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Abstract

This work explores the use of Reinforcement Learning as a tool for designing policies for
systems under uncertainty. Our research investigates the efficacy of Reinforcement Learning
to design policies, and how Dynamic Adaptive Policy Pathways (DAPP), can improve the
quality of Reinforcement Learning derived policies in uncertain systems. The Victorian
electricity market is used as a case study, where policies have been designed to support
the transition to an environmentally sustainable future. A novel integration of the DAPP
framework into Reinforcement Learning algorithms is proposed, to bolster the efficacy and
robustness of Reinforcement Learning derived policies. Experimentation is also performed
to better understand the Multi-Objective Evolutionary Algorithms (MOEAs) used by the
DAPP framework to computationally design its policies. Our discussion on MOEAs evaluates
what strengths they provide the DAPP framework for developing robust policies, and their
implications for our proposed DAPP-Reinforcement Learning method.

A comparative analysis is conducted on the quality of policies designed using only Reinforce-
ment Learning techniques, compared to policies designed using our DAPP-Reinforcement
Learning method, in addition to various baseline policies. Our results show policies designed
by the DAPP-Reinforcement Learning method on average increase Victoria’s renewable elec-
tricity utilisation by 23%, and decrease household greenhouse gas emissions by 28%, when
compared to the policies derived via only Reinforcement Learning algorithms. Through crit-
ical analysis of the results, this work conveys how the strengths of the DAPP framework
can be combined with Reinforcement Learning to develop more robust policies for systems
under uncertainty.
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Chapter 1

Introduction

1.1 Background

Propelled by the depletion of fossil fuel reserves and environmental activism, a global rev-
olution in the electricity sector is beginning to take place [1]. A key component to this
revolution, is the rapid elimination of fossil fuel dependency, and uptake of renewable elec-
tricity sources.

Such transitions, also known as Sustainability Transitions, involve the transformation of
existing infrastructural, economic and social systems, to a state that promotes the use of
sustainable electricity sources [2]. To encourage these transitions, governing bodies seek
to design policies using socio-economic tools such as financial investments, subsidies, and
tariffs to embrace renewable electricity sources in society [3]. Typically, governing bodies
target shifts in an infrastructural or economic fashion, such as reducing costs for renewable
electricity [4], however, it has been argued in order to truly see significant transformations,
shifts in social conditions such as consumer behaviour, or social acceptance of renewable
electricity sources are required [4].

The diversification of electricity sources increases the heterogeneity of the sector, causing
inherent complexities and uncertainties of the electricity sector to increase [5]. In addition,
electricity sources are heavily influenced by many uncertain factors, ranging from social,
political, economic, and technological [6]. This presents a significant challenge for governing
bodies to adapt operation and management policies to compensate, a problem described as
the “wickedness” of public policy [7]. When devising policies using quantitative methods,
governments seek evidence-based insights, often by developing computational models, which
can be extremely challenging for real-world systems. These models are then used to establish
a set of strategies and policies to drive and to support targeted outcomes [1].

Forming a single computational model to use as a foundation for making predictions cannot
appropriately manage the “wickedness” in planning of electricity transitions [8]. It is based
on historical trends, or a limited number of speculated future scenarios, resulting in devised
plans to fit these limited trends or scenarios [9]. Such restrictions on the breadth of plans
can lead to undesired outcomes, with a notable example in poorly estimating electricity
consumption and demand as a basis for tax incentive for renewable electricity, resulting in
an economic climate that stunted renewable electricity growth [10].
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Exploratory Modelling (EM) has presented itself as a computational aid for broader in-
vestigation into the field of Sustainability Transitions [8], as well as being a well-known
method for assisting policy design under uncertainty [11]. EM provides a means to system-
atically explore the consequences of different parametric and non-parametric uncertainties of
computational models [8]. Despite the potential advances posed by EM for literature in Sus-
tainability Transitions, it still is a relatively unexplored area, with few papers contributing
to the space [12]. As computational power has increased over time [13], Machine Learning
has made significant contributions to system modelling and predictions. Machine Learning
algorithms are able to vastly increase the utility of historical data, even in systems with un-
certain dynamics [14]. Within the plethora of Machine Learning algorithms, Reinforcement
Learning (RL) has been shown to be suitable for the control and optimisation of real-world
systems by using historical data and system simulations. [15].

RL techniques have been used to model and mimic human policy design in complex envi-
ronments [16], highlighting a potential use of RL in further assisting human policy-makers,
particularly, how RL can assist in the policy design process. There is a plentiful collection of
RL and electricity market literature, with past papers seeking to use RL to maximise profits
for participants in electricity markets [13]. Despite this, there exists a gap in investigation
of how RL can be used to regulate an electricity market [13], and further, how RL can be
used to influence the market to promote renewable electricity sources.

Within the literature of Sustainability Transitions modelling, EM is a prevailing compu-
tational technique [17] for assisting in the policy design process, as it effectively produces
insights to assist policy design by enumerating over possible futures of a given model [9].
Conversely, RL seeks to directly learn a policy [16], by repeatedly interacting with a model
to maximise some reward. Despite these differences, both techniques share a common do-
main, to assist in the exploration and development of solutions to managing complex models.
The use cases of both EM and RL are still being widely explored, and notably, no efforts
have been identified that explore if EM and RL are able to be utilised as complementary
techniques within a wider scope of solving the problem of policy design.
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1.2 Research Questions

This project intends to explore the design of policies for Sustainability Transitions in elec-
tricity markets. Specifically, this project aims to address the gap in integration between
EM and RL, by evaluating how RL agents can be used with EM techniques in the process
of policy-making under deep uncertainty, using a case study of the Victorian energy mar-
ket. A key concept for the co-operation between EM and RL is the policy pathway: the
concatenation of multiple policy actions over time, where policy actions may be introducing
new taxes, laws, or subsiding certain technologies. By employing EM techniques to produce
a suite of optimised policy pathways as the action space for the agent, this study seeks to
assess whether pre-processed optimised policy pathways can improve the quality of an RL
agent, by providing a guide on what actions to take to lead to a desirable outcome. By
integrating EM and RL, this study aims to provide a foundational piece of literature for the
combination of EM and RL, and motivate further research into their integration.

Two motivational questions have been defined to guide the research aims of this study:

• RQ1: How can Reinforcement Learning algorithms regulate an electricity market mod-
elled as a Markov Decision Process, to support the policy design for transitioning to
sustainable electricity sources?

• RQ2: Can Exploratory Modelling combined with Multi-Objective Evolutionary Al-
gorithms improve the quality of Reinforcement Learning derived adaptive policies in
deeply uncertain systems?

This thesis is structured as follows. First, a review is completed on the current state of EM
and RL in published literature (chapter 2), followed by a research plan (chapter 3), with
discussion of the experimental process, and how the results will be analysed. Discussion
on the computational model and its preparation used for answering the research questions
is conducted in chapters 4-6. The experimentation and analysis of the novel integration is
presented in chapters 7 and 8. A critical evaluation of this study’s findings and concluding
remarks are detailed in chapter 9.
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Chapter 2

Literature Review

2.1 Introduction

Traditionally, policy-makers in complex real-world domains such as water management and
transportation assume that the future can be predicted [18]. However, problems currently
faced by policy-makers are increasingly defined by uncertainties about the future that cannot
be reduced by gathering more information and are not statistical in nature [19].

These uncertainties may encompass a myriad of external factors, such as climate change,
population growth, new technologies, economic developments, and their impacts, with such
degrees of uncertainty having been defined as deep uncertainty. Formally, Maier et al. [20]
described deep uncertainty as a condition when policy-makers are not able to agree upon, or
do not know 1) appropriate computational models to describe a system’s dynamics, 2) the
probability distribution to capture the possible variation about certain parameters in the
model, 3) or how to measure the utility of model outcomes.

A key challenge encountered by policy-makers faced with deep uncertainty, is if the future
does turns out to be different from the predicted futures, policies are susceptible to failure
[21]. As the future unfolds, any phenomena encountered that were not considered in the
original policy design are compensated ad-hoc, a cumbersome and undesirable approach to
dealing with unforeseen conditions [22]. Policies that are able to adapt to changing and un-
foreseen conditions are well suited to planning under deep uncertainty [23]. A policy planning
paradigm that holds this value has emerged, known as adaptive planning. Adaptive plans
are developed with the recognition that when faced with uncertainty, one needs to design
policy plans to compensate for unforeseen real-world phenomena [24, 25]. Adaptive plans are
designed to deal with contingencies as new data and information presents itself, mitigating
the ad-hoc nature of making policy changes in traditional policy planning [22].

In the field of Sustainability Transitions, a research area frequently facing deep uncertainties,
EM has emerged as an over-arching framework for assisting in the development of adaptive
policy-making, and has received wide adoption into Sustainability Transitions research [22,
23]. Conversely, the rise of Machine Learning, and the emergence of RL has reached a wide
range of different research domains, and have gathered the attention of researchers as a
framework for developing policies in complex systems [26].
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2.2 Exploratory Modelling

Developed at the RAND corporation [27] in 1992, Exploratory Modelling (EM) defines a
process for how traditional computational models can be employed to support policy-making
for systems with high complexity, and deep uncertainty. Central to EM is the ideal that any
formal model developed is not an effective predictive model, and to discard any beliefs that
a single model is sufficient. Instead, EM sees a formal model as a foundation to facilitate
exploring over the range of possible values for uncertain aspects in the model, by computing
vast numbers of computational experiments over the uncertain values.

Bankes proposed one of the uses of EM, known as data-driven EM, which pertains to seek
out phenomena of interest within the system, such as what conditions lead to a specific
outcome [27]. An example of data-driven is using EM to learn what circumstances lead to a
worst-case outcome (worst-case scenario discovery [28]).

EM techniques have been widely employed in research as a support for policy-making in
deeply uncertain real-world systems [29]. Its key strength to promote and guide the explo-
ration of a deeply uncertain model has made it alluring to researchers in policy-design within
complex real-world systems [29]. An example by Watson et al. [30], employed an EM tech-
nique, known as Scenario Discovery to conduct a vulnerability assessment as an analytical
component of identifying preferred policies in many-objective optimisation problems.

The integration of EM has introduced novel methods to support policy-design, divided into
two frameworks [31]. The first, adaptation frameworks, whose primary focus is to promote
flexibility in policy design, and support the development of adaptive policies. The second,
robustness frameworks, that principally support the design of static policies that operate
desirably over a wide possibility of uncertain outcomes. The literature of several of these
techniques have been reviewed and is presented over the following sections to further under-
stand how EM has been used for adaptive policy-making under deep uncertainty.

2.2.1 Dynamic Adaptive Planning

Dynamic Adaptive Planning (DAP), designed by Walker et al. [24], is a foundational tech-
nique to the problem of adaptive policy design under deep uncertainty, and considered to
be an adaptation framework. The ethos of this policy design approach explicitly considers
policies will need to adapt to compensate for how the future unfolds.

DAP has been highly adopted in the literature as a supportive framework for policy-making
in deeply uncertain environments, and operates at a high-level as follows. After developing
a policy for a problem, researchers assess the quality of the policy via EM, conducting large-
scale computational evaluations of potential future outcomes, and recording the policy’s
impact, particularly noting what conditions caused the policy to fail (data-driven EM). The
policy is then updated to compensate, and the cycle is repeated until a policy of a desired
quality is reached. Examples of DAP include planning for congestion road pricing [32], rail
transport organisation [32], and urban transport infrastructures [33].
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Despite its integration in academia, a reason for why DAP and the wider concept of adaptive
plans had not been widely integrated in real-world practice was due to a lack of testing of
the validity and applicability of these new planning approaches [34, 35]. Kwakkel et al. [36]
sought to address this issue by assessing the efficacy of a DAP approach for guiding the
long-term development of infrastructure of the Schiphol Airport in the Netherlands. This
particular case study faced deep uncertainty including future travel demands, population
growth, political and economic climates, and changing climate conditions.

The authors created a traditional static policy, and an adaptive policy derived via the DAP
methodology. By utilising EM to assist the adaptive policy to explore over the possible
futures of the airport, they were able to demonstrate the potential implications of actions
made by the adaptive policy, and were able to change according to this feedback. The results
indicated that the adaptive policy provided more favourable outcomes in a wider spectrum
of the possible future scenarios, helping to cement the applicability of DAP for real-world
policy-making.

DAP is one of the core concepts supporting the directions of this study. It has demonstrated
its applicability in real world systems [32, 33], and provided a guiding framework for further
research into adaptive planning. It does however, rely solely on human policy-makers to
design, identify, and construct all components of the policy. Particularly, through each
iteration there is a human choice on how to change the adaptive policies for a wider range
of favourable outcomes. An alternate policy-making technique exists, that employs EM
to computationally optimise each iteration of the policy-making process, known as Robust
Decision Making.

2.2.2 Robust Decision-Making

Robust Decision Making (RDM), is a methodology that was designed to restructure the role
of computational models and historical data for policy-making in deep uncertainty, resulting
in static robust plans [37]. It combines a policy design techniques known as Assumption-
Based Planning [38], with EM to pressure test policies over a plethora of future scenarios. A
robust policy is one that performs well, compared to the alternatives, over a wide range of
plausible futures [9, 39]. RDM’s application has extended to develop management policies
for many deeply uncertain real-world systems, including urban water infrastructure [40–42],
flood risk [43], and electricity resources [44].

Using the ideology of EM, RDM explores different possible future scenarios to provide a
platform for rigorous investigation of computational models. By doing so, RDM assists in
identifying a plan that performs adequately over a wide range of potential futures, supporting
the notion of robustness in an identified plan. RDM is often used in combination with EM
to help enumerate the plethora of potential future scenarios, to assist in identifying and
mitigating the conditions that would cause a given policy to fail, in line with Bankes’ data-
driven use for EM [9, 41].
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RDM’s strength lies in its optimisation process to assist in developing a single robust plan
that will perform adequately in a wider range of scenarios. This optimisation does not come
without cost, robustness itself is not a definitive metric, there are multiple ways of measuring
if a plan is robust, with each measure having its own trade-offs, and a high computational
cost [45]. Regarding the static nature of RDM, in the realm of deep uncertainty, non-static
plans are susceptible to failure [46]. This is a fundamental manner to which RDM differs
from DAP, and DAPP (section 2.2.4). It does not consider any adaption of the plan over
time, whereas that is the crux of DAP and DAPP. This is a comparative weakness for RDM’s
applicability to deeply uncertain problems.

2.2.3 Many Objective Robust Decision-Making

As previously stated, computing policies via RDM is computationally too expensive, with op-
timal solutions often becoming intractable for many-objective problems in complex systems
[47]. Multiple different solutions have been developed to translate multi-objective problems
to single-objective, such as the utility function method, weighted sum approach, goal pro-
gramming, and lexicographic method [48–51]. These approaches require input for weighting
the different objectives against each other, causing concerns for bias to be present [50].

Kasprzyk et al. [47] utilised Multi-Objective Evolutionary Algorithms (MOEA) to assist in
the computational process for RDM to allow for a new method of identifying robust poli-
cies for systems under deep uncertainty. Named Many-Objective Robust Decision Making
(MORDM), it allowed policy-makers to generate a suite of policies to assist policy-makers
to select a policy that performed well under a wide range of future scenarios. Using a case
study for water management in the Lower Rio Grande Valley in Texas, USA, their work
demonstrated MOEAs were able to produce computationally tractable sets of policies, each
optimised to operate robustly.

Kasprzyk et al.’s direction into using MOEAs presented a new way for how RDM could
be incorporated into policy-making, as its potential intractability was mitigated. Hamarat
et al. [52] utilised MORDM, in conjunction with past DAP literature, to marry the two
policy-making frameworks, aptly titled Adaptive Robust Design (ARD). Using the European
Union’s electricity market carbon emission scheme (ETS) [53], Hamarat et al. demonstrated
how ARD was able to produce more desirable outcomes over the potential futures of the
EU market, compared to the existing ETS policy, and a policy derived purely by the DAP
framework. Their key finding was that the robust optimisation generated by MORDM
allowed for a wider range of favourable outcomes, compared to non-robust policies.

Hamarat et al.’s case study demonstrates the aims of this research to explore adaptive
policies in transitions of electricity sectors are well founded in literature, and also provides a
strong basis for the gaps in research to be addressed. ARD generates a collection of robustly
optimised adaptive policies, which are used by policy-makers to interpret the potential future
policy pathways they may follow to reach some outcome. Each policy that ARD generates
is distinct, there is no option within this framework to choose one policy, and then change
it later. This lock to a given plan can be mitigated through an emerging policy planning
paradigm, Dynamic Adaptive Policy Pathways.
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2.2.4 Dynamic Adaptive Policy Pathways

Dynamic Adaptive Policy Pathways (DAPP) [54] combines two bodies of literature on plan-
ning under deep uncertainty: adaptive policy-making and adaptation pathways [24, 55, 56].
DAPP supports the exploration of a wide variety of relevant uncertainties in a dynamic way,
connecting short-term targets and long-term goals, by identifying short-term actions while
keeping options open for the future.

DAPP is described as a more complex and rigorous framework to assist the formation of
high quality adaptive strategies for human planners facing deep uncertainty [54]. DAPP
was designed with the realities of government-level management in mind, particularly, the
notion of unstable political environments, and the possibility of different people managing a
policy. It supports this instability by allowing policy-makers to understand how long different
short-term decisions can be postponed before jeopardising long-term goals, allowing for more
flexibility in short-term actions.

Arguably, the greatest contribution from DAPP was the introduction of the Metro Map
(figure 2.1), a visual representation of the different potential policy pathways, and how they
are able to interact. This map is intended to be a guide for policy-makers to navigate, and
to understand how they may adapt their plans as time progresses.

Figure 2.1: A simple Metro Map generated by DAPP [54].

Whilst the map is highly useful as a final product, its creation requires addressing of the
multiplicity of potential policy actions combinations, or visually, traversing the final Metro
Map. The Metro Map represents policy pathways to be followed over time, with the vertical
axis representing the current policy action taken. Transfer stations exist between policy ac-
tions to represent the opportunity of taking a new policy action, and simultaneously retiring
the current policy action.
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There are two main challenges for identifying the policy pathways to use for constructing a
Metro Map: selecting pathways from a potentially infinite collection of possible pathways;
and ensuring identified pathways are robust to the uncertainties in the system. A solution to
the first challenge was addressed by Kwakkel et al. [57], based off Kasprzyk et al. [47] work
using MOEAs, Kwakkel et al. integrated MOEAs to develop a set of non-dominated policy
pathways, then aggregated them into a single map. Notably, this is an effective aggregation of
pathways developed by Hamarat et al.’s MORDM [52], addressing the weakness in MORDM
on how to combine and change between different policy pathways found by MORDM.

The results of Kwakkel et al. [57] work are promising for the direction of this research.
DAPP was shown to not only incorporate the fundamental adaptive policy techniques from
DAP, but also included RDM and the extension of MORDM to incorporate the notion of
robustness into planning. However, as noted in the concluding remarks of [57], like all
methodologies compared in this review, it does not provide guidance on how to best utilise
its deliverable map. Accordingly, a challenge of DAPP, deciding which pathway to traverse,
and methodologies to assist in this final decision process, are still an open problem for DAPP,
and the wider community of policy-making under deep uncertainty.

2.3 Reinforcement Learning

Reinforcement Learning (RL), a Machine Learning technique, is concerned with designing
intelligent agents to learn what actions to take in a given environment to maximise a mea-
surable outcome (reward). RL is able to elicit system dynamics knowledge from historical
data by interacting on a continual basis with an environment, effectively, learning by doing.
It is able to mitigate dependencies on traditional computational models by learning a proxy
model [16], or via a process known as Batch RL [58].

This approach to learning by doing has highlighted RL’s ability to imitate human-level
decision capabilities, spurring research into its applicability in different sectors. Prominent
sectors that have adopted RL include autonomous robotics, communications networking,
and biological data manipulation [59–61].

2.3.1 Electricity Markets

Due to ever increasing complexities ranging from environmental to political factors, and the
resultant uncertainties from a diverse system, a systematic shift in the archetype of electricity
management problems has been suggested necessary to keep up with system complexities
[62], prompting a surge in research for new methodologies, notably, the adoption of RL into
the domain space.

Specifically regarding the open electricity market, these rising inherent complexities have
motivated exploration into more sophisticated approaches to market participation (bidding)
strategies, to maximise profit for electricity generators in these deeply uncertain environ-
ments. RL has been strongly embraced into research for the management and optimisation
of market participants [13, 63–65].
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A key example for the basis of this study’s research aims, Subramanian et al. [66], focused
on the problem of maximising the profit of a given generator participating in a single-sided
electricity market. By utilising historical logs to model the Australian National Energy Mar-
ket, they were able to leverage the model to train an RL agent to learn bidding strategies to
maximise profit via the RL technique known as Deep Q-Learning (DQN) [67]. Subramanian
et al. utilised DQN for its ability to handle models with continuous state spaces. For a given
generator bidding in the electricity market, they were able to demonstrate their RL agent
received higher returns over a given time period, compared to the generator’s historical val-
ues. Subramanian et al.’s approach to modelling the Australian National Energy Market
provides a sound basis of literature for the model required for this study.

Despite these advances into RL applications for electricity markets, there is an abundant
lack into investigation of its application to a market regulator. Past papers are concerned
with maximising profits for generators [13], and do not consider how RL can assist in market
regulation in transitions to renewable electricity sources, a gap intended to be addressed in
this study.

2.3.2 Adaptive Policies

In stochastic systems, such as electricity markets, adaptive policy problems can be mathe-
matically modelled using Markov Decision Processes (MDP) [68, 69]. MDPs are stochastic
processes that satisfy the Markov property (the future depends only on the present [70]),
and assign different rewards/costs for a system transitioning from one state to another [71].
MDPs are of significant value for RL approaches to adaptive policy-making, as MDPs are
an extremely common way to frame RL problems [16].

Designing an MDP to model a system with uncertainty diverges from MDP modelling ap-
proaches where the system is fully observable, due to values of model parameters, or even the
true dynamics of the model being uncertain to the policy-maker [72]. Within MDP litera-
ture, MDPs developed within partially observable systems are known as Partially-Observable
MDPs (POMDP) [73], where probability distributions of uncertainties in the system are mod-
elled directly into the state of the POMDP. Chades et al. [74] argued when designing models
under deep uncertainty, the uncertainty is around the value of parameters of the model,
known as parameter uncertainty in the literature for MDP adaptive management [73].

In MDP modelled adaptive management problems, the task to resolve parameter uncer-
tainty is to manage the system while simultaneously learning the value of the parameter to
improve future management decisions. Walters et al. [75] developed one of the first, and
widely adopted techniques for parameter-uncertain models, by taking advantage of updating
prior and posterior beliefs of uncertain parameters in managing fisheries. This approach
utilised a normal distribution to determine uncertain parameter values, in combination with
environment variations, presenting a posterior normal distribution for uncertain parameters.
The advantage of this approach was the ability to design a closed-form posterior distribution,
removing the computational need for simulation methods. Their method has been adopted
in multiple studies pertaining to adaptive policies in deep uncertainty [76–78].
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Abstracting from the modelling process, further literature has been reviewed pertaining to
the specific application of RL in developing adaptive policies. Huang et al. [79] advocate DQN
as a RL algorithm for efficiently solving an adaptive policy problem for a smart-grid, a new
electricity network framework designed to take advantage of computer assisted monitoring
[80]. The result of Huang et al.’s study was a novel control system, that leveraged the feature
extraction capabilities of DQN, and its functionality to generalise complex, and uncertain
systems that were modelled as MDPs. Huang et al.’s research into using RL for electricity
management is not isolated, with multiple other papers [81–83] employing DQN for adaptive
management, further demonstrated the utility of DQN for adaptive management problems
in deep uncertainty.

