Welch 1947) using p< 0.1
are highlighted in green.

our N-CPL⇡ and N-CPL planners and Junyent et al.’s c-IW(1), c-IW(1)+ and c-HIW(n, 1)

increases as the branching factor increases. For example N-CPL and N-CPL⇡ perform better

than c-IW(1)+ in 28/33 (84.8%) games and 27/33 (81.8%) games respectively for the games with

a branching factor greater or equal to 10. However, for games with a branching factor less than

10, N-CPL and N-CPL⇡ only perform better than c-IW(1)+ in 11/20 (55%) and 11/21 (55%)

games respectively.
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GAME RTDP Random
Alien 379.50 ± 180.1 135.00 ± 39.4

Amidar 30.90 ± 18.0 8.70 ± 15.8
Assault 139.65 ± 38.3 49.35 ± 27.6
Asterix 625.00 ± 91.5 155.00 ± 70.5

Asteroids 397.50 ± 137.6 74.00 ± 42.0
Atlantis 1350.00 ± 915.7 635.00 ± 979.9

BankHeist 27.50 ± 20.7 3.50 ± 4.8
BattleZone 3350.00 ± 2725.3 450.00 ± 669.0
BeamRider 121.00 ± 30.7 50.60 ± 46.7

Berzerk 324.00 ± 109.4 102.50 ± 68.0
Bowling 0.00 ± 0.0 0.00 ± 0.0
Boxing 12.90 ± 5.8 �2.00 ± 4.1

Breakout 3.10 ± 0.8 1.00 ± 0.7
Centipede 2189.75 ± 226.5 548.85 ± 565.0

ChopperCommand 790.00 ± 260.6 205.00 ± 120.3
CrazyClimber 715.00 ± 127.6 395.00 ± 124.4
DemonAttack 68.50 ± 9.6 29.50 ± 12.4
DoubleDunk �0.20 ± 1.4 �1.90 ± 1.3

Enduro 0.15 ± 0.5 0.05 ± 0.2
FishingDerby �1.70 ± 3.1 �9.70 ± 3.0

Freeway 0.00 ± 0.0 0.00 ± 0.0
Frostbite 122.00 ± 21.1 23.50 ± 16.5
Gopher 0.00 ± 0.0 0.00 ± 0.0
Gravitar 177.50 ± 195.2 0.00 ± 0.0

Hero 2206.50 ± 886.9 36.25 ± 41.4
IceHockey 0.80 ± 0.8 �0.40 ± 0.8

Jamesbond 15.00 ± 22.9 5.00 ± 15.0
Kangaroo 100.00 ± 100.0 10.00 ± 43.6

Krull 104.50 ± 38.4 19.50 ± 18.8
KungFuMaster 130.00 ± 145.3 5.00 ± 21.8

MontezumaRevenge 0.00 ± 0.0 0.00 ± 0.0
MsPacman 396.50 ± 193.9 213.00 ± 163.7

NameThisGame 138.00 ± 41.1 44.50 ± 35.3
Phoenix 346.00 ± 93.0 110.00 ± 66.8
Pitfall 0.00 ± 0.0 �1.10 ± 4.8
Pong �0.65 ± 1.4 �3.30 ± 1.0

PrivateEye 0.00 ± 0.0 4.75 ± 21.9
Qbert 606.25 ± 50.5 77.50 ± 125.5

Riverraid 862.50 ± 210.2 321.50 ± 70.0
RoadRunner 15.00 ± 65.4 5.00 ± 21.8

Robotank 1.05 ± 0.7 0.30 ± 0.5
Seaquest 73.00 ± 26.3 14.00 ± 15.6
Skiing �1248.00 ± 0.0 �1248.00 ± 0.0
Solaris 0.00 ± 0.0 0.00 ± 0.0

SpaceInvaders 130.75 ± 29.5 41.00 ± 25.6
StarGunner 370.00 ± 95.4 60.00 ± 106.8

Tennis 0.10 ± 0.7 �1.90 ± 0.9
TimePilot 370.00 ± 134.5 105.00 ± 66.9
Tutankham 17.85 ± 11.8 1.95 ± 4.8
UpNDown 1247.50 ± 465.4 272.00 ± 285.5
Venture 0.00 ± 0.0 0.00 ± 0.0

VideoPinball 5026.10 ± 1909.3 521.10 ± 365.4
WizardOfWor 240.00 ± 156.2 30.00 ± 55.7
YarsRevenge 5527.45 ± 2895.4 274.10 ± 315.1

Zaxxon 20.00 ± 60.0 0.00 ± 0.0

T���� 4.5: Mean with standard deviations of 20 RTDP vs Random episodes for the SMRF
test. Bold domains are classified as having SMRF.

Table 4.7 compares the pairwise performance for games classified as SMRF games. Table 4.7

clearly shows that the dominant method for the SMRF games is CPL, that is, the algorithm

without novelty pruning. Table 4.7 also shows that the "Classic" novelty (Definition 4.1) methods

outperform "Depth" novelty (Definition 4.2). These observations, that contradict previous claims

in the literature, required careful analysis. We observed that the "Classic" method prunes states
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Number of games with higher average score than
N-CPL N-CPL⇡ CPL RIW⇠ RIW⇡ c-IW c-IW+ c-HIW Total (ave. win %)

N-CPL 14 22 30 29 23 28 22 168 (72.7%)
N-CPL⇡ 18 18 31 29 23 27 21 167 (72.3%)
CPL 11 15 26 28 23 28 21 152 (65.8%)
RIW⇠ 2 1 7 16 15 16 13 70 (30.3%)
RIW⇡ 3 3 5 16 16 16 13 72 (31.2%)
c-IW 9 9 10 17 16 19 14 94 (40.7%)
c-IW+ 5 6 5 17 17 14 11 75 (32.5%)
c-HIW 11 12 12 20 20 19 22 116 (50.2%)

T���� 4.6: Same as Table 4.2 but for games with a Branching Factor � 10 (33 Games).

Number of games with higher average score than
N-CPL N-CPL⇡ CPL RIW⇠ RIW⇡ c-IW c-IW+ c-HIW Total (ave. win %)

N-CPL 7 5 10 10 7 9 7 55 (65.5%)
N-CPL⇡ 4 3 9 9 7 9 6 47 (56%)
CPL 7 9 11 11 8 9 7 62 (73.8%)
RIW⇠ 1 2 1 6 6 3 4 23 (27.4%)
RIW⇡ 1 2 1 5 6 3 4 22 (26.2%)
c-IW 4 4 4 5 5 4 3 29 (34.5%)
c-IW+ 3 3 3 9 9 8 5 40 (47.6%)
c-HIW 5 6 5 8 8 9 7 48 (57.1%)

T���� 4.7: Same as Table 4.2 but for SMRF games (12 Games).

Algorithm Frameskip
Max. ep.

length
(Frames)

Train Budget
(Sim.

Interactions)

Lookahead Budget
(Sim.

Interactions)
Starts Loss of

Life signal

RIW⇡ , RIW⇠ 15 18,000 0 100 - No
N-CPL⇡ , N-CPL,

CPL, c-IW,
c-IW+, c-HIW(n,1)

15 18,000 20 ⇥ 106 100 - No

DQN 4 18,000 50 ⇥ 106 NA Rand.no-ops Yes

Rainbow 4 108,000 50 ⇥ 106 NA
Human and

Rand. no-ops
Yes

T���� 4.8: Comparison of experimental settings used for the results of the di�erent
algorithms. Note that the train budget includes all the simulator interactions used by the
lookahead algorithms even though only a small fraction of simulator interactions are used for
training the networks directly.

more aggressively, meaning it is more likely to reach states that are further away from the root

node compared with the "Depth" definition. Similarly, as the CPL method does not prune any

states due to novelty, CPL’s depth-first lookahead trajectories will always reach the lookahead

search horizon of 100 time steps at least once, given that the lookahead simulator budget is 100

time steps. This results in CPL on average searching for states that are further away from the root

node than any of the novelty pruning methods. By definition, high rewards for SMRF games

have a higher probability of being further away than games with dense rewards. Therefore,

CPL and the "Classic" novelty methods are more likely to discover the meaningful rewards by

searching deeper in the lookahead. Interestingly CPL and N-CPL still outperform, yet are close

to c-IW(1)+ and c-HIW(n, 1) on the SMRF games, despite c-IW(1)+ and c-HIW(n, 1) being

motivated by such domains.
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GAME Human DQN N-CPL
Alien 6,875.00 3,069.00 6,943.40

Amidar 1,676.00 739.50 2,118.32
Assault 1,496.00 3,359.00 3,079.92
Asterix 8,503.00 6,012.00 48,226.00

Asteroids 13,157.00 1,629.00 9,152.80
Atlantis 29,028.00 85,641.00 119,636.00

BankHeist 734.40 429.70 709.00
BattleZone 37,800.00 26,300.00 153,880.00
BeamRider 5,775.00 6,846.00 3,560.88

Bowling 154.80 42.40 103.24
Boxing 4.30 71.80 86.40

Breakout 31.80 401.20 302.04
Centipede 11,963.00 8,309.00 62,654.16

ChopperCommand 9,882.00 6,687.00 3,786.00
CrazyClimber 35,411.00 114,103.00 91,912.00
DemonAttack 3,401.00 9,711.00 10,876.00
DoubleDunk -15.50 -18.10 23.96

Enduro 309.60 301.80 220.28
FishingDerby 5.50 -0.80 -7.62

Freeway 29.60 30.30 28.96
Frostbite 4,335.00 328.30 6,508.00
Gopher 2,321.00 8,520.00 12,539.60
Gravitar 2,672.00 306.70 2,284.00

Hero 25,763.00 19,950.00 36,099.80
IceHockey 0.90 -1.60 26.96
Jamesbond 406.70 576.70 18,790.00
Kangaroo 3,035.00 6,740.00 9,202.00

Krull 2,395.00 3,805.00 4,422.88
KungFuMaster 22,736.00 23,270.00 42,388.00

MontezumaRevenge 4,367.00 0.00 0.00
MsPacman 15,693.00 2,311.00 18,285.18

NameThisGame 4,076.00 7,257.00 8,339.40
Pong 9.30 18.90 10.94

PrivateEye 69,571.00 1,788.00 100.00
Qbert 13,455.00 10,596.00 30,618.50

Riverraid 13,513.00 8,316.00 22,111.20
RoadRunner 7,845.00 18,257.00 57,212.00

Robotank 11.90 51.60 36.16
Seaquest 20,182.00 5,286.00 3,922.80

SpaceInvaders 1,652.00 1,976.00 4,289.40
StarGunner 10,250.00 57,997.00 20,320.00

Tennis -8.90 -2.50 0.00
TimePilot 5,925.00 5,947.00 24,150.00
Tutankham 167.60 186.70 203.54
UpNDown 9,082.00 8,456.00 58,867.20

Venture 1,188.00 380.00 1,564.00
VideoPinball 17,298.00 42,684.00 139,799.22
WizardOfWor 4,757.00 3,393.00 43,436.00

Zaxxon 9,173.00 4,977.00 30,818.00
# Games >human 23 (47%) 37 (76%)

#Games >75% human 27 (55%) 40 (82%)
# Games Best 10 (20%) 8 (16%) 31 (63%)

T���� 4.9: Comparison of N-CPL with a Human player’s scores and the model-free RL
algorithm DQN scores as reported by Mnih et al. (2015). Note that the experimental settings
are di�erent between N-CPL and DQN(Mnih et al. 2015), in terms of training budget, frame
skips, using no-op starts and loss of life signal, see Table 4.8 for a comparison of experimental
settings.

Tables 4.9 and 4.10 compare N-CPL with the RL algorithms of DQN (Mnih et al. 2015) and

Rainbow (Hessel et al. 2018) respectively. It is important to note that the experimental settings

of the N-CPL, Rainbow and DQN results are very di�erent as shown in 4.8. For example

DQN and Rainbow use larger training budgets and provide the agent with a loss of life signal
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GAME Human Rainbow N-CPL
Alien 6875 9491.70 6943.40

Amidar 1676 5131.20 2118.32
Assault 1496 14198.50 3079.92
Asterix 8503 428200.30 48226.00

Asteroids 13157 2712.80 9152.80
Atlantis 29028 826659.50 119636.00

BankHeist 734.4 1358.00 709.00
BattleZone 37800 62010.00 153880.00
BeamRider 5775 16850.20 3560.88

Bowling 154.8 30.00 103.24
Boxing 4.3 99.60 86.40

Breakout 31.8 417.50 302.04
Centipede 11963 8167.30 62654.16

ChopperCommand 9882 16654.00 3786.00
CrazyClimber 35411 168788.50 91912.00
DemonAttack 3401 111185.20 10876.00
DoubleDunk -15.5 -0.30 23.96

Enduro 309.6 2125.90 220.28
FishingDerby 5.5 31.30 -7.62

Freeway 29.6 34.00 28.96
Frostbite 4335 9590.50 6508.00
Gopher 2321 70354.60 12539.60
Gravitar 2672 1419.30 2284.00

Hero 25763 55887.40 36099.80
IceHockey 0.9 1.10 26.96
Kangaroo 3035 14637.50 9202.00

Krull 2395 8741.50 4422.88
KungFuMaster 22736 52181.00 42388.00

MontezumaRevenge 4367 384.00 0.00
MsPacman 15693 5380.40 18285.18

NameThisGame 4076 13136.00 8339.40
Pong 9.3 20.90 10.94

PrivateEye 69571 4234.00 100.00
Qbert 16455 33817.50 30618.50

RoadRunner 7845 62041.00 57212.00
Robotank 11.9 61.40 36.16
Seaquest 20182 15898.90 3922.80

SpaceInvaders 1652 18789.00 4289.40
StarGunner 10250 127029.00 20320.00

Tennis -8.9 0.00 0.00
TimePilot 5925 12926.00 24150.00
Tutankham 167.6 241.00 203.54

Venture 1188 5.50 1564.00
VideoPinball 17298 533936.50 139799.22
WizardOfWor 4757 17862.50 43436.00

Zaxxon 9173 22209.50 30818.00
# Games >human 37 (80%) 34 (74%)

#Games >75% human 38 (83%) 37 (80%)
# Games Best 6 (13%) 31(67%) 10(22%)

T���� 4.10: Comparison of N-CPL with a Human player’s scores and the model-free RL
algorithm Rainbow using human starts. Note that the experimental settings are di�erent
between N-CPL and Rainbow(Hessel et al. 2018), in terms of the training budget, maximum
episode length, frame skips, using random no-op and loss of life signal, see Table 4.8 for a
comparison of experimental settings.

for Atari games where the agent has multiple lives, while N-CPL uses a lookahead budget of

100 simulator calls for each selected action while the RL methods do not. Not withstanding the

caveat of the di�erence in experimental settings, Table 4.9 shows N-CPL outperforms DQN’s

performance, while Table 4.10 shows Rainbow to outperform N-CPL however the number of

games that Rainbow and N-CPL are better than the human baseline scores are similar.
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4.5 Discussion

We have found significant discrepancies in the experimental settings used in the previous width-

based planning papers for evaluating their algorithms over the Atari-2600 games. We believe a

clear and consistent evaluation protocol should be set out for planning based algorithms applied

to the Atari-2600 games to facilitate the direct comparison of their results. This could be similar

to the evaluation protocol for the Atari-2600 games set out by Machado et al. (2018), which

was mainly focused towards RL agents and included recommendations on episode termination,

setting of hyper-parameters, measuring training data, summarising learning performance and

injecting stochasticity. However Machado et al. do not discuss evaluation settings that are vital

to the deterministic planning setting we have explored in this chapter, such as planning budgets,

and caching of transitions within lookaheads. We hope that by having identified some of the

discrepancies in the experimental settings of previous width-based algorithms, such as the size of

the action set and the planning budget used, future research in planning agents for the Atari-2600

games can be more easily assessed. We were able to observe interesting patterns in the relative

performance of algorithms through segmenting the Atari-2600 games by their di�erent game

characteristics. We are not aware of other works that analyse the performance of agents in regards

to the characteristics of specific Atari-2600 games. We believe this taxonomy will provide useful

insights into the behaviour of agents on the Atari-2600 games.

4.6 Conclusion

In this chapter we have focused on width-based planning methods that have been applied over the

Atari-2600 games. It is important to note though that these algorithms are defined in a general

way to operate over MDPs. We proposed new width-based planning and learning algorithms

through the examination of di�erent design decisions made by previous implementations of

width-based planners. These new algorithms, particularly N-CPL, are simpler implementations

than the previously introduced width-based planning and learning algorithms c-IW(1)+ and

c-HIW(n, 1). N-CPL defines its features directly over the grayscaled pixel colours of the game

screen and uses a simplified novelty definition. Furthermore, N-CPL learns a value function

which is only used for cost-to-go approximations at the leafs of the lookahead search tree. N-CPL

also uses a methodical learning schedule we introduced for training both its policy and value

networks. We found N-CPL to outperform c-IW(1), c-IW(1)+ and c-HIW(n, 1) not only across
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the Atari-2600 benchmark, but also over subsets of games with large branching factors and

games with sparse meaningful rewards. These results address RQ1 by showing that N-CPL’s

integration of planning and learning pays o� for almost real-time planning over hard problems.