Zhang et al. [84] alternatively approached their adaptive management using the Deep De-
terministic Policy Gradient (DDPG) algorithm to train their RL agent. In Zhang et al.’s
study, they sought to develop a data-driven approach for the adaptive management for a
wind turbine, a problem plagued with many environmental and economical uncertainties.
Compared to DQN as employed by [79], DDPG is more suited to problems with large action
spaces [84].

The reviewed literature pertaining to adaptive management for RL has highlighted the two
gaps to be addressed in this study. Firstly, the lack of research into RL based adaptive
management for electricity market regulation, and a further extension, how a RL based
adaptive policy can regulate the market to support a transition to renewable electricity
sources. Further, the abundance of papers demonstrating the efficacy of modelling these
problems as MDPs and RL techniques for solving adaptive management problems reinforces
this study’s utilisation of RL to regulate the electricity market.

2.4 Conclusion

Regarding EM techniques, five extant approaches were identified, Dynamic Adaptive Plan-
ning, Robust Decision Making, Many-Objective Robust Decision Making, Adaptive Robust
Design, and Dynamic Adaptive Policy Pathways. Dynamic Adaptive Planning, as well as
Robust Decision Making both demonstrated their own individual merits, but these early
techniques have been improved and extended to develop newer approaches such as Adaptive
Robust Design and Dynamic Adaptive Policy Pathways. The incorporation of MOEAs to
policy-making by [47] has provided a strong foundation into new approaches to developing
policies, with the notable uptake in the DAPP process. MOEAs in combination with DAPP
will assist in developing effective policies for the case study of this research.

For RL, the established literature around the electricity market for bidding strategies, as
opposed to regulatory policies demonstrates a gap in research for investigating the potential
use of RL for the case study in this paper. By reviewing past methods to design adaptive
policies for deeply uncertain systems, this review learned of the employment of Markov
Decision Process models, and their frequent use with RL for developing adaptive policies.
This investigation into MDPs for adaptive policies will have a high utility when designing
the models required for this study.
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Chapter 3

Research Methodology

To effectively address the research questions, a detailed plan has been proposed that will
guide this study, with the support and justification of previous literature. The experimen-
tation will require a simulation model of the National Electricity Market (NEM), the speci-
fication of how to measure the NEM performance, and policy actions to influence the NEM.
Once the simulation model has been prepared, a RL agent, and an EM assisted RL agent will
be generated, and their efficacy will be tested and evaluated. This research methodology will
outline how the electricity market will be modelled, the manner in which the adaptive-policy
problem will be designed, the way EM will interact with RL, and how data will be generated
and analysed to answer the research questions.

3.1 Integration of Exploratory Modelling

To address the research aims, specifically, how EM can aid RL, this study intends to explore
the potential use of EM generated policy pathways. ARD and DAPP, both produce a suite
of potential policy pathways for policy-makers to review, and use as a guide. The policy
pathways ARD and DAPP produce are created via MOEAs, which explore the possible policy
pathways (policy space), and optimise the returned pathways for robustness accordingly to
some multi-objective goal. For policy-makers, this can be rationalised as pre-processing the
space of all possible policy pathways, and removing undesirable pathways from the final
consideration.

However, we postulate that this pre-processing of the policy pathway space, is analogous
to pre-processing the action space for an RL agent. For an RL agent, the action space is
equivalent to the policy pathway space for the EM frameworks: a concatenation of RL agent
actions over time. By producing a suite of already optimised policy pathways as the action
space for the agent, this study seeks to assess whether the pre-processed optimised policy
pathways can improve the quality of an RL agent, by providing a guide on what actions to
take to lead to a desirable outcome.
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As identified in the chapter 2, each policy that ARD generates is distinct [52], there is no
option within this framework to choose one policy pathway, then change later. The pre-
processing provided by ARD simply reduces the action space to a set of distinct paths, and
thus the agent’s action space is to choose a path at the first timestep. After choosing a path,
the agent is no longer required, and the policy actions in the pathway are executed according
to the pathway.

Contrarily, DAPP addresses this single pathway lock-in by producing a Metro Map (figure
2.1) to interweave adaptive policy pathways where possible [57], providing greater flexibility
and control for policy-makers to change pathways where permitted. As such, the DAPP
pre-processes the action space to a more dynamic action space, where decisions and changes
can be made along policy pathways. Translating this to the context of a RL agent, the Metro
Map represents the possible sequence of actions RL agent can make, with the multiplicity of
sequences made possible by different pathways in the Metro Map.

Roughly, the problem is reduced to navigating through theMetro Map that DAPP generates,
in order to reach a final state that maximises performance indicators. From this comparison,
this study investigates the use of DAPP to provide the most effective framework for assisting
RL in generating an adaptive policy, as it can provide a non-deterministic policy pathway
after the first timestep, allowing for more in-depth exploration into the use of EM in RL.

3.1.1 Implementation of Dynamic Adaptive Policy Pathways

This study will seek to follow the computational procedure for developing DAPP by Kwakkel
et al. [57], proposed by the same authors of the original DAPP paper [54]. Kwakkel et al.
outline the steps required to explore and optimise a set of policy pathways for an adaptive
policy problem. In addition, they provide justification of the MOEA they employed, the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [85], which was cited to be well-known
and applied to a wide range of problems [86].

Since the original paper by Kwakkel et al. [57], a new technological platform has been
developed by Kwakkel et al. to further assist in the computation of EM. An application
written in the Python programming language [87], titled the Exploratory Modelling and
Analysis (EMA) Workbench, aims at providing support for performing computational EM
with models developed in various modelling packages and environments. Since its inception
[88], the workbench has been an integral part in many papers using EM [52, 54, 89, 90],
and has proven to be an effective tool to assist in computational implementations. For
the purposes of this study, the workbench also possesses features for experimenting with
MOEA algorithms, providing a simple computational interface for developing the DAPP
pathways.
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3.2 National Electricity Market

The National Electricity Market (NEM) [91] is a wholesale electricity exchange for the five
Australian states of Victoria, New South Wales, Queensland, South Australia, Tasmania, and
the Australian Capital Territory. The market operates as a spot market, where electricity
supply and demand is matched instantaneously through a centralised dispatch process.

Electricity generators submit bids to supply the NEM with specific quantities of electricity at
a pre-determined price of their choosing. Every day, a generator submits a series of bids to the
NEM, with each bid corresponding to the demand required in a given five-minute interval
over the following twenty-four hours. Using all the received bids, the Australian Energy
Market Operator (AEMO) determines which bids will be accepted to produce electricity,
with the smallest price bids accepted first. This ordering of accepted bids is known as a
merit-order. The NEM is designed to attain its demand requirements over the following
twenty-four hours in the most cost-effective manner possible. Once enough bids have been
cleared to meet demand requirements, AEMO provides each generator with a schedule for
when they are permitted to generate electricity, according to the respective successful bids
of each generator. For every five-minute interval, AEMO determines a uniform price, known
as the dispatch price, according to the successful bids for that interval. Six dispatch prices
are averaged every half hour to determine the spot price. The spot price is used as the basis
for financial settlements for all generators in the market.

3.2.1 Modelling the National Electricity Market

A recent study by Rojas-Arevalo [92] has shown generators in the context of the NEM,
follow bidding strategies defined in terms of their levelised cost of electricity, nameplate
capacity, and other generator specific attributes, to a degree close enough to reproduce actual
historic bidding trends. This study will incorporate a computational model of the Victorian
electricity network within the NEM, developed by Rojas-Arevalo [92] for their investigation
of socio-technical layouts of electricity systems, and their impacts on sustainability [93]. This
model was generated using relevant NEM data obtained from a wide variety of government
sources, including AEMO, the Australian Bureau of Statistics, and the Australian Bureau
of Meteorology. The breadth of data sources provided Rojas-Arevalo a rich repository to
create and model the NEM, whilst taking into account environmental and socio-economic
factors.

Rojas-Arevalo utilised Agent Based Modelling (ABM) [94], a paradigm of computationally
modelling for simulating interactions between different entities, with the aim to evaluate the
effects of their interactions on the simulation environment as a whole. ABM provided Rojas-
Arevalo with the ability to simulate participants in the NEM, and specify their attributes
and behaviour using historical values for their generator specific attributes. In addition,
the wider simulation program was designed with the ability to input all potential market
parameters features, including those not known by generators, such as thresholds for policy
actions, and impending tax adjustments.
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This greater breadth of parameters provided the model with the capability to generate a wide
variety of potential dynamics and outcomes. Accordingly, the complexity of such a model’s
behaviour can be effectively utilised to represent a deeply uncertain system, by varying
the combination of input parameters. Rojas-Arevalo’s formalisation of generator allows for
effective forecasting of NEM electricity demands and behaviour, from 2020 to 2050. This
will be of high utility for this study, as it will provide an environment to explore and design
policies for future market conditions, through the use of both RL and EM techniques.

3.3 Formalisation of the Adaptive Policy Problem

Adaptive policy problems, as shown in the literature, can be mathematically modelled using
Markov Decision Processes (MDP) [68, 69], a common way to frame problems to be solved by
RL [16]. As learned in the review, many past studies have utilised MDPs to mathematically
describe adaptive policy problems, and as such provide sufficient evidence MDPs are an
appropriate representation for the adaptive policy problem. The output data from Rojas-
Arevalo’s simulation model will provide a reference set of data to model the state of the
simulation system at a given time point. The formal description of the system state will be
designed to provide sufficient statistics [73] for an RL algorithm to determine the best way
to interact with the simulated system.

3.3.1 Policy Actions

As the case study seeks to simulate a real-world market, careful consideration needs to be
made when determining what actions would be evaluated in the model. Key factors to
consider for policy actions include feasibility, cost, applicability, and impact [95]. Previous
real-world case studies have employed expert knowledge [54, 96] to effectively determine the
best ways to interact with the simulation. An alternative method amongst the reviewed
papers, was to use publicly available documentation from official government bodies, as
well as independent government-commissioned recommendations for different approaches
to interact with their system [26, 64, 66, 97]. Due to time constraints of this research
body, this study will consult publicly available government and independent documentation
pertaining to potential market mechanisms that can be applied to the generators to influence
their behaviour. Several documents from AEMO, the Victorian state government, and the
Australian Energy Regulator have been identified, providing a preliminary basis for policy
action development. Examples from these documents include subsidising operational costs of
generators, restricting a generator’s ability to participate in the market, and carbon emission
related taxes.

In respect of the ethos of Sustainability Transitions literature, the performance indicators of
the MDP will be inspired by Rojas-Arevalo’s study [92], specifically, greenhouse gas emission
levels, the percentage of renewable electricity in the NEM, wholesale electricity prices, elec-
tricity tariff prices, and the number of unmet demand days (detailed in chapter 4). These
will provide the means to measure an overall goal to minimise both environmental and eco-
nomic impacts for any policies implemented, and support exploring a transition to a larger
share of renewable electricity sources.
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3.4 Reinforcement Learning Agent

3.4.1 Technological Platform

To maintain the same technological platform as the EMA Workbench, this study determined
to use the Python library, OpenAI Gym [98]. OpenAI Gym possesses ready-made interfaces
to easily integrate simulation environments with RL algorithms, exposing the necessary data
for RL algorithms. Additionally, OpenAI Gym contains a wealth of community support and
libraries that are designed to integrate, and promote RL research [99].

3.4.2 Proposed RL Algorithm

An integral part to the success of an RL agent is the algorithm used for training [16]. For the
purposes of this study, any RL algorithm chosen must be able to handle environments with
deep uncertainty. From the current knowledge obtained from reviewed literature in modelling
electricity markets, from both EM and RL literature, this study reasonably estimates the
state space of the final MDP will be continuous, but not necessarily the action space. Past
RL papers in electricity market participation were consulted to guide this study towards the
most appropriate algorithms, as they possessed relevant contextual issues of uncertainty and
state/action space [13, 63–65, 79, 84].

Two different RL algorithms presented themselves as common approaches to RL in deep
uncertainty, Deep Q-Learning (DQN), and Deep Deterministic Policy Gradient (DDPG). As
stated in the review, both are able to operate over large state spaces, but differed where
DQN was more suited to problems with a discrete action spaces [84]. As the timing of this
study will not allow effective consultation with industry experts, a finite number of policy
actions will be used to simplify the action design process. As a result, the DQN algorithm
will be used for experimentation.

To implement this RL algorithm, an existing Python RL library, RLlib [100] will be used.
RLlib possesses implementations of a wide variety of RL algorithms, including DQN, and
native support to the OpenAI Gym API, further consolidating its utility for this study. By
using a pre-implemented algorithm, the risk of incorrectly implementing an RL algorithm
is reduced [100], and its public availability promotes reproduction and extension of the
experimentation to be conducted.
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3.5 Comparative Analysis

To understand the impact of the integration of EM into RL, and the resultant adaptive
policies, a pure RL adaptive policy is required to compare and contrast against the policies
derived by the DAPP/RL technique. For the electricity market simulation via the NEM
model, two RL agents will be trained with the DQN algorithm, using the OpenAI Gym. The
first agent, a pure RL agent, will be trained to develop a policy using the DQN algorithm, and
will demonstrate the ability for RL to develop adaptive policies under deep uncertainty. The
second agent, a DAPP/RL agent, will utilise the proposed EM technique, by pre-processing
the action space of the agent via the DAPP methodology outlined in section 3.1. The pure
RL agent, and the DAPP/RL agent respectively assist in answering research questions RQ1
and RQ2.

In line with past studies assessing the quality of adaptive policies [52, 101], this study
will utilise Exploratory Modelling and Analysis (EMA) as the methodology to test and
analyse the quality of the adaptive policies. EMA assists policy analysis in deep uncertainty
by exploring over the range of uncertainties in a given model, ranging from parametric,
structural, and method uncertainties, using computational models for each scenario [102].
For this study, the model will be the NEM model (section 3.2.1), and the uncertainty is
over the parameter uncertainty of Rojas-Arevalo’s model, with different parameters passed
as inputs to the model.

Using the EMA framework, both adaptive-policy agents will be run over numerous poten-
tial future scenarios, with variations generated by different parameters passed to the NEM
simulation model to explore the model uncertainty. The runtime values of the performance
indicators for each simulation and agent will be recorded, and used for analysis of the two
adaptive-policies. This exploration of a wide variety of uncertainties will produce a vast
dataset that will require further analysis in order to derive relevant information for compar-
ing the quality of the two policies.

A comparative analysis on the range of outcomes will be completed, following the methodol-
ogy by Kwakkel et al. [102]. Kwakkel et al. proposed to compare the quality of two policies
by analysing the range and distribution of its performance indicators, arguing a smaller range
and tighter distribution was more favourable due to its greater potential predictability for
uncertain futures. EMA is supported by the EMA Workbench [88], and thus will be used in
this study for generating and analysing experimental data. Once the data is generated, the
results will be analysed, and with justification from the analysis, a final discussion will be
made to formally address the results of the research aims of this study.
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Chapter 4

Gr4sp Simulation Engine

To conduct their investigation of the Victorian electricity network within the National Elec-
tricity market, Rojas-Arevalo [92] developed the Gr4sp software package, a suite of tools for
the experimentation and analysis of socio-technical layouts of electricity systems, and their
impacts on sustainability [93]. A key component of the Gr4sp package is the Gr4sp Simu-
lation Engine (GSE ), a computational model used for simulating the Victorian electricity
network, and is written in the Java programming language [103]. This chapter discusses the
structure and dynamics of the GSE , as well as the performance indicators and policy actions
that have been designed that will be used to assist answering the research questions of this
study.

4.1 Overview

The GSE is made up of two main modules, a recursive Service Provision Module (SPM)
structure, and a market simulator. The recursive SPM structure is an abstraction of how
elements of the electricity system are organised, such that the recursive nature reflects the
supply chain of the system. For example, electricity generators supply electricity to electric-
ity retails, who supply electricity to consumers. The market simulator is an Agent-Based
model (ABM) which has been designed to approximate the bidding mechanism within the
NEM. The main components of the market simulator are electricity generators, who are each
individual agents, with different attributes relating to their electricity capacity, fuel sources,
and prices.

Prior to runtime, a set of input parameters are passed to the GSE to change the behaviour
of the model. These include, forecast inflation rates, consumption levels, and prices of fuel
sources for electricity generator (e.g. coal, gas). When using the GSE to explore simulation
over future dates, these input parameters become assumptions of how the future may unfold.
This key feature of the GSE to explore different assumptions of future behaviour has allowed
[92] to conduct Exploratory Modelling techniques to gain insight into the possible trajectory
of the Victorian division of the NEM under future uncertainty.

26



The input parameters can be considered as input uncertainties, where each parameter repre-
sents a social, economic, or technological aspect of the modelled NEM, that cannot be known
in advance. In Exploratory Modelling literature, the set of input uncertainties passed at run-
time to a model is known as a scenario. Citing Maier et al.’s definition of deep uncertainty
[20] (see section 2.1), making predictions on future behaviour using Rojas-Arevalo’s GSE
can be considered a deeply uncertain problem, as the dynamics of the model are unknown
when uncertain parameters are input at runtime. The full list of the 33 input parameters
can be found in Appendix A.1. Throughout its execution, the GSE records a comprehensive
yearly summary on the simulated behaviour, and attributes of the GSE , providing output
values relating to electricity consumption, prices, and emissions throughout each execution
of the GSE . The full list of output values can be found in Appendix A.2.

When designing policies for public systems, it is imperative to evaluate the social, economic,
and temporal feasibility of any policy actions that are considered [95]. Specifically for elec-
tricity market regulation, policy actions should not be frequently implemented, and should
operate on a larger, yearly scale. It was decided to implement new policy actions at the
beginning of each Victorian state-level political cycle, of which the next cycles begins in
2022. Following the political cycle assists in ensuring actions are appropriately spaced, and
strengthens this study’s utility as a guide for future Victorian governments.

The operation of the GSE for this study will be completed as follows. Given a set of input
uncertainties (scenario), the GSE will simulate the market from 01/01/2019, to 31/12/2050
(the final date the model is able to simulate). The model will initially run with no policy
actions implemented for three years. This allows the input uncertainties to influence the
market to a large enough degree that the state of the market at the end of 2021 will be
distinct amongst all possible sets of input uncertainties. Every four years, beginning in
2022, a policy action will be implemented to affect the system, that will operate until the
beginning of the next political cycle, and the final new policy action activated will take place
in 2046. Although there is one more political cycle beginning in 2050, any new policy actions
activated in that year will only have one year to influence the market’s behaviour. Therefore,
policy actions activated in 2046 will run for 5 years, until the final simulation date.

4.2 Merit-Order Electricity Markets

A key concept for understanding the GSE is how the market simulator operates, and the
notion of bidding rounds. During the simulation time period, every 30-minutes the market
simulator forecasts the amount of electricity required for the Victorian electricity system,
known as the demand. Each electricity generator then submits a bid to the market to supply
a specific amount of electricity at a price per electricity unit of their choosing. The market
collects all bids, and orders them by price, lowest to highest (merit-order). The market
operator first accepts the lowest priced bid, and subtracts the amount of electricity to be
supplied by that bid from the total required demand for that 30-minute window. The next
lowest priced bid is accepted, and that process is continued until the electricity supply meets
the demand. Once demand has been met, the price of the last accepted bid (the LCOE of
the last generator) is set as the wholesale price of electricity for that bidding round
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A common financial metric for electricity generators is known as the levelised cost of elec-
tricity (LCOE) [104]. The LCOE determines the average price a generator needs to sell its
electricity for, in order to meet the costs of building and operating over the expected lifetime
of the generator. Rojas-Arevalo [92] was able to demonstrate how an electricity generator’s
LCOE can influence the generator’s bidding strategy in the NEM, to a degree close enough
to reproduce actual historical values. A generator’s LCOE influences the price of electricity
a generator submits in a bid to the market, and thus, influences the bidding power of the
generator within the merit-order mechanism of the market. A high-level explanation of the
LCOE for electricity generators is provided below.

Consider an electricity generator G, who is able to produce C = 100MW of electricity, at a
base price of P = 20.00$/MWh, where the base price is the minimum price the generator
is willing to sell electricity for. The generator is only able to operate at a maximum of
M = 80% of its production capacity. The generator also records the number of times it has
submitted a bid N , its historic revenue R, and a metric known as its historic capacity factor
H. The historic capacity factor is used to adjust the LCOE of the generator to ensure the
LCOE is set to cover the expected lifetime operating costs of generator G.

H =
R

C
2
· P
M
·N

When a generator submits a bid to supply electricity in the GSE , the model assumes the
generator supplies the maximum electricity it is able to, defined by C ·M , and the bid price
is set by its LCOE, which is defined below. When the first bidding round begins in the
model, as H = 0, the bid price is set to P/M.

LCOE =

{
P
M
, H = 0

P
H
, H > 0

Suppose generator G sets its LCOE to P/M = 25.00$/MWh in the first 30 minute (0.5h)
bidding round. In this round, it is able to generate and sell C · M · 0.5h = 40MWh of
electricity. Generator G’s historic capacity factor is updated accordingly:

H =
40MW · 25.00$/MWh
100MW

2
· 20.00$/MWh

0.8
· 1

= 0.80

For the next bidding round, the price will be set to P/H = 20/0.8 = 25.00$. Figure 4.1a
demonstrates that so long as a generator’s bids are successful, its LCOE will never change.
In the event a generator’s bid is rejected, their historical revenue, R, does not increase, which
causes the historic capacity factor, H, to decrease as N is incremented without R increasing.
Consider the LCOE curve in figure 4.1b, where generator G had an unsuccessful bid in the
third bidding round. This causes the LCOE to increase from 25.00$/MWh to 37.50$/MWh,
as the generator needs to charge more to recover the losses from the unsuccessful bid.
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(b) Failed bid in round 3.

Figure 4.1: LCOE illustrative examples.

As the merit-ordering of bids in the NEM is price based, an unsuccessful bid results in gener-
ators losing their bidding power, as their LCOE is increased. This relationship is essential for
the design of policy actions for this study, as actions can be designed to impact the LCOE,
and therefore, the bidding power of generators in order to manipulate the market.

4.3 Performance Indicators

Five performance indicators have been chosen, in accordance with the ethos of Sustainability
Transitions literature, to measure the quality of policies designed for the GSE . These are:
Green House Gas Emissions (GHGE) Levels, Renewable Market Share, Wholesale Prices ,
Tariff Prices , and Unmet Demand Days . The GHGE Levels and Renewable Market Share
are environmental indicators, whereas Wholesale Prices , Tariff Prices , and Unmet Demand
Days are economic indicators.

The duality of the performance indicators provides a holistic analysis of the impact policies
make in the GSE . Policy actions could greatly benefit the environmental indicators, for
example, making all renewable electricity generator costs subsidised by the government.
However, this would come with great economic detriment to the tax paying population of
Victoria to support this subsidy. Conversely, we could remove all non-renewable electricity,
but Victoria’s renewable generators may not be able to meet the total demand of the market,
and thus electricity from foreign (interstate) markets would be required, which historically
increases the Wholesale Prices of electricity [92]. These five performance indicators allow for
a more rounded assessment of the impact of policy actions in the GSE , and introduce to this
study the complexities of designing policies that balance both environmental and economic
goals. Each performance indicator is equally important in the experimentation and analysis
throughout this study.
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GHGE Levels

GHGE Levels (tCO2e) was identified as a crucial indicator for the performance of policies for
the GSE , as the development of environmentally sustainable policies requires the reduction
of GHGE Levels . The GHGE Levels in the GSE are primarily caused by the domestic
electricity consumption, and the fuel sources, such as coal or wind, that is used to generate
the electricity.

During a given bidding round, when an electricity generator makes a successful bid to supply
electricity, the GSE records the GHGE Levels emitted from that generator, and does so
for all successful bidding generators. In this study, we will be using the average annual
GHGE Levels per household from 01/01/2022 to 12/31/2050 will be used as a performance
indicator for this study, with the aim to minimise this average. Using a per household
value ensures we compensate for population growth when comparing the emissions levels of
different years.

Renewable Market Share

The Renewable Market Share (% ) is required to ensure that any policies that are devel-
oped are promoting the transition to sustainable electricity sources. For each bidding round,
the GSE records the percentage of electricity that was generated from renewable electric-
ity sources, and outputs a yearly average share. The mean of the yearly averages from
01/01/2022 to 12/31/2050 will be used as a performance indicator for this study, with the
goal to maximise this mean value.

Wholesale Prices

Wholesale Prices ($/MWh) are computed by the GSE for each bidding round, and are
strongly dictated by the supply and demand requirements of the system. The average
wholesale price for all bidding rounds from 01/01/2022 to 12/31/2050 will be used as a
performance indicator, to assess the economic impacts of policy actions, with the aim to
minimise the price.

Tariff Prices

Electricity generated in the NEM sell their electricity to retailers, these are companies that
act as a medium between generators and consumers. These retailers then sell the electricity
to consumers, such as households or businesses. When a consumer receives a bill from
the retailer for their electricity, the cost of the bill includes the cost of the electricity they
used, and additional charges caused by external electricity system components, such as
administration, maintenance, and other retail related fees. These additional fees are a tariff
added to the bill.
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The GSE does not simulate all components that make up the tariffs, but uses the Wholesale
Prices to estimate the Tariff Prices using historic relationships between theWholesale Prices
and Tariff Prices . Using Tariff Prices as a performance indicator provides an insight on
how policies may economically impact consumers, to ensure that consumers are not severely
negatively impacted in the pursuit of a more sustainable electricity system. TheGSE outputs
an average annual tariff value for each household, and the mean of these annual values from
01/01/2022 to 12/31/2050 will be used as the performance indicator value, with the goal to
minimise Tariff Prices .

Unmet Demand Days

In the event that the supply of electricity from generators is not able to meet the demand, the
electricity is required to be imported from generators in other Australian states. Importing
electricity exposes the Victorian electricity system to external electricity systems whose
environmental, or economic electricity generation practices may not align with Victoria’s.
If this supply and demand imbalance occurs for a given bidding round, the calendar day
that bidding round occurred on is marked as a day when electricity demand was unmet.
The average annual number of unmet demand days for the simulation dates of 01/01/2022
to 12/31/2050 will be used as a performance indicator, to measure the ability for Victorian
generators to meet Victorian demand, and will aim to be minimised.

4.3.1 Optimisation Problem

The combination of the minimisation/maximisation of each of the performance indicators
can be formally described as a multi-objective optimisation problem. Consider the space
of possible policy actions for the GSE , A, and the number of times a new policy action
is activated in each GSE simulation, N = 7, as there are 7 political new cycles in each
simulation period. Suppose P ∈ AN is the sequence of policy actions to be activated at
the beginning of each political cycle. Let fghge(P ), frenew(P ), fwholesale(P ), ftariff (P ), and
funmet(P ) be the values of the performance indicators after executing P in the GSE . The
optimisation problem is formally written as:

min
P∈PN

(fghge(P ), −frenew(P ), fwholesale(P ), ftariff (P ), funmet(P ))

4.4 Policy Actions

To desirably influence the performance indicators of the GSE , careful consideration and
research was conducted to determine what policy actions should be applied to the model
by the MOEAs and RL agents in chapters 7 and 8. Following the work of [26, 64, 66,
97], multiple publicly available government and independent documents were identified that
presented potential policy actions that can be applied to Victorian generators in the NEM
[105–113]. The number of policy actions to be used could not be too large for this study,
as this could potentially extend the runtimes for the MOEA and RL algorithms [114, 115],
making them infeasible to use for this study. A final list of 10 different policy actions are in
table 4.1.
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Table 4.1: Policy actions available to implement in the GSE .

Name Description Impact

Carbon Tax Generators pay a tax per tonne of CO2

emitted. Tax prices are based on
23.00$/tCO2e in 2012 (historical carbon
tax price [116]), and annually adjusted
according to inflation.

Increases the LCOE of
generators at a level
proportional to their CO2

emissions.

Secondary Market Opens a hypothetical additional market,
designed by Rojas-Arevalo [92], that
allows priorities renewable generators to
participate in a NEM market process.

Promotes the use of renewable
electricity generators, reducing
their LCOE.

Emissions Based
Merit-Order

Changes the merit-ordering of bids in the
NEM to order bids by the CO2 emissions
each bid will cause.

Prioritises renewable electricity
generators, but doesn’t
guarantee lowest cost.

Increase Learning
Rate (+15%)

Increases learning rate parameter (see
table A.1), representing investment into
renewable technologies.

Decreases LCOE of renewable
electricity generators.

Increase
Technological
Improvement Rate
(+15%)

Increases technological improvement rate
parameter (table A.1), representing an
expansion of renewable generator
infrastructure.

Increases potential revenue for
renewable electricity
generators.

Renewable
Electricity Subsidy
(10%)

Subsidises renewable generators by
reducing their electricity base price by
10%.

Decreases LCOE of renewable
electricity generators.

Reduce Highest 1%
Emitting Generators’
Capacity (5%)

Reduces the generation capacity of the
top 1% CO2 emitting generators by 5%.

Reduces the potential revenue
of highest emitting generators,
increasing their LCOE.

Reduce Highest
Emitting Generator
Capacity (10%)

Reduces the generation capacity of the
single highest CO2 emitting generator by
10%.

Reduces its potential revenue,
thus increasing its LCOE.

Reduce Highest
Emitting Generator
Capacity (20%)

Reduces the generation capacity of the
single highest CO2 emitting generator by
10%.

Reduces its potential revenue,
thus increasing its LCOE.

No Action No policy action is applied to the market. N/A.
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4.5 BAU Scenario

Throughout this study, repeated reference is made to a business-as-usual (BAU) scenario,
that was used by Rojas-Arevalo [92]. The BAU scenario is a set of values for each of
the input uncertainties in the GSE , that influence the model’s outputs to best reproduce
historical data. The BAU scenario is effectively a baseline scenario, and is intended to
represent the values of input parameters if there was no possible uncertainty in the GSE .
The BAU scenario is integral to the validation framework in chapter 5, and the construction
of the reward function in chapter 8. Values for the BAU scenario can be found in Appendix
A.1.
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Chapter 5

Model Preparation

Careful consideration was given to how to best integrate the GSE [92], which is written
in the Java programming language [103], with the Python programming language based
experimentation platforms to be used in this study, the EMAWorkbench [88] and RLlib [100].
This chapter discusses the preparation and integration of the GSE with the experimental
platforms of this study, as well as optimisations to reduce the runtime of the GSE .

5.1 Python GSE

Rojas-Arevalo [92] employed the Python module JPype1, to bridge communication between
the Java and Python runtime environments for their experimentation with the GSE . JPype
is a Python module that provides access to Java programs from Python by interfacing with
both runtime environments using a shared memory approach.

The interaction between Python and Java occurs via the Java Native Interface (JNI), an
interface exposed by the Java Virtual Machine (JVM) that allows for cross-language devel-
opment. The JNI was used as a messaging passing interface between the Java and Python
runtime environments, to pass data on the runtime conditions of the GSE , or to instruct the
GSE on what policy actions to activate. Using the JNI was a costly overhead, and a cause
for concern for this study, as the runtimes for MOEAs and RL algorithms are non-trivial,
and can require millions of runs of a given model [114, 115]. As both the EMA Workbench
and RLlib are Python based, Rojas-Arevalo’s model was re-implemented entirely in Python,
removing the complication of using the Java programming language with Python platforms.
The runtime durations from 10 runs of the GSE implemented in Java and Python using a
2.0 GHz Intel Xeon server are displayed in table 5.1.

Language Mean (s) STD (s) Min (s) Max (s)

Java 77.04 3.08 74.07 83.64
Python 134.06 3.85 128.89 139.92

Table 5.1: Java vs. Python GSE runtime statistics from 10 runs of each program.

1https://jpype.readthedocs.io/en/latest/

34



Unfortunately, the resulting Python model was on average 74% slower than the original Java
model. Java’s speed can be attributed to the Just-In-Time (JIT) compiler the JVM uses,
which compiles the source code into machine code for the JVM to use before runtime [103].
Conversely, Python is an interpreted language, with the source code converted to machine
code at runtime [87]. Despite the convenience of having all computational aspects of this
study in the same programming language, the speed of the Python model is not viable to
be used for MOEA and RL experimentation, and as such, the original Java model will be
used for this study. Nonetheless, the Python model will be provided to Rojas-Arevalo, to
hopefully benefit future studies that intend to build upon Rojas-Arevalo’s work.

Although the original Java model was significantly faster than the Python model, the 77.04s
seconds per simulation is still a cause for concern. Even by exploiting multiprocessor archi-
tectures to simultaneously run multiple instances of the GSE , this runtime was still infeasible
for the experimentation required to answer the research aims of this study. In order to be
able to answer the research questions with a thorough investigation, the runtime needed to
be reduced. The runtime of the GSE was profiled to better understand the computational
demands of the different components of the model. This was completed using the Java pro-
filing tool, JProfiler2. The profiling results indicated a vast portion of the runtime was spent
on the creation and ordering of the bids for the merit-order market. As the number of bids
in a given round is equal to the number of generators (<200), the time to order the bids of
each round was insignificant. Instead, the computational bottleneck was due to how often
this ordering occurred during runtime. In essence, the compute time for completing many
quick tasks (bid ordering) added up to a much longer runtime.

5.2 Alternative Bidding Windows

As outlined in section 4.2, generators submit a bid in the NEM every 30 minutes. For 48
bidding rounds per day, between the simulation dates from 01/01/2019 to 31/12/2050, there
are approximately 900, 000 bidding rounds for the entire simulation. Interestingly, the true
NEM merit-order market has bidding rounds every 5 minutes, prompting the reasoning that
the dynamics of the 30-minute bidding rounds simulated in the GSE was an approximation,
or smoothing of the dynamics of the true NEM bidding rounds. The notion of further
smoothing the bidding rounds by extending the time between bidding rounds presented an
opportunity to reduce the model’s runtime by a considerable amount, as longer times between
bidding rounds would diminish the computational requirements of creating and sorting the
bids.

To further understand the impact of smoothing the bidding rounds, simulations were run
using different time intervals between bidding rounds, and the runtime values for various GSE
attributes (e.g. Renewable Market Share) were recorded, and compared to true historical
data. A similar historical validation was completed by Rojas-Arevalo [92], which will be
used as a guide for the evaluation of the data for this investigation.

2https://www.ej-technologies.com/products/jprofiler/overview.html
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Eight new time intervals between bidding rounds (bidding windows) were devised, with the
condition that each calendar day contained a discrete number of bidding windows. These
were 1, 2, 3, 4, 6, 8, 12, and 24 hours. The datasets used by the original model contained
historical and forecast electricity demand, and solar capacity (amount of electricity a solar-
powered generator could produce) for every 30-minute interval in the simulation, which
aligned with the 30-minute bidding windows.

These datasets were also smoothed to align with the different bidding windows that were
evaluated. Pseudocode for the algorithm to smooth the 30-minute forecast demand and solar
capacity to a different bidding window size can be found in Appendix B.1. At a high level,
the forecast demand for a bidding window of n hours was the summation of the forecast
demand for the 2n 30-minute bidding windows it contained, and the solar capacity was the
average solar capacity of the same 2n 30-minute windows.

In Rojas-Arevalo’s model, electricity generators are only able to operate at a defined fraction
of their true capacity. This defined fraction is known as their maximum capacity factor.
For example, consider a generator with a production capacity of 30MW , and a maximum
capacity factor of 0.8. In a 30-minute bidding window (0.5h), the generator can submit a
bid to supply 30MW · 0.8 · 0.5h = 12MWh. This assumption was extended for the new
bidding frequencies. For example, the same generator would be able to submit a bid of
30MW · 0.8 · 2h = 48MWh if the bidding window is 2 hours.

The validation framework compares the GSE ’s outputs for annual total GHGE Levels , Re-
newable Market Share, Wholesale Prices , and Tariff Prices , with available historical data
that accompanies Rojas-Arevalo’s [92] source code. Validation of the model’s ability to re-
produce historical data is essential if the model is to be utilised as a foundation for exploring
the use of policy actions in possible future scenarios. A successful validation was defined
according to Rojas-Arevalo’s original definition - “validation is considered successful when
outputs follow the same trends over time than historical data and when statistical tests to
quantify differences from historical and modelled data show the defined acceptable values”
[92].

The years for historical validation time period occur between 1998 and 2020, a period that
falls under the “Private Regime” of the electricity network, when the network operated under
private ownership, as opposed to public ownership prior to 1998. Data is not present for all
23 years, but sufficient data is still present for each output to perform the validation.
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Two univariate statistical measures are used to assist in the validation process. The first, the
Mean Absolute Error (MAE) [117] is used to measure the similarity between the simulated
and historical data. Formally defined above, MAE is the expected value of the absolute
differences between simulated (S) and historical (H) values. The second statistical value
is the Root Mean Square Error (RMSE) [117], and was chosen to assist in identifying the
impact of outliers in the results. Squaring outliers results in a disproportionate addition to
the squared sum, relative to non-outlier values, thus having a greater impact on the final
RMSE values. Similar to MAE, smaller RMSE values are desired, indicating smaller levels of
residual difference amongst the datasets. An advantage to using MAE and RMSE in tandem
is the relationship, MAE ≤ RMSE, such that as |MAE − RMSE| decreases, the impact of
outliers decreases as well.

5.3 Historical Validation

The BAU scenario (section 4.5) was used to generate the validation data for the GSE for all
evaluated bidding windows, as the BAU scenario is able to best reproduce historical values
[92]. The results for GHGE Levels (total annual per household), Renewable Market Share,
Wholesale Prices , and Tariff Prices values during the execution of the GSE are used for the
validation framework, as true historical data for these values was publicly accessible [92].
Tabular data of the validation results discussed in this section can be found in Appendix
B.2.

The primary aim of smoothing the bidding windows is to reduce the GSE execution runtime.
Runtimes for each bidding window were determined by taking the average of 10 individual
runs, and are presented in table 5.2. As expected, the runtime decreases, as the bidding
window increases, due the reduced frequency of running the merit-order bidding cycle. These
results will be invaluable when making the final decision of which bidding window to use for
the remainder of this study.

0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

Runtime (s) 77.04 29.23 15.95 12.39 10.90 9.19 7.67 6.40 4.86

Table 5.2: Runtime duration of the GSE using different bidding windows.
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5.3.1 GHGE Levels Validation
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Figure 5.1: GHGE Levels from 1998 to 2018 using different bidding windows.

Figure 5.1 demonstrates the changes in GHGE Levels for the simulated data for each bid-
ding window length, and the historical data. Visually, increasing the bidding window size
appeared to have minimal impact on the GHGE Levels . The simulated results possess two
periods of significant deviation from historical data that are both explainable. The first, oc-
curs during the initial years of the simulation from 1998 to 2001, where the model’s efficacy
is reduced. When the simulation begins, all generators have a predefined LCOE according
to their fuel type (e.g. coal), and require time to develop their LCOE that better reflects
their own generation capabilities. The second period occurs at the beginning of 2012, when
a carbon tax [116] was introduced in Australia, resulting in steep reductions of GHGE Levels
from 66.7MtCO2e in 2012, to 59.0MtCO2e in 2013. The tax was repealed in 2014, resulting
in the spike in historic data between 2014 and 2015. The GSE does not implement the
carbon tax for the years it was active, thus explaining why the simulated GHGE Levels
simulated were higher than the historic values over the carbon tax period.

(MtCO2e) 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

MAE 2.53 2.39 2.36 2.36 2.35 2.35 2.35 2.35 2.34
RMSE 3.44 3.37 3.39 3.39 3.39 3.39 3.39 3.39 3.39

Table 5.3: Bidding window validation statistics - GHGE Levels .
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The statistical results (table 5.3) convey the minimal impact to GHGE Levels when the
bidding windows are changed. Increasing the bidding window length produced more desir-
able values, where the largest window, 24-hours, possessed a MAE of 2.34MtCO2e, and a
RMSE of 3.39MtCO2e. Compared to the original 30-minute bidding window (the poorest
performing window), which had a MAE 2.53MtCO2e and RMSE of 3.44MtCO2e, the abso-
lute difference of MAE and RMSE was only minor between the best and worst performing
windows, 0.19MtCO2e and 0.05MtCO2e respectively.

All bidding windows were considered to have acceptable MAE and RMSE values for the
GHGE Levels . The RMSE values were all similar to the MAE values, indicating minimal
presence of outliers in the data that would otherwise disproportionately skew the RMSE
values. Therefore, we can conclude that all bidding windows lengths can appropriately
reproduce historical data, to a degree close enough to use as a basis for future projection
later in this study.

5.3.2 Renewable Market Share Validation
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Figure 5.2: Renewable Market Share from 2005 to 2020 using different bidding windows.

Figure 5.2 displays the simulated annual Renewable Market Share, between 2005 and 2020,
originally sourced from OpenNEM3, a public platform for collecting NEM data. The simu-
lated results reaffirmed the efficacy of the smoothed bidding windows, which closely followed
historical values. The resulting MAE and RMSE values in table 5.4 increased as the bid-
ding window increases, with the exception of the 1-hour window, which has the poorest
performance, suggesting that smoothing the bidding windows comes at a cost of historical
accuracy.

3https://opennem.org.au/energy/vic1/
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(% ) 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

MAE 2.76 3.36 2.86 2.86 2.86 2.86 2.87 2.88 2.92
RMSE 3.19 3.89 3.44 3.44 3.45 3.46 3.47 3.49 3.57

Table 5.4: Bidding window validation statistics - Renewable Market Share.

Comparing the two most different windows, the 30-minute window has a MAE and RMSE of
2.76% and 3.19% respectively, and the 24-hour has a MAE and RMSE of 2.92% and 3.57%
respectively. The absolute difference between these two bidding windows is small, meaning
that there was little deviation from historical values. For all smoothed windows, the MAE
values are similar to their RMSE values, indicating the lack of outliers in the errors from the
historical values. Accordingly, the impact of increasing the bidding window is minimal for
Renewable Market Share, and with the small MAE and RMSE values present, all smoothed
windows can be considered to appropriately replicate the historic data, and can be used for
future exploration.

5.3.3 Wholesale Prices Validation
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Figure 5.3: Wholesale Prices from 2005 to 2020 using different bidding windows.

In figure 5.3, the results for Wholesale Prices possessed multiple spikes throughout the
validation period. Spikes can occur from multiple different factors, including supply/demand
imbalances, macroeconomic and environmental factors (such as pro-longed extreme weather),
and regulation policy. In the event a supply/demand imbalance occurs, the GSE assumes
electricity is imported at a cost of 29% more than the last accepted bid price, where 29%
is the historical average price difference of imported electricity prices [92]. All simulated

40



results deviate more significantly from the historic values, compared to the deviation seen in
the previous analyses of GHGE Levels and Renewable Market Share. As the GSE ’s design
makes broad assumptions on the macro and micro-economic behaviour of the NEM, the
model lacks the precision to accurately reproduce historical data.

($/MWh) 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

MAE 14.07 18.13 18.00 18.09 18.20 18.30 18.48 18.79 20.77
RMSE 18.31 24.07 24.00 24.06 24.14 24.21 24.37 24.67 26.33

Table 5.5: Bidding window validation statistics - Wholesale Prices .

Over the validation period, the MAE of all bidding windows except the 24-hour bidding win-
dow were between 17.00-18.00$/MWh, compared to the 14$/MWh in Rojas-Arevalo’s model,
this is an assuring minor deviation. The RMSE values all occurred around 24.00$/MWh,
with the 24-hour bidding window being at 26.33$/MWh. The larger RMSE values suggest
the presence of outliers in the results, which were likely caused by the prices over the carbon
tax years, which can be clearly seen in figure 5.3, where the simulated prices did not follow
the sharp rise and fall of prices.

The variation between bidding window sizes was minimal, indicating that the errors intro-
duced by smoothing out the bidding windows resulted in an initial large deviation from the
historical values, with the rate of change of this deviation decreasing as the window sizes were
increased. Overall the change in MAE is still small, as shown in table 5.5, the MAE increased
by only 6.70$/MWh from the 30-minute window to the worst performing 24-hour window.
Figure 5.3 shows that increasing the bidding window size, caused the simulated Wholesale
Prices to decrease relative to the other smoothed bidding windows, with the 24-hour bid-
ding window prices having notably lower prices from 2017 onwards. This indicates that the
omission of intra-day peaks, which are smoothed out entirely by a 24-hour bidding window,
have a non-trivial influence on the Wholesale Prices . Whilst the impacts of smoothing the
bidding windows are more pronounced for Wholesale Prices compared to GHGE Levels and
Renewable Market Share, overall, the results indicate that any of the smoothed windows
are still able to acceptably replicate the trends and to a lesser degree, historical values for
Wholesale Prices .
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5.3.4 Tariff Prices Validation

The Tariff Prices validation used historical data obtained in Rojas-Arevalo’s dataset [92], for
the years of 2001 to 2019. Tariff Prices were collected by Rojas-Arevalo from two different
sources. The first data source is the St Vincent de Paul Society4 (St. Vinnies), who have
been recording annual average tariff prices since 2010. The second is a report submitted to
the Australian Competition and Consumer Commission5 (ACCC). Unfortunately, the lack
of standardisation for recording Tariff Prices has resulted in a wide disparity between the
data sources for years when they both have recordings [92].
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Figure 5.4: Tariff Prices from 2001 to 2019 using different bidding windows.