Part II

Imitation Learning via regression
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Introduction to Part 2
Learning algorithms often su�er from a cold-start problem, in which they rely upon random

exploration of the environment in order to discover useful reward feedback. This Part explores

the interface of planning and learning methods through the lens of using planning algorithms as

teachers for learners on ASDM problems where useful reward feedback is sparse and unlikely to

found by random exploration. In particular, this part investigates using demonstration trajectories

to guide learners to promising areas of the search space. In Chapter 5 we investigate and propose

improvements to a learning from a single demonstration method that learns from states that are

progressively further away from the environment’s goal. Using the insights of Chapter 5 we

propose a new algorithm in Chapter 6 that aims to generalise more robustly to environments

requiring multiple modes of behaviour. In order to address RQ2 the algorithms we introduce

in this part assume the provided demonstrations can be complete or partial trajectories and that

they may have been created using a relaxed version of the environment. This allows us to show

in Chapter 6 that our introduced algorithm can use a demonstration produced by a geometric

planner on a relaxed version of the environment, to learn policies that can successfully achieve

the environment’s goal.



Chapter 5

Iterative backwards learning with

intrinsic motivation

5.1 Introduction

For ASDM problems with reward functions containing vast plateaus traditional RL algorithms

often either never converge to a solution or have a high sample complexity (Kober, Bagnell, and

Peters 2013; Arulkumaran et al. 2017). The performance of RL methods on such domains can

be improved by providing a demonstration of a solution (Argall et al. 2009). In particular, an

idea that has been shown to be e�ective for RL algorithms to learn a policy that can surpass the

performance of a demonstration is to learn from states in a demonstration that are progressively

further away from the problem’s goal (Salimans and Chen 2018; Eco�et et al. 2019; Resnick

et al. 2018). In this thesis we refer to these methods as Backwards Learning, but note that

the training episodes are still generated in a typical RL manner using the environment’s actions.

"Backwards" simply refers to the selection of initial states used for training iterations starting near

the problem’s goal and regressing back towards states at the start of a provided demonstration

trajectory. We introduce and discuss this Backwards Learning mechanism in 2.8.5.

In this chapter we modify the Backwards Learning method to have an iterative learning schedule.

We refer to the introduced method as Iterative Backwards Learning (IBL). Additionally we

explore the use of exploration bonuses with Backwards Learning techniques. Through an

experimental study we investigate Backwards Learning algorithms on domains with both discrete

and continuous action and state spaces.

71
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Symbol Description Range
� Interval step size [1,1]
#4 Number of evaluation episodes. [1,1]
#C Threshold of successful evaluation episodes. [0,1]
)1 Threshold of unsuccessful training steps before backtracking. [1,1]

T���� 5.1: IBL hyper-parameters.

Algorithm 3 Iterative Backwards Learning (IBL)
1: Input: A demonstration X = (B0, '0), (B1, '1), . . . , (B<, '<), interval �, number of eval-

uation episodes #4, success threshold #C , backtrack threshold )1, environment horizon �

2: Output: c a policy
3: :  < � �, C1  0
4: I {B: , B:+1, . . . , B:+(��1) } {Interval of states to learn from}
5: c  B0<?;4(⇧) {Initialising random policy}
6: repeat
7: = 0 {Counter for successful evaluations}
8: for 9  1 to #4 do
9: B8  B0<?;4(I)

10: A  EXECUTE_EPISODE(c, B8 ,� � 8)
11: if A � '< � '8 then
12: = = + 1 {Episode matched or improved upon demonstration}
13: end if
14: end for
15: if = � 1 then
16: C1  0
17: else
18: C1  C1 + 1 {All evaluation episodes unsuccessful}
19: end if
20: if C1 � )1 then
21: :  min(: + �,< � �) {Progress interval closer to end of demonstration}
22: else if = � #C then
23: :  max(0, : � �) {Successful, regress interval closer to start of demonstration}
24: else
25: c = IMPROVE(c, I)
26: end if
27: I {B: , B:+1, . . . , B:+(��1) }
28: until Trainning Budget Exhausted

5.2 Iterative Backwards Learning

The learning method introduced by Salimans et al. (2018) trains a policy c through a schedule

of sets of initial states used to run training episodes, we refer to each set of initial states used

as a di�erent stage of the schedule. The set of initial states used for training start from states

visited at the end of a demonstration and iteratively regress back, with a step size of �, towards

states visited at the start of the demonstration. That is, the learning schedule uses a sequence
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of state sets {I1
, I2

, . . . , I 9}, where I8 represents a set of states B 2 S used as initial states of

training episodes at the 8-th stage of the schedule. It is assumed that the agent is provided a

demonstration, X = {(B0, '0), (B1, '1), . . . , (B<, '<)}, where B8 2 S is the 8-th state visited

in the demonstration and '8 is the total accumulated reward up to step 8 of the demonstration

trajectory. Note that the demonstration does not include actions, this means that a demonstration

can be used even when access to its actions are not available. At stage 8 of the schedule the set of

initial states used is defined as I8 = {B
<�(8�1)⇤��1, B<�(8�1)⇤��2, . . . , B<�8⇤�} with corresponding

accumulated rewards of R8 = {'
<�(8�1)⇤��1, '<�(8�1)⇤��2, . . . , '<�8⇤�}. That is, each set of

initial state sets is a �-sized sub-sequence of the demonstration trajectory X states. Note that the

number of schedule stages 8 has a range of 1 to d</�e. The definition of I means that the first

set of initial states I1 used for training episodes are the set of demonstration states within at most

� steps to the end of the demonstration B<. That is, B< is reachable from the states B 2 I1 within

a sequence of at most � actions. Specifically, I1 = {B<�1, B<�2, . . . , B<��}. Once a percentage

of episodes, #C/#4, starting from states B8 2 I1 have an accumulated reward equal to or greater

than '< � '8 , that is the demonstration trajectory’s accumulated reward from B8 to B<, the set of

initial states are updated. The update of the initial states involves changing the initial states used

for the training episodes from I1 to I2 = {B<���1, B<���2, . . . , B<�2⇤�}. This process repeats

until the schedule reaches a set of initial states that includes the start state of the demonstration.

That is, the process repeats until a set of states I 9 is reached that includes the initial state of

demonstration B0. From this point on wards we refer to this method introduced by Salimans et

al. (2018) as Backwards Learning (BL).

We introduce Iterative Backwards Learning (IBL) which modifies the learning schedule detailed

above. IBL allows the set of initial states I to not only regress over the states of the demonstration

towards B0 but also progress back towards the end of the demonstration B<. Table 5.1 details IBL’s

hyper-parameters and Algorithm 3 provides a full description of IBL. IBL starts by initialising

the set of initial states to the demonstration states within � steps of the end of the demonstration

B<. That is I = I1 = {B: , B:+1, . . . , B:+(��1) } and : = < � � (lines 3-4 Alg. 3). Additionally

IBL initialises a random policy c (lines 5 Alg. 3). #4 evaluation episodes starting from states B8

sampled from I are then executed using c (lines 8-14 Alg. 3) with a horizon of��8. An evaluation

episode in IBL is defined as successful if its accumulated reward A � '<�'8 (lines 11-13 Alg. 3),

where '8 2 X is the accumulated reward of the demonstration X up to the demonstration state

B8 2 I and '< is the demonstration’s total accumulated reward. After evaluation there are three

possible scenarios. Scenario (1) is that the number of successful evaluation episodes = is greater
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than or equal to the set threshold #C . Scenario (2) is that there have been no successful evaluation

episodes for the last )1 training iterations, where a training iteration is one call of the IMPROVE

function (line 25 Alg. 3) as described below. Lastly, scenario (3) is when neither (1) or (2) is

true. For scenario (1) the initial state set I is updated by regressing the initial state interval �

steps closer to the start of the demonstration as previously described (lines 22-23 and line 27

Alg. 3). That is where I = {B: , B:+1, . . . , B:+(��1) }, : is decremented � times. For scenario (2)

the evaluations are unsuccessful and the set of initial states is updated to the demonstration states

that are � steps closer to the end of the demonstration. That is, : is incremented � times (lines

20-21 and line 27 Alg. 3). For scenario (3) a training iteration of c is executed by the IMPROVE

function using episodes starting from states B 2 I (line 25 Alg. 3). This evaluation and training

process is repeated until a defined computation budget is exhausted (lines 6-28 Alg. 3).

5.3 Exploration with Backwards Learning

While backwards learning techniques are designed to work with any on-policy learning algo-

rithm, previous works using backwards learning techniques have only reported results using

PPO (Salimans and Chen 2018; Resnick et al. 2018). We follow previous work by using PPO in

this work. Please see 2.8.2 for a detailed description of PPO.

Previous Backwards Learning approaches have controlled exploration for PPO via the entropy

loss coe�cient 22 in the loss function shown in Equation 2.12. Salimans and Chen (2017)

note that to successfully learn from the demonstration required careful tuning of the entropy

loss coe�cient for the Atari game Montezuma’s Revenge, but the tuning method failed to learn

successful policies for other Atari games.

State normalisation as described by Mania, Guy and Recht (2018) ensures that the di�erent

components of the state have an equal influence on the policy no matter the magnitude of their

range of values. State normalisation can also provide a method of non-isotropic exploration as

the state value distributions used for the normalisation change over the course of the training.

This is likely to be particularly prevalent in the learning schedule methods we explore as they pro-

gressively train from di�erent initial states defined through a demonstration, and the distribution

of state values may greatly vary over the demonstration.

RL exploration can also be controlled through adding exploration bonuses to the reward function,

which is often referred to as intrinsic motivation. This can be implemented replacing AC in
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Equation 2.13 with ÂC = AC + 23[, where 23 is the exploration bonus coe�cient and [ is a method

such as count-based exploration (Bellemare et al. 2016b) which we discuss in 2.8.3. In this work

we will compare several entropy coe�cients and other exploration bonuses. The two di�erent

exploration bonuses, [, are state counts,

[ = (# (B0) + 0.01)�1/2 (5.1)

and the UCB1 formula (Auer, Cesa-Bianchi, and Fischer 2002),

[ =
p

2 log(# (B))/(# (B, 0)) (5.2)

where # (B) is the number of times state B has been visited and # (B, 0) is the number of times

action 0 has been executed from state B.

For continuous domains state counts cannot be directly used (Tang et al. 2017). However, a

pseudo-state count can be defined by assuming a probability distribution for the values of each

state variable B8 2 B that the agent observes (Bellemare et al. 2016a; Martin et al. 2017). In this

work we assume the state variable values are normally distributed, N(`(T 8),f2(T 8)), where

T 8 is the sequence of state variable values B8 that have been observed by the agent. Using the

cumulative distribution q8 of N(`(T 8),f2(T 8)) we can calculate the approximate visit count

as,

#̃ (B) = #
÷
B
8 2B
<8=(q8 (B8), 1 � q8 (B8)) (5.3)

where # is the total number visits to any state and the cumulative distribution q8 is updated with

the history of states visited before visiting B. We use #̃ in place of the # function in equation

5.1 and modify equation 5.2 to the following,

[ =
q

2 log(#̃ (B))/(#̃ (B0) + 0.01) (5.4)
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F����� 5.1: 20 by 20 Grid World domain. The blue cell is the agent, red cell is the goal and
the green cells have the percentage chance represented by the number inside the cell of being a
mine. The yellow line shows the trajectory of the demonstration we provide to the learning
algorithms, and the purple circles mark states along the trajectory where the moving direction
of the agent changes.

5.4 Experimental study

5.4.1 Domains

Discrete State Space and Discrete Actions

We use a slightly modified version of the stochastic CTP (Papadimitriou and Yannakakis 1991),

which is introduced in 2.5.1, in order to evaluate and gain insight into the IBL algorithm and the

e�ects of the exploration techniques used.

To allow for easy visualisation we model an instance of CTP through a GridWorld domain with

obstacles and a goal. The agent can move up, down, left, or right but any action into the boundary

of the GridWorld results in no change to the environment. There is a -1 reward for each action

except for an action that leads to the goal state which has a reward of 0 and the episode is

terminated once � = 99 actions have been executed or the agent reaches the goal. We treat

obstacles as mines so that any move into a mine results in the agent remaining in this position

for the rest of the episode no matter the action applied. The state given is (G, H,<) where G, H
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are the grid coordinates of the agent and < is the number of mines in the adjacent neighbouring

cells to the agent. The mine placement in the grid follows a probabilistic distribution that is not

directly observable by the agent. The probabilities of cells being a mine are shown in Figure 5.1.

The optimal behaviour on the CTP instance shown in Figure 5.1 is to traverse the row of cells

below the mines that are below the goal, and once a cell is reached that has no adjacent mines

the agent should directly transverse towards the goal.

Continuous State Space and Continuous Actions

We use the Mobile-Robot-Ob-Stay (MROS) domain introduced in 2.5.2, which has both a

continuous state and action space. For the MROS domain we use a horizon � of 99 time steps.

Additionally, we also report a version of MROS where random disturbances FG = `(0,f2
G
) and

GH = `(0,f2
H
) are added to the velocities EG and EH respectively at each time step. We set both

fG and fH to be 0.05 and refer to this instance as MROS with noise.

5.4.2 Methodology

For each domain we run PPO with 3 di�erent learning schedules. The first schedule always trains

on episodes starting from the initial state of the problem, B0, we refer to this learning schedule

as L0. The schedule used by Salimans et al. (2018) we refer to as BL.

There are a number of di�erent hyper-parameters to consider for the IBL algorithm. We test

di�erent values for the interval at which the schedule progresses �, the threshold of successful

evaluation episodes #C , the PPO coe�cients 22 and 23, and the type of exploration used. For

each run we set the training budget to be 5 million simulator calls. We run 20 evaluation episodes

for recording metrics each time the step in the learning schedule changes and after every 10,000

simulation calls. Note that the evaluation episodes are run from the problem’s initial state and

not the initial state sets from the learning schedules.

We use openai’s PPO implementation (Dhariwal et al. 2017) and use a fully connected network

with 2 hidden layers each having 64 units for both the value and policy networks for all domains.

For the CTP with mines domain that has discrete actions the policy network outputs the proba-

bility of taking each action given the current state. For the MROS domains that have continuous

actions the policy network outputs the mean value of each action variable given the state along

with standard deviation values, these values are then used to sample an action from the policy.
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5.5 Results

5.5.1 Inspecting learnt value and policy functions

An example of learnt value and policy functions from a successful IBL trial on the CTP with

mines problem are shown in Figure 5.2. From Figure 5.1 that shows the demonstration trajectory

provided to the IBL algorithm we can see in Figure 5.2 that IBL learns to generalise its policy and

value functions beyond the states contained within the demonstration. That is, for any position

in the grid if an agent greedily follows the policy represented in Figure 5.2 the agent will end up

at the goal location. It is also interesting to note that the learnt policy of IBL does not imitate the

demonstration’s trajectory but instead learns a policy which deviates from the trajectory in order

to reach the goal quicker. This can be observed in the cells on the right half of the bottom row of

the grid where the policy shown in Figure 5.2 selects up actions, while the demonstration, shown

in Figure 5.1, selects right actions. However, it is important to note that all successful trials do

not generalise as well as the learnt functions shown in Figure 5.2. For example, Figure 5.3 shows

a di�erent successful trial of IBL on CTP. Figure 5.3 shows that the policy function selects the

correct actions for states along the demonstration trajectory (shown in Figure 5.1), however for

cells in the upper half of the grid the agent always selects the left action away from the goal.

This is because to be successful the agent only has to reliably reach the goal from states along

the demonstration trajectory.

5.5.2 Impact of interval size (�)

Table 5.2 provides an overview of the performances of L0, BL, and IBL given di�erent intervals

sizes. It is clear from the table that the IBL algorithm dominates BL over the three domains

given any interval value. It is also interesting to note that the impact of the � size appears to

be problem dependent as for the CTP problem both BL and IBL benefit from smaller � values,

while for the MROS problems IBL benefits from the larger � values and BL’s performance does

not appear to be obviously influenced by �.

5.5.3 Entropy and exploration bonus terms

Table 5.3 shows the results of the CTP with Mines domain for the algorithms using PPO with no

entropy bonus term (22 = 0). Tables 5.3 and 5.2 show that for the CTP with Mines problem both
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F����� 5.2: Representation of the policy and value networks learnt for each state of the CTP
with Mines problem. For the policy and value networks values shown each state is assumed to
not have any mines in the adjacent cells, that is the values are shown the input states are
(G, H, 0). Note that each cell in the grids matches the cells shown in Figure 5.1 where the red
square represents the goal position and the numbers inside the cells are the percentage chance
of the cell being a mine. The policy network is represented by the top grid where the arrows
point towards the direction of action to be selected by the agent, note that each cell has 4
arrows in it that represent the 4 actions available in that cell. Additionally note that the colour
scaling indicates the probability of the policy selecting the action. The value network is
represented by the bottom grid.
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F����� 5.3: Same as Figure 5.2 but a di�erent learning trial.

BL and IBL deteriorate from using the entropy bonus term. Additionally, Table 5.3 shows that the

Count-based exploration bonus term generally deteriorates the performance of the algorithms.
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% of trials � demo’s performance
Algorithm Interval Size (�) CTP with Mines MROS MROS-Noise

L0 NA 0 0 0

BL

1 40 35 20
2 15 30 35
3 30 35 35
4 5 25 35
5 5 30 15

IBL

1 55 50 45
2 25 75 60
3 40 55 80
4 20 80 95
5 10 80 75

T���� 5.2: Summary of L0, BL and IBL performances given di�erent interval sizes. A total
of 20 trials were used for each setting. For these results the entropy bonus term of PPO is set
as 22 = 0.01 and no exploration bonus term discussed in 5.3 is used. Additionally the
evaluation threshold is set to 4/5 (#C = 4, #4 = 5).

Eval. Threshold
(#C/#4) Algorithm Interval Size

(�)
Exploration
Bonus Term

% of trials �
demo’s performance

NA L0 NA
None 0
Count 0

1/5

BL
1

None 0
Count 20

5
None 10
Count 0

IBL
1

None 40
Count 35

5
None 10
Count 5

4/5

BL
1

None 65
Count 50

5
None 35
Count 30

IBL
1

None 90
Count 65

5
None 40
Count 25

T���� 5.3: Summary of L0, BL and IBL performances over the CTP with Mines problem
given di�erent evaluation thresholds, interval sizes, and exploration bonus terms. A total of 20
trials were used for each setting. For these results the entropy bonus term of PPO is set as
22 = 0.0 and for the settings with an exploration bonus term use 23 = 0.01.

Figures 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 show that there are no clear e�ects of the di�erent

exploration bonuses on the performance of the learning methods for both the CTP and MROS

domains, as the 95% confidence limits of the di�erent methods almost always overlap.



Imitation Learning via regression 82

No Exploration Bonus Count-Based UCB
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F����� 5.4: CTP with mines, with an evaluation threshold of 1/5. � = 1, 22 = 0.01 and
23 = 0.01. The top row of graphs show the demonstration step : which the method is learning
from versus the number of simulator calls used. For example for IBL the calculation of : is
shown in Algorithm 3. The bottom row shows the average reward received from the learnt
policies versus the number of simulator calls. The lines represent the average across 20 trials
and the shading represents the 95% Confidence Intervals.
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F����� 5.5: CTP with mines, with an evaluation threshold of 4/5. � = 1, 22 = 0.01 and
23 = 0.01. See Figure 5.4 caption for graph details.

5.5.4 Evaluation threshold

The evaluation threshold a�ects how easily the learning schedule of initial states (I) moves

towards the start of the demonstration. Table 5.3 makes it clear that given the entropy bonus term

of 22 = 0.0 for the CTP with mines problem, both BL and IBL benefit from the higher evaluation

threshold of 4/5 versus 1/5. Furthermore, figures 5.4 and 5.5 contrast the performance of the
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F����� 5.6: Mobile-Robot-Ob-Stay domain, with an evaluation threshold of 1/5. � = 1,
22 = 0.01 and 23 = 0.01. See Figure 5.4 caption for graph details.
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F����� 5.7: Mobile-Robot-Ob-Stay domain, with an evaluation threshold of 4/5. � = 1,
22 = 0.01 and 23 = 0.01. See Figure 5.4 caption for graph details.

learning methods using the 1/5 versus 4/5 threshold. It is clear that for the CTP with mines

problem the performance of BL deteriorates much more than IBL when using the 1/5 instead

of the 4/5 threshold. This trend continues for the MROS domains evidenced by figures 5.6 and

5.8, showing that IBL dominates BL for the evaluation threshold of 1/5, and figures 5.7 and

5.9 showing that for the 4/5 threshold, BL’s 95% confidence intervals often overlap with IBL’s

intervals.
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5.5.5 Evolution of learning schedule

In figures 5.4, 5.5, 5.7, 5.6, 5.9 and 5.8 the stage of the learning schedule : is shown in the

top row of graphs. The results show that it is common for the BL method to not complete its

learning schedule by progressing to : = 0 within the simulator budget for both CTP and MROS.

All of IBL’s trials also do not always reach the : = 0 stage of the learning schedule. However,

on average in the majority of cases IBL’s trials progress closer to the : = 0 stage of the learning

schedule than BL. Note that these graphs show the average and 95% Confidence Intervals over

20 trials, such that it is possible 1 or more trials reach a learning stage of : = 0 even if : = 0

is not in the Confidence Interval. In the next section we discuss the common features of the

demonstration states that we observed the BL method to get stuck at in its learning schedule.

5.5.6 Key takeaways

The results show that across the majority of settings we tested, with domains with both discrete

and continuous actions and state spaces, IBL outperformed the BL method. However, due to the

stochastic nature of the Backwards Learning evaluation and training procedures, no setting of

IBL successfully learnt policies for every trial that could match or outperform the demonstration.

We observed that the BL method is often unable to progress past particular demonstration states

along its learning schedule. Through manually inspecting the states BL would get stuck at we

observed that the states were often pivot points in the demonstration’s behaviour. For example,

for the CTP mine problem BL often does not progress beyond states of the demonstration that

have a change in direction. The states of the demonstration for the CTP mine problem that have

changes in direction are shown in Figure 5.1 as purple circles.

Additionally, the results suggest that for a majority of instances the exploration bonus terms we

explored have a negative a�ect on the learning methods. The e�ect of the interaction between

the exploration mechanisms of the entropy bonus term, state-normalisation, and the additional

exploration bonus terms we explored for PPO with backwards learning methods remain as open

questions. Ultimately our results suggest for the CTP and MROS domains including just the state-

normalisation as a means for exploration through non-isotropic exploration for the Backwards

Learning methods is enough to learn policies that can match or exceed the performance of the

demonstration provided.
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F����� 5.8: Mobile-Robot-Ob-Stay with Noise, with an evaluation threshold of 1/5. � = 1,
22 = 0.01 and 23 = 0.01. See Figure 5.4 caption for graph details.
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F����� 5.9: Mobile-Robot-Ob-Stay with Noise, with an evaluation threshold of 4/5. � = 1,
22 = 0.01 and 23 = 0.01. See Figure 5.4 caption for graph details.

5.6 Conclusion

We introduced a new method for learning from a single demonstration which is based on the idea

of learning from initial states that are progressively harder to solve. The Backwards Learning

methods we introduced and explored showed that Backwards Learning can benefit from not only

increasing the di�cultly of initial states but also from decreasing the di�culty when the agent is

unsuccessful in learning useful policies.
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The Backward Learning method we explored in this chapter begins to address RQ2 as the

method regresses through a given demonstration, and has the ability to work with full, relaxed or

partial demonstration trajectories. However, the methods would often get stuck in their learning

schedule at positions in the demonstration where changes in the mode of behaviour are required

from the agent. While the IBL method improved on BL to often progress past such pivot points

in the demonstration, IBL sometimes also got stuck at the same points. In the next Chapter we

explore a method, that instead of modifying the Backwards Learning schedule as we proposed

in this chapter, uses Backwards Learning over piece-wise policies. The goal of learning over

piece-wise policies is for the Backwards Learning method to better capture the di�erent modes

of behaviour required from the environment through learning separate policies that are most

robust and generalisable than the policies learnt in this chapter.



Chapter 6

Imitation Learning via symbolic

pre-imaging 1

In this chapter we follow up from Chapter 5 by introducing a new learning from a single

demonstration method which aims to be more robust over problems requiring di�erent modes of

behaviour. Ultimately, we finish addressing RQ2 by showing that the method we introduce can

successfully learn useful policies from complete, partial or relaxed demonstration trajectories,

and that the policies learnt can generalise beyond the environment settings they were trained on.

6.1 Introduction

Deep Reinforcement Learning over continuous control spaces is a recent and exciting line of

research in Machine Learning and Control. However, on problems requiring complex behaviour

with reward functions containing vast plateaus, traditional Reinforcement Learning (RL) algo-

rithms rarely converge to a solution or have a high sample complexity (Kober, Bagnell, and Peters

2013; Arulkumaran et al. 2017). One way to overcome this is to use Hierarchical Reinforcement

Learning (Barto and Mahadevan 2003) where high level actions named options or skills are used

in order to make the underlying problem easier to solve. However the options need to first be

discovered which normally requires that meaningful reward feedback can be achieved through

following random policies from the initial state in order to derive automatically the high-level

actions (Konidaris and Barto 2009b; Bagaria and Konidaris 2019). Another way of solving

1This chapter is adapted from the pre-print article "Imitation Learning via Symbolic Pre-Imaging"

87
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for complex domains is to provide one or multiple demonstrations of a solution (Hester et al.

2018). For example, Imitation Learning approaches aim to emulate the behaviour displayed by

the demonstration without access to the environment’s cost function (Bain and Sammut 1995;

Ho and Ermon 2016; Torabi, Warnell, and Stone 2019). An alternative approach to Imita-

tion Learning for learning from a demonstration is to learn backwards from the states in the

demonstration (Salimans and Chen 2018; Resnick et al. 2018), that is start learning episodes

from states near the end of a demonstration and progressively learning from states earlier in

the demonstration. Learning backwards has been used in methods that achieve state-of-the-art

results on problems where traditional RL methods have struggled, such as the Atari-2600 game

Montezuma’s Revenge (Eco�et et al. 2019; Salimans and Chen 2018).

We build on the main ideas from Hierarchical Reinforcement Learning, learning backwards from

a demonstration, and imitation learning. Our approach aims to solve Goal Markov Decision

Problems (MDPs), and synthesise robust policies that generalise better than previous methods,

particularly for domains requiring di�erent modes of behaviour. The three main contributions

of our method with respect to previous methods are: (1) a novel method to partition the state

space symbolically into polytopic regions from which di�erent sub-policies are learnt, (2) a

general domain-independent cost function to define the problem solved by a sub-policy, and

(3) an e�cient method to select starting states, exploiting the compact representation of state

regions as polytopes, for policy iteration.

Our method partitions the state space into convex regions defined through recursive pre-imaging

of the goal set and represents them symbolically using polytopes. For each partition a unique

MDP is defined and a policy is trained to solve the MDP. We show that this use of piecewise

policies is better able to handle environments that require complex behaviour. This is similar

to the concept of options in RL (Sutton, Precup, and Singh 1999) given that our method

uses a number of unique sub-policies in order to solve MDPs. However, rather than having

to design each option, or discover the options through episodes run from the initial state of

the problem (Konidaris and Barto 2009b), our method elicits automatically through a given

demonstration sub-problems and partitions the state space accordingly.

Existing backwards learning methods, like those explored in Chapter 5, optimise the environ-

ment’s cost function directly. This makes them applicable only over instances where the cost

function is available to the learner. Additionally, previous methods ignore any information from

the demonstration besides using its states as starting states for policy iterations. Instead, our
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proposed cost function exploits not only the traversed states, but also encourages the agent to-

wards regions of the state space visited by the demonstration. Importantly, doing so does not

require the learner to know the cost function being optimized. Furthermore we show the benefit

of learning from suitably chosen additional states instead of just learning from the states of the

demonstration. Our method also di�ers from imitation learning algorithms like GAIL and BC,

introduced in 2.8.4, as the methods we introduce do not require the demonstration’s actions.

We evaluate our new approach, Backwards Learning with Piecewise-defined Policies (BLPP),

on di�erent control domains including the OpenAI’s gym (Brockman et al. 2016) "classic con-

trol" benchmarks. BLPP learns policies that outperform those learnt from previous backwards

learning, RL and imitation learning algorithms.

6.2 Comparison with Skill Chaining

The BLPP algorithm we introduce in this chapter is similar to Skill Chaining and more specifically

Deep Skill Chaining (DSC), introduced in 2.8.6, in that it learns a set of unique policies by first

learning policies which are executed near the goal set and then policies that are closer to the

initial state of the problem. Where BLPP di�ers from DSC is that it decomposes the problem’s

Goal MDP into a set of Goal MDPs with di�erent initial and goal states that are easier to

solve then the original MDP. This results in BLPP not needing to rely upon random exploration

from the initial state of the problem as DSC does to the find the goal set but instead uses a

demonstration to guide where in the state-space to learn each piece-wise policy. For the Mobile-

Robot problems we explore in this chapter the chance of random policies achieving the domains

goal is extremely small and no methods in our experiments that rely upon random exploration

from the initial state found successful trajectories. Additional di�erences between BLPP and

DSC are their definition of the global policy, and how policy execution is defined. BLPP defines

its policies over controllable sets, which are defined symbolically through polytopes regions of

the state-space, while DSC defines the initialisation and termination sets of its options through

a trained classifier. For the global policy, BLPP defines which policy to execute at every step of

the environment according to controllable sets which are learnt for each di�erent policy, while

DSC learns a global policy to decide which option to execute.
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F����� 6.1: Overview of how BLPP obtains the approximate recursive pre-images of the goal
set on a simple 2 dimensional problem. Left: shows the provided trajectory to imitate (green
circles, numbers denote temporal order of demo states). Middle: Bounding boxes
(hyperrectangles) used initially to bootstrap sub-policy learning. Right: Polytopes covering
states in successful trajectories run from initial states within the bounding boxes. BLPP
tightens first the approximate pre-image (polytope) closest to the goal set and proceeds
backwards towards the first state in the trajectory provided (first polytope processed is yellow,
second is green, last is purple).

6.3 Piecewise Backwards Learning

In this chapter we consider Goal MDP problems introduced in 2.1.2 with continuous state spaces,

and assume we have access to settable black-box simulator (introduced in 2.2.2) that also returns

if a resulting state is in the goal set B0 2 S⌧ .

We address the problem of finding a feasible policy c for a Goal-MDP "0 = (S, B0,S⌧ , �(B),

) (B, 0, B0), 2(B, 0)), given a successful demonstration trajectory, X = B0, . . . , B: , . . . , B |X |�1, fol-

lowing an unknown policy cX . BLPP’s high-level method is to recursively approximate the

pre-image of the goal set through exploiting the information provided by the demonstration.

Figure 6.1 provides an overview of how the approximate pre-images are computed. BLPP ini-

tialises a unique policy for each approximate pre-image. Once an approximate pre-image has

been created, and if its corresponding policy is classified as successful, the next pre-image is

computed as shown in Figure 6.1. Otherwise a training iteration of the policy is run and a new

approximate pre-image is computed. This procedure is run until a successful policy is found for

an approximate pre-image which includes the initial state of the demonstration.

We define successful trajectories as ones that reach the goal set and stay in it until the last state

of the trajectory.
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Definition 6.1 (Successful Trajectory). A trajectory g = B0, . . . , B= is successful for the goal set

S⌧ , denoted as BD22(g,S⌧), if there exists a state B8 2 g, such that B 9 2 S⌧ for 9 � 8, and

B: 8 S⌧ for : < 8.

X is assumed to be successful BD22(X,S⌧). Our aim is not to recover the policy cX from X. We

instead use X to learn a feasible policy c for "0. We assume that a state B: 2 X is reachable with

probability 1 within ! steps from B:�1, where !  � is bounded by the problem horizon �. We

observe that for a complete demonstration, that is ! = 1, and B |X |�1 2 S⌧ , B |X |�2 is a member of

the pre-image controllable set Pre(S⌧).

Definition 6.2 (Pre-Image Controllable Set). The pre-image controllable set ofSB ✓ S is defined

as Pre(SB)
�= {B 2 S | 90 2 �(B), 9B0 2 SB,) (B, 0, B0) > 0}.

That is, the controllable set for SB contains any state that can reach a state in SB within a single

transition. Using the controllable set definition recursively we can define an N-step controllable

set K# (SB) for a target set SB 2 S.

Definition 6.3 (#-Step Controllable Set). K0(SB) = SB and K# (SB)
�= %A4(K 9�1(SB))\S, 9 2

{1, . . . , #}.

The pre-image is a 1-step controllable set, K1(SB).

Proposition 6.4 (Demonstration Membership of Controllable Sets of S⌧). Let B: be the :-th

state in the demonstration trajectory X. For every : = 0, . . . , |X | � 1 and ! � 1, B: 2 K" (S⌧),

where " = ! ( |X | � 1 � :).