Figure 5.4 plots the simulated results against the average of the two historical Tariff Prices
data sources. In the event Tariff Prices for a given year were not present in one of the
data sources, the available Tariff Prices were used. Omitting years that did not contain
data from both sources resulted in data only available for 2010 to 2017, where the simulated
Tariff Prices highly deviated from historical Tariff Prices due to the GSE not capturing the
economic impacts of the carbon tax. The bidding windows all maintained similar behaviour,
except for a deviation in behaviour by the 1-hour bidding window, for the years of 2010, to
2012, where it exhibited larger Tariff Prices than all other simulations. For the years that
contained historical data from both St. Vinnies and the ACCC, the simulated results were
mostly between the two historical prices, except for 2013 to 2015, which is likely caused by
the impact of the carbon tax on actual historical prices. Relative to the original 30-minute
bidding window, the smoothed bidding windows still capture the same variations, increases
and decreases in Tariff Prices .

4https://www.vinnies.org.au/page/Our Impact/Incomes Support Cost of Living/Energy/VIC
5https://www.accc.gov.au/system/files/Victorian/Electricity/Distribution/Networks.pdf
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(¢/KWh) 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

MAE 7.84 9.00 9.31 9.33 9.36 9.44 9.49 9.62 9.86
RMSE 10.09 12.12 12.24 12.27 12.29 12.35 12.40 12.51 12.88

Table 5.6: Bidding window validation statistics - Tariff Prices .

The MAE and RMSE results are displayed in table 5.6. The smoothed windows degrade in
performance as the window lengths are increased, at an almost linear rate from the 1-hour
window to the 24-hour window. However, the magnitude of the increase from 1-hour to
24-hours is not major for either of the MAE or RMSE (0.85¢/KWhand 0.76¢/KWh). After
an initial degradation in simulated Tariff Prices by increasing the bidding window, further
increasing the window does not have the same impact. Considering the relationship between
the MAE and RMSE, it is expected the carbon tax years are the main contributors to their
divergence.

Rojas-Arevalo noted sourcing historical data was challenging, and the lack of standardis-
ation in Tariff Prices recording undermined the quality of the datasets. With regard to
the smoothed bidding window results, despite some notable differences in raw values in the
carbon tax years, all of the smoothed bidding window results can be considered to be appro-
priate for reproducing historical Tariff Prices . As stated, they were still able to effectively
replicate the behaviour of Rojas-Arevalo’s original model, with only a minimal skew.

5.4 Selection of Bidding Window

The results from the validation tests have demonstrated all evaluated bidding window sizes
have an acceptable level of similarity to historical data for use as foundation for exploration
into the future. The most notable phenomenon of smoothing the bidding windows is that the
impact on the output indicators is relatively similar for all bidding windows. This suggests
that a great deal of the variation in the outputs from GSE are caused by variations in
demand and solar capacity that occur at the 30-minute bidding window interval.

From the analysis of the MAE and RMSE values, all bidding windows have been deemed to
have acceptable levels of deviation from historic data. This study will seek to utilise the 24-
hour bidding window period, as it possesses the fastest runtime of 4.86s on average from table
5.2. Using the fastest bidding window will be invaluable for the MOEA robust optimisation
and RL training conducted in chapters 7 and 8. The experimentation to be conducted in
both of these chapters are expected to require many hundreds of thousands to millions of
runs of the simulation model [114, 115], to which is a serious challenge for the timeline of
this study. In deep uncertainty literature, in addition to ensuring the runtime duration of
computational models are short, it is common practice to also remove uncertain parameters
from models if they have little influence on output values. Removing unimportant uncertain
parameters reduces the complexity of designing policies using optimisation algorithms, such
as Multi-Objective Evolutionary Algorithms.
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Chapter 6

Augmenting Uncertainty

In deep uncertainty problems, if a parameter in the model being used has a trivial influence
over the performance indicators, it should be removed from the set of uncertain parameters,
reducing the uncertainty space of the model. To identify which of the 33 uncertain param-
eters of the GSE have the least influence, their influence must be quantifiable. Defining a
parameter’s influence on a performance indicator, can be considered the same as defining
a performance indicator sensitivity to an uncertain parameter, which can be achieved by
performing Sensitivity Analysis [118].

6.1 Sensitivity Analysis

Sensitivity Analysis (SA) is the process of identifying the contribution each uncertain input
parameter has on the output values of a mathematical model [119]. SA is able to provide a
comprehensive understanding of the relationship between uncertainties (uncertain parame-
ter) and outputs of a model. For non-linear systems, this understanding becomes increasingly
difficult as uncertain parameters can interact with each other, causing the total contribution
of two interacting uncertain parameters to not equal the sum of their individual contribu-
tions [120]. The use of SA methods as a pre-processing step for models with uncertainty has
increased over the last few decades, as the importance of minimising uncertainty where pos-
sible has become more apparent, and has in some cases contributed to identifying strategies
to mitigate impacts of uncertainty on model outputs [120].

There are two types of SA, Local SA, and Global SA [121]. Local SA (LSA) is the targeted
analysis of the influence of a single uncertainty on a model’s outputs, by focusing on the
relationship between the variance of the uncertainty, and output values, over multiple model
evaluations. LSA is not able to handle non-linear systems, and as the GSE is a non-linear
system [92], LSA techniques will not be considered for the SA of the GSE .
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Global SA (GSA) provides a broader perspective of the influence of all uncertain input
parameters, compared to the targeted local analysis performed by LSA. SA techniques are
considered global when the values of all uncertain parameters are simultaneously varied
throughout the analysis, and each uncertain parameter is varied over its full range. GSA
techniques have been cited to be more suited to non-linear, real-world models, as they are able
to examine the variation of multiple input parameters simultaneously [122]. GSA techniques
will be used to assess the uncertain parameters in the GSE , to discern the level of influence
the uncertain parameters have on the performance indicators, with the overall goal of fixing
the value of parameters with little influence. There are multiple, well-known [119] methods
for conducting GSA, including Sobol Indices [123], Fourier Amplitude Sensitivity Test [124],
and Morris Screening method [125].

The Sobol Indices technique has been chosen for conducting the GSA of the GSE , due to
the simplicity in interpreting its results, used in Rojas-Arevalo’s original study, and widely
adopted across the GSA literature [92, 119, 120, 126]. Sobol Indices [123] is a model inde-
pendent, GSA technique, that is based on decomposing variance in the output performance
indicators. Sobol Indices attribute the decomposed variances to input parameters in the
model, thereby quantifying their influence. For this chapter, the required understanding of
Sobol Indices is only the S1 and ST values, which quantify a given uncertain parameters
contribution to the variance of output values. S1 values are calculated by evaluating the
change in output values when only that given uncertain parameter is changed, whereas to
calculate ST values, all uncertain parameters are changed when generating ST calculation
data. By changing all uncertain parameters, any influence one parameter has over another
parameter can be exposed when calculating ST. A detailed description of Sobol Indices can
be found in Appendix C.2.

6.1.1 Experimental Setup

Computing Sobol Indices is supported by the EMA Workbench, which relies on an additional
Python library, SALib [127], an open source library designed for performing SA. The sample
size required for computing Sobol Indices are dependent on two main aspects of the model
[121], the model’s complexity, and the number of uncertain parameters. A set of 2100
scenarios with different combinations of the uncertain parameters will be sampled using
Latin Hypercube Sampling (LHS) [128] (see Appendix C.1 for a discussion on LHS). This
set size is double the minimum number of 1050 scenarios suggested by Gan et al. [119] for
computing Sobol Indices, and was also the same number of scenarios used in Rojas-Arevalo’s
Sobol Indices analysis of the GSE [92].

The number of GSE evaluations (simulations) the EMA Workbench will run to compute the
Sobol Indices follows a formula developed by Saltelli [129], which requires C = n · (2u + 2)
evaluations, for a scenario set of size n, and u uncertain parameters. For the GSE , C =
2100 ·(2(33)+2) = 142, 800 evaluations were performed. For each year in the simulation, the
first order Sobol Index (S1), the total order Sobol Index (ST) were recorded. These results
were generated using a 44 core 2.0GHz Intel Xeon server with multiprocessing, and took
3.12 hours to compute.
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6.1.2 Discussion

Tables displaying the results of the Sobol Indices sensitivity analysis are presented in Ap-
pendix C.3 for each of the performance indicators. The median and maximum values for
the recorded S1 and ST values for each uncertain parameter are recorded in each table, and
are ordered by their median S1 value. The purpose of computing the S1 and ST values is
to have quantitative aids for generating a list of the uncertain parameters, ordered by their
importance to the performance indicators, that will be used by the factor fixing algorithm
in section 6.2. Only the S1 index will be considered for the ordering process. The ST value
is omitted as it considers the interaction of a given uncertain parameter with all other un-
certain parameters, which will have less utility once some of the uncertain parameters are
removed by the factor fixing algorithm in section 6.2.

By using the median S1 values, the ordering is less impacted by outlier years, where particular
uncertain values may have a significantly larger influence on the performance indicators than
other years. An example of this phenomenon occurs for the generatorRetirement uncertainty
and the GHGE Levels performance indicator, which has a maximum S1 value that is far
greater than its median. To combine the S1 values of all the performance indicators to a
single, global list, the maximum median S1 value for each uncertain parameter was used for
ordering. Other methods of combining the S1 values such as taking the mean or median
values were considered, however, the maximum value was chosen as it ensured that any
parameter that had a strong influence on at least one performance indicator was able to
reflect this influence in the ordering, rather than potentially not representing this strong
influence if the mean or median were used. The full list of 33 uncertain parameters ordered
by their maximum median S1 value can be found in Appendix C.4.

As an additional filtering of the S1 values, the final list was compiled using a minimum cut-off
S1 value of 0.01. Typically in Sobol Index literature, an arbitrary value of 0.05 is considered
the minimum bound for significance [121], therefore using 0.01 ensures a conservative removal
of uncertain parameters. An added benefit of removing uncertain parameters is the reduction
in computational demand for the factor fixing algorithm in section 6.2, which has a linear
relationship between the number of uncertainties and model evaluations. After filtering,
only the top 16 most important uncertain parameters were kept for the GSE , and could be
further reduced using the factor fixing algorithm.

6.2 Identifying Important Uncertainties

Using the ordered list of 16 uncertain parameters, the next step was to determine which
uncertain parameters should be kept and removed (fixed) for later experimentation of the
GSE . The factor fixing algorithm [130] iteratively evaluates the results of fixing the values
for different ordered subsets of ordered uncertain parameters. Uncertain parameters that
were fixed used their default values from the BAU scenario.
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First, a set of scenarios S was sampled using Latin Hypercube Sampling (LHS) [128], and
the output performance indicators P were recorded from running each scenario in S. The
same set S was evaluated again, but only the n most important uncertain parameters used
their sampled values, and the rest were fixed to their BAU values. The output values On

were recorded, and the Pearson correlation coefficient was computed between P and Pn.
This process was repeated for n = 1..16, where P16 had a correlation coefficient with P of 1.
Detailed pseudocode for the algorithm can be found in Appendix C.5. Using a scenario set
S, where |S| = 2100 and the 16 ordered uncertain parameters created in section 6.1.2, this
algorithm required C = 2100 + 16 ∗ 2100 = 35, 700 model evaluations.

The results for each of the five performance indicators are plotted below in figure 6.1. The
vertical axis is the Pearson correlation coefficient value, and the horizontal axis represents
that the top n uncertain parameters used their sampled values, whilst the rest were fixed to
their BAU values.
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Figure 6.1: Pearson correlations per performance indicator when sampling up to the 16 most
important uncertain parameters. Tabular data can be found in Appendix C.4.

The results in figure 6.1 demonstrate the effects of sampling the uncertain parameters in
the GSE . By sampling only the most important parameter, domesticConsumptionPercent-
age, all the performance indicators have a correlation value of less than 0.5. This behaviour
reaffirms the challenges of reducing uncertainty for non-linear models with deep uncertainty,
and particularly for models with multiple performance indicators. Two notable spikes ap-
pear in figure 6.1. For the GHGE Levels , which has a significant increase of 0.23 once the
fourth uncertain parameter, priceChangePercentageBrownCoal, is sampled. Price variations
in brown coal are expected to have substantial impacts on GHGE Levels , as lower or higher
prices would change the potential revenue, and therefore the LCOE of brown coal generators,
directly influencing their bidding power in the merit-order market.
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The other spike was for Wholesale Prices , when the second parameter, nameplateCapacity-
ChangeBrownCoal, is sampled. Brown coal generators tend to be the amongst the largest
and cheapest suppliers of electricity in the GSE . Changing a brown coal generator’s elec-
tricity capacity would also influence their potential revenue and LCOE, again changing their
bidding power in the merit-order. If the capacity is increased for brown coal generators, the
ratio between brown coal generator capacity, and non-brown coal generator capacity would
also increase, and the market share of brown coal generators is likely to increase as a result.
This would result in more expensive generators not having bids accepted where they may
in the BAU scenario, as the electricity demand has already been met by the now greater
capacity brown coal generators. In contrast, a reduction in brown coal generator capacity
may result in more expensive generators having successful bids to meet demand, allowing
for more expensive generators to have successful bids.

6.2.1 Discussion

The evaluation has been conducted using figure 6.1 to assist in the process of choosing the
number of uncertainties to use for later experimentation of the GSE . The Pearson correlation
coefficient results in figure 6.1 were partially unexpected, as it was assumed that each of the
performance indicators would have a substantial increase in correlation values during the
addition of the first few most important uncertain parameters, and then the rate of change
would drop steeply. Upon reflection, such expectations were unlikely to come to fruition
in this experiment, due to the global ordering of the uncertain parameters. For example,
the top five most important uncertain parameters for GHGE Levels is not guaranteed to be
equivalent to the top five uncertain parameters in the global ordering.

The interaction between uncertain parameters and the impacts they have on the performance
indicators may have also caused the more distributed increase. This behaviour would be
able to be captured and understood by computing the Sobol Indices for the model with 16
uncertain parameters that were used in the factor fixing algorithm. Due to time constraints,
this analysis is out of scope for this study, but would be strongly recommended for future
work to strengthen this analysis. The final step of the factor fixing process is to determine the
number of uncertain parameters that will be used for further experimentation. The trade-
offs in making this decision is between the desired level of uncertainty (and implications on
MOEA and RL convergence times), and the accuracy to reproduce the values of the true
model that has all parameters sampled.

Figure 6.1 shows once the top 12 uncertainties have been added to the sampled set, the
Pearson correlation coefficient for all performance indicators is greater than 0.8, indicating a
considerable correlation to the original set [131]. Accordingly, the uncertain parameters for
the GSE will be reduced to the first 12 parameters used in this analysis (table C.8). Using
these 12 uncertain parameters minimises the levels of uncertainty in the GSE ’s dynamics,
whilst maintaining similar output values. This augmentation of the uncertainty for the GSE
also hedges the risk of unfeasibly long runtimes for later experimentation in this study.
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Chapter 7

Constructing the Metro Map

Optimisation algorithms are widely used for policy design for systems under deep uncertainty
[17]. Generally optimisation algorithms are used to identify the best solution to a problem,
but in deep uncertainty problems, such a solution rarely exists [132]. This chapter will explore
the experimentation of Multi-Objective Evolutionary algorithms for the robust optimisation
of policy pathways for the GSE , that will be used to construct a Metro Map that will guide
an RL agent later in this study.

7.1 Multi-Objective Robust Optimisation

There are two main challenges for identifying the policy pathways to use for constructing a
Metro Map: selecting pathways from a potentially infinite collection of possible pathways;
and ensuring identified pathways are robust to the uncertainties in the system. A method to
address both of these problems is to use Multi-Objective Evolutionary algorithms (MOEAs)
for the robust optimisation of policy pathways with multiple performance indicators. MOEAs
are well suited to optimising problems for non-linear spaces and high-dimensional action
spaces [47, 133], and were used by Kwakkel et al. [57] to generate policy pathways for
their original Metro Map. MOEAs solve optimisation problems by identifying solutions that
are Pareto-optimal with respect to their objectives, where a solution x is Pareto-optimal if
there does not exist a solution y, whose objective values are all better than the objective
values attained by solution x [134]. To equate MOEA terms to concepts used in this study,
a solution is a policy pathway, and the solution space is the space of all possible policy
pathways. Similarly, MOEA objectives are the performance indicators stated in section
4.3.

To address the problem of ensuring optimised policy pathways are robust, we extend tra-
ditional MOEA optimisation to MOEA robust optimisation. Robustly optimising policy
pathways can be considered as identifying pathways that produce desired outcomes for a va-
riety of possible runtime conditions. In the GSE , different runtime conditions are defined by
the set of input parameters, which are collectively called a scenario. As such, the robustness
of a pathway is measured using the outcomes from a set of uncertain scenarios.
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Algorithm 1 MOEA Robust Optimisation

1: S ← Set of randomly generated scenarios
2: R← Initial random policy pathways
3: i← 0
4: Pi ← ParetoOptimal (R, S) ▷ Performance based on multiple scenarios
5: repeat
6: C ← CrossOver (Pi) ▷ Create child policy pathways
7: M ←Mutate (C) ▷ Mutate children
8: R← Set of randomly generated policy pathways
9: i← i+ 1
10: Pi ← ParetoOptimal (M ∪R, S)
11: until termination condition met
12: return Pi ▷ Robustly optimised policy pathways

MOEAs are inspired by biological evolution [135], closely following the evolutionary process.
Pseudocode for how the MOEA will work in this study for robust optimisation is presented
in algorithm 1. First, a set of random scenarios and pathways are generated (lines 1-2).
The performance of the pathways (with respect to each performance indicator) is evaluated
to identify Pareto-optimal pathways (line 4). The Pareto-optimal pathways are combined
(cross-over, line 6) to produce new “child” pathways. The children are then slightly changed
(mutated, line 7), and the mutated pathways are then called the population archive. An-
other set of random pathways are generated (line 8), and the Pareto-optimal pathways of
the population archive and new random pathways are identified (line 10). This process is
repeated until a termination condition is met. See section 7.2.3 and Appendix D.2 for the
sizes of the sets S and R respectively.

7.1.1 ϵ-Non-Dominated Sorted Genetic Algorithm-II

The ϵ-Non-Dominated Sorted Genetic Algorithm-II (ϵ-NSGAII) [134] was chosen to facilitate
the robust optimisation in this study, and is instantiated by algorithm 1. The ϵ-NSGAII
algorithm is supported by the EMA Workbench, and is a successor to the Non-Dominated
Sorted Genetic Algorithm-II (NSGA-II) [85], which was employed by Kwakkel et al. [57] to
create their Metro Map. The key improvement of the ϵ-NSGAII algorithm over its predeces-
sor is the reduction of the number of user-specified hyperparameters, making the ϵ-NSGAII
a more accessible and simple algorithm to use. Specifically, it introduced adaptive run-
time solutions to common hyperparameter specifications such as population sizing, and the
inclusion of ϵ-dominance archiving [134].

The ϵ-NSGAII employs an iterative process where a population (set of solutions) is utilised
for searching through the solution space, and population sizes are automatically adapted
proportional to the number of Pareto-optimal solutions found. The ϵ-NSGAII keeps a subset
of its Pareto-optimal solutions, by using a technique known as ϵ-dominance. The ϵ-dominance
is a concept that allows the definition of precision for measuring the performance of identified
solutions. When the ϵ-NSGAII is initialised, a grid is constructed over the objective space
(figure 7.1), where the spacing between grid lines in each dimension is defined by a set of
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“ϵ-precision” values. The grid is known as the ϵ-grid, and creates grid-blocks whose width
in each dimension of the objective space is defined by the ϵ-precision values. Larger ϵ values
result in a coarser ϵ-grid, and smaller ϵ values create finer grids.

Figure 7.1: ϵ-dominance example for multiple solutions within a single ϵ-grid [88].

After each iteration of the ϵ-NSGAII, a grid-block in the ϵ-grid may contain the objective
values from multiple solutions. This would occur if multiple solutions had similar objective
values. If such an event occurs, the ϵ-NSGAII removes all solutions from that grid-block,
except the one with the smallest euclidean distance to the origin (assuming that all di-
mensions in the objective space are to be minimised). See figure 7.1 for an example using
a 2-dimensional objective. This reduction guides the ϵ-NSGAII to identify solutions with
non-trivially different values across the objective space, promoting a more distributed search
across the objective space. Since the removal of similar solutions by the ϵ-NSGAII is con-
trolled by the ϵ-grid, the coarseness of the ϵ-grid directly impacts the population and therefore
solutions kept after each iteration. Once all grid-blocks have been reduced to hold only one
solution, the ϵ-NSGAII removes any solutions that are completely dominated by at least one
other solution. This reduces the set of maintained solutions to only those that are Pareto-
optimal, i.e., those that are ϵ-non-dominated. These solutions are collected to create the
new population archive, whose role is to assist in the creation of the next generation.

Consider the population archive after iteration i, Pi (algorithm 1, line 7). To create the
next generation of solutions to explore Pi+1, the ϵ-NSGAII uses a 25/75 creation rule, where
25% of the next generation are solutions from Pi, and 75% are randomly sampled from the
solution space. The benefits of this creation rule are two-fold: it utilises ϵ-non-dominated
solutions to guide the ϵ-NSGAII to re-use solutions who have previously proved their qual-
ity by ϵ-dominance; and randomly sampled solutions allow for exploration into unexplored
areas of the solution space. Balancing the ratio of the create rule is very similar to the
exploration/exploitation dilemma in Reinforcement Learning [16].
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7.2 Experimental Setup

7.2.1 Defining Robustness

In MOEA robust optimisation, the robustness of a pathway is measured using the outcomes
from a set of different uncertain scenarios. Typically, a robustness metric is used to map
the values of a single performance indicator from multiple scenarios into a single robustness
value. Thus, for the multi-objective problem of this study, after a given run of the GSE using
a policy pathway, a robustness metric would be used five times to generate five robustness
values for that policy pathway, one for each performance indicator.

The robustness values are then used to map a given policy pathway, to a point in the
ϵ-NSGAII’s objective space. The ϵ-NSGAII uses that point to conduct its ϵ-dominance
checks between solutions, highlighting the importance of the robustness metric for how policy
pathways are identified by the ϵ-NSGAII. An important consequence of the relationship
between robustness metrics and the objective space is that the objective space is equivalent
to the range of the robustness metric. The way in which robustness is measured for a
pathway can be a precarious task, as two different robustness metrics can theoretically have
widely varying opinions on the robustness of a given pathway. Multiple sources [45, 136, 137]
suggested careful consideration is required when choosing a robustness metric, most notably,
Kwakkel et al. who state further work should be completed to understand the influence of
robustness metrics on MOEA robust optimisation [137].

Robustness metrics can be divided into three types: satisficing, regret, and statistical [137].
Given some predefined performance threshold, satisficing metrics seek to find pathways that
maximise the number of scenarios that meet this threshold. An established example is do-
main criterion [138], which identifies the proportion of a pathway’s results that fall within a
defined area of the objective space. Regret metrics [139] are a comparative measure and aim
to minimise the total regret of a pathway with respect to possible future scenarios. Regret
has been defined as the difference between a pathway’s performance in a given scenario, and
the performance of the best performing pathway for that given scenario. A robust pathway
in this context is one that minimises the maximum regret value across all evaluated scenar-
ios. The third robustness family, statistical, investigates the statistical and distributional
characteristics of the objective outputs from the set of scenarios. If the pathway’s results
are more skewed towards the desired objective values, the pathway is more robust.