Backwards Learning with Piecewise-defined Policies (BLPP) exploits Proposition 6.4, and aims

to compute a proper policy c that maximizes expected reward, over an approximation of the set

K
! ( |X |�1) (S⌧) that contains all the states in X. However, we need to approximate the controllable

set K
! ( |X |�1) (S⌧) as ) (B, 0, B0) is defined via a simulator and therefore we cannot compute the

pre-images directly. Instead we use sampled trajectories from the simulator to create approximate

controllable sets.

Definition 6.5 (Approximate #-Step Controllable Set). Given a sample of < trajectories T =

{)0, . . . ,)<�1} generated by a policy c, with each trajectory)8 having # steps,)8 = {B0, . . . , B# },

B8 2 S, we define the approximate #-step controllable set K̃# of SB ✓ S as

K̃# (SB)
�= {G 2 S | G 2 )8 , BD22()8 ,SB), 0  8  < � 1} (6.1)
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6.3.1 Iterating over sequences of sub-policies

BLPP is a policy iteration algorithm that rather than iterating over one single policy c, it considers

a set of |X |�1 sub-policies⇧⌧ = { c: | : = 0, . . . , |X |�2 }. Each sub-policy c: in BLPP is a valid

policy for the Goal-MDP "̂: = (K̃
⌘̂
: (⌧:), B: ,⌧:

, �(B),) (B, 0, B0), 2: (B, 0, B0), ⌘̂:), where the

initial state is B: 2 X; ⌘̂: = ! is the horizon; and the goal set ⌧: =
–

8=: ,..., |X |�3 K̃⌘̂
: (⌧8+1)

for all : < |X | � 2 is the union of the approximate controllable sets (Definition 6.5), with the

exception of ⌧ |X |�2 = S⌧ which is set to the original goal states S⌧ . The approximation of the

controllable set K̃
⌘̂
: (⌧:) is computed, as a by-product of searching for c: 2 ⇧⌧ . That is, the

sampled trajectories T used to create K̃
⌘̂
: (⌧:) (Definition 6.5) are generated by c: .

Each "̂
: starts with a random policy c:0 . Given c:0 , BLPP creates an approximation of the

controllable set K̃
⌘̂
: (⌧:)0. BLPP then solves "̂: by iteratively constructing K̃

⌘̂
: (⌧:)8 and c:

8

until the policy is successful over states B 2 K̃
⌘̂
: (⌧:)8 with a success rate greater than a given

threshold '. Policy iterates c:
8

are constructed through an o�-the-shelf policy optimization

algorithm. In this work we use PPO (Schulman et al. 2017), but any direct policy optimization

technique can be used. For every iteration 8 where c:
8

is computed to solve "̂: , K̃
⌘̂
: (⌧:)8 is

updated with new trajectories generated by the policy.

Note that the goal set ⌧: of each Goal-MDP "̂
: is the union of the controllable sets

K̃
⌘̂
: (⌧:+1), . . . , K̃

⌘̂
: (⌧ |X |�2), hence "̂

|X |�2 must be solved first. The MDP "̂
|X |�2 is de-

fined di�erently to the rest. First, ⌧ |X |�2 = S⌧ , ⌘̂ |X |�2 = � and states within ⌧ |X |�2 are not

terminal unless they are terminal too in "0. Therefore, c |X |�2 2 ⇧⌧ is considered valid i� it

reaches S⌧ within ;  � steps and stays within S⌧ for the remaining � � ; steps. This is akin

to the definition of a successful trajectory (Def. 6.1). Once "̂ |X |�2 is solved, we have computed

hc |X |�2
, K̃

⌘̂
: (⌧ |X |�2)i, and can solve "̂: for : = |X |�3, . . . , 0 treating states in⌧: as terminals.

In order to manipulate the sets K̃
⌘̂
: (⌧:)8 e�ciently, we compute polytopes %

:

8
in H -

representation (Def. 2.9) such that %: ◆ K̃
⌘̂
: (⌧:). By representing K̃

⌘̂
: (⌧:) as %: , we

are assuming that any point within the convex hull of K̃
⌘̂
: (⌧:) is in the true !-step controllable

set K
⌘̂
: (⌧:). That is, we assume any point in %: reaches ⌧: within ⌘̂: steps when executing

policy c: . We define the approximate symbolic representation of K̃
⌘̂
: (⌧:) as:

%
:

�= 2>=E(K̃
⌘̂
: (⌧:)) (6.2)
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From now on we use the notation %: instead of K̃
⌘̂
: (⌧:) to emphasise that we represent the

approximation of the controllable sets symbolically and implicitly in terms of the coe�cients �

and 1 that characterize %: (Def. 2.8).

The cost function used for policy iterations of c |X |�2 is,

2
: (B, 0, B0) =

8>>><
>>>:
�(kB0 � B |X |�1k2 + [)�1 if B0 2 S⌧

kB0 � B |X |�1k2 otherwise
(6.3)

where B |X |�1 refers to the last state in X. This cost function rewards transitions into the goal

set S⌧ and penalises ones away from the demonstration state. [ > 0 is a constant added to

avoid undefined values when B0 = B |X |�1. Otherwise when solving for "̂0
, . . . , "̂

|X |�3 the cost

function is,

2
: (B, 0, B0) =

8>>>>>>><
>>>>>>>:

�(kB0 � B:+1k2 + [)�1 if B0 2 ⌧:

⇠ + kB0 � B:+1k2 if B0 2 S⌧

kB0 � B:+1k2 otherwise

(6.4)

where B:+1 is the next state in the demonstration X, given that B: is the associated demo state

with "̂: . This cost function also penalises transitions away from the next demonstration state

B:+1 and rewards transitions into the goal set ⌧: . The cost function applies a constant penalty

⇠ for transitions into S⌧ that are not in ⌧: , which is applied for : < |X | � 2 where ⌘̂: = !. !

is a hyperparameter and can be smaller than �. "̂ |X |�2 uses ⌘̂ |X |�2 = � such that c |X |�2 learns

to get to and stay in S⌧ for � steps from %
|X |�2. Hence, we want c: for : < |X | � 2 to get to

a state in % |X |�2 so that c |X |�2 is executed to achieve a successful trajectory (Def.6.1). That is,

we do not want a policy using a horizon < � to avoid % |X |�2 and get to S⌧ directly as it is not

evaluated on being able to stay in the goal for � steps as c |X |�2 is.

Given a demonstration X for a Goal-MDP problem " , BLPP returns a set of policy-polytope

pairs, ⇧⌧ . The execution of the global policy ⇧⌧ is defined as:

Definition 6.6 (Global Policy). Given the set ⇧⌧ = {hc0
, %

0i, . . . , hc |X |�2
, %

|X |�2i} and a state

B 2 S, the global policy ⇧⌧ returns an action from the policy c 9 (B) closest to the goal S⌧ , if

B 2 % 9 for any 9 = [0, |X | � 2], otherwise ⇧⌧ returns c 9 (B) for

argmin
9

kB � 2(% 9)k2 (6.5)
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where 2(% 9) is the center of the Chebyshev Ball for polytope % 9 , i.e., the center of the largest

radius ball that fits within % 9 . While 2(% 9) is not unique, computing the Chebyshev Ball for

%
9 is more e�cient than other exact methods to find the interior points of a polytope (Borrelli,

Bemporad, and Morari 2017).

Symbol Description Range
' Evaluation success rate required. [0, 1]
n0 Initial value for n-bounding box. [0,1]
<+ Min. volume polytope required. [0,1]
<⇢ Min. trajectories for eval. and polytope

creation.
[1,1]

� Environment horizon [1,1]
! Horizon for each sub-policy [1,�]

⌫C , ⌫4, ⌫? Simulator call budgets. [1,1]
⇠ Constant used by cost function. [�1,1]

T���� 6.1: Hyperparameters for BLPP

6.3.2 Algorithm description

Algorithm 1 describes the BLPP algorithm, and a description of its hyperparameters are provided

in Table 6.1. Algorithm 1 starts by initialising the parameters : ,⌧:
, ⌘̂

: in order to solve "̂ |X |�2

(line 3). Where ⌧: is a set of polytopes to be treated as goal states in "̂: , for : = 0, . . . , |X | � 3

and ⌘̂: is the horizon. We then proceed to solve each MDP, "̂ |X |�2
, . . . , "̂

0 in order (lines 4-23).

Solving "̂: begins by initialising c: , n , ⇢ :

8
, 1?, and 14 (line 5-6). c: is set to a random policy

from the given set of possible policies ⇧. n is used for n-bounding box (Def. 2.12) operations.

⇢
:

8
is a set of extreme points from polytopes, %:

0 , . . . , %
:

8�1, that have been created for "̂: :

⇢
:

8
= {4 | (9 9 2 Z+) [4 2 4GCA4<4B(%:

9
), 9 < 8]} (6.6)

The simulator budgets for creating a polytope, 1?, and for evaluating it, 14, are set via hyperpa-

rameters <4, ⌫? and ⌫4. The budgets are set to ensure that at least <4 trajectories (episodes)

and at least ⌫? for 1? and ⌫4 for 14 simulations are executed regardless the value of ⌘̂: .

The policy iteration process for hc: , %:i on "̂: (lines 7-20) is repeated until either the simulator

budget is exhausted or the threshold requirements for the evaluation success rate ' and the

minimum polytope volume<E are met. For each iteration the polytope %:

8
given c:

8
is computed.

Initially, %:

8
is defined as V, an n-bounding box (Def. 2.12) for the states B: and B:+1 (line 8).

Evaluation trajectories executing c:
8

on "̂: are then simulated in the EVALB function (line 9).
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Algorithm 4 Backwards Learning over Piecewise-defined Policies (BLPP)
1: Input: A demonstration X = B0, B1, . . . , B<
2: Output: ⇧⌧ set of policy-polytope pairs
3: ⇧⌧  ;, :  < � 1, ⌧:  ;, ⌘̂:  �

4: repeat
5: c

:

0 = B0<?;4(⇧), n  n0, ⇢ :  {B: , B:+1}
6: A3  0 {also initialise budget vars 1?, 14}
7: for 8  0 to1 do
8: V BOUNDING-BOX(B: , B:+1, ⇢

:
, A3 , n)

9: (̃  EVALB(c:
8
, B: , V,⌧

:
, ⌘̂

:
, 1?)

10: %
:

8
 conv(S̃) {Create polytope}

11: A?, A3  EVALP(c:
8
, B: , %

:

8
,⌧

:
, ⌘̂

:
, 14)

12: if A? � ' then
13: if VOLUME(%:

8
) � <E then

14: break {Successful}
15: end if
16: n  2 ⇥ n
17: end if
18: ⇢

:  ⇢
:
–
4GCA4<4B(%:

8
)

19: c
:

8+1 = IMPROVE(c:
8
, %

:

8
, B: ,⌧

:
, ⌘̂

:
, ⌫C )

20: end for
21: ⌧

:�1  ⌧
:
–{%:

8
}, ⇧⌧  ⇧⌧

–{hc:
8
, %

:

8
i}

22: ⌘̂
:  !, :  : � 1 {Step back in demo}

23: until : < 0

EVALB runs the first trajectory starting from the demonstration state B: , with the rest using

starting states that are randomly sampled from the hyper-rectangle V. EVALB returns (̃ which

is the set of states visited by successful trajectories (Def. 6.1). The convex hull of (̃ becomes

the new polytope %:

8
(line 10). If (̃ is empty then %:

8
will also be empty. The convex hull

is computed with the classic Q����H��� algorithm (Barber, Dobkin, and Huhdanpaa 1996) 2.

We then evaluate the policy iterate hc:
8
, %

:

8
i via simulation through the EVALP function (line

11). Half of these simulations start from the demonstration state B: and the other half from the

extremes of %:

8
. EVALP returns A? and A3 . A? is the success rate of all the trajectories that were

run, i.e., both the trajectories starting from B: and the extremes of %:

8
. A3 is the success rate of

the trajectories that were run starting from B: .

Lines 12-15 check if hc:
8
, %

:

8
i are successful, defined as A? � ' and VOLUME(%:

8
) � <E .

If A? � ' but VOLUME(%:

8
) < <E we want the volume of %:

8
to increase in the future

iterations therefore the n used for the n-Bounding Box operations is increased (line 16). Note

that the VOLUME function uses a Monte Carlo method to estimate the volume of %:

8
with the

implication that %:

8
may be misclassified as being below or above the volume threshold <E

2We use github.com/tulip-control/polytope implementation
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because of an approximation error. If successful, the policy iteration is stopped and BLPP steps

back to the previous state in the demonstration (line 22). This continues until policies have

been obtained for every state in the demonstration, and BLPP terminates returning ⇧⌧ . When

stepping backwards to the previous state in the demonstration the goal set for the new Goal-MDP

to be solved is updated (line 21) and the horizon ⌘̂: is set to ! (line 22). Alternatively, if hc:
8
, %

:

8
i

do not meet the threshold requirements of ' and <E the set ⇢ : is updated with the extreme

points from %
:

8
and IMPROVE, a policy improvement step, is run (lines 18-19). IMPROVE can

be any direct policy optimization algorithm, and as noted earlier, in this work we use PPO. Half

of the starting states used for the policy optimization algorithm are the demo state B: and the

other half are selected from the set 4GCA4<4B(%:

8
).

The BOUNDING-BOX function returns the n-bounding box for the set {G 2 R3 | G 2 ⇢ :

8
},

unless A3 = 0 in which case the n-bounding box for the demonstration states B: and B:+1 is

returned. As each iteration 8 only adds to the set ⇢ : without ever removing any states, the

bounding box of ⇢ : will be monotonically increasing, such that as long as A3 < 0 the n-bounding

box Vwill also be monotonically increasing. When A3 = 0 we reduce the size of the bounding box

so that the training e�ort of c: can be focused on areas of the state space near the demonstration

state B: .

6.3.3 Single policy instance

We also propose a single policy version of BLPP, we name Backwards Learning using Polytopes

(BLP). It works the same as BLPP but instead of creating a new policy when stepping backwards

in the demonstration, BLP trains and evaluates a single policy. BLP does not use polytopes

%
1
, . . . , %

|X |�2 as goal sets for the MDPs, instead it always has the final demonstration state

B |X�1 | as its goal state for the cost function. Hence BLP always uses the cost function previously

defined in Equation 6.3. An evaluation trajectory for each step of BLP is only classified as

successful if it reaches and stays in the goal set of the environment S⌧ . Thus, BLP always uses

the full environment horizon �, rather than ! for the training and evaluation trajectories.

6.3.4 Complexity

The worst-case time complexity of BLPP is a function of the demonstration length |X |, the

complexity of a call to IMPROVE denoted as q, the maximum number of calls, # , to IMPROVE
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F����� 6.2: Mobile-Robot domain with an obstacle (L-shaped blue object) and the goal region
(red square). The green arrow shows the initial starting state, where the direction of the arrow
represents the initial velocity. The black arrows show a single human demonstration. The
three purple arrows show a demonstration produced from RRT*. An example of the polytopes
learnt by BLPP for the RRT* demonstration are projected from Mobile-Robot’s 4-dimensional
state space into their 2-dimensional representations (brown, light blue and purple blobs).

needed for each sub-policy c:
8
, and the dimension 3 of the state space S. The worst-case time

complexity for creating a convex hull and computing the extremes of a polytope is $ (= b3/2c),

where = is the number of states in the set the convex hull is being computed for (Sartipizadeh

and Vincent 2016). In our case the set (̃ is used for creating the convex hull and |(̃ | is bounded

by 1? which has a maximum value of < = <0G(⌫?,<4 ⇥ �). Therefore the worst case time

complexity of BLPP is$ (# |X | (q+< b3/2c)) as BLPP needs to solve for |X |�1 sub-policies with

a maximum of # IMPROVE, 4GCA4<4 and 2>=E function calls each. For a given Goal-MDP " ,

3 is fixed and therefore the worst case complexity becomes $ (# |X |q).

In this work we test problems with up to 4 dimensions. For these problems the convex hull

and extreme operations take 2%-30% of the compute time of BLPP. For higher dimensional

problems an approximation method for the convex hull, like that introduced by Sartipizadeh and

Vincent (2016), that is not exponential on the dimensions, may be required.
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6.4 Experimental study

Here we compare BLPP and BLP with baseline algorithms on a number of di�erent domains

and demonstration types. As baselines we use a plain Backwards Learning (BL) algorithm as

described by Salimans and Chen (2018), PPO, and the two imitation learning algorithms GAIL

and BC 3. We evaluate the algorithms across a number of goal-based control problems modelled

as Goal MDPs.

Domains. We use the three instances of the Mobile-Robot which were introduced in 2.5.2.

Additionally we use the OpenAI gym’s CartPole, MountainCar and MountainCarContinuous

domains. The only modification we make to these three environments is that we provide a

function from which the environment returns if it is in a goal state. For the CartPole domain,

the starting state is a goal position, that is the pole is balanced, and therefore for the agent to

have a successful trajectory by our definition it needs to balance the pole for the whole time

horizon which is 500 steps. The MountainCar problems require an agent to get to a goal state

which is on top of a hill through either discrete accelerations, MountainCar, or continuous ones,

MountainCarContinuous.

Demonstrations. We obtained human demonstrations for each of the domains providing manu-

ally the control for episodes until we had a successful trajectory.

We also test on algorithm-generated demonstrations. For the classic control domains we simply

use demonstrations from the policies learnt from running PPO. For the Mobile-Robot domains

however PPO does not produce policies that find any successful trajectories, instead we use the

geometric planner RRT*(Karaman and Frazzoli 2011) as implemented in the OMPL library

(�ucan, Moll, and Kavraki 2012). Holonomic RRT* assumes that any geometrically feasible

trajectory is also dynamically feasible. One of the demonstrations generated by RRT* can be

seen in Figure 6.2. It is clear when comparing the RRT* demonstration to the human one in

Figure 6.2 that direct transitions between the states in the RRT* demonstration are impossible

in a single time step and even having trajectories along a straight line between the states is

infeasible. For instance, when the current state velocities are directed away from the next state in

the geometric plan there is no single input that will cause the next state to be along the straight line

between the two states. As the geometric plans provide only states and not actions and it is not

possible to derive the actions from the plan as it can be dynamically infeasible, the GAIL and BC

3GAIL, BC and PPO are evaluated using the github.com/hill-a/stable-baselines implementations.
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algorithms are not applicable. It should be noted that using versions of these algorithms that work

only with observations, namely GAIfO (Torabi, Warnell, and Stone 2018b) and BCO (Torabi,

Warnell, and Stone 2018a) is not possible as they aim to directly imitate the transitions B to

B
0 of the demonstration, however, as explained these demonstrations provide state transitions

that are not dynamically feasible. BL as described by Salimans and Chen (2018) is also not

applicable to RRT* demonstrations as it relies on the accumulated cost of the demonstration for

each demonstration state. BL uses the costs of the demonstration to test when the learnt policy

is performing at the level of the demonstration so that it can change its training starting states

to ones earlier in the demo. Hence, we create a modification of BL that measures the success

of a trajectory as defined in Def. 6.1, as opposed to achieving an equal or better cost than the

demonstration, we refer to this as BL*.

Evaluation and Testing Robustness. 5 unique seeded runs are used for each combination of

algorithm, domain and demonstration. Once a run is complete its policy is evaluated with 100

episodes. Each domain has 3 human and 3 algorithmic demonstrations, except Mobile-Robot

which has 1 algorithmic demonstration. Mobile-Robot has a single algorithmic demonstration

as the geometric planner RRT* always produces the same plan which is simply the start and

goal state as there are no obstacles between the two states. While we use the time horizon �

associated with each domain for learning, for the evaluation of the policies we also use a time

horizon of 4 times �. We use the longer horizon to evaluate how the learnt policies adapt to a

change in episode time duration. For instance on environments that need to stay within the goal

set, evaluating on the longer horizon tests if the policies have generalised to stay in the goal set

for extended periods.

BLPP’s sub-policy horizon ! can be optimized using a grid search. However, due to compu-

tational constraints we set ! intuitively depending upon the demonstration. For the human and

PPO trajectories we use ! = 5. We select this value as the human and PPO demonstrations

provide complete dynamically feasible trajectories, that is for B: 2 X we have evidence that

%(B:+1 |B:) > 0 hence we assume that 5 steps will su�ce for reliably reaching the state space

containing and surrounding B:+1. For the RRT* demonstrations we know that in the worst case

they will contain only the start and goal state so we simply use ! = �. An example of the

polytopes learnt by BLPP given ! = � can be seen projected down from 4 to 2 dimensions in

Figure 6.2.

The learnt policies for the Mobile-Robot domains are also evaluated on versions of the domains



Imitation Learning via regression 100

Domain Type BLPP BLP BL BL* GAIL BC PPO

M-Robot
H 5.2 0.8 3.5 1.6 18.6 <0.1

2.5
R 0.3 0.7 NA 3.9 NA NA

M-Robot
Ob

H 6.7 1.3 6.9 7.3 18.5 <0.1
2.5

R 0.6 5.1 NA 7.3 NA NA
M-Robot-
Ob-Stay

H 10.8 9.0 5.3 7.6 19.1 <0.1
2.5

R 1.5 7.4 NA 7.4 NA NA
CartPole H/P 8.3 5.9 1.8 2.6 15.1 <0.1 2.2
M.Car H/P 0.6 0.4 5.3 5.5 14.8 <0.1 2.3
M.Car
Cont.

H/P 0.8 1.5 2.1 0.2 14.6 <0.1 2.2

T���� 6.2: Average training time (in hours) across di�erent trials and demonstrations given
the domain and demonstration types Human(H), RRT*(R) and PPO(P).

where random disturbances FG = N(0,f2
G
) and FH = N(0,f2

H
) are added to the velocities EG

and EH respectively after the dynamics have been calculated at each time step. We do this to

evaluate the robustness of the policies learnt and refer to these evaluation instances as domains

with noise. For the evaluation of Mobile-Robot domains with noise we use fG = fH = 0.1.

However, for the stay in goal with obstacles version we used fG = fH = 0.05 as there were no

successful evaluation episodes with the longer horizon with fG = fH = 0.1 for any algorithm.

We evaluate each algorithm by executing the runs in parallel for each combination of trial,

demonstration and domain on a computing instance of 80 Intel Xeon 2.10GHz processors with

720GB of RAM. We allow a maximum of 80 runs to be executed in parallel. The polytope

operations and simulator calls execute as a single process but the PPO steps from the baselines

repository execute across multiple processes. Each algorithm, domain and demonstration com-

bination is run with 5 unique seeds. PPO runs do not use the demonstration so 15 unique seeded

runs were used for each domain. Table 6.2 shows the average learning time for each algorithm

across the di�erent demonstrations and trials. Note that BC’s average run time was around 30

seconds as it does not require any simulator calls.

6.4.1 Hyperparameters values for each algorithm

PPO, BLPP, BLP, BL, and BL* use the same policy network architecture of 2 fully connected

hidden layers with 64 units each using tanh activation functions. BC and GAIL use the same

network architecture but each layer has 100 units instead of 64 to match that used by Ho and

Ermon (2016).

PPO

Number of steps per batch, ⌫C , = 3000, entropy coe�cient = 0.0, VF coe�cient = 0.5,

clipping parameter = 0.2, maximum value for the gradient clipping = 0.5, minibatch size = 1,
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learning rate = 0.01, GAE parameter (_) = 1.00, number of epochs for optimising surrogate = 5.

BLPP/BLP

For PPO steps we use the same hyperparameters as used for the PPO runs. ' = 0.99, n0 = 0.01,

<E = 0.0001, <⇢ = 10, ! = � for RRT* demonstrations and ! = 5 for human and PPO demon-

strations, ⌫C = 3000, ⌫4 = 100, ⌫? = 3000, ⇠ = 100. We lack the computational resources

to conduct a full grid search across all parameters and across the full benchmark set. Instead

hyperparameters were tuned manually using a single run on a single demonstration (di�erent to

any demonstration used for the results) on the WalkBot domain, note that the selected values

were used across the entire benchmark set. Table 6.3 shows the values tested, note that each

value was tuned individually such that not every combination was tested.

Symbol Values Tested
⌫C , ⌫? 1000, 3000, 10000
<+ 0, 1e-4
<⇢ 0, 10, 100
⌫4 10, 100, 1000, 3000
n0 0, 0.01
' 0.5, 0.8, 0.9, 0.99

Learning rate 0.0001, 0.001, 0.01, 0.1

T���� 6.3: BLPP hyperparameters values that were tested.

BL/BL*

We use the same hyperparameters for the PPO steps as BLPP/BLP, that is the same hyperparam-

eters used for the PPO runs. Success rate of training episodes required to step back = 0.99, step

size = 1, training epoch budget = 3000.

BC

70% of the demonstration data is used for training and 30% for validation, in line with Ho and

Ermon (2016). Training stops once the latest 50 epochs have a validation error higher than the

previous 50 epochs we tuned this manually on a single run with a single demonstration using

[1, 10, 50, 100, 500] epochs. We also used the default learning rate = 10�4 and adam epsilon

= 10�8 from the stable-baselines library (Hill et al. 2018).

GAIL

In line with Ho and Ermon(2016) we use, the number of steps per batch = 5000, GAE parameter

(_) = 0.995, W=0.995, entropy coe�cient = 14�3, adversarial network architecture is also a fully

connected network with 2 layers with hidden units of 100 each and tanh activation functions.
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Domain Type BLPP BLP BL BL* GAIL PPO

M-Robot
H 4.1 0.5 5.2 3.8 10

10
R 0.6 0.8 NA 10 NA

M-Robot-
Ob

H 5.3 1.0 9.9 9.5 10
10

R 0.9 0.8 NA 10 NA
M-Robot-
Ob-Stay

H 7.7 9.9 7.7 9.2 10
10

R 1.9 9.5 NA 10 NA
CartPole H/P 4.3 5.7 3.5 5.9 10 10
M.Car H/P 0.9 0.8 9.5 10 10 10
M.Car Cont. H/P 0.9 2.1 3.9 0.3 10 10

T���� 6.4: Average simulator calls (in millions) across di�erent trials and demonstrations
given the domain and demonstration types Human(H), RRT*(R) and PPO(P). The maximum
number of simulator calls allowed is 10 million.

6.4.2 Comparison with Chapter 5’s experimental set up

While Chapter 5 also used the Mobile-Robot-Obstacles-Stay (referred to in Chapter 5 as MROS)

there are a few key di�erences in the evaluation of the algorithms and the metrics reported

in this chapter. Most importantly in this chapter we measure the percentage of successful

trajectories (Definition 6.1), rather than the percentage of trajectories which match or exceed

the demonstration’s score. This means for the MROS domain in this chapter the agent once in

the goal region must stay there until the problem horizon has been reached. In the previous

Chapter as long as the agent was in the goal region for an equal or greater amount of steps than

the demonstration trajectory it was counted as being successful. Additionally, for the MROS

with noise evaluation, the previous Chapter also trained the policy on the MROS domain with

noise while in this chapter we evaluate the policies trained on the MROS without noise domain

to test the robustness of the learnt policies. As discussed in the previous section we also test

the robustness of policies learnt by BLPP in this chapter by evaluating them with an increased

problem horizon.

6.4.3 Results

Figure 6.3 summaries the results by providing the confidence intervals and averages over every

combination of trail and domain for each algorithm. Additionally Appendix A provides figures

that separate out the performance of each algorithm over the di�erent demonstrations used.

Figure 6.3 shows that, across the 6 domains, BLPP and BLP are the best overall performers when

compared to BL, BL*, BC, GAIL and PPO. BLPP’s performance is superior to that of BLP as

the complexity of the behaviour required increases. This increase of complexity follows from
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three causes. First, demonstrations can be incomplete, such as those provided by the holonomic

RRT* planner. Second, obstacles require the policies to be defined over sets of states which

are no longer convex. Third, requiring that the agent both reaches and stays within the goal

requires the policy to deal e�ectively with stochastic perturbations. While the Classic Control

benchmarks exhibit at least one of the three characteristics above, none of them features all three

simultaneously. Hence we observe BLP to perform better than BLPP, as the e�ort to construct

the decomposition does not pay o�.

Table 6.4 shows the average sample complexity across the di�erent domains for each algorithm.

BLPP or BLP use the least simulator calls on average for every domain except two of the

classic control domains, CartPole and MountainCarContinuous, where BL and BL* require

fewer samples. BC is not shown in Table 6.4 as it does not require simulator calls. As shown

in Table 6.2 BLPP on average requires about half the run-time consumed by GAIL and around

double the time used for PPO.

6.5 Discussion

Our work has strong links to that from Rosolia and Borrelli (2017) where through Model

Predictive Control (MPC) they iteratively design safe termination sets with associated termination

costs. BLPP uses this idea of computing termination sets to use in future learning iterations but

approximates them with polytopes due to the constraints on the availability of precise descriptions

of dynamics and cost functions that are typical in RL literature.

The fact that BLPP works with partial plans means it could be used in a scenario where a

demonstration is provided only for the di�cult parts of a problem. Alternatively, an expert could

simply select states that are key points of interest for BLPP to learn from. BLPP could also

learn from demonstrations produced on abstractions of a domain that are easier to solve, like we

demonstrated with BLPP learning from the RRT* demonstrations.

BLPP uses convex hull and vertex enumeration operations which are intractable as they can be

exponential on the dimensions of the state space. Therefore BLPP may be infeasible for problems

with high-dimension state spaces. Future work could investigate alternative representations of

controllable sets with BLPP in order to feasibly handle high-dimension state spaces.
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It is possible that BLPP can be used in a "learning from pixels" pipeline as the output layer of a

Deep Generative Model (DGM) (2016) maps input images into a high-dimensional feature space,

and the MDP "
0 can have its state space defined as a set of feature vectors. It would require

further investigation to determine how to best bootstrap the DGM "pre-processing" step and to

analyze the trade-o�s between specializing the DGM on images that follow from demonstrations,

or using a more general model.

Other avenues for future work include expanding BLPP to work with multiple demonstrations and

exploring whether BLPP’s learned sub-policies generalise to modified domains with di�erent

goal sets or obstacles but where some of the behaviour from the original domain is still required.

6.6 Conclusion

Through introducing and analysing a new approach for learning from a single demonstration

by learning backwards we addressed RQ2. BLPP as opposed to previous methods works with

complete and incomplete demonstrations while also not requiring access to the environment’s cost

function, the demonstration’s actions or the demonstration’s rewards. We have shown empirically

the value of representing controllable sets symbolically through polytopes in order to segment

the state space to define piecewise policies and to select starting states for policy iterations. We

evaluated BLPP with human demonstrations as well as demonstrations generated by a planner

on a relaxation of the environment. The relaxation resulted in demonstrations generated by the

planner that are dynamically infeasible. Despite this, BLPP was able to successfully learn from

both the human and planner generated demonstrations.
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Introduction to Part 3
This Part follows up from parts 1 and 2 to address RQ3 by introducing a method that uses sym-

bolic regression to learn cost-to-go approximations. Instead of being provided demonstrations, as

done in Part 2, we introduce a regression-based planning method that generates demonstrations

automatically that are then used to learn cost-to-go approximations. Once the cost-to-go approx-

imations are learnt from the demonstration trajectories, similar to Part 1, we use the cost-to-go

approximations within a GBFS algorithm to analyse their usefulness. Our experimental study

shows that the symbolic regression method we introduce learns more useful approximations, in

terms of the coverage achieved when used to guide a GBFS, than previous learning methods

while using also using a fraction of the training compute.



Chapter 7

Learning heuristics via pre-images1

7.1 Introduction

Heuristics for automated planning can be formulated following a number of approaches. Heuris-

tics such as Fast-Forward (FF) (Ho�mann and Nebel 2001), ⌘max and ⌘add (Bonet, Loerincs,

and Ge�ner 1997) follow from analyzing the structure of many planning instances, and coming

up with a mathematical framework to automatically compute functions that capture important

structural information about instances from the symbolic descriptions of causal laws (actions)

and domain constraints (Helmert 2006). Alternatively, Pattern database (Edelkamp 2014) and

merge-and-shrink (Helmert et al. 2007) heuristics are defined as generic functions that evalu-

ate states by projecting them onto many smaller sub-problems, that are solved optimally, and

combining their solutions in some specific way. These are chosen on a per-instance basis, and

typically involve solving a discrete optimization problem to select which projection is deemed to

be most informative according to some suitably defined criterion. A third approach has attracted

attention recently, where heuristic functions are searched for in a family of functions described

by a NN (Ferber et al. 2021; Ferber, Helmert, and Ho�mann 2020; Shen, Trevizan, and Thiébaux

2020). These e�orts are mainly driven by the suggestive results in Computer Vision and RL of

novel, general, and scalable stochastic algorithms for convex optimization to select NN parame-

ters that minimize a suitably defined notion of empirical risk (Kingma and Ba 2015; Goodfellow,

Bengio, and Courville 2016; Hardt and Recht 2021). Currently, the most successful methods for

1This chapter is adapted from the article "Sampling from Pre-Images to Learn Heuristic Functions for Classical
Planning" published as an extended abstract in the proceedings of Fifteenth International Symposium on Combinatorial
Search 2022.
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learning NN heuristics for classical planning problems require vast amounts of computational

resources for training and are usually outperformed by heuristics that do not require any o�ine

training time (Ferber et al. 2021).