The first two families of robustness metrics are not considered for this study. This study
contends that predefining thresholds of satisficing metrics, and identifying best-performing
pathways for regret comparisons to be contrary to the spirit of robustly optimising for a
system under deep uncertainty, as this introduces new assumptions into the experimentation.
As such, statistical metrics will be used to measure the robustness of policy pathways over
multiple different scenarios.
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A more intuitive way to think of robustness and robustness metrics, is to rationalise that
the robustness of a pathway over a set of scenarios, is analogous to quantifying the overall
performance of a pathway over those scenarios. A following conclusion is that robustness
metrics are a way to encode different opinions on what makes a pathway’s performance
desirable. Below is an example that conveys this robustness/performance relationship for a
simple, single-objective robust optimisation problem.

Let P be the space of all pathways and S the space of all scenarios. Consider p ∈
P , whose performance is evaluated over the vector of scenarios c⃗ = ⟨s1, . . . , sn⟩,
where n ∈ Z+, and si ∈ S, for i = 1, . . . , n.

Let the single performance indicator be f(s, p) ∈ R, which is generated from
using pathway p in scenario s. Collecting the outputs from evaluating p over c⃗,
gives o⃗ = ⟨f(si, p) | 1 ≤ i ≤ n, si ∈ c⃗ ⟩.

Robustness metrics are functions mapping Rn → R, and their task is to use the
output vector o⃗ to define the robustness of pathway p, with respect to the scenario
vector c⃗. Pathways are then ranked against each other by ordering pathways
according to their robustness value, with the ordering dictated by whether f(s, p)
is desired to be maximised or minimised.

Therefore, we can consider the process of quantifying the robustness of a pathway
p for the scenarios in c⃗, is no different to quantifying the performance of p for the
scenarios in c⃗. In summary, we can think of the terms robustness and performance
for policy pathway evaluation as synonyms.

To extend this example to a multi-objective problem, consider the addition of another per-
formance indicator g(s, p) ∈ R. The robustness metric maps the results of g(s, p) into a
second robustness value. Therefore, each pathway has two distinct robustness values and
rankings, one for each performance indicator generated by f(s, p) and g(s, p).
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7.2.2 Robustness Metrics

Robustness metric taxonomies were reviewed with a specific focus to identify papers that
discuss robust optimisation using MOEAs, and those that consider electricity and climate
related scenarios [17, 45, 136, 137]. McPhail et al. contributed an excellent a list of robust-
ness metrics ordered by their level of risk aversion (figure 7.2) [45]. This representation of
robustness metrics allows the user to more clearly consider the consequences of their choices,
and adjust their decisions according to their desired level of risk. It should be noted that
the relative order of robustness metrics in this figure is subjective by its designers [45], and
was included for illustrative purposes only.

Figure 7.2: McPhail et al.’s classification of robustness metrics in terms of
relative level of risk aversion [45], where green denotes pro-risk, and blue
is risk-averse.

Four different robustness metrics were chosen to assist the robust optimisation of policy
pathways. Choosing multiple robustness metrics allows for the assessment of different risk
attitudes for policy pathway design in the GSE , and a more comprehensive exploration of
the policy pathway space by the ϵ-NSGAII. This is paramount for ensuring the Metro Map
contains the most effective policy pathways for optimising the performance indicators. The
robustness metrics are presented below, in order of increasing risk aversion.

54



Maximax

Maximax [140] is considered to be an optimistic, pro-risk metric. It uses the best recorded
outcome as the value for robustness, making the assumption that the best possible outcome
will realise. Maximax seeks to find a pathway p∗ such that for n different scenarios:

p∗ =


argmax

p∈P
(max (f (s1, p) , . . . , f (sn, p))) , maximisation

argmin
p∈P

(min (f (s1, p) , . . . , f (sn, p))) , minimisation

Laplace’s Principle of Insufficient Reason

Laplace’s Principle of Insufficient Reason (LPIR) [45] states that if no knowledge exists on
the probabilities associated with different scenarios, the decision should be taken by assigning
an equal probability to all scenarios. The robustness value is thereby calculated using the
expected value from all scenarios. This metric is well-suited to deeply uncertain problems, as
the absence of probability distributions for uncertain variables is one of the defining features
of deep uncertainty [20].

p∗ =


argmax

p∈P

(
1

n

(∑n
j=1 f(sj, p)

))
, maximisation

argmin
p∈P

(
1

n

(∑n
j=1 f(sj, p)

))
, minimisation

90th-Percentile Maximin

The 90th-Percentile Maximin (90-P) is a pessimistic metric that designates the robustness
value to be the equal to the 90th worst percentile value from the evaluated scenario and was
the robustness metric used in the first paper to develop a Metro Map computationally [57].
Readers should note this is not the 90th-Percentile Minimax Regret in figure 7.2. This study
estimates the 90-P robustness metric would be placed between the 90th Percentile Minimax
Regret and Minimax Regret in figure 7.2. Consider (f (s1, p) , . . . , f (sn, p))n to be the n-th
percentile value for the output results of a pathway p.

p∗ =


argmax

p∈P
((f (s1, p) , . . . , f (sn, p))10) , maximisation

argmin
p∈P

((f (s1, p) , . . . , f (sn, p))90) , minimisation
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Maximin

The most pessimistic robustness metric, Maximin [140] uses the result from the worst
recorded outcome for a pathway. This leads to risk-averse pathways, and cab be thought to
identify a lower bound on performance.

p∗ =


argmax

p∈P
(min (f (s1, p) , . . . , f (sn, p))) , maximisation

argmin
p∈P

(max (f (s1, p) , . . . , f (sn, p))) , minimisation

7.2.3 Scenarios for Robust Optimisation

A critical decision prior to using the ϵ-NSGAII for robust optimisation is determining the
number of different scenarios to use to assess a policy pathway’s robustness. This is vital
for the quality of the policy pathways the ϵ-NSGAII will yield, as too few scenarios can
lead to the robustness metric used by the ϵ-NSGAII to misrepresent the true robustness
of the pathway. With respect to RL terminology, this can be considered as determining
the size of the training data for the ϵ-NSGAII. This will be completed by performing a
stability test [57, 101], which identifies the number of scenarios that should be collected for
a robustness value to stabilise, that is, to not significantly change with the addition of more
scenarios. Stability tests also assist in handling the trade-off between the runtime, and the
quality of the robustness value. Stability tests are used to not only identify the minimum
number of scenarios required, but to also assist with reducing the runtime in MOEA robust
optimisation. The required runtime for the ϵ-NSGAII is directly proportional to the number
of scenarios used for robust optimisation. A large number of scenarios guarantees the truest
reflection of robustness, but incurs a non-trivial runtime cost. Typically, this trade-off is
identified using a qualitative visual analysis [57, 101].

A set of 2000 scenarios was generated for the stability test, sampling over all 12 uncertain
parameters using Latin Hypercube Sampling (LHS) [128]. Ten random policy pathways were
also generated using LHS, and were evaluated for all 2000 scenarios. An example output
of the stability test is show in figure 7.3, where the LPIR metric values of the Renewable
Market Share indicator for 10 random policy pathways are plotted. The results for all
robustness metrics and performance indicators can be found in Appendix D.1. In figure 7.3,
the horizontal axis represents the number of scenarios used to calculate the robustness value
(vertical axis). When the horizontal axis value is equal to i, the first i scenarios from the set
of 2000 scenarios generated using LHS are used to calculate the robustness metric.
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Figure 7.3: Stability test example - LPIR values of the Renewable Market Share indicator
for 10 random policy pathways.

Between 500 and 1000 scenarios in the stability tests (Appendix D.1), the LPIR and 90-P
robustness metrics start to stabilise across each of the five performance indicators. Since the
Maximax and Maximin are concerned with identifying the best and worst-case scenarios of
a given policy pathway, the notion of stability is largely dependent on the ordering of the
results, and theoretically may not stabilise until a vast proportion of the uncertainty space is
explored. For example, if the scenario with the best outcome out of all scenarios is the first
to be evaluated by the stability test, then the Maximax would appear to have immediately
stabilised. Interestingly, the 90-P which is a similar by design to the Maximin, appears to
be much less sensitive to the addition of more scenarios than the Maximin.

Although the relationship between the runtime and number of scenarios for the ϵ-NSGAII
is only linear, in the context of the expected runtime for the ϵ-NSGAII [137, 141], this is
still of concern. Due to this, 500 scenarios will be used for the robust optimisation, as 500
scenarios reasonably stabilises for most metrics and performance indicators. Future work
for this project would benefit from choosing a larger number of scenarios, to ensure with a
greater degree of certainty that the robustness metrics have stabilised.

7.2.4 Sizing the ϵ-grid

The robustness metric used by the ϵ-NSGAII is highly influential on the behaviour and
distribution of results in the objective space. For example, suppose that a given single-
objective robustness metric, A, has a range of [0, 10], and a second metric, B = 2 ∗A, which
has a range of [0, 20]. If ϵ = 1 for metric A, the ϵ-grid imposed would allow for at most 10
solutions to be identified, whereas for metric B, up to 20 solutions can be identified with
the same width ϵ-grid. An ϵ-NSGAII experiment using metric B can be though to have a
finer grid, and is able to conduct a more fine-grained exploration over the objective space
compared to metric A. The conclusion to be drawn is that the robustness metric should
guide the choice of ϵ values for sizing the ϵ-grid.
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The ϵ values are generally determined via a trial-and-error process [88], requiring a balance
between the runtime and solution quality. Smaller ϵ values increase both the number and
quality of identified solutions [134], but more solutions require more model evaluations. For
this study, none of the four chosen robustness metrics perform any form of dilation when
mapping multiple performance indicator values to a single robustness value, either taking
the mean or identifying a single scenario from the results. As a result, the size of the ϵ-grid
is expected to have the same effect on all robustness metric experiments, as the coarseness of
the ϵ-grid relative to the range of the robustness metrics is equivalent for all metrics.

Due to timing constraints, it was infeasible to tailor the ϵ values for each robustness metric.
The ϵ values were determined via a trial-and-error process using the LPIR metric, and were
considered to provide the best trade-off between runtime, quality, and number of pathways
found. The ϵ values for each performance indicators for GHGE Levels , Renewable Mar-
ket Share, Wholesale Prices , Tariff Prices , and Unmet Demand Days) were respectively
0.08tCO2e, 1% , 0.2$/MWh, 0.5¢/KWh, and 1 day.

7.2.5 ϵ-NSGAII Termination

The MOEA literature contains various techniques on how to define when the solutions iden-
tified by an MOEA have (approximately) converged to signal termination. Three pervasive
techniques were identified, Epsilon Progress [134], Hypervolume [142], and Epsilon Perfor-
mance [134]. Epsilon progress uses the ϵ-grid imposed on the objective space as part of its
measurement and is mainly used to signal the rate in which the objective space is being
explored. Epsilon progress records when the ϵ-NSGAII has been able to identify a new
solution that occupies a previously unoccupied grid-block in the ϵ-grid. Accordingly, Ep-
silon Progress is closely tied to the size of each generation, as larger generations have more
capacity to explore new regions of the objective space.

Epsilon Progress is supported by the EMAWorkbench, but only records the Epsilon Progress
against the total number of pathways evaluated by the ϵ-NSGAII at that point in the run-
time. Such results make it difficult to understand how the ϵ-NSGAII is progressing between
generations, as the Epsilon Progress may appear to still be increasing considerably, when
only a small fraction of the current population size is contributing to the Epsilon Progress.
Additionally, Epsilon Progress does not provide any information into the change in the popu-
lation, particularly, its quality and size, and therefore was not considered for this experiment.
The other termination techniques, Hypervolume and Epsilon Performance, required either
knowledge on the bounds of the performance indicators, or the creation of a reference solu-
tion respectively. As the bounds of some indicators (e.g. Wholesale Prices) are not known,
and the notion of a reference solution introduces new assumptions to experimentation, these
termination metrics were not considered.
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Instead, this study will use the quality and size of policy pathway populations over multiple
generations of the ϵ-NSGAII as a signal for termination. A similar approach was completed
in [52], who explored electricity policy management in the European Union using MOEA
robust optimisation. Below outlines the steps of the termination algorithm:

Consider the population of policy pathways at generation i, Pi, where every
p ∈ Pi has five robustness values, one for each performance indicator. Record
the mean robustness value for each performance indicator using all p ∈ Pi and
repeat this process for population Pi−1. Calculate the percentage improvement of
each mean robustness value from Pi−1 to Pi, resulting in five different percentage
improvement values. If the maximum of these percentage improvements is less
than ∆ = 2%, then the ϵ-NSGAII has made little improvement from generation
i to i+1. If for all j = i−9..i (10 generations considered in total), the maximum
percentage improvement value from Pj−1 to Pj is less than ∆, the ϵ-NSGAII
terminates.

By assessing the change over 10 generations, the ϵ-NSGAII has ample opportunity to test a
sufficiently large number of randomly generated pathways (supported by the 25/75 creation
rule), such that new pathways could be found that were non-trivially more robust and would
influence the mean values of at least one robustness metric, as well as assisting the ϵ-NSGAII
to move out of a local optimum within the objective space if needed.

This method to measure the termination of the ϵ-NSGAII maintains greater control over
the change in quality of the pathways compared to Epsilon Progress, and is plotted against
generation numbers, as opposed to the number of evaluated policy pathways, making it
easier to understand the change in the solutions between generators. However, it has two
deficiencies, the first being despite allowing up to 10 new generations to identify better
solutions, it is possible that ϵ-NSGAII could terminate when it is stuck in a non-global
optimum within the objective space. Secondly, the percentage change of robustness values
can have different significance between robustness metrics. For example, a 10% change for
Maximax ’s indicates an average increase of 10% of the best case for all pathways, whereas
for Maximin it would indicate a 10% increase in the worst-case. These deficiencies are not
considered to have a notable impact on the underlying quality of the pathways’ output, but
are worth improving upon in future work.
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7.3 MOEA Robust Optimisation Results

A set of 500 scenarios, as guided by the stability tests, was generated using LHS. These 500
scenarios were then used with the ϵ-NSGAII for multiple robust optimisations experiments,
where each experiment used a different robustness metric from the four metrics outlined in
section 7.2.2. These were run on a 44 core 2.0 GHz Intel Xeon server with multiprocessing,
and collectively took 422.43 hours to complete (table 7.1). Even with multiprocessing to
leverage the full computational power of the server, these runtimes reinforce the importance
of model optimisations when experimenting with MOEAs [114, 115].

Robustness Metric Wall Time (hours)

Maximax 75.27
LPIR 88.23
90-P 45.85

Maximin 213.08

Total 422.43

Table 7.1: ϵ-NSGAII robust optimisation runtime durations.

The hyperparameters for all ϵ-NSGAII runs can be found in Appendix D.2. Cross-over was
completed using the simulated binary cross-over algorithm [143], and mutation by polyno-
mial mutation [144]. The runtime behaviour of each experiment was recorded, such as the
population size over time, as well as the performance indicator values for the robustly opti-
mised pathways. Evaluating the runtime behaviour of each of the experiments will provide a
deeper understanding of the influence robustness metrics have on the ϵ-NSGAII, particularly
regarding the quality and number of policy pathways identified.

MOEAs are stochastic in their search through the solution space, introducing randomness
into their algorithms. It is best-practice [137] to use the results of multiple runs of the
MOEAs with different random seeds, so that the algorithm starts its first iteration with
different sets of solutions. Initialising the exploration of the MOEA from different regions
of the solution space mitigates the risk of the algorithm terminating whilst its solutions are
stuck in a non-global optimum. The results in this experiment are only generated by a single
run of the ϵ-NSGAII using each robustness metric due to timing constraints. Throughout
the analysis, the results of each ϵ-NSGAII experiment will be referred to by the name of the
robustness metric used in that experiment, for example, “the LPIR results...”, stands for
the results of the ϵ-NSGAII that used the LPIR robustness metric.
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7.3.1 Runtime Behaviour Results
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Figure 7.4: Population sizes throughout the ϵ-NSGAII robust optimisations for each robust-
ness metric up to their respective termination generation.

The population size at each generation is plotted in figure 7.4. The 90-P , LPIR, and Maxi-
max metrics all maintained a similar population size throughout their execution. The upper
outlier, the Maximin metric, contained a larger population sizes compared to the other met-
rics, with a maximum size of 155 policy pathways. This behaviour of the Maximin could
reasonably be expected of theMaximax metric too, as it is effectively the reverse ofMaximin,
seeking the to maximise the best-case (outlier) outcome. These results indicate the objec-
tive space appears to be more densely populated in regions with less desirable behaviour, as
the ϵ-NSGAII was able to identify so many solutions in the Maximin experiments. When
approaching the more desired regions of the objective space, solutions become more sparse,
making it challenging for the ϵ-NSGAII to identify as many pathways. From this, we draw
that for the GSE , pathways tend to have a similar worst-case outcome, but best-case out-
comes are more diverse, and difficult to identify.

Figure 7.5 shows the maximum percentage change between generations used for the termi-
nation algorithm (section 7.2.5), with all experiments reaching termination at the end of
their plot (denoted by the dotted line). Both the Maximax and LPIR metrics exhibited very
similar trends throughout their robust optimisation, especially over the course of the first
35 generations, averaging a maximum percentage change in metric values of 6.3% and 6.8%
respectively.
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Figure 7.5: Percentage changes used by the ϵ-NSGAII termination algorithm for each ro-
bustness metric up to their respective termination.

The Maximin metric required slightly more generations to terminate (84), but has minor
changes for a majority of its generations, very closely reaching termination multiple times
after generation 20 for the following 64 generations. As the region of the objective space
(worst-case) the Maximin explores is suspected to be densely populated, new pathways were
frequently identified, whose robustness values were only minutely better on average by figure
7.5. Lastly, the 90-P metric only required 44 generations to reach termination, significantly
fewer than the other metrics. Given the ϵ-grid’s are the same for all experiments, the varia-
tion in termination behaviour between the metrics was likely due to the robustness metrics
themselves. The faster termination (w.r.t the number of generations before terminating) by
using the 90-P metric with the ϵ-NSGAII is a strong initial advantage of this robustness
metric for the GSE .
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7.3.2 Performance Indicator Results

Using the robustly optimised pathways from each metric, the performance indicator results
were recorded for each policy pathway from the 500 scenarios used for the robust optimisa-
tion. The results were grouped according to which robustness metric they were optimised
with, allowing for an investigation into the overall performance of using each robustness
metric with the ϵ-NSGAII. Due to the final number of robustly optimised pathways varying
between robustness metrics, the size of the grouped results (#pathways × #scenarios) varied
as well. For example, the 90-P metric dataset size is 48 × 500 = 29, 000, and the Maximin
metric dataset size is 152× 500 = 76, 000.

Robust optimisation evaluation should use a new set of scenarios, but the robust optimisation
and subsequent creation of the Metro Map is all part of the training phase of the proposed
DAPP/RL agent. In section 8.5 where the training phase is discussed, the same 500 scenarios
used in this section are used as training data for the RL agents, thus we will continue to
only use these same 500 scenarios for evaluation in this stage of the DAPP/RL agent’s
development. An additional baseline set of results is included for the following analysis. The
data for the baseline was generated by running the 500 scenarios with no policy actions being
taken at any point in the simulation. Completing this baseline analysis will assert whether
the pathways identified by the ϵ-NSGAII were able to positively influence the performance
indicators, compared to performing no action at all. Tables containing summary statistics
of the results (e.g. mean, standard deviation) evaluated in this section can be found in
Appendix D.3.

This analysis is guided by the words of Kwakkel et al. [102], who stated when evaluating
the performance of policy pathways for systems under deep uncertainty, attention should
be given to both the values and distribution of the performance indicators. Policies which
are able to maintain a tighter distribution are viewed favourably, for their potential greater
predictability and robustness to the uncertainties in the system.
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Figure 7.6: KDE plots of the results for all robustness metrics and performance indicators.

Kernel density estimates were fitted to all performance indicators results to provide a prelim-
inary insight into the quality of the performance indicator results (figure 7.6). The environ-
mental indicator results (GHGE Levels and Renewable Market Share) were greatly improved
by all ϵ-NSGAII experiments compared to the baseline, but unexpectedly, all metrics pro-
duced very similar distributions for both environmental indicators. Considering how some
robustness metrics have greatly differing ways of guiding the ϵ-NSGAII’s search through
the solution space (e.g. Maximax and Maximin), this study did not anticipate such similar
behaviour. This distribution may have been caused by the policy pathways approaching an
upper bound for overall environmental performance. Given the policy actions predominantly
benefit the environmental indicators, it is likely the ϵ-NSGAII was able to identify policy
pathways for each scenario that approached the upper bound of environmental performance.
In contrast, the results between the robustness metrics for the economic performance indi-
cators, Wholesale Prices , Tariff Prices , and Unmet Demand Days , exhibited less desirable
results compared to the baseline. Reassuringly, their poorer performance was not as severe
as the baseline for the environmental indicators. As the merit-order in the market is a cost
minimising mechanism, the baseline was expected to have the best economic performance, as
many of the policy actions (e.g. carbon tax) can have negative economic impacts. Regard-
ing distribution, all metrics maintain a similar distribution for Wholesale Prices and Tariff
Prices , but appear to spread slightly more for the Unmet Demand Days results. The results
in figure 7.6 consolidate the key challenge of identifying policy pathways for the GSE , to
find policy pathways that best balance the trade-off between optimising the environmental
and economic performance indicators.
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To convey the relative performance of the robustness metrics, the min-max normalised mean
value of the performance indicators of all robustness metrics is plotted in figure 7.7. Cau-
tion should be taken when reviewing this figure, as it only displays relative differences. A
first impression is a strong trade-off is present between the environmental and economic
performance indicators for all results, as expected from figure 7.6. Such trends reaffirm the
challenge to create policy pathways that balance the environmental and economic perfor-
mance indicators.
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Figure 7.7: Min-max normalised mean results for all robustness metrics.

The pro-risk behaviour imbued by the Maximax metric did not pay off, exposing the ϵ-
NSGAII to a suite of pathways who were the poorest performing on average for all the
robustness metrics. In contrast, the risk-averse Maximin metric performed the best amongst
the robustness metrics for most of the performance indicators, suggesting that given the
choice between pro-risk and risk-aversion for the GSE , risk-aversion is a better strategy to
adopt.