In this chapter, we are concerned with learning per-instance NN defined heuristic functions.

The idea of per-instance learning is introduced in 2.9.5 and we note that the learning of per-

instance heuristics is equivalent to the set up of the per-instance pre-computation required by

pattern databases (Sievers, Ortlieb, and Helmert 2012), and cost partitioning heuristics (Seipp,

Keller, and Helmert 2017). The new method we introduce for per-instance NN defined heuristic

function learning is Regression based Supervised Learning (RSL). Like other methods (Ferber

et al. 2021; Yu, Kuroiwa, and Fukunaga 2020) do, RSL selects a set of regressions, trajectories

of sets of states, or pre-images, found via the application of well-known and e�cient pre-imaging

operators (Rintanen 2008) which rely on symbolic action descriptions. These trajectories found

along a given regression always start from the set of goal states of an instance and then training

states are sampled from each set along the trajectories. Our method takes many samples from each

pre-image found in a regression, instead of performing many trajectories or longer regressions

to increase the number of training states for the NN, using the observed goal distances for each

pre-image to label the sampled states.

Through a sensitivity analysis over RSL’s hyper-parameters we explore the impact of its key

mechanisms. We also benchmark the NN heuristics learnt by RSL against existing methods to

provide insight into the ability of RSL to learn e�ective heuristics. The Chapter’s contributions

are threefold: (1) introducing RSL, a new method for training NN defined heuristic functions,

(2) introducing a new novelty measure for a regression based search, and (3) an experimental

analysis of RSL’s hyper-parameters and components.

7.2 Background

In this chapter we explore learning Heuristics for classical planning problems defined through

the STRIPS formulation introduced in 2.2.1. In particular, we focus on per-instance heuristics

which are introduced in 2.9.5.
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The objective of the heuristics we introduce in this chapter is to approximate the optimal value

function +⇤ as described through the Bellman optimality equation (Bellman 1957),

+
⇤(B) = min

02�(B)


2(0, B) ++⇤( 5 (0, B))

�
(7.1)

for all states B 8 (⌧ and +⇤(B) = 0 for B 2 (⌧ . Similar to many of the existing heuristics such as

⌘
FF the heuristics introduced in this chapter are not guaranteed to be lower or upper bounds on

the optimal value function.

As explained in 2.2.1 for the progression state-transition model every atom not in a state is false,

while for the regression state-transition model the atoms not in a state are simply undefined.

From this point forward we refer to such “partial states” as pre-images and denote them as G to

distinguish them from complete truth-assignment state denoted as B.

In this chapter we take advantage of the pre-images explored by a regression search in order to

sample a set of training states labelled with approximations +̃ of +⇤ (Equation 2.2), to learn a

heuristic defined through a NN using a Supervised Learning (SL) algorithm.

The SL approach is introduced in 2.4, and in this chapter we use SL to find a unique set of NN

parameters \ 2 H , where H is a set of NN parameters using states B as training examples Ḡ8 and

cost-to-go estimates +̃ between B and (⌧ as their labels H8 . That is, our objective in this work is

to e�ciently, in terms of computation time, create a data sample of states labelled with +̃ such

that an optimisation of the NN parameters \ using Equation 2.4 generalises to the population set

of states B80 reachable from B0 .

7.3 Comparisons with Related work

The algorithm we introduce in this work di�ers from both TSL and SING that were introduced in

2.9.5 in a number of ways. First, RSL samples training states through a regression over partially

assigned states starting from the goal rather than a DFS starting at a fully assigned goal state

(SING) or a forward search from the instance’s initial state (TSL). Second, RSL additionally

samples random states that are added to the training set. Third, for goal distance estimates

TSL uses a teacher planner and SING uses the depth at which the state was visited while RSL

uses the tightest upper bound found for the state’s goal distance derived through the pre-images
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visited by a number of regressions. Last, as RSL searches and labels goal distance estimates

over pre-images, and samples many di�erent training states from each pre-image.

Ferber et al. (2021) introduced three RL inspired NN heuristics, ⌘Boot, ⌘BExp, and ⌘AVI heuristics

which are described in 2.9.5. Ferber et al.’s motivation for these approaches versus SL ones is

that SL is limited to instances small enough for training data generation. However, we show

through the Experimental Study in this chapter that our SL approach scales better to larger

instances than these approaches, while using 2 orders of magnitude less training time, including

the time required for data generation.

Beyond learning per-instance NN defined heuristics, as discussed in 2.9.5 Shen et al.’s (2020)

STRIPS Hypergraphs Networks (HGNs) learns per-domain and even domain independent NN

defined heuristics. In this work we do not focus on domain independent NN defined heuris-

tic functions, but we do compare against a STRIPS-HGN heuristic trained in a per-domain

framework as described by Ferber et al. (2021).

In this chapter we also explore a version of the RSL algorithm that aims to maximise the

structural diversity of the states in its selected sample. Width-based planning introduced in

2.7.5 is one method that has been particularly e�ective in increasing the structural diversity of

states considered during search (Lipovetzky and Ge�ner 2012; Lipovetzky, Ramírez, and Ge�ner

2015; Frances et al. 2017; Katz et al. 2017). Inspired by the success of the width-based novelty

algorithms in classical planning, both in progression and regression (Lei and Lipovetzky 2021),

we create and experiment with a new novelty based regression algorithm.

7.4 Regression based Supervised Learning

Given a planning problem ⇧ = h�,$, �,⌧i, RSL produces a training set D = {(B1, ⌘1), . . . ,

(B# , ⌘# )} which is a set of states B 2 ( paired with goal distance estimates ⌘. To produce

D RSL performs #A rollouts, each starting at the goal ⌧ and applying ! times the classical

planning regression operator. Each rollout from ⌧ is a sequence of actions c 9 = (0 9

8
)!�1
8=0 , for

9 = 1, . . . , #A . Each c 9 produces a sequence of pre-images G 90 , G
9

1 , . . . , G
9

!
, where G 90 = ⌧ and

G
9

8
✓ �. The sequence of pre-images denotes a sequence of sets of states R 9 = - 9

0 , -
9

1 , . . . , -
9

!
,

where - 9

8
= {B | G 9

8
✓ B, B 2 (}. See Figure 7.1 for an example of this mapping of a pre-image

represented by a partial truth assignment into its corresponding set of fully assigned states. By

the definition of the regression operator, - 9

8�1 corresponds with the pre-image, conditioned on
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0
9

8�1, of - 9

8
. Therefore any state within - 9

8
can be reached from -

9

8�1 by applying action 0 9

8�1. It

follows that any state within - 9

8
can reach - 9

0 in at most 8 transitions. Using this observation,

RSL labels each state B within its training set of states, )B, with

3 (B) = min(8 | B 2 - 9

8
, 9 2 {1, . . . , #A }) (7.2)

that is, the smallest goal distance estimate of any of the state sets visited by the regressions which

B is also a member of.

Algorithm 5 Overview of the RSL Algorithm
Input: ⇧
Parameter: %A , !, #A , #C , `

Output: ⌘RSL

1: R  ����������(⇧, !, #A , `)
2: )B  ������_������(R, %A , #C )
3: D  �����(R,Ts)
4: ⌘RSL ����������_��������(D)

Algorithm 5 provides an overview of RSL. The hyper-parameters of RSL are the length of each

regression !, the number of regressions to perform #A , the number of training states to use #C ,

the percentage of training states that are randomly sampled from the entire state space %A , and a

function that maps state regression trajectories into novelty levels `. RSL has three distinct steps,

1: extracting sets of state sets, R =
–

#A
9=1 R

9 , through performing regressions from the goal set

(Alg. 5 line 1), 2: sampling training states )B and labeling them with goal distance estimates

using (7.2) (Alg. 5 lines 2-3), and 3: training the NN defined heuristic function (Alg. 5 line 4)

using empirical risk minimisation (2.4).

7.4.1 Extracting state sets through regression

As previously explained RSL performs #A regressions to extract the set of state sets R over

which the training set D is defined. At step 8 of a rollout with a pre-image G 9
8

corresponding to

the set of states - 9

8
, as previously defined, the actions we consider valid for pre-imaging - 9

8
with

are 0 2 a(G 9
8
), defined as follows

a(G 9
8
) = {0 | 0 2 ���������($, �),

G
9

8
\ e-Del(0) = ;,

G
9

8
\ Del(0) = ;, G 9

8
\ Add(a) < ;}

(7.3)
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Unstack(A, C)

Goal 
On(A,B), OnTable(C) 
2 Unique Goal States

Put-down(C)

Pick-up(A) Unstack(A, B)

Stack(A,B)

A
B
C

A
CB

A

CB

A

C
B

AC
B

A CB

OnTable(C) 
Clear(B) 

Holding(A) 
2 New States

On(A,B) 
Holding(C) 
1 New State

OnTable(C) 
Clear(B) 
Clear(A) 

OnTable(A) 
HandEmpty() 
2 New States 

OnTable(C) 
On(A,B) 
Clear(A) 

HandEmpty() 
No New States

OnTable(C) 
Clear(B) 
Clear(A) 
On(A,C) 

HandEmpty() 
1 New State

F����� 7.1: An example rollout performed by N-RSL with ! = 2 on a 3 block Blocksworld
problem. Each square represents a per-image through a partially assigned state with its
assigned atoms written within the square. The purple squares represent the example rollout
trajectory selected by N-RSL and the possible Blocksworld states for each pre-image along the
trajectory are shown on the left. Green atoms are atoms assigned for the first time in the
trajectory, and the `+ value is calculated using Equation 7.6.

and e-Del(0) is

e-Del(0) = { @ | @ 2 � \ �33 (0),

9? 2 %A4(0) : �����(?, @)}.
(7.4)

���������($, �) maps the operator set $ and initial state � to the set of actions with reachable

preconditions in the delete relaxation of ⇧ (Bonet and Ge�ner 2001) given the initial state of the

progression state-transition model �. The �����(?, @) function in (7.4) maps the pair of atoms

(?, @) to true if ? and @ are mutually exclusive, that is, it is impossible for ? and @ to both be

true in any state B 2 ( that can be reached from �. Note that the Ferber et al. (2021) algorithms

that use regression also filter the valid actions in the same way through using the mutex groups

and applicable operations found by the Fast Downward (FD) (Helmert 2006) Translator2.

The baseline option for performing the rollout, and the method used by Ferber et al. (2021), is

to randomly select actions 0 for which applying the regression operator is valid. In addition to

testing RSL using random action selection we instantiate a version of RSL we name Novelty

2See the ��_�����_���� parameter in line 848 in code/src/search/task_utils/sampling_technique.cc in Ferber et
al.’s (2021) Supplementary Material available at https://zenodo.org/record/5345958

https://zenodo.org/record/5345958
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guided Regression based Supervised Learning (N-RSL) that aims to increase the structural

diversity of operators selected in its regression.

Preferring actions with novel preconditions

For N-RSL at step 8 of a rollout with a pre-image G 9
8
, and a state trajectory of g = ⌧, G 91 , . . . , G

9

8
,

N-RSL uses the regression policy ` to select the action 08 to pre-image - 9

8
.

08 = argmax
0
{`(0, g) | 0 2 a(G 9

8
)} (7.5)

where ties are broken randomly and a(G 9
8
) is a set of valid actions as described above. Note that

for the plain RSL algorithm, which uses random action selection, ` = `(0, g) = 0 for any 0 2 $

and any state trajectory g.

In order to increase the structural diversity of the states in sets - 9

8
in R 9 we consider how the

pre-images G 9
8

evolve as we repeatedly apply the regression operator. At each step 8 of the

regression we have a set of valid operators a(G 9
8
) and a state set - 9

8
derived from the pre-image

G
9

8
✓ �, where G 90 = ⌧. We propose increasing the structural diversity of the sets extracted by

counting the number of atoms an action will assign as true in a pre-image for the first time in the

current trajectory. In order to apply this criterion, ` in (7.5) is replaced by `+ below,

`
+(0, g) = |%A4(0) \

ÿ
G
9
8 2g

G
9

8
| (7.6)

This `+ measure means N-RSL prefers actions with pre-conditions which contain atoms that are

not specified in the goal ⌧ and are not a member of the pre-condition set of any of the actions

executed in the trajectory up until that point. Note that `+ relies only on the current trajectory and

is independent of any previously executed regression trajectories. Figure 7.1 shows an example

of a rollout performed on a simple Blocksworld problem with the one-step lookahead method

described by (7.5) using the novelty-based measure `+ defined in (7.6).

7.4.2 Sampling and labeling training data

The training data for RSL is sampled from the sets of states R. States are sampled from each

set - 9

8
2 R, and sampled states that contain mutex atom pairs (?, @) are modified by removing

either the ? or @ atom from the state. Note that if a sampled state from the set - 9

8
has a mutex

pair (?, @) and ? 2 G 9
8
, @ will be removed from the state, that is, an atom that is a member of the
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partial state G 9
8

that a state is sampled from will never be removed from the state. As previously

described, the labelled heuristic value for a sampled state is given by 3 (B), which returns the

distance of the closest state set in R to the goal according to the regression.

As we report later, some domains benefited from adding randomly sampled states from (. The

random states have mutexes enforced using the same method as above, and are also labeled with

3 (B). In the case that the state is not a member of any of the sets of states in R, we define 3 (B)

to equal ! + 1.

Theorem 2. Given a problem⇧ = h�,$, �,⌧i, N-RSL obtains a training setD inO(|� | ( |$ |#A !+

#C!#A )) time and O(|� | (#A ! + #C )) space.

Proof sketch. RSL performs #A rollouts and by definition the number of state transitions in each

c
9 is !. For each state transition the one step lookahead (Equation 7.5) considers a maximum

of |$ | actions and |$ | pre-images. Therefore the total number of pre-images considered by

RSL is |$ |#A !. Note that both ! and #A are set as constant hyper-parameters and for each

pre-image a maximum of |� | atoms need to be considered by the novelty definition `+, therefore

the ���������� algorithm has a time complexity of O(|� | |$ |#A !). Also for each pre-image

a maximum of |� | atoms need to be assigned, hence ���������� runs in O(|� |#A !) space.

Sampling states requires the assignment of at most |� |#C atoms and checking a state’s mem-

bership requires at most |� |#C!#A comparisons meaning both the ������_������ and �����

algorithms run in O(|� | |$ |#A !) time and O(|� |#C ) space. ⇤

Given the training set, D, any suitable o�-the-shelf SL algorithm can be used to obtain a heuristic

estimator through optimising the SL objective function (2.4). We discuss the specifics of one

such algorithm in our Experimental Study.

7.5 Experimental study

Our experimental study of RSL has two objectives: (1) evaluate the e�ect of the di�erent

mechanisms within the RSL algorithm, and (2) provide a direct comparison to existing NN and

model-based heuristic functions.
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⌘
Boot

⌘
BExp

⌘
AVI

⌘
TSL

Ave Min Max Ave Min Max Ave Min Max Ave Min Max
blocks 1.2 0.7 5.0 - - - - - - 2.3 0.4 6.8
depot 1.2 0.8 1.4 1.2 1.0 1.5 1.2 0.9 2.5 3.9 0.7 9.9
grid 3.1 0.6 43.8 1.3 0.5 12.7 15.8 0.7 79.8 13.2 4.2 80.5
npuzzle 1.1 0.8 2.3 - - - 1.5 1.0 2.5 - - -
pipesworld 1.4 0.3 8.0 1.4 0.7 10.8 1.4 0.3 19.7 7.8 0.8 82.6
rovers 14.6 0.9 70.1 15.3 0.9 72.3 16.1 0.9 85.6 13.7 0.3 43.4
scanalyzer 1.1 0.1 23.2 0.3 0.03 0.9 1.2 0.1 9.5 8.6 0.2 45.8
storage 1.5 0.8 4.5 1.3 0.8 2.0 1.2 0.8 1.6 3.3 1.0 6.4
transport 1.3 0.8 3.8 1.1 0.9 1.7 1.0 0.7 2.9 5.0 0.6 11.2
visitall 0.9 0.4 1.5 - - - - - - - - -

T���� 7.1: Ratios of evaluations per second of our ⌘RSL versus the baseline methods run by
Ferber et al. (2021) for commonly solved instances.

7.5.1 Methodology

Our benchmark set of domains, instances and initial states is the same as those used by Ferber

et al. (2021). As we are learning per-instance heuristics, a unique heuristic is trained for each

problem instance and then evaluated over a set of 50 di�erent initial states. The 50 initial states

were produced by Ferber et al. (2020; 2021), through performing 50 200-step random-walks

from the original initial state of the instance. The benchmark instances have also been separated

by Ferber et al. (2020; 2021) into “Moderate Tasks", which are solved by GBFS guided by ⌘FF

in less than 900 seconds but more than 1 second, and “Hard Tasks" which are not solved within

900 seconds.