An interesting phenomenon occurred in the Unmet Demand Days results, where Maximax
and Maximin split from LPIR and 90-P . As was demonstrated in figure 7.6, the distribution
of the Unmet Demand Days was diverse amongst the metrics, which is still present even
when smoothing the results to their mean values. The key difference between the Maxi-
max/Maximin, and the LPIR/90-P is the exposure their calculations have to the distribu-
tion of a policy pathway’s results. Maximax and Maximin use the performance indicators
from the best and worst-case scenarios, whereas the LPIR/90-P are implicitly exposed to
the distribution of the results, as the mean value and 90th percentile are influenced by the
distribution. In addition, both LPIR/90-P are by design less susceptible to outlier influ-
ences when calculating robustness. This study shows that identifying policy pathways that
maximise performance for the Unmet Demand Days requires a more considered approach to
the overall results of a pathway, taking into account both performance indicator values and
distribution, as opposed to acting greedily or conservatively according to the values.
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From only observing figures 7.6 and 7.7, the study finds the best performing robustness metric
was the 90-P metric, which presented desirable results across all performance indicators, and
most pronounced for the Unmet Demand Days . The close second is the LPIR metric, who
performed similarly across all performance indicators, but (relatively) less desirably for the
environmental indicators. It is worth taking note of the risk aversion of the two best metrics
are upper bounded by a risk-neutral metric (LPIR), and lower bounded by the risk-averse
90-P metric. This reinforces the notion to maintain a risk-averse attitude for the GSE .
Future work should evaluate a wider variety of robustness metrics, particularly those with
a pro-risk level between the Maximax and LPIR to explore the performance of pro-risk
policies for the GSE , and further investigate the concept of using risk-aversion as a bound
for performance.
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Figure 7.8: Robustness metric results for 500 scenarios - Environmental indicators.
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Box plots were generated for each of the performance indicators to better visualise their
quality. Figure 7.8 clearly demonstrates the capability of the ϵ-NSGAII to optimise policy
pathways for the environmental performance indicators. The best result for GHGE Levels
was a reduction of the mean baseline GHGE Levels value of 2.87tCO2e to 1.61tCO2e, and
the mean baseline Renewable Market Share was increased from 51.74% to 71.37% (both
results were generated by the Maximin metric). Unfortunately, none of the results from the
ϵ-NSGAII were able to notably improve the worst-case values for both environmental indica-
tors, suggesting there are a set of unavoidable worst-case scenarios. However, a considerable
improvement in the environmental performance indicators has occurred overall. An added
benefit of the ϵ-NSGAII environmental results were its tighter distributions. Using the Max-
imin metric, the standard deviation was reduced from the baseline GHGE Levels value of
1.06tCO2e to 0.74tCO2e, and the Renewable Market Share standard deviation was reduced
from 11.88% to 9.29% . Although the changes in the distribution are not as significant as
the changes of the raw values, the ϵ-NSGAII has identified policy pathways that can han-
dle the deep uncertainty of the GSE and consistently ensure strong performance indicators.
The improvements on the raw values and distribution of the policy pathways identified by
the ϵ-NSGAII affirm that the ϵ-NSGAII has successfully designed environmentally beneficial
policy pathways for this model, that hopefully result in an environmentally conscious RL
agent that uses these policy pathways.

Shown in figure 7.9, the ϵ-NSGAII was not able to generate more desirable results for the
economic performance indicators. Whilst unfortunate, this is an expectation of the policy
pathways, as many of the policy actions have negative impacts on the economic indicators.
The values for the Tariff Prices are the most displeasing, as the worst-case scenarios for each
metric reach much less desirable prices than the baseline, which is likely due to the use of the
more economically impacting policy actions, such as the merit-order change action. Across
all economic indicators, the Maximax performed the poorest for all metrics, possessing the
large mean values, range, and standard deviation (see Appendix D.3).

Notable behaviour arose from the economic indicators whereby all results had a similar lower
bound on results (lower bound being desirable), suggesting the ϵ-NSGAII approached some
bound for the best-case scenarios of its policy pathways. The Maximin is one exception,
having the largest minimum value for Wholesale Prices , 32.22$/MWh, nearly double the
(approximately) 17.00$/MWh of all other minimum Wholesale Prices . Considering the de-
sign and purpose of the Maximin metric, the risk aversion may have influenced this result,
as the metric does not consider the best-case performance of policy pathways, or any per-
formance outside the worst-case, thus it is not unexpected for the Maximin to have poor
best-case performance. Another notable result is again concerning the Wholesale Prices , and
the impressive range of the LPIR and 90-P metrics, both approximately 219.00$/MWh, far
below the Maximax and Maximin ranges of 324.44$/MWh and 306.92$/MWh respectively.
Both the LPIR and 90-P metrics have been able to contain all results with a much tighter
range, and were far less susceptible to outlier results compared to the other metrics. The
range is an important statistical value for Wholesale Prices , due to the potentially devas-
tating impacts of high Wholesale Prices can have for households and business the NEM
supplies electricity with. Ensuring the range and maximum wholesale price value is as small
as possible is essential for any policy pathway for the GSE .

67



Baseline Maximax LPIR 90-P Maximin

0

50

100

150

200

250

300

350
W

h
ol

es
al

e
P

ri
ce

s
($

/M
W

h
)

Baseline Maximax LPIR 90-P Maximin

0

20

40

60

80

100

120

140

T
ar

iff
P

ri
ce

s
(¢

/K
W

h
)

Baseline Maximax LPIR 90-P Maximin

0

50

100

150

200

250

300

350

U
n

m
et

D
em

an
d

D
ay

s
(D

ay
s)

Figure 7.9: Robustness metric results for 500 scenarios - Economic indicators.
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7.4 Discussion

Upon reflection, the robustness metric results relative to the baseline are not as poor as
the analysis may suggest. Within each robustness metric, the results were generated by
evaluating the performance of all policy pathways, against all scenarios. However, not every
policy pathway is suited to every scenario, there is a need to be adaptive, to respond to the
uncertainties and circumstances in each scenario and change policy actions accordingly. The
aim of the DAPP/RL agent is to introduce this adaptive ability, to use the policy pathways
to guide the agent, and provide the agent with a set of decisions in the form of the Metro
Map that have already been robustly optimised using the ϵ-NSGAII. The importance of this
analysis was to understand how different robustness metrics can influence the set of policy
pathways the ϵ-NSGAII identifies. As the policy pathways will be used to construct theMetro
Map (section 7.5), the choice of robustness metric will have significant implications for the
rest of this study. Although there were slight variations in performance across the evaluated
robustness metrics, there was no metric that significantly outperformed the others. This is
an unfortunate outcome for this experiment, and lends itself to the statement that choice of
robustness metric for MOEA robust optimisation does not majorly influence the collective
performance of robustly optimised policy pathways for the GSE . Granted, this does not
extend to other aspects the robustness metrics influence, such as number of policy pathways
found or time to termination, as these were more distinguished. The timing constraints
of this study do not allow the training and evaluation of four DAPP/RL agents, where
each agent uses a Metro Map constructed using the policy pathways from one of the four
robustness metrics. Accordingly, the policy pathways from a single robustness metric needs
to be chosen to construct a Metro Map with. The number of policy pathways identified, the
raw performance values, and the design of the robustness metric are key aspects to guide
the decision. The number of policy pathways can have negative impacts on the construction
of the Metro Map, too many pathways can result in a very large, complex Metro Map, that
could be difficult for the agent to learn. Conversely, too few pathways can make the Metro
Map too simple that combining an RL agent with the Metro Map has no benefit, as the
problem could be reduced to a common RL multi-armed bandit problem [16].

The first robustness metric to be discarded is theMaximax metric. It maintained the poorest
performance over the mean values (section 7.3.2), and its pro-risk nature is inappropriate
for a real-world system such as the NEM. The next metric to discard is the Maximin. This
metric contains a very large number of policy pathways (153), and contained a considerably
large range for Wholesale Prices too. The final two metrics, LPIR and 90-P , are almost
indistinguishable across their statistical results (see Appendix D.3), and also have similar
numbers of policy pathways, 72 and 53 respectively. However, for the purpose of sustainabil-
ity transitions, particularly, the focus on environmental performance indicators, this study
will seek to utilise the set of policy pathways set generated by the ϵ-NSGAII using the
90-P robustness metric to construct a Metro Map. The 90-P robustness metric performed
marginally better for the environmental indicators, has a smaller number of policy pathways,
and its tapered risk-aversion was deemed to be more appropriate for a policy design problem
where a large population (Victoria) is vulnerable to the policy actions implemented.
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7.5 Constructing the Metro Map

A difficult challenge of using MOEAs for robust optimisation is how to handle and utilise the
multiple output solutions. Once a set of robustly optimised policy pathways are identified,
human policy-makers must weigh up the pros and cons of each pathway and make a decision
on which to implement. Such a decision is restrictive and, regrettably, loses the collective
insight and knowledge the discarded policy pathways may have.

The Metro Map combines multiple policy pathways into a single graph, similar to a decision
tree, which can increase the complexity of the decision faced by policy-makers. Instead of
choosing a single policy pathway to follow and definitively knowing the rest of the policy
pathway, the decision becomes which action to take, whilst considering the multiple possible
policy pathways that can be followed after taking that action. Haasnoot et al. [54] argued this
was a benefit of the Metro Map, stating that this allows policy-makers to commit to actions
in the short-term, whilst providing a framework to guide future actions. Most importantly,
plans can be made that can dynamically adapt as the future unfolds.

Once the set of robustly optimised policy pathways has been generated, constructing a Metro
Map is a relatively trivial task. Pathways are combined by grouping together pathways who
have the same “prefix” of policy actions. For example, if the first n policy actions in two
policy pathways are identical, then those two pathways have the same “prefix” for the first
n actions. These pathways can then be combined for the first n policy actions, and diverge
in the Metro Map for the (n+ 1)th action.

Figure 7.10 shows four different policy pathways, which are comprised of two different policy
actions. Their prefixes are combined in figure 7.11, to construct the Metro Map (or decision
tree). A black node is added to figure 7.11 as the root node, its purpose is to act as a starting
point before the first decision is made.

0 0 0 1 1 0 1 1

Figure 7.10: Four simple policy pathways.

1

1

0

0

1

0

Figure 7.11: A simple Metro Map created using the policy pathways from figure 7.10.
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Figure 7.12: Metro Map created using the policy pathways identified by the ϵ-NSGAII using
the 90-P robustness metric.
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The 53 robustly optimised policy pathways generated by the ϵ-NSGAII using the 90-P ro-
bustness metric were collected, and combined to make the Metro Map in figure 7.12. Traver-
sal starts at the root black node, and every node is labelled and colour coded according to
the policy action it denotes. Each level represents a different year in which policy actions are
activated in the GSE , for example, the first level after the initial node represents the actions
that can be taken in 2022, the following level 2026, and so on until the final level representing
actions for 2046. The visual representation of the Metro Map in this study differs to the orig-
inal design by Haasnoot et al. [54] due to the large number of policy pathways. Traditionally,
Metro Maps are visually constructed to look like a public transportation map (hence the
“metro”), but 53 pathways made the map difficult to present in this study. As a result, the
visual representation of the Metro Map for this study is instead a tree structure.

There are two prevalent trends in the Metro Map, occurring in years 2034 and 2046 respec-
tively. In 2034, a majority of the policy pathways activate the emissions merit-order action,
and in 2046 almost all policy pathways activate the 5% reduction policy action. As the path-
ways were robustly optimised using 500 different scenarios, this would suggest that taking
these actions in these years is often the best course of action, regardless of the uncertainties
in the model.

Overall, the structure of theMetro Map is moderately complex, and has a sufficient branching
factor such that applying RL to learn how to use the Metro Map will result in a better
outcome, compared to randomly choosing any of the Pareto-optimal policy pathways within
the Metro Map. In the second and third last levels, representing years 2038 and 2042, there
is little to no opportunity to change policy pathways via a branching node. Branching would
only occur if at least two policy pathways had identical actions up until these years, which
is unlikely when there are 10 different policy actions to choose from. As a result, most of
the RL agent’s opportunity to adapt to scenario conditions will occur during the first four
policy action timesteps, every four years from 2022 to 2034.
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Chapter 8

Intelligent Policy-Makers

With the preparation of the GSE , and the construction of the Metro Map completed in
chapters 4-7, this study can now begin the process of designing intelligent RL agents, whose
purpose is to optimise the performance indicators of the GSE using the available policy
actions. This chapter will discuss the preparation and training required to design the RL
agents, and the considerations made to ensure the agents are able to handle the deep uncer-
tainty of the GSE . The ability of the RL agents to optimise the performance indicators will
be critically evaluated, and a discussion will be conducted on how the agents have addressed
the research aims of this study.

8.1 Markov Decision Processes

Training intelligent agents using RL algorithms requires the interaction between the agent
and its environment (GSE ) to be mathematically formalised. In RL literature, it is common
to use Markov Decision Processes (MDP) [16] as a framework to model this interaction. An
MDP can represented as a tuple ⟨S,A, r, P, γ, π⟩,:

• S: State space that describes all possible configurations of the environment.

• A: Action space that describes all possible actions in the environment.

• r(s, a): Reward function to determine reward given to agent after taking action a ∈ A
in state s ∈ S.

• P : Probability transition function to represent the environment’s dynamics. Pa(s
′|s)

denotes the probability of transitioning to state s′ ∈ S, given the current state s ∈ S
and action a ∈ A was taken.

• γ ∈ [0, 1]: A discount factor to assist in balancing immediate and future rewards.

• π(s) → a: The policy (strategy) to decide what action a ∈ A to take when the
environment state is s ∈ S. Policies are generated when solving a MDP.
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At each iteration of solving the MDP, the agent uses the current state of the environment s
with its policy to decide which action a = π(s) to take. The environment then transitions
to state s′ with a probability of Pa(s

′|s), and the agent is given a reward determined by
r = r(s, a). The following sections will outline the process taken to design the MDP to
model the interaction between the RL agents and the GSE for this study.

8.2 State & Action Spaces

Designing the state space for non-trivial RL environments such as the GSE is a challenging
task, as features to describe the state of the GSE , such as Wholesale Prices , are predomi-
nantly continuous values. When the state or action space is continuous, it is impossible to
explore the product of these spaces to find the optimal policy for the MDP, described as the
“curse of dimensionality” [16]. Another challenge is to design the state space such that it
provides sufficient information for the RL agent to make informed predictions on the impacts
and rewards of its actions [73].

Often in RL problems, the value of factors that should be in the state space to assist in action
decisions are unknown. For example, having the true values of all 33 uncertain parameters
of the GSE in the state space would greatly assist the RL agents, but would invalidate the
investigation of how RL agents handle deep uncertainty. A common method to mitigate
these unknown values is to employ Partially-Observable MDPs (POMDP), which attempt
to model probability distributions of the unknown values to make more informed predictions
of their true value.

For this study, we seek to understand how RL can assist in the policy-design process for
deeply uncertain futures in the GSE . We find the best method to fulfilling the research
aims of this study is to not fit probability distributions to attempt to learn the values of
uncertainties in the model via mathematical techniques such as POMDPs. Rather, we aim
to explore how RL agents can handle the deep uncertainty in the GSE that is caused by
the 33 uncertain parameters. Further, fitting a probability distribution to uncertainties in
the model would violate Maier et al.’s [20] principle of deep uncertainty that probability
distributions of uncertain parameters are unknown or unable to be agreed upon.

To make informed decisions when interacting with the GSE , the RL agents require sufficient
information [73] about different aspects of the GSE during runtime. Rojas-Arevalo [92] used
a collection of 26 different values (Appendix A) that encompassed key aspects of the GSE to
analyse the impacts of deep uncertainty via Exploratory Modelling and Analysis techniques.
These values recorded yearly measurements (e.g. annual coal electricity production levels),
and provided a comprehensive snapshot of the state of theGSE in each simulated year. These
26 values became the foundation of the state space for the RL agents. Some of these values
were unrelated to the overall objectives of the RL agents, which could potentially mislead
the RL agents to develop poor performing policies [16], and therefore some of the 26 values
were removed, resulting in a final list of 20 values to describe the state of the GSE (Appendix
A). The 20 values for each of the fours years were added to the state space, to capture the
dynamics of the GSE in the four years between each policy action activation.
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The final state space has a dimension of (4 × 20), 20 values for each of the four years,
which are almost all continuous and capture the required information for RL agents to make
informed decisions and predictions to optimise the performance indicators for the GSE . The
action space for the RL agents is a mapping of the policy actions described in section 4.4
to a discrete integer set. As aforementioned, continuous state spaces introduce complexity
problems for RL algorithms, and heavily influence which RL algorithms are applicable for
this study.

8.3 Deep Q-Learning

The goal of the RL agents is to learn a policy π, for the MDP, which maximises the discounted
sum of rewards in each episode (GSE simulation). The discounted sum, for an episode that
is T timesteps long, is defined as

∑T
t=0 γ

trt. The discount factor, γ ∈ [0, 1], discounts the
future rewards relative to the immediate reward. Discounting allows RL engineers to control
the prioritisation the RL agent has between immediate and future rewards.

A classical approach to developing policies that maximise rewards for MDPs is the Q-
Learning algorithm [145]. Central to Q-Learning is the Q-function, Qπ(s, a), which measures
the discounted sum of rewards which will be obtained when action a is taken in state s, and
the policy π is followed until the episode ends. If the optimal Q-function, Q∗(s, a), defines
the maximum possible discounted sum of rewards that can be obtained by taking action a in
state s, and continuing to follow the policy, then the optimal Q-function follows the Bellman
optimality equation:

Q∗(s, a) = E
(
r + γ · argmax

a′∈A
(Q∗(s′, a′))

)
In simpler terms, the maximum reward return by taking action a in state s is the sum of the
immediately returned reward, r, and the discounted sum of rewards generated by following
the optimal policy until the episode terminates. The Q-Learning algorithm leverages the
Bellman optimality by iteratively updating the Q-function according to:

Qi+1(s, a) = E
(
r + γ · argmax

a′∈A
(Qi(s

′, a′))

)

It has been shown that as i → ∞, Qi → Q∗, meaning that given sufficient iterations, the
optimal policy will be found. By using the Q-function, RL agents are able to choose which
action to take in a given state to maximise its returned reward. Rudimentary Q-learning
algorithms store the Q-function in a tabular form, whose dimensions is determined by the
size of the state and action spaces [16]. When at least one of the state or action spaces are
continuous, tabular methods are no longer viable. A solution is to discretise the continuous
space, but this can lead to a loss of information.
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It has become common in RL literature to combine artificial neural-networks (ANN) to
assist in combating this problem [13]. ANNs are able to mitigate the the complexities of
continuous spaces by approximating different components of RL algorithms using neural-
networks. ANNs also bring the benefit of their powerful feature extraction capabilities,
which further assists in the state space design problem for RL [146].

This study will utilise the Deep Q-Learning (DQN) [147] algorithm to train RL agents
to solve the MDP. DQN works by training a function approximator using an ANN with
parameters θ, such that Q(s, a; θ) ≈ Q∗(s, a). Using an ANN removes the use of tabular
storage methods, and allowing DQN to operate with continuous state spaces. However,
DQN finds the maximum of the action-value by enumerating all actions in the action space,
limiting it to only being suitable for discrete action spaces. The DQN algorithm is well
suited to the continuous state and discrete action spaces of this study, and has proven to be
an effective RL algorithm for many other RL studies [148]. The DQN algorithm is known as
a “model-free” algorithm, meaning it learns optimal policies by associating the best action
with each state, without determining the underlying transition probabilities between states.
As a result, this removes the need to formally model the probability function P of the MDP
for this study.

8.4 Reward Function Design

Designing reward functions for RL problems is one of the most difficult and important tasks in
RL studies. Sutton et al. [16] described the reward function as the method in which the user
communicates its goal to the RL agent, where the challenge is to ensure the communication
is clear enough to guide the agent towards that goal. Reward functions can be easy to
construct if the problem has clearly defined goals, such as achieving a high score in a game,
but becomes much more complex when goals cannot be easily defined by a scalar value.

In this study, the goal of the RL agent is to optimise the performance indicators for the
GSE . Communicating a multi-objective (5 performance indicators) goal is significantly more
complex for RL agents compared to MOEAs. This because all objectives need to be mapped
to a single reward function value, contrarily this is trivial for MOEAs, as they are able
to consider each objective individually when comparing solutions. A common method for
multi-objective RL used in this study is the Weighted Sum method [49], which converts the
multi-objective problem into a single objective problem using a scalarisation function. These
functions assign a weight to each objective and the sum of each objective multiplied by its
weight is used as the final value, mapping the multiple objectives into a single objective.

Three different reward functions using the Weighted Sum method were developed and eval-
uated for the RL agent. Each reward function was designed as a dense reward function, by
providing a non-zero reward to the RL agent at each timestep, as opposed to returning the
quality of the agent’s actions at the end of each simulation. Dense reward functions have
been cited to better guide RL agents, and increase the speed in which an RL agent learns
an optimal policy, due to the more frequently received reward (feedback) [16].

76



The first reward function (RF1) combined the normalised values of each of the performance
indicators. At each timestep, the current values of the performance indicators were min-max
normalised, using the minimum and maximum values of the performance indicators, drawn
from a sample of 106 experiments (see Appendix E.1). As previously stated in this study,
the true maximum and minimum bounds of the performance indicators cannot be known,
but an approximation has been made for this reward function. Let st be the state of GSE
at timestep t. The weight values in w represent an equal weighting between all performance
indicators, and the sign of the weight refers to whether the performance indicator is desired
to be maximised or minimised. The reward function is defined as:

r(st, at) =
∑
i

wifi

w = ⟨−1, 1,−1,−1,−1⟩
f = ⟨sghget , srenewt , swholesale

t , starifft , sunmet
t ⟩

The second reward function (RF2) omitted the use of approximation for performance indica-
tor ranges, instead focusing on the change in the performance indicators between timesteps.
The aim was to provide feedback to the RL agent on whether it was moving in the right
direction with respect to the change in performance indicators. However, the dynamics of
each performance indicator vary over the simulation period. For example, towards the end
of each simulation, Unmet Demand Days deteriorates whereas Renewable Market Share im-
proves. These varying dynamics can potentially provide noise to the reward function, where
one performance indicator’s deterioration hides the improvement of another. The reward
function is defined as:

r(st, at) =
∑
i

wi ×
fi − gi
gi

w = ⟨−1, 1,−1,−1,−1⟩
f = ⟨sghget , srenewt , swholesale

t , starifft , sunmet
t ⟩

g = ⟨sghget−1 , s
renew
t−1 , swholesale

t−1 , starifft−1 , sunmet
t−1 ⟩

There are periods in the simulation period where some of the performance indicators improve
or deteriorate, regardless of any action taken (e.g. Unmet Demand Days deteriorates after a
large generator closes). This presented the risk in RF2 that the reward the agent received did
not truly reflect the quality of its actions. The third reward function (RF3) sought to remove
this potential skew, by assessing if the RL agent has improved the performance indicators
relative to a fixed baseline generated by the BAU scenario. The values of the performance
indicators at each timestep were recorded from a model simulation using the BAU scenario,
and no policy actions implemented. Let bt be the state of GSE at timestep t in the BAU
scenario:
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r(st, at) =
∑
i

wi ×
fi − gi
gi

w = ⟨−1, 1,−1,−1,−1⟩
f = ⟨sghget , srenewt , swholesale

t , starifft , sunmet
t ⟩

g = ⟨bghget , brenewt , bwholesale
t , btarifft , bunmet

t ⟩

8.4.1 Experimental Setup

We seek to evaluate the behaviour that each reward function elicits from an RL agent
and to identify which reward function is able to most clearly communicate the overall goal
of optimising the performance indicators. Three RL agents were trained using the DQN
algorithm, with each agent using a different reward function. The agents were trained over
106 episodes (simulation runs), and the uncertain input parameters of the model were the
values defined by the BAU scenario, resulting in the same runtime conditions for each episode.
The analysis of the results will assist to determine which reward function will be used when
the final RL agents are trained and evaluated using multiple scenarios (deep uncertainty) to
answer the research questions of this study. The training was completed on a 44 core 2.0 GHz
Intel Xeon server with multiprocessing, and took 32.61 hours (Appendix E.2). Once each
agent was trained, they were tested in the BAU scenario, and their performance and policy
actions were recorded. In addition, the runtime results that occur when no policy actions
are implemented in any year will be included in the results as a comparative baseline.

8.4.2 Results & Discussion

The runtime results from the first policy action in 2022 for the three RL agents and the
baseline data are plotted in figure 8.1, and the policy actions each agent chose are recorded
in table 8.1. The results of each agent will be referred to by their reward function for
this discussion. Both RF1 and RF2 appeared to have learnt “blunt” policies, using few, but
high-impact actions. RF1 only used the merit-order by emission levels policy action and RF2
implemented a carbon tax from 2022 to 2029, and then used the top emitting generators 5%
capacity reduction action for the rest of the simulation. The initial economic impacts of these
policy actions are severe, with notable spikes in the Wholesale Prices and Tariff Prices , and
a very large increase in Unmet Demand Days for RF2 when it implements its 5% reduction
policy action. The steep increase in Unmet Demand Days after reducing the capacity of the
top 1% emitting generators suggest the top 1% generate a significant proportion of the total
electricity in the market during this time.
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Figure 8.1: Real-time values of performance indicators during evaluation.

Conversely, the RF3 appears to have developed a less extreme, more nuanced policy for
the RL agent. It begins by increasing the learning rate of solar and wind powered gen-
erators, thereby decreasing their LCOE. The following carbon tax increases the LCOE of
non-renewable generators, reducing their bidding power, allowing for renewable generators
to be more competitive, and have more opportunity to have successful bids, thereby reducing
their LCOE. Following this, the highest emitting generator has its capacity reduced, but at
this time in the GSE , this only has minimal impact on the economic indicators. An inter-
esting policy action is the opening of the secondary electricity market, allowing for more
renewable generators to supply electricity. Finally, it implements no policy action from 2038
to 2045, and then reduces the capacity of the top 1% emitting generators from 2046 on-
wards. The behaviour from 2038 onwards is a very clever strategy learned by the agent. In
these years, there are only marginal gains to be made in the environmental indicators, which
come at a high cost for the economic indicators. The effects from earlier policy actions that
benefited renewable generators are still present in these later years, and as a result, the RF3
environmental results still outperform the baseline results.
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Tabular data for the average value of the performance indicators from 2022 to 2050 can be
found in table 8.2, and their percentage change from the baseline in table 8.3. All reward
functions were able to improve the environmental indicators, but with varying trade-offs for
the economic indicators. For example, relative to the baseline, RF2 was able to decrease
the mean GHGE Levels by 64.50%, but increased the mean Wholesale Prices by 137.9%.
The severity of the environmental and economic trade-offs for RF1 and RF2 were deemed
too significant, suggesting these reward functions were not able to effectively encode the
multi-objective nature of the problem, and hence won’t be considered for the rest of this
study. The RF3 reward function, whose results were less pronounced, can be considered to
have effectively communicated to the RL agent the multi-objective nature of this problem,
and will be used for the remainder of this study.

Year RF1 RF2 RF3

2022 EmMerit CbnTax LR15%
2026 EmMerit CbnTax CbnTax
2030 EmMerit R5% R20%
2034 EmMerit R5% SecMkt
2038 EmMerit R5% NoAction
2042 EmMerit R5% NoAction
2046 EmMerit R5% R5%

Table 8.1: Policy actions used by each reward function during evaluation. See table 4.1 for
details on each policy action.

Performance Indicator Baseline RF1 RF2 RF3

GHGE Levels (tCO2e) 3.07 1.51 1.09 2.32
Renewable Market Share (% ) 41.73 65.38 76.86 55.88
Wholesale Prices ($/MWh) 20.28 37.42 48.27 22.93
Tariff Prices (¢/KWh) 111.24 167.90 229.84 122.52
Unmet Demand Days (Days) 75.86 75.86 185.14 91.86

Table 8.2: Average performance indicator values for each reward function.

Performance Indicator Baseline RF1 RF2 RF3

GHGE Levels (tCO2e) +0.00% -50.81% -64.50% -24.43%
Renewable Market Share (%) +0.00% +57.14% +83.33% +33.33%
Wholesale Prices ($/MWh) +0.00% +84.52% +137.97% +13.07%
Tariff Prices (¢/KWh) +0.00% +50.93% +106.63% +10.14%
Unmet Demand Days (Days) +0.00% +0.00% +144.05% +21.09%

Table 8.3: Percentage change from baseline results for mean performance indicator values.
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8.5 Training For Deep Uncertainty

Having formalised all of the required components for the MDP, this study can begin the
design and training of the RL agents that will be used to implement policy actions that
optimise the performance indicators of the GSE under deep uncertainty. An implementation
of the DQN algorithm provided the Python RL library, RLlib [100], will be used to train the
RL agents. RLlib provides in-built features for parallel RL training, which leverages multiple
processors on a single machine to reduce the wall time required to train an agent for a fixed
number of episodes. This study will also use another Python RL library, OpenAI Gym [98],
that facilitate interaction between the RL agent and the GSE via state/action spaces and a
reward function. OpenAI Gym acts as a wrapper around computational models, and exposes
APIs that allow for interaction with the underlying model as if it were an MDP. In effect,
OpenAI Gym is used in this study as a medium to control the interaction between the RL
agents and the GSE .

The first agent (A1), the Pure RL agent, will learn a policy for the GSE MDP using only
the DQN algorithm provided by RLlib. This agent will assist to answer the first research
question (section 1.2), regarding the efficacy of RL algorithms to regulate electricity markets.
In addition, the results of agent A1 will provide a baseline to help assess the influence of a
Metro Map on RL agents. No hyperparameter tuning was completed for any of the DQN
agents in this study, but readers may look to the RLlib DQN documentation1 for the default
hyperparameter list. The γ discount factor is also included in the hyperparameter list. The
second agent (A2), will have its actions determined by the paths through the Metro Map.
Previously in this paper (section 3.1), we stated the use of the Metro Map is to effectively
pre-process the actions available to agent A2. An alternative interpretation, is that the
Metro Map pre-processes the trajectory space of the agent during its training.

The term “trajectory” is used in RL to describe the sequence of environment states and
actions an agent experiences throughout an episode. Consider a simple RL agent, that
always uses the same action when interacting with the GSE . The trajectory of that agent
when the GSE is using the BAU scenario will be distinct from the trajectory of every other
scenario, despite using the same actions. This is due to the values encoded in state space
being different between scenarios, as the influence of the uncertain parameters cause these
values to change. As a result, trajectories are dependent on both the scenario and policy
actions used when running the GSE .

1https://docs.ray.io/en/master/rllib-algorithms.html
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In the robust optimisation performed in chapter 7, each policy pathway was tested against
the 500 scenarios, which resulted in 500 trajectories per policy pathway, whose performance
was then evaluated by the robustness metric. The ϵ-NSGAII can therefore be thought to
have policy pathways with Pareto-optimal trajectories for the 500 training scenarios, with
respect to the robustness metric used. As the same 500 scenarios will be used during the
training of A2 (detailed in section 8.5.2), the number of possible trajectories therefore will
be equal to the number of policy pathways in the Metro Map, multiplied by the number of
scenarios (53× 500 = 26500). This is multiple orders of magnitude less than the number of
possible trajectories for agent A1 (107×500 = 5×109), and will ideally reduce the complexity
of learning which policy pathways in the Metro Map are the best to follow given the state
of the GSE .

To ensure that agent A2’s action follow a valid path in the Metro Map, the actions available
to agent A2 need to be parameterised according to the position of the agent in theMetro Map.
RLlib’s DQN algorithm natively supports this by allowing for parametric action spaces2 as
a flag in its hyperparameters. At runtime, the OpenAI Gym program loads the structure of
Metro Map into memory, and at the beginning of each training episode, it sets the current
position of the agent in the Metro Map to the black root node (see figure 7.12). A bit mask
of length 10 is computed (the number of possible actions), where bits are set to one if the
corresponding action for that bit is valid from the root node of the Metro Map. In the final
step of the DQN algorithm, the bit mask is used to set the probability of invalid actions
being selected to zero, ensuring they are never chosen. Once the action has been chosen, the
OpenAI Gym records that action, and updates the position of the agent in the Metro Map
and the bit mask to reflect the next set of available actions. The agent is still only aware
of the GSE via the state space, but the OpenAI Gym records the “location” of where the
agent would be in the Metro Map as if the agent was traversing the Metro Map.

In addition to agent A2 having its action space parameterised, this study finds the agent
should also have knowledge of the structure of the Metro Map to help the agent traverse the
pathways. Granting the agent structural knowledge of the Metro Map will accommodate
a greater understanding of the potential trade-offs between multiple pathways, and a more
holistic knowledge of the Metro Map. This structural knowledge provides a symbiotic rela-
tionship between theMetro Map and RL agent. TheMetro Map helps the agent by providing
a set of robust policy pathways as guides, and the agent helps the Metro Map by providing
a new way it can contribute to the policy design process, that mitigates the drawbacks of
a Metro Map’s complexity. The complexity and the number of pathways in a Metro Map
hinders its utility as a policy design tool for human policy-makers, but we aim to show RL
agents can leverage this complexity to promote better results. To encode the structure of
the Metro Map to the RL agent, each node in the Metro Map is given a unique identifier
integer and passed as an additional variable to the state space, so that the agent would also
know its current position in the Metro Map. This augmentation of the state space means
agents A1 and A2 are no longer equivalent in their observation of the GSE , however, this
small difference does not invalidate this study’s intentions to compare the two agents.

2https://docs.ray.io/en/master/rllib-models.html#variable-length-parametric-action-spaces
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8.5.1 Random Baseline

A common practice in RL studies is the use of a simple “random” baseline agent, which
represents an RL agent that has undergone no training. Random agents are used to assert
that a trained RL agent has learned something during its training phase that positively
contributes to the overall objective, and is able to improve upon taking random actions. If a
random agent performs similarly to a trained agent, then the trained agent can be considered
to have not learned anything useful during training. The random agent (A1-R) will pseudo-
randomly choose an action, where each action has an equal chance of being selected. The
performance of agent A1-R will assist to assert if either agents, A1 or A2, were able to learn
useful strategies during their training phase, and will confirm if RL is able to regulate the
GSE to optimise the performance indicators.

Given the pathways in the Metro Map are robustly optimised for the 500 training scenarios,
there is a valid argument that there is no need to try to “learn” how to traverse the map.
Any pathway in the Metro Map could be chosen, and would still yield relatively strong
results. To validate the use of combining the Metro Map with RL algorithms, we consider
a second random baseline agent (A2-R). Agent A2-R pseudo-randomly chooses one of the
Pareto-optimal policy pathways at the start of each episode. This random baseline will
assist in demonstrating if the RL agent is able to leverage the benefits of the Metro Map,
particularly how it combines MOEA robustly optimised pathways, and allows the agent to
still be adaptive by branching nodes in the Metro Map.

8.5.2 Multi-Phase Training

Training the two RL agents to optimise the performance indicators in the presence of deep
uncertainty was a difficult task. Deep uncertainty was to be represented in the same way it
was in the MOEA robust optimisation (chapter 7), by using the set of 500 different scenarios
generated for the ϵ-NSGAII to influence the runtime conditions of the GSE . At the start of
each training episode, the agent would pseudo-randomly select one of the 500 scenarios to
input to theGSE . This exposed the agent to a wide variety of scenarios during training, which
would hopefully enable the DQN algorithm to develop a strategy (policy) that could adapt to
deep uncertainty. Unfortunately, this training method produced severely undesirable results,
with neither RL agents producing better results than the random baselines. We suspected
this level of uncertainty overwhelmed the DQN algorithm, stopping it from ever being able
to learn by interaction with the model. Even for 106 training episodes (29 × 106 years of
simulated experience), neither agent exhibited behaviour (e.g. mean episode reward) that
represented a successful RL training phase.

83



Inspiration was taken from an RL concept known as curriculum learning [149] to design a
more balanced and progressive method to expose deep uncertainty whilst training the RL
agents. Curriculum learning is a method for designing the training phase of an RL agent,
that optimises the order in which an agent gains new experience. Studies on curriculum
learning have shown commencing training with simpler problems, and gradually increasing
the difficulty can increase the speed of training, and the performance of the agent [149].
Employing a curriculum in algorithmic training has been done in many problem domains,
such as robotics, grammar learning, and classification [149]. A very simple example is training
an agent to win in the game of chess. First, the agent is trained to win on a board with only
pawns. Next, a new piece (e.g. rook) is added to the game, the agent continues training.
New pieces are periodically added throughout training until all chess pieces are present on
the board. In effect, we seek to start off with a simple problem, and progressively increase
the problem difficulty.

As it was suspected the extent of deep uncertainty introduced by the 500 different scenarios
was the driving force for the failure of the agents to learn, we sought to change the way the
agent is exposed to uncertainty. By progressively introducing uncertain scenarios, we aim to
progressively make the task of the RL agents harder. The training phase was subsequently
divided into two parts. Initially the agents only had access to 250 scenarios to pseudo-
randomly choose from at the beginning of each training episode. The agents initially trained
with these 250 available scenarios for 106 episodes, and then were able to select from all
500 scenarios for an additional 106 episodes. The mean episode reward of both agents
during training is plotted in Appendix E.3. Designing the training in two phases provided
a progressive introduction of uncertainty in the GSE , which did not overwhelm the DQN
algorithm such that it was not able to operate as intended. The training was completed on
a 44 core 2.0 GHz Intel Xeon server with multiprocessing, and took 94.16 hours.
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8.6 Evaluation

The RL agents’ performance will be based upon the performance indicator results from a
set of 10, 000 scenarios sampled using Latin Hypercube Sampling [128]. A no-action baseline
similar to the one in the ϵ-NSGAII analysis (chapter 7) is also included for this analysis. The
data for the baseline was generated by running the 10, 000 scenarios with no policy actions
being taken at any point in the simulation. The baseline analysis is essential to validate the
RL agents were able to meaningfully assist the GSE with the policy actions available. The
results from two random RL agents are also included to better critique the value of using
RL techniques for this study. Similar to the evaluation of the ϵ-NSGAII results, this analysis
is guided by the recommendations of Kwakkel et al. [102], who cited when evaluating the
performance of policy actions in deeply uncertain systems, the focus of the evaluation should
be on both the values and distribution of the performance indicators. Acronyms that will
be used to refer to the four RL agents in this are displayed in table 8.4. Tables containing
summary statistics of the results (e.g. mean, standard deviation) evaluated in this section
can be found in Appendix E.4.

Name Description Acronym

Pure RL RL agent trained with the DQN algorithm. A1

Random Pure RL RL agent that chooses actions randomly. A1-R

DAPP/RL RL agent trained with the DQN algorithm that follows
the Metro Map.

A2

Random DAPP/RL RL agent that chooses random policy pathways in the
Metro Map.

A2-R

Table 8.4: Description and acronyms of the RL agents used for evaluation.
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8.6.1 Performance Indicator Results
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Figure 8.2: KDE plots of the results for all agents and performance indicators.

Kernel density estimates of the performance indicator results were fitted in figure 8.2. Unlike
the results from the ϵ-NSGAII experimentation (chapter 7), there is no clear distinction be-
tween the results generated from the computational techniques we are evaluating (RL) and
the no-action baseline results. This is unfortunate, as we hoped to see the RL agents have
significantly more desirable distributions for at least the environmental indicators. Nonethe-
less, this isn’t indicative of the agents not being as effective. They were all able to positively
influence the environmental indicators, and most pleasingly, their distributions of the eco-
nomic indicators are similar to the no-action baseline results. As the policy actions for
this study predominantly have negative economic impacts, this preliminary insight indicates
that the RL agents may have made a more subtle balance between the environmental and
economic indicators.
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Figure 8.3: Min-max normalised mean performance indicators values for all agents.

The mean value of the results per performance indicator were min-max normalised, such
that larger normalised values were desired, and were plotted in figure 8.3. As expected,
the no-action baseline results strongly favoured the economic indicators due to the natural
cost-minimising function of the merit-order market. Figure 8.3 starts to convey the relative
priorities of the two types of RL agents, Pure RL (A1/A1-R), and DAPP/RL (A2/A2-R).
Regarding Pure RL, agent A1 makes only relatively minor improvements on the environmen-
tal indicators, without causing too much detriment to the economic indicators. Conversely,
agent A2 is more environmentally focused, performing strongly for the environmental indi-
cators, and relatively average on the economic indicators. Both agents A1 and A2, use the
same reward function, which can be considered as they share the same goal. The difference in
their apparent prioritisation between the environmental and economic indicators is a direct
result of the employment of the Metro Map in agent A2.

Although agent A1-R performed as economically poorly as agent A2-R, its policies did not
have the environmental benefits that were displayed by agent A2-R. The only other agent
that could approach agent A2-R’s environmental performance was the other DAPP/RL
based agent, agent A2. We contend that identifying sequences of actions (or policy path-
ways) that greatly benefit the environmental indicators is a difficult challenge for the GSE .
The ϵ-NSGAII’s ability to specify and optimise multi-objective problems by analysing each
dimension of the objective space allowed it to identify policy pathways of great environmental
benefit, and such knowledge was then encoded into the DAPP/RL agents. Conversely, using
only RL techniques, or taking random actions, was not enough to yield strong environmental
results for the GSE .

Comparing the results between agents A1 and A1-R, using a random policy has lead to
relatively poor results for all performance indicators, and a differently skewed trade-off be-
tween the environmental and economic indicators. This suggests that the use of the DQN
algorithm to optimise the performance indicators has merit, and that it was indeed able to
make tangible differences, compared to taking random actions.
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A final insight from figure 8.3 comes from the economic differences of the DAPP/RL agents.
Both agents A2 and A2-R possess similar environmental results relative to all other results,
but economically, agent A2-R diverges to the bottom of all results. This will be discussed in
greater detail in section 8.7, but this is indicative of how RL techniques have been applied
to better leverage the robustly optimised policy pathways generated by the ϵ-NSGAII.
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Figure 8.4: RL agent results for 10, 000 scenarios - Economic Indicators.

As demonstrated from figure 8.4, agent A2 was able to make considerable improvements
to the environmental indicators, reducing the mean GHGE Levels from the baseline value
of 2.99tCO2e to 2.00tCO2e, and increasing the Renewable Market Share from 49.74% to
65.65% . Whereas, the agent A1’s influence was comparatively smaller, reducing the mean
GHGE Levels by 0.23tCO2e and increasing Renewable Market Share by 3.82 percentage
points. Given the potential power of the policy actions in this study to benefit the environ-
mental indicators, as shown by agents A2, A2-R, and to lesser degree agent A1-R, it is not
promising to see such minute environmental impacts by agent A1.
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Agents A2 and A2-R have similar environmental distributions, despite utilising the pathways
through the Metro Map in a very different manner. In chapter 7, we discussed the environ-
mental indicators values of the robustly optimised policy pathways approached a potential
upper bound, explaining the similarity in environmental results for all metrics. We find this
upper -bound also explains the similar environmental results of agents A2 and A2-R.
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Figure 8.5: RL agent results for 10, 000 scenarios - Economic Indicators.
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Concerning the economic indicators, most impressively, agent A2 was able to generate the
smallest Wholesale Prices standard deviation of 21.38$/MWh, smaller than the baseline,
and did not have any extreme outliers, unlike the other agents. The two random agents both
demonstrate their inability to optimise the economic indicators. Whilst poorer performance
of a purely random RL agent such as agent A1-R, it was expected the utilisation of the Metro
Map by agent A2-R would result in it still having relatively sound results for all indicators.
As the policy pathways A2-R uses were also optimised for all performance indicators, we
expected to see strong economic performance, such as the results of agent A2. We determine
that agent A2-R’s poor economic performance compared to agent A2 is due to the use of the
DQN algorithm. The adaptive capability of agent A2 allowed it to observe the GSE during
runtime, and choose desirable policy actions at branching points in the Metro Map that were
best suited to its observation of the GSE .

Agent A2 has shown it is able to use the Pareto-optimal paths that make up the Metro Map,
in such a manner that it can yield more desirable results, regardless of the deep uncertainty
it faces. We also contend the reward function used, which prioritised the economic indicators
for agent A1, may also explain agent A2’s strong economic performance. It is evident that
randomly choosing a path through the Metro Map leads to strong environmental results, but
when navigating through the map, with a reward function that is economically oriented, we
produced desirable results for all environmental and economic indicators.

The economic results of agent A1 are unfortunately very similar to its environmental results.
This is likely a reflection on the reward function agent A1 uses. Without the guidance of
the Metro Map, when exposed to deep uncertainty, the agent was not able to effectively find
solutions to the multi-objective problem the reward function attempted to communicate.
However, its economic performance was much stronger than its random equivalent, agent
A1-R, affirming the notion of the economic priority of the reward function used in this
study, and the capability of the DQN algorithm to learn strategies to optimise some of the
performance indicators for this study.
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8.7 Discussion

Despite the extensive research and experimentation that went into designing and training
agent A1, it was not able to notably influence the market dynamics of GSE to optimise
the performance indicators. Relative to the baseline results, it made small environmental
improvements at a small economic cost. The actions agent A1 used could be considered to
have been chosen according to a very risk-averse strategy, hence the minimal changes relative
to the baseline results. In addition, when compared to its random equivalent, agent A1-R,
it clearly demonstrated it had learned a policy that supported the overall aim of the agent,
and was superior to random action choices. It is curious though that agent A1’s results were
so similar to the baseline, given agent A1 used 2, 712 different sequences of actions (policy
pathways) for the 10, 000 evaluations scenarios. This further highlights the challenges of
finding robust, well performing policy pathways in the GSE .

Overall, agent A1 took a subdued approach to optimising the performance indicators. When
considering RQ1 of this study, whether RL techniques can assist to regulate an electricity
market to promote transitioning to sustainable electricity sources, we conclude that agent
A1 was not able to effectively perform this task. Due to the degree of deep uncertainty in
the GSE , and the five different performance indicators used to guide the agent, the task of
regulating the market is too challenging to be performed by RL techniques alone.

In contrast to agent A1, the leveraging of theMetro Map by agent A2 led to strong results for
all performance indicators. Even when faced with a system under deep uncertainty, agent A2
was able to use the Metro Map to utilise the robustly optimised policy pathways to generate
sounds results. The values of the environmental indicators from the evaluation scenarios
demonstrated a clear, tangible improvement across all scenarios. As seen many times in this
study, environmental performance comes at a trade-off of economic performance, but agent
A2 was able to generate tight economic distributions, which is a key strength when designing
policies in deep uncertainty literature.