We evaluate ⌘RSL heuristic using the same method as Ferber et al. (2021). Each heuristic is

evaluated over 50 di�erent initial states guiding GBFS implemented in FD (Helmert 2006).

It is known that a lack of accuracy in heuristics can lead to blow ups in the size of search

trees (Helmert, Röger et al. 2008), therefore we can test the relative accuracy of the heuristics by

using them in the GBFS and comparing their coverage. The coverage of a planner is defined as

the percent of initial states for which a solution path is found within the given planning budget.

Ferber et al. (2021) report observing that in general the coverage superiority between the di�erent

NN heuristics tested did not vary over time. That is, the planning time used and the relative

coverage superiority between the algorithms were not correlated. Given this observation and

constraints on our available compute resources we reduce the overall 10 hour planning time-limit

that Ferber et al. used by 99% down to just 6 minutes, and compare with the NN defined heuristic

baseline algorithms’ results as provided by Ferber et al. (2021) which use the 10 hour planning

time-limit.
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As our experiments are run on di�erent hardware and Ferber et al.’s algorithms use the

Keras (Chollet et al. 2015) and the TensorFlow (Abadi et al. 2015) libraries to train and evaluate

their NN while we use PyTorch (Paszke et al. 2019), we preformed a comparison of the evalu-

ations per second used for commonly solved instances between Ferber et al.’s (2021) methods

and ⌘N-RSL. Ferber et al.’s algorithms use the same NN architecture meaning that for the same

instance, and assuming the relationship between evaluations and planning time is linear, the

evaluations per second should be similar. The data logs provided by Ferber et al. only provide

the number of evaluations completed by FD if the problem is solved, therefore we can only com-

pare the ratios of commonly solved instances. Table 7.1 shows the evaluations per second ratios

between our ⌘RSL FastDownward runs and the baseline algorithms run by Ferber et al. (2021).

Table 7.1 shows that depending on the domain the ratios averaged between 0.3 to 16.1, meaning

⌘
RSL’s evaluations per second were sometimes less but could also be up to 16.1 times higher. We

also benchmark on our hardware an implementation of the SING (Yu, Kuroiwa, and Fukunaga

2020) algorithm which Ferber et al. (2021) did not test and has not previously been applied to

this benchmark set. We implemented the configuration C4 of the SING algorithm (Yu, Kuroiwa,

and Fukunaga 2020) as described by Yu et al. but using the same NN architecture, loss function

and training hyper-parameters as used for RSL. 105 samples were used for training, which were

collected using a budget of 500 samples per DFS resulting in 200 total DFS rollouts. Finally, we

ran the baselines that do not require o�ine training, ⌘FF and LAMA, on our hardware with the

6 minute time budget.

We define each ⌘RSL heuristic through the same NN architecture used by Ferber et al. (2021).

The NN is a residual network (He et al. 2016) made up of two dense 250 neuron layers followed

by a single residual block with two dense 250 neuron layers followed by a single neuron output.

Each neuron in the NN uses the rectified linear activation function. The inputs of the NN are

full states of ((⇧) represented by a Boolean vector {0, 1} |� |. As Ferber et al. do, we set the

;>BB function of the SL optimization problem (2.4) to be the mean squared error (MSE). We

use the Adam (Kingma and Ba 2015) stochastic optimization algorithm to find locally optimal

solutions of (2.4), using the following hyper-parameters: learning rate is 10�4, initial decay rates

of V1 = 0.9 and V2 = 0.999, n = 10�8, batch size is 64, and maximum number of epochs is set

to 1, 000. Additionally, we use the early stopping heuristic (Duvenaud, Maclaurin, and Adams

2016) setting the patience parameter to 2. We split each instance data set into training and

validations sets, taking the former 80% and the latter 20% of available samples.

Note that Ferber et al.’s TSL method trains 10 heuristics functions and selects the best performing
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heuristic on a set of validation states. We follow this method by running RSL 10 times with

di�erent random seeds on each instance to produce 10 heuristic functions. We then test each

heuristic over a set of validation states, which are collected using the same method as Ferber et

al. (2021), to select the best performing heuristic for each instance. We report both the average

coverage of the 10 heuristics learnt and the best heuristic found via the validation method. Due

to the amount of compute required in testing an algorithm setting over the benchmark we do not

tune the architecture or any training parameters of the NN.

Training is run simultaneously for 80 instances over 40 Intel®Xeon®Gold 6138 CPU @ 2.00GHz

processor cores with 720GB of shared RAM, limiting each training instance to run on a sin-

gle vCPU (each CPU core has 2 vCPUs). For training the ⌘RSL heuristic, the Tarski frame-

work (Francés and Ramírez 2021) is used to ground each problem instance in order to get the

�,$, and ⌧ sets used for the regressions. In line with the ⌘Boot, ⌘BExp, ⌘AVI and ⌘SL heuristics,

the FD translator is used for identifying a set of state mutexes to enforce, for both the state

sampling and valid actions for the regression operator as described in the previous section. For

evaluation we use the same hardware, along with Downward lab (Seipp et al. 2017) to run 80 FD

searches at once limiting each FD search to run on a single vCPU with a maximum of 3.8 GB

of memory. The PyTorch library (Paszke et al. 2019) is used for the training and evaluations of

RSL’s NN.

7.5.2 Results

First we present the results from a grid search over the hyper-parameters of RSL. To maximise the

number of hyper-parameter combinations we could test with our limited computational resources,

we evaluated each trained heuristic from the grid search on 10 out of the 50 initial states for

each of the 143 instances in the benchmark set. Figure 7.2 summarises the impact of each of the

hyper-parameter values tested on the average coverage of ⌘RSL across the benchmark set. For

the hyper-parameter grid search we tested 16 di�erent settings over the di�erent combinations

of #C =10,000 or 100,000, %A = 0 or 50, #A = 1 or 5, and ! = 50 or 500. Table 7.2 details

the di�erent configurations tested in the hyper-parameter grid search along with their average

coverage over each domain. Figure 7.2 shows that the value of %A has the biggest influence on

the average coverage over the benchmark set of ⌘RSL used in GBFS. This observation shows the

importance of including states in the training set that are not within any of the sets of states visited

by the rollouts from the goal set. It is common practise in Supervised Learning problems to have
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#C 10,000 100,000
%A 0 50 0 50
#A 1 5 1 5 1 5 1 5
! 50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500

Moderate Tasks
blocks 0.0 20.0 0.0 20.0 100 76.0 80.0 48.0 0.0 0.0 0.0 60.0 54.0 68.0 62.0 76.0
depot 0.0 0.0 3.3 5.0 31.7 71.7 76.7 48.3 0.0 0.0 0.0 6.7 45.0 41.7 66.7 43.3
grid 0.0 0.0 0.0 0.0 25.0 60.0 10.0 50.0 0.0 0.0 0.0 0.0 20.0 20.0 50.0 95.0
npuzzle 0.0 0.0 0.0 0.0 0.0 3.8 0.0 32.5 0.0 0.0 0.0 0.0 0.0 1.2 0.0 16.2
pipesworld 16.0 15.0 13.0 17.0 11.3 40.0 44.0 50.0 12.0 15.0 28.0 16.0 47.0 53.0 67.0 70.0
rovers 7.5 7.5 6.2 10.0 11.3 12.5 10.0 11.2 7.5 7.5 7.5 8.8 12.5 11.2 13.8 8.8
scanalyzer 83.3 83.3 66.7 100 66.7 100 100 66.7 83.3 83.3 66.7 83.3 100 100 100 66.7
storage 0.0 0.0 0.0 0.0 27.5 15.0 2.5 0.0 0.0 0.0 0.0 0.0 40.0 0.0 32.5 25.0
transport 0.0 0.0 12.5 5.0 62.5 75.0 62.5 70.0 0.0 0.0 0.0 13.8 31.2 52.5 57.5 77.5
visitall 0.0 0.0 1.7 20.0 48.3 83.3 73.3 100 0.0 0.0 3.3 30.0 5.0 93.3 21.7 96.7
Average 10.7 12.6 10.3 17.7 39.8 53.7 45.9 47.7 10.3 10.6 10.6 21.9 35.5 44.1 47.1 57.5

Hard Tasks
blocks 0.0 0.0 0.0 0.0 40.0 24.0 6.0 20.0 0.0 0.0 0.0 0.0 20.0 12.0 2.0 26.0
depot 0.0 0.0 0.0 0.0 17.1 5.7 12.9 7.1 0.0 0.0 0.0 0.0 4.3 4.3 1.4 0.0
grid 0.0 0.0 0.0 0.0 0.0 12.5 26.2 7.5 0.0 0.0 0.0 0.0 1.2 13.8 2.5 41.2
npuzzle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pipesworld 0.0 0.0 0.0 0.0 6.0 7.0 5.5 5.5 3.0 0.0 6.0 0.0 9.0 12.0 18.5 28.0
rovers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
scanalyzer 43.3 13.3 63.3 23.3 100 100 66.7 66.7 30.0 33.3 73.3 66.7 100 86.7 100 66.7
storage 0.0 0.0 0.0 0.0 1.2 3.8 6.2 10.0 0.0 0.0 1.2 0.0 10.0 0.0 8.8 5.0
transport 0.0 0.0 0.0 0.0 0.0 12.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
visitall 0.0 0.0 0.0 0.0 0.0 20.0 0.0 100 0.0 0.0 0.0 0.0 0.0 90.0 0.0 100
Average 4.3 1.3 6.3 2.3 16.4 18.5 13.0 21.7 3.3 3.3 8.1 6.7 14.5 21.9 13.3 26.7

T���� 7.2: Comparison of the coverage given a 6 minute planning time budget of ⌘RSL using a
range of di�erent hyper-parameter values. Each run uses only a single trial and is evaluated
over 10 of the 50 initial states for each instance in the benchmark set.
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F����� 7.2: A summary of the average coverage over the “Moderate" and “Hard" tasks for 16
di�erent configurations of RSL shown in Table 7.2. The 4 boxes each show a di�erent
segmentation of the 16 configurations according to the value of a single hyper-parameter. Each
configuration’s coverage is marked with a blue dot and the lines show the range of coverage
over the configurations with the mean marked with a square.

positive and negative examples. Negative examples in a planning context can be interpreted as

states that are unlikely to allow for shorter plans to the goal, which may explain the benefit of

sampling states outside of the sets of states visited in the rollouts. Figure 7.2 also suggests that

RSL benefits from using more than one rollout for extracting training states and considering 500
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Ave. over Trials Methods using Validation
Planning Budget 6 minutes 6 minutes 600 minutes* 6 minutes

⌘
RSL

⌘
N-RSL

⌘
RSL

⌘
N-RSL

⌘
Boot

⌘
BExp

⌘
AVI

⌘
TSL

⌘
HGN

⌘
SING

⌘
FF LAMA

Moderate Tasks
blocks 80.0 91.5 99.2 100 18.0 0.0 0.0 80.4 100 17.6 100 100
depot 48.7 58.8 77.0 89.0 60.3 32.7 54.7 90.3 0.0 0.0 93.7 99.3
grid 71.0 60.3 100 97.0 100 100 51.0 93.0 0.0 0.0 90.0 100
npuzzle 15.3 18.9 25.2 46.8 28.0 0.0 1.0 0.0 0.3 0.0 92.8 97.8
pipesworld 70.7 69.6 85.8 82.6 57.8 68.4 50.2 92.2 7.6 13.8 63.0 98.6
rovers 12.6 12.5 15.0 15.8 48.2 21.8 45.0 26.0 14.0 6.2 79.5 100
scanalyzer 87.4 94.1 100 100 33.3 70.7 67.3 82.7 11.0 16.7 91.7 100
storage 16.1 16.4 17.0 18.0 89.0 57.5 69.5 24.5 0.0 0.0 27.5 34.0
transport 74.8 70.8 100 93.8 100 100 87.5 99.2 94.7 0.0 100 100
visitall 93.6 95.4 99.7 98.0 55.3 0.0 0.0 0.0 100 1.3 89.0 100
Average 57.0 58.8 71.9 74.1 59.0 45.1 42.6 58.8 32.8 5.6 82.7 93.0
Average Train Time
per Inst. (Hours) 0.37 0.38 3.68 3.75 112* 13.1* 1.6 -

Hard Tasks
blocks 18.5 45.3 36.4 68.0 0.0 0.0 0.0 0.0 50.0 0.8 46.4 96.0
depot 4.0 3.3 14.6 12.6 8.3 4.3 12.9 35.4 0.0 0.0 9.4 69.4
grid 21.9 32.1 67.2 69.0 87.8 95.0 70.5 60.2 0.0 0.0 31.0 100
npuzzle 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.8 12.8
pipesworld 27.4 25.0 33.8 33.1 23.4 19.1 8.0 48.7 0.0 0.1 20.4 68.0
rovers 0.0 0.1 0.1 0.1 2.8 0.8 6.5 1.5 0.3 0.0 8.3 100
scanalyzer 86.4 89.7 100 100 3.3 0.0 60.7 60.0 0.0 0.0 83.3 100
storage 3.7 2.5 1.8 0.2 27.2 13.2 15.8 0.0 0.0 1.0 9.2 9.0
transport 0.0 1.2 0.0 8.8 0.0 0.0 2.4 0.0 0.0 0.0 0.0 59.6
visitall 82.4 91.8 100 100 28.0 0.0 0.0 0.0 100 0.0 40.0 100
Average 24.4 29.1 35.4 39.2 18.1 13.3 17.7 20.6 15.0 0.2 25.4 71.5
Average Train Time
per Inst. (Hours) 0.69 0.69 6.88 6.88 112* 10.4* 2.6 -

T���� 7.3: Comparison of the coverage of ⌘RSL with other Neural Network defined heuristics
functions introduced by Ferber et al. (2021) ⌘Boot, ⌘BExp, ⌘AVI, as well as the ⌘TSL introduced
by Ferber et al. (2020), and ⌘HGN from Shen et al. (2020). The table also shows the coverage
of ⌘SING(Yu, Kuroiwa, and Fukunaga 2020) (using a single trial), ⌘�(Ho�mann and Nebel
2001) and LAMA (Richter and Westphal 2010) (run on same hardware as RSL). Note that
⌘

HGN trains one heuristic per domain not instance with training budgets between 14.7 and 112
CPU hours. The bold numbers indicate the highest coverage among the Neural Network
methods. *Note that the baseline learning methods that use a 600 minute planning budget are
the values as reported by Ferber et al. (2021). According to standard single thread CPU
benchmarks, our vCPU can be 20% faster. We provide a discussion of the impact of
discrepancies in hardware and software in the Methodology Section.

applications of the regression operator instead of 50. Interestingly, Figure 7.2 shows that training

with 10,000 or 100,000 states does not influence the performance in an obvious way. However,

overall the best performing set of hyper-parameters over the “Hard Tasks" which we use for all

experiments from this point forth are #C =100,000, %A =50, #A=5, and ! =500.

Table 7.3 shows a comparison of existing methods with respect to RSL and N-RSL, using the

best performing configuration from the hyper-parameter grid search. As can be seen in Table 7.3

the results of our SING implementation are very poor. In addition to the results shown in the

table we also performed individual runs of instances using SING with the same NN architecture,

loss function, number of training samples, and number of samples per DFS as described by Yu

et al. (2020), however the performance observed was still poor. Yu et al. mention that they

perform manual tuning of hyper-parameters but do not provide the selected parameters used by
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the NN training algorithm, which could be the reason for the poor performance observed in our

results. Due to SING’s poor performance we omit it from consideration in our results analysis

going forward.

The first notable di�erence in Table 7.3 is the average training times used by each algorithm. ⌘RSL

without validation uses less than 1% of the training CPU time used by all the other per-instance

NN defined heuristics functions for both the “Moderate" and “Hard" task sets. Even when using

the validation method which requires 10 RSL executions the training time used is less than 7% of

the per-instance NN methods. The overall average coverage over the benchmark set shows that

⌘
RSL and ⌘N-RSL outperform the other NN defined heuristic functions for both the “Moderate"

and “Hard Tasks" with and without using the validation method. The model-based method

LAMA clearly dominates all other methods. The model-based heuristic ⌘FF also outperforms

⌘
RSL and ⌘N-RSL on the “Moderate Tasks", however on the “Hard Tasks" ⌘RSL with validation

and ⌘N-RSL with and without validation have better overall performance. While ⌘N-RSL has better

average coverage than ⌘RSL the di�erence is small with a 1.8% and 4.7% average improvement

over the “Moderate" and “Hard Tasks" respectively when no validation is used.

Figure 7.3 provides additional insights into the performance of ⌘N-RSL compared to the best

performing baseline algorithms. For commonly solved tasks, ⌘TSL on average produces higher

quality plans than ⌘
N-RSL. This observation could be a result of ⌘TSL having higher quality

labels used in training. ⌘TSL uses ⌘FF with GBFS to label sampled states in the train set, while

⌘
N-RSL labels states with goal distance estimates derived from the state sets visited by N-RSL’s

regressions. The objective of ⌘FF with GBFS is to find the shortest path from a state to the

goal state, while the objective of N-RSL’s regression is to maximise a defined novelty measure

(Equation 7.5) with the aim of finding the shortest path that visits the most number of reachable

atoms 0 2 �. This trade-o� between exploration and exploitation shows through in the results

where ⌘N-RSL has a higher coverage than ⌘TSL over a diverse set of initial states but produces

lower quality plans in terms of plan length among the commonly solved tasks. This behaviour is

also displayed when comparing directly to the ⌘FF heuristic, while LAMA dominates ⌘N-RSL in

both coverage and plan quality.

Figure 7.4 shows that for smaller problem instances the model-based methods ⌘FF, and LAMA

are able to compute a higher number of evaluations per second than ⌘RSL. However, ⌘RSL’s

evaluations per second stays relatively constant while the model-based methods evaluations per

second decreases as problem instances become larger.
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F����� 7.3: Pairwise comparisons over commonly solved tasks between ⌘N-RSL using the
validation method, and the best performing baseline NN based heuristic function ⌘TSL and
model-based methods ⌘FF and LAMA over the “Hard Tasks" benchmark set. The top row
shows the scatter plot of the number of expansions used by each search algorithm while the
bottom row shows the plan length found by each algorithm. The percentage value, shown in
the axis titles, is the percentage of the commonly solved tasks for which the relevant algorithm
required fewer expansions or discovered a shorter plan than the algorithm it is being compared
to. Note that tasks which are not solved by at least one of the algorithms in the pair are not
included in these graphs. Graphs were generated using Downward Lab (Seipp et al. 2017).

7.6 Initial results of linear defined heuristics using N-RSL

In this chapter we have presented the N-RSL algorithm for learning NN-defined heuristic func-

tions. We defined the heuristic function that was learnt as a NN which matched recent works

that have explored learning such heuristic functions for classical planning. NN training relies

upon stochastic gradient descent optimisation techniques with no guarantees on the optimally of

the NN parameters found through the optimisation. Alternatively, through defining the heuristic

function as a linear weighting of the boolean facts, we can define a linear programming problem.

Using linear programming we can find an exact solution to the optimisation problem, that is, the

problem of

min
\ 2H

6(y � I(X, \)), (7.7)
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F����� 7.4: The number of heuristic evaluations per second versus the number of relevant
atoms as determined by FD translator’s reachability analysis for a set of commonly solved
problem instances between ⌘RSL, ⌘FF and LAMA. Each dot represents the values for a single
problem instance and the line represents the moving average with a window size of 2000 atoms.

Moderate Tasks Hard Tasks
Linear NN Linear NN

L = 50 L = 500 L = 500 L = 50 L = 500 L = 500
blocks 100 0.0 91.5 41.2 0.0 45.3
depot 81.0 49.0 58.8 0.0 7.1 3.3
grid 51.0 2.0 60.3 39.8 4.5 32.1
npuzzle 0.0 0.0 18.9 0.0 0.0 0.0
pipesworld 0.2 0.2 69.6 0.0 0.0 25.0
rovers 2.0 3.5 12.5 0.0 0.0 0.1
scanalyzer 82.7 50.7 94.1 9.3 0.0 89.7
storage 2.0 0.0 16.4 1.0 0.0 2.5
transport 100 25.2 70.8 0.0 0.0 1.2
visitall 16.0 76.0 95.4 0.0 100.0 91.8
Average 43.5 20.7 58.8 9.1 11.2 29.1

T���� 7.4: Initial results of a comparison between linear defined heuristics functions versus
NNs. Note that the NN results are averaged over 10 trials while the linear results only use a
single trial.

becomes

min
\ 2H

6(y � X\), (7.8)

where I represents the non-linear NN function, X is the training states represented as boolean

facts, y is the cost-to-go estimates for X computed by the RSL method, \ is the parameters of

the heuristic function, H is the set of all valid heuristic function parameters, and 6 is the loss

function.
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Heuristics defined as a linear combination of facts in this way are known as potential heuris-

tics (Pommerening et al. 2015). Potential heuristics can be optimised using linear programming

with constraints that ensure the heuristics are consistent and goal aware (Pommerening et al.

2015). Here we present some initial results using the linear programming package CVXPY (Di-

amond and Boyd 2016) to solve equation 7.8. Additionally we add a normalisation term ⌘(0),

that is scaled by the constant parameter _ such that our objective function becomes,

min
\ 2H

6(y � X\) + _⌘(\) (7.9)

For these initial experiments we do not impose any constraints on the linear program and use the

Lasso (Tibshirani 1996) method where 6(0) = | |0 | |22 and ⌘(0) = | |0 | |1. We select the _ value

for each optimisation by trialing 10 values from 0.001 to 10 and selecting the best performing

value according to a validation set. In Table 7.4 we present the linear programming results using

a single trial. It is clear from Table 7.4 that the non-linear NN heuristic definition pays o� for

the N-RSL algorithm, however, there are a few interesting observations. It is clear that the !

parameter of N-RSL has a great e�ect on the accuracy of the linear heuristics. For the visitall

domain, optimal solution trajectories are often long as they are required to visit each position in

the problem to achieve the goal. We can see that for visitall the linear N-RSL using the larger L

value increases its performance greatly. In contrast, the optimal solution paths for blocksworld

in the moderate and hard tasks are shorter than those of visitall. For blocksworld N-RSL with the

smaller L performs much better. There are a number of research directions that could be explored

given these initial results. First, it would be interesting to compare the results of linear heuristics

that incorporate the constraints used by related potential heuristics work (Pommerening et al.

2015). Second, a more rigorous investigation into the e�ects of the hyper-parameters of N-RSL,

such as ! and %A , on the performance of the linear heuristics may provide interesting insights

into the N-RSL method.

7.7 Discussion

The results showed that using the novelty-based regression policy `+ improved the heuristic that

RSL learned. A promising future research direction is to explore di�erent types of novelty-

based regression policies that can be used in RSL. For example, instead of defining `+ to be
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independent of previous regression trajectories it may be beneficial to define it to count only

novel preconditions that have not been observed in any of previously performed trajectories.

The heuristic values from the NN defined heuristic functions we report in this chapter are

calculated by taking the linear combination of the outputs of the last hidden layer of the NN. We

note that the NN heuristics discussed in this chapter and those of Ferber et al. (2020; 2021) are

an application of state aggregation (Bertsekas 2018), a well-known technique in Approximate

Dynamic Programming. For each of the di�erent problem instances we explored, the size of

the last hidden layer was fixed at 250 neurons. It is possible that for harder problem instances

a feature vector larger than 250 is required in order to produce more useful heuristics. Ferber

et al. (2020) have performed an investigation into e�ects of the NN architecture in terms of the

activation functions used and the number of hidden layers, however they did not explore the

number of neurons used within the hidden layers. One avenue of future work is to investigate

the impact of scaling the number of neurons used within the hidden layers of the NN so the

capacity (Goodfellow, Bengio, and Courville 2016) of the NN scales too with the size of the

planning instance.

One advantage we observed of the NN heuristic functions over the model-based heuristics in

Figure 7.4 is that the gap in number of evaluated states per second narrows until it eventually

disappears, so the NN heuristic becomes significantly faster in comparison (and less informed

too, probably) as the problem size increases. This is because only the input layer size changes

according to |� | for the NN architecture used in this work, while the rest of the neurons and

edges remain constant. That is, as the input layer has |� | neurons and the first hidden layer

has 250 neurons there are 250|� | edges joining the two layers resulting in the NN evaluations

being in $ ( |� |) time. Conversely, ⌘FF requires completing a search over the problem with the

delete relaxation which has time-complexity that is polynomial over the number of actions and

reachable atoms (Ho�mann and Nebel 2001).

Future work should investigate NN heuristics like ⌘RSL over problems that are too large for ⌘FF

or LAMA to produce enough evaluations per second to be useful. It is possible that a NN defined

heuristic function will be able to produce a large enough number of evaluations per second to

be useful over these large domains, even if the heuristic is less informed than the model-based

heuristics. Another domain-type that NN-heuristics will likely be useful for are problems that

only have a regression simulator available and not a full action model, and hence heuristics

such as LAMA and ⌘
FF can not be used. Last, we have shown that ⌘RSL and ⌘

N-RSL have
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good performance while requiring significantly smaller resources than the NN-based baselines

considered in this chapter. We think that this encouraging result supports the assumption that

RSL and follow-up methods can be used to obtain useful heuristic functions for large instances

of challenging combinatorial optimization problems.

7.8 Conclusion

We introduced a new algorithm, N-RSL, for learning per-instance NN defined heuristic functions

over classical planning problems. N-RSL uses a novelty measure in order to select what

regression operations to apply on the goal with the aim of maximising the diversity of the partial

states visited by the rollouts. These rollouts label a sets of states with an upper bound of their

distance from the goal. Using this N-RSL trains a NN heuristic using SL. We ultimately address

RQ3 by showing that N-RSL generalises better than previous NN defined heuristic functions

in terms of coverage while using a fraction of the training compute. While N-RSL performs

better than model-based heuristic function ⌘
FF on harder tasks it was still dominated by the

state-of-the-art model-based LAMA algorithm. We also provided a number of suggestions for

how future work could address some of the open questions about NN defined heuristic functions.

We hope the addition of N-RSL to the catalogue of learning methods for NN defined heuristics,

will enable the discovery of new heuristic methods and benchmarks that highlight the potential

of NN heuristics.



Chapter 8

Conclusion

To conclude we will summarise the main contributions this thesis has presented and to what

extent they addressed the Research Questions set out in Chapter 1. Finally, we discuss future

lines of research to follow up and extend upon the work presented in this thesis.

8.1 Contributions

8.1.1 Cost-to-go approximation for model-free planning

Part 1 focused on the research question of "How can planning and learning interact to trade-

o� exploration and exploitation for model-free simulator-based problems?", which we explored

through new planning and learning algorithms relying on mechanisms such as novelty pruning,

which encourages exploration, and learnt cost-to-go approximations, which encourages the

exploitation of previously gained knowledge. In Chapter 3 we identified a limitation of the

state-of-the-art model-free simulator-based planner RIW on SSP problems and showed that it

can be addressed using cost-to-go approximations. In Chapter 4 we followed up on the results of

Chapter 3 to propose and evaluate a method for learning cost-to-go approximations for a RIW-

based planner. Additionally, Chapter 4 incorporated learnt action policies into the RIW-based

planner to further improve its performance. In summary the key contributions of Part 1 included,

• extending width-based algorithms to perform well on SSP problems by introducing the

RIW(1)-_ algorithm with cost-to-go approximations,

127
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• defining a methodical learning schedule for planning and learning methods,

• introducing the N-CPL and CPL planning and learning algorithms,

• identifying characteristics of MDP problems that influence the performance of di�erent

planning and learning approaches.

8.1.2 Imitation Learning via regression

Part 2 examined the research question "To what extent can symbolic regression given a full,

relaxed or partial demonstration trajectory assist learning?". Chapter 5 investigated learning

methods which use demonstration trajectories to iteratively learn a policy to reach the problem’s

goal from states of the demonstration that are increasingly further away from the goal state.

Chapter 5 showed that the learning methods investigated can fail to reliably learn successful

policies for domains which require the agent to change its mode of behaviour multiple times in

order to achieve the goal. We follow up in Chapter 6 by introducing a method that learns piece-

wise policies that can more reliably learn to solve problems that require multiple modes of agent

behaviour. This new method, BLPP, is particularly useful for the application of learning from

trajectories produced by a planner as it can learn from demonstration trajectories that are partial

or generated on an relaxed version of the environment, and does not require the demonstration’s

actions, rather it only requires the demonstration’s states. In summary, the key contributions of

Part 2 include,

• an investigation of the generality of backwards learning methods, including the e�ects of

exploration bonus terms,

• introducing a novel method to partition the state space symbolically into polytopic regions

from which di�erent sub-policies are learnt,

• defining a general domain-independent cost function to define the problem solved by each

sub-policy,

• introducing an e�cient method to select starting states, exploiting the compact represen-

tation of state regions as polytopes, for policy iteration.
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8.1.3 Learning heuristics through symbolic regression

Part 3 investigated the research question of "To what extent can learning with symbolic regression

produce useful cost-to-go approximations?". Chapter 7 introduced the N-RSL method that uses a

regression search to teach a SL algorithm to learn cost-to-go approximations. Our experimental

analysis showed that these N-RSL learnt cost-to-go approximations can provide useful signal to

forward-based search planners. In summary the contributions of Part 3 include,

• defining a new novelty measure for regression based search,

• introducing a new method for training NN defined heuristic functions,

• investigating exact versus approximate methods for learning heuristic functions.

8.2 Future research directions

Here we detail a few future work directions that arise from the work presented in this thesis.

8.2.1 Extension of Critical Path Learning to stochastic settings

While our work in Chapter 3 extended width-based planning algorithms to a stochastic setting,

we only presented results of the width-based planning and learning method, N-CPL, in Chapter 4

on a deterministic setting. Open questions remain about the ability of width-based planning and

learning methods like N-CPL to generalise to stochastic settings.

8.2.2 Connections between RL exploration and width-based planning methods

In Chapter 5 we explored and discussed a number of exploration methods that are readily used by

RL algorithms. Additionally, we discussed across Chapters 3, 4 and 7 the ability of width-based

novelty planning methods to encourage exploration through aiming to maximise the structural

diversity of transitions visited. The novelty measures described in 4.3.1 are similar to the intrinsic

reward exploration bonuses for RL discussed in 5.3 in that they use information about the states

previously visited by the agent in order to encourage exploration. The relationship between these

measures has not yet been defined or explored and in doing so may provide meaningful insights

into the interface between planning and learning methods.
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8.2.3 Potential heuristics approach for RSL

In Chapter 7 we presented and discussed the initial results of the N-RSL method using a

simplified heuristic function representation of the weighted sum of boolean facts instead of a

NN. One advantage of the simplified heuristic function representation is that its parameters

can be optimised using linear programming methods rather than the approximate approaches

required for NN functions. There are a number of di�erent research directions to extend upon

this initial work, perhaps the most promising is to incorporate the constraints that previous work

have defined (Pommerening et al. 2015), which can be used within the linear program to ensure

the learnt heuristic is consistent and goal-aware.

8.2.4 N-RSL follow-ups and extensions

In Chapter 7 we showed that the introduced RSL and N-RSL methods can learn useful heuristics

for the benchmark set of problem instances within an average training time of around 30 minutes.

Given that the IPC satisficing track (discussed in 2.5.4) uses a time budget of 30 minutes, it may be

insightful to benchmark the N-RSL method using the IPC satisficing track evaluation protocols.

For example, N-RSL could use 24 minutes to train a heuristic function for the given instance and

then the remaining 6 minutes for planning with the learnt heuristic.

While the heuristics learnt by the RSL methods generalise over di�erent initial states of an

instance they do not generalise over di�erent goals. One way RSL could be extended to

generalise over di�erent goals is to learn a unique heuristic function for each possible single

atom goal. Once a heuristic is learnt for each single atom goal, the relevant heuristic function

for an instance can be calculated from the single atom goal heuristics, using approximations for

multiple atom goals similar to the approximations used by the ⌘max or ⌘add (Bonet, Loerincs,

and Ge�ner 1997) functions. We hypothesise that the influence of the novelty mechanism in

N-RSL will also have a greater influence on the success of RSL learning useful heuristics for

single atom goals, as Lipovetzky and Ge�ner (2012) showed that width-based forward searches

can quite e�ectively achieve single atom goals.



Appendix A

Imitation learning results separated

out over demonstrations

In Chapter 6 we report the figures with the averages and 95% confidence intervals over every

combination of trial and demonstration for each domain. Here we show the results using the

same figures but separated out for each demonstration in Figures A.1, A.2, A.3, A.4, A.5 and

A.6.
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F����� A.1: Mobile-Robot results for each demonstration, percentage of evaluation episodes
successful verses the evaluation horizon.
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F����� A.2: Mobile-Robot Obstacles results for each demonstration, percentage of evaluation
episodes successful verses the evaluation horizon.
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F����� A.3: Mobile-Robot Obstacles Stay in Goal results for each demonstration, percentage
of evaluation episodes successful verses the evaluation horizon.
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F����� A.4: CartPole results for each demonstration, percentage of evaluation episodes
successful verses the evaluation horizon.
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F����� A.5: Mountain Car results for each demonstration, percentage of evaluation episodes
successful verses the evaluation horizon.
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F����� A.6: Mountain Car Continuous results for each demonstration, percentage of
evaluation episodes successful verses the evaluation horizon.
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