A potential concern in the behaviour of agent A2 is that only 3 policy pathways in the Metro
Map were used for 30% of the 10, 000 evaluation scenarios. We suspect a key reason the
agent used those few pathways for such a large share of the evaluations structures is due to
the structure of the Metro Map. Many nodes in the Metro Map study have no branching
factor, such that there is no choice on the next policy action to activate, as there is only
one path out of that node. In effect, the agent was locked into a given policy pathway
early in the GSE simulation. To address this issue, future work could ensure that more
policy pathways are identified using an MOEA to construct the Metro Map, or less policy
actions are available. Either of these recommendations would ensure that there is a higher
probability that policy pathways identified by the MOEA share a “prefix”, and as a result
could be combined in the Metro Map.
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The analysis in this chapter demonstrates how agent A2 has been able to assist in regulating
the GSE , promoting the transition to sustainable electricity sources. The true task of agent
A2 is to answer RQ2, how the Metro Map, an Exploratory Modelling technique generated
by MOEAs, can assist RL techniques when faced with deep uncertainty. The superior per-
formance of agent A2 relative to all other agents evaluated, clearly conveys the strength and
validity of combining the Metro Map with RL techniques, thus providing sound evidence to
address RQ2. The structure of the Metro Map, and the adaptive capabilities of RL tech-
niques resulted in an agent who produced strong results in the face of deep uncertainty.

The reason for developing agent A2-R was to explore an alternate consideration of the
proposed DAPP/RL technique for this study. Comparing agents A1 and A2 showed how
the combined DAPP/RL could outperform Pure RL, but there was still a question of if
there was any merit in training an RL agent to use the Metro Map, rather than just using
any of the Pareto-optimal robustly optimised policy pathways identified by the ϵ-NSGAII.
Initially this study was concerned that given these policy pathways were already robustly
optimised, and Pareto-optimal with respect to the 90-P robustness metric, agent A2-R would
perform strongly across all scenarios, and would not benefit from the use of RL techniques.
However, comparing the results between agents A2 and A2-R (particularly for the economic
indicators), despite the policy pathways of both agents being robustly optimised, some policy
pathways are better suited to some scenarios than others, and hence their ability to optimise
the performance indicators greatly differed. By utilising RL techniques, agent A2 has been
able to use the policy pathways in the Metro Map that are best suited to the scenario of the
GSE it faced.
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Chapter 9

Conclusion

9.1 Future Work

Despite the sound results of the proposed DAPP/RL based agent, three key aspects of this
work that would benefit from further studies have been identified. Firstly, the evaluation
of the RL agents conducted in section 8.6 suggested that only using RL techniques for the
policy design process was ineffective, resulting in insignificant changes of the performance
indicators relative to our no-action baseline. During the design phase of the RL reward
function, the agent was shown to make significant improvements to the performance indi-
cators, but only for when the GSE was using the BAU scenario. Accordingly, we reason
that in the absence of deep uncertainty, RL is an effective technique for policy design. The
deep uncertainty of the GSE in the final evaluation of the agent overwhelmed the agent,
resulting in its poor performance. To extend this research, future studies should seek for
new methods for designing the reward function, such that the reward function consistently
provides meaningful feedback to the agent when faced with deep uncertainty, and further,
integrate additional techniques from existing multi-objective RL literature.

The second area for further investigation pertains to the time span for which the DAPP/RL
agent is available in policy design. A policy pathway, or even a Metro Map are inherently
only useful in practice if they are followed by the policy-maker. If an “unavailable” action is
chosen whilst following the Metro Map, the remainder of the Metro Map can be discarded, as
there is no path that reflects the policy-makers actions. The proposed DAPP/RL technique
of this study possesses the same weakness as Metro Maps. If a policy-maker deviates from
the recommendations of the agent to use an action that is not valid within the Metro Map,
there is no longer a position within the Metro Map to use for the state representation
when querying the agent. This means that the agent cannot be meaningfully queried for
recommendations on what actions to take.
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If the location of an RL agent within the Metro Map was not required, it can continually be
employed as an additional consultant for policy-makers, to advise what action to take, and by
the Markov property, it can still be effective no matter what past actions were taken, or how
the future has unfolded. As a result, this study highly recommends further investigation
into different ways the RL agent can learn from, and leverage the robustness and multi-
objective capabilities of the policy pathways within the Metro Map, with particular emphasis
to remove the dependency of the agent’s state space on the Metro Map. Future studies may
find the literature curriculum learning [149] and transfer learning [150] as relevant fields in
the literature to begin exploring this idea.

Our final recommendation is to extend the evaluation methodology of section 8.6, by com-
paring the quality of the DAPP/RL agents against human policy-makers. In this study
we used random action and no action baseline agents for assessing our agents’ performance
in the GSE . Whilst these baselines helped assert the efficacy and validity of the designed
RL agents, in a traditionally heavily human involved process such as policy design, our RL
agents quality compared to human policy-makers is an overarching question that should
be answered. To better understand how RL agents fare against human-policy makers, in-
vestigation should be conducted to compare the results of the RL agents, against human
policy-makers following traditional policy design paradigms, such as DAP [24] or MORDM
[47]. This additional comparison would help consolidate the efficacy and validity of using
RL techniques for policy design problems, for systems under deep uncertainty.
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9.2 Concluding Remarks

This work has explored novel policy design methods for systems under deep uncertainty, using
the Victorian electricity network, within the Australian National Electricity Market as a case
study. Using a computational model of the market known as the GSE [92], we explored how
Reinforcement Learning can assist in designing adaptive policies to promote a transition to
a more sustainable future, with lower greenhouse gas emissions, greater renewable electricity
use, whilst minimising economic impacts. Guided by the research questions posed in section
1.2, we investigated if Reinforcement Learning was able to regulate the market to promote
this transition, and whether an existing policy design paradigm, Dynamic Adaptive Policy
Pathways, could be combined with Reinforcement Learning to improve the quality of the
policies designed by the RL agent.

To the best of our knowledge, our work on using RL techniques to act as an electricity market
regulator, rather than a market participant, is the first of its kind, addressing an existing gap
in the literature. In addition, we have combined the strengths of both Exploratory Modelling
and RL techniques, by utilising the Metro Map developed by the Dynamic Adaptive Policy
Pathways as a guide for an RL agent. Our final results demonstrated our DAPP/RL tech-
nique was able to greatly improve the quality of adaptive market policies when compared to
another RL agent that only employed RL techniques. In particular, the adaptive structure of
the Metro Map allowed an RL agent to better grapple the challenges of policy design under
deep uncertainty, in a multi-objective problem domain.

The greatest significance of this work lies in the contribution of using RL agents for policy
design problems for systems under deep uncertainty. Traditional optimisation tools for policy
design, such as Multi-Objective Evolutionary Algorithms, output a set of Pareto-optimal
solutions (policy pathways), where the knowledge the MOEA gained from the GSE was
reflected in the policy pathways, but still required human policy-makers to further evaluate
the output pathways to be able to leverage any of the findings from the MOEA. By using RL
techniques, we implemented an intelligent policy design agent, which could be considered as
an artificial policy-maker.

By making the agent repeatedly interact with the GSE over millions of timesteps, the aim
is for the agent to learn the dynamics of the model such that it becomes an “oracle” on
the model, knowing what policy actions to take in any scenario to optimise the performance
indicators. Unlike past studies that have created computational techniques for policy design
under deep uncertainty [151], we have contributed RL agents to be consultants for policy
design, rather than tools. The distinction between a tool and consultant is that a tool
assists policy-makers to come up with a solution, whereas the consultant returns a definitive
answer on what policy action to use when queried. An RL agent can be considered an
expert consultant, an artificial policy-maker who has gained intricate knowledge on the
problem through experience, and can advise the best policy action to take. We seek for
this work to be a seminal piece of literature to promote further investigation into the use of
Reinforcement Learning as a computational tool to assist in the policy design process.
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[2] J. Köhler et al., “An agenda for sustainability transitions research: State of the art and
future directions,” Environmental Innovation and Societal Transitions, vol. 31, pp. 1–32,
Jun. 2019, issn: 22104224. doi: 10.1016/j.eist.2019.01.004.

[3] E. A. Moallemi, F. de Haan, J. Kwakkel, and L. Aye, “Narrative-informed exploratory anal-
ysis of energy transition pathways: A case study of India’s electricity sector,” Energy Policy,
vol. 110, pp. 271–287, Nov. 2017, issn: 03014215. doi: 10.1016/j.enpol.2017.08.019.

[4] E. Trutnevyte et al., “Societal transformations in models for energy and climate policy: the
ambitious next step,” One Earth, vol. 1, no. 4, pp. 423–433, 2019, issn: 2590-3322.

[5] B. KROPOSKI, “Integrating high levels of variable renewable energy into electric power
systems,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 6, pp. 831–837,
2017, issn: 2196-5420. doi: 10.1007/s40565- 017- 0339- 3. [Online]. Available: https:
//doi.org/10.1007/s40565-017-0339-3.

[6] S. Pfenninger, A. Hawkes, and J. Keirstead, Energy systems modeling for twenty-first century
energy challenges, May 2014. doi: 10.1016/j.rser.2014.02.003.

[7] H. W. J. Rittel and M. M. Webber, “Dilemmas in a general theory of planning,” Policy
Sciences, vol. 4, no. 2, pp. 155–169, 1973, issn: 1573-0891. doi: 10.1007/BF01405730.
[Online]. Available: https://doi.org/10.1007/BF01405730.

[8] E. A. Moallemi and S. Malekpour, “A participatory exploratory modelling approach for long-
term planning in energy transitions,” Energy Research and Social Science, vol. 35, pp. 205–
216, Jan. 2018, issn: 22146296. doi: 10.1016/j.erss.2017.10.022.

[9] R. J. Lempert, S. W. Popper, and S. C. Bankes, Shaping the Next One Hundred Years:
New Methods for Quantitative, Long-Term Policy Analysis. RAND Corporation, 2003, isbn:
0-8330-3275-5. doi: 10.7249/MR1626. [Online]. Available: https://www.rand.org/pubs/
monograph_reports/MR1626.html.

[10] A. Q. Gilbert and B. K. Sovacool, “Looking the wrong way: Bias, renewable electricity,
and energy modelling in the United States,” Energy, vol. 94, pp. 533–541, Jan. 2016, issn:
03605442. doi: 10.1016/j.energy.2015.10.135.
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Appendix A

GSE Appendix

A.1 GSE Uncertain Parameters

Table A.1: List of 33 uncertain parameters for the GSE . One parameter from Rojas-Arevalo’s
original study, onsiteGeneration, was omitted from this study as it restricted the GSE from
loading previously generated (scenario specific) forecast data from an existing database,
adding a considerable amount of runtime per GSE execution.

Name Description Value Range
(BAU)

annualCpi Adjusts future tariffs to 2019

values. Past tariffs are adjusted

with a conversion table for the

consumer price (CPI) index

quered from the database.

1 to 5% (2.33%)

annualInflation Impacts only the prices of

electricity offered by generators -

i.e. the base price or LCOE.

1 to 5% (3.3%)

consumption Market operator’s consumption

forecast.

Central, Fast, High

DET, Slow, Step

(Central)

domesticConsumptionPercentage Percentage of residential

consumption in Victoria.

20 to 50% (30%)

energyEfficiency Market operator’s energy

efficiency forecast.

Central, Slow, Step

(Central)

Continued on next page
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Table A.1 – continued from previous page

Name Description Value Range
(BAU)

generationRolloutPeriod Time to roll out new generation.

The nameplate capacity is divided

by the number of years to

represent an incremental

deployment.

1 to 10 (1)

generatorRetirement Shift in years on closure date of

brown coal power plants.

-5 to 5 (0)

importPriceFactor Premium paid for imported

electricity. Applied to the

wholesale price when local demand

is unmet.

-50 to 50% (29%)

includePublicallyAnnouncedGen Decision variable to include

emerging projects. These are

projects that are not yet

completely approved. New

generators, their status and

potential dates of operation are

obtained from the “Generation

Information” released by AEMO

each month.

True or False

(False)

learningCurve Decreases the base price of wind

and solar generators.

0 to 10% (5%)

nameplateCapacityChangeBattery Changes the nameplate capacity of

battery generators.

-50 to 50% (0%)

nameplateCapacityChangeBrownCoal Changes the nameplate capacity of

brown coal generators.

-50 to 50% (0%)

Continued on next page
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Table A.1 – continued from previous page

Name Description Value Range
(BAU)

nameplateCapacityChangeCcgt Changes the nameplate capacity of

combined cycle gas turbine

generators.

-50 to 50% (0%)

nameplateCapacityChangeOcgt Changes the nameplate capacity of

open cycle gas turbine generators.

-50 to 50% (0%)

nameplateCapacityChangeSolar Changes the nameplate capacity of

solar generators.

-50 to 50% (0%)

nameplateCapacityChangeWater Changes the nameplate capacity of

hydro generators.

-50 to 50% (0%)

nameplateCapacityChangeWind Changes the nameplate capacity of

wind generators.

-50 to 50% (0%)

nonScheduleGenSpotMarket Sets the market in which

non-scheduled generation can

participate. Only generation with

a minimum capacity defined by

nonScheduleMinCapMarketGen

can be included in the market

selected.

Primary,

Secondary, None

(None)

nonScheduleMinCapMarketGen Sets the minimum nameplate

capacity in MW required for

non-scheduled generation to

participate in a market.

0.1 to 30MW

(30MW)

priceChangePercentageBattery Changes the BAU electricity base

price for batteries.

-50 to 50% (0%)

priceChangePercentageBrownCoal Changes the BAU electricity base

price for brown coal generators.

-50 to 50% (0%)

Continued on next page
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Table A.1 – continued from previous page

Name Description Value Range
(BAU)

priceChangePercentageCcgt Changes the BAU electricity base

price for combined cycle gas

turbine generators.

-50 to 50% (0%)

priceChangePercentageOcgt Changes the BAU electricity base

price for open cycle gas turbine

generators.

-50 to 50% (0%)

priceChangePercentageSolar Changes the BAU electricity base

price for solar generators.

-50 to 50% (0%)

priceChangePercentageWater Changes the BAU electricity base

price for hydro generators.

-50 to 50% (0%)

priceChangePercentageWind Changes the BAU electricity base

price for wind generators.

-50 to 50% (0%)

rooftopPV Changes the ISP forecast on

uptake of rooftop PB in

residential, business or both

sectors.

Business,

Residential, Both

(Both)

scheduleMinCapMarketGen Sets the minimum nameplate

capacity in MW required for

schedule generation to participate

in the market.

10 to 30MW

(30MW)

semiScheduleGenSpotMarket Sets the market in which

semi-scheduled generation can

participate. Only generation with

a minimum capacity defined by

semiScheduleMinCapMarketGen

can be included in the market

selected.

Primary,

Secondary, None

(None)

Continued on next page
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Table A.1 – continued from previous page

Name Description Value Range
(BAU)

semiScheduleMinCapMarketGen Sets the minimum nameplate

capacity in MW required for

semi-schedule generation to

participate in a market.

0.1 to 30MW

(30MW)

solarUptake Market operator’s solar uptake

forecast.

Central, Slow, Step

(Central)

technologicalImprovement Increases the capacity factors of

wind and solar generators by

adding - not compounding - a

constant factor every year.

0 to 10% (5%)

wholesaleTariffContribution Varies the percentage

contributions from wholesale

prices to the final electricity tariff.

Upper and lowers bounds derived

by Rojas-Arevalo [92] via analysis

of historic yearly average

contributions of wholesale prices

from the primary spot market in

Victoria.

10 to 45% (28.37%)
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A.2 GSE Output Values

Table A.2: GSE output variables. Variables with an asterisk are not included in the state
space of the RL agents in chapter 8.

Name Description

Avg Tariff per household (¢/KWh) Annual average tariff price per household.

Consumption per household
(KWh)

Annual electricity consumption per household.

GHG Emissions per household
(tCO2e)

Annual average GHG emissions per household

Number of Active Actors Number of generators participating in the market.

Number of Domestic Consumers
(households)

Number of households whose electricity is supplied by the
market.

Percentage Renewable Production
(%)

Annual average market share of renewable electricity.

Primary Max Unmet Demand Per
Hour (MWh)*

Annual maximum quantity of electricity demand that was
unmet in a given hour in the primary market.

Primary Total Unmet Demand
(Days)

Annual number of days where electricity demand was unmet
in the primary market.

Primary Total Unmet Demand
(Hours)*

Annual number of hours where electricity demand was
unmet in the primary market.

Primary Total Unmet Demand
(MWh)

Annual quantity of electricity demand that was unmet in the
primary market.

Primary Wholesale ($/MWh) Annual average primary wholesale electricity price.

Secondary Max Unmet Demand
Per Hour (MWh)*

Annual maximum quantity of electricity demand that was
unmet in a given hour in the secondary market.

Continued on next page
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Table A.2 – continued from previous page

Name Description

Secondary Total Unmet Demand
(Days)

Annual number of days where electricity demand was unmet
in the secondary market.

Secondary Total Unmet Demand
(Hours)*

Annual number of hours where electricity demand was
unmet in the secondary market.

Secondary Total Unmet Demand
(MWh)

Annual quantity of electricity demand that was unmet in the
secondary market.

System Production Battery
(MWh)*

Annual quantity of electricity supplied by coal-powered
generators.

System Production Coal (MWh) Annual quantity of electricity supplied by coal-powered
generators.

System Production Gas (MWh) Annual quantity of electricity supplied by gas-powered
generators.

System Production Off Spot
(MWh)

Annual quantity of electricity supplied outside of the spot
markets.

System Production Primary Spot
(MWh)

Annual quantity of electricity supplied in the primary spot
market.

System Production Rooftop PV
(MWh)*

Annual quantity of electricity supplied by rooftop PV cells.

System Production Secondary
Spot (MWh)

Annual quantity of electricity supplied in the secondary spot
market.

System Production Solar (MWh) Annual quantity of electricity supplied by solar-powered
generators.

System Production Water (MWh) Annual quantity of electricity supplied by water-powered
generators.

System Production Wind (MWh) Annual quantity of electricity supplied by wind-powered
generators.

Continued on next page
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Table A.2 – continued from previous page

Name Description

Year Simulated year for results.
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Appendix B

Model Preparation Appendix

B.1 Forecast Data Smoothing Algorithms

Algorithm 2 Smooth forecast electricity demand for different bidding window sizes.

Input: D = [d0, . . . , d47], 30 minute electricity demands for calendar day.
Input: h, hours between bidding rounds.
Output: S, array of smoothed forecast electricity demands, s.t. |S| = 24/h.

1: procedure SmoothDemand(D, h)
2: t← 0
3: i← 0
4: w ← 2 · h ▷ 30min intervals between bids
5: while t < 48 do ▷ Loop over day
6: S[i]←

∑t+w−1
j=t D[j]

7: t← t+ w

8: return S ▷ Smoothed electricity demands

Algorithm 3 Smooth forecast solar capacity for different bidding window sizes.

Input: C = [c0, . . . , c47], 30 minute solar capacities for calendar day.
Input: h, hours between bidding rounds.
Output: S, array of smoothed forecast solar capacities, s.t. |S| = 24/h.

1: procedure SmoothSolarCapacity(D, h)
2: t← 0
3: i← 0
4: w ← 2 · h ▷ 30min intervals between bids
5: while t < 48 do ▷ Loop over day
6: S[i]←

∑t+w−1
j=t C[j]/w

7: t← t+ w

8: return S ▷ Smoothed solar capacities
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B.2 Historical Validation Results

Table B.1: Historical validation results for GHGE Levels . Units are in tCO2e.

Year Historical 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

1998 59.20 50.45 50.45 50.45 50.45 50.45 50.45 50.45 50.45 50.45

1999 61.80 56.50 57.05 57.05 57.05 57.05 57.05 57.05 57.05 57.05

2000 62.70 59.14 59.94 59.96 59.96 59.96 59.96 59.96 59.96 59.97

2001 62.20 59.13 60.00 59.99 59.99 59.99 59.99 59.99 59.99 60.00

2002 60.40 59.36 60.26 60.25 60.25 60.25 60.25 60.25 60.25 60.25

2003 61.50 60.49 61.34 61.38 61.38 61.38 61.38 61.38 61.38 61.38

2004 64.70 61.30 62.04 62.05 62.05 62.05 62.05 62.05 62.05 62.05

2005 63.50 63.35 63.19 63.20 63.20 63.20 63.20 63.20 63.20 63.20

2006 64.30 65.46 64.74 65.11 65.11 65.11 65.11 65.11 65.11 65.11

2007 63.30 65.46 64.74 64.90 64.90 64.90 64.90 64.90 64.90 64.91

2008 63.70 65.40 64.65 65.40 65.40 65.40 65.40 65.40 65.41 65.41

2009 65.60 65.27 64.54 65.22 65.22 65.22 65.22 65.21 65.21 65.21

2010 65.30 65.11 64.43 65.41 65.41 65.41 65.41 65.41 65.41 65.40

2011 64.40 63.99 63.74 64.45 64.45 64.45 64.44 64.44 64.43 64.40

2012 66.70 62.79 63.31 63.86 63.85 63.85 63.84 63.82 63.80 63.74

2013 59.00 61.50 62.64 63.13 63.12 63.11 63.09 63.07 63.02 62.89

2014 57.00 61.07 62.17 63.00 62.99 62.98 62.95 62.93 62.89 62.75

2015 61.10 59.06 59.58 60.77 60.76 60.75 60.72 60.69 60.64 60.48

2016 59.20 59.88 60.49 61.72 61.71 61.70 61.68 61.65 61.61 61.47

2017 56.10 48.62 48.44 49.15 49.13 49.12 49.08 49.05 48.98 48.78

2018 46.40 46.25 46.08 46.78 46.77 46.76 46.74 46.71 46.67 46.53
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Table B.2: Historical validation results for Renewable Market Share. Units are in % .

Year Historical 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

2005 5.33 6.95 7.54 7.53 7.53 7.53 7.53 7.53 7.53 7.52

2006 5.03 8.02 9.22 8.77 8.77 8.77 8.77 8.77 8.77 8.76

2007 2.92 7.99 9.24 9.04 9.04 9.03 9.03 9.03 9.03 9.02

2008 3.15 7.91 9.28 8.35 8.35 8.35 8.35 8.35 8.35 8.34

2009 5.21 8.45 9.86 9.12 9.12 9.12 9.12 9.12 9.12 9.11

2010 8.30 9.49 11.09 9.95 9.95 9.95 9.96 9.96 9.96 9.98

2011 6.70 9.76 11.02 10.22 10.22 10.23 10.24 10.25 10.27 10.33

2012 8.21 9.42 9.37 8.66 8.67 8.68 8.70 8.71 8.75 8.86

2013 12.03 10.06 8.88 8.23 8.24 8.26 8.29 8.33 8.40 8.61

2014 9.61 11.27 10.21 9.10 9.12 9.14 9.17 9.21 9.28 9.51

2015 12.05 13.56 13.42 11.89 11.91 11.93 11.98 12.02 12.11 12.39

2016 15.53 14.16 13.87 12.32 12.34 12.36 12.40 12.44 12.52 12.75

2017 14.72 21.13 21.55 20.56 20.61 20.65 20.73 20.82 20.99 21.50

2018 18.98 23.42 23.73 22.72 22.76 22.79 22.86 22.93 23.07 23.49

2019 21.60 24.32 24.33 22.92 22.94 22.96 22.99 23.02 23.08 23.28

2020 23.02 24.01 22.12 22.66 22.67 22.69 22.72 22.75 22.81 22.99
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Table B.3: Historical validation results for Wholesale Prices . Units are in $/MWh.

Year Historical 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

2005 29.82 58.66 84.27 84.17 84.06 83.94 83.72 83.49 83.04 81.72

2006 36.83 52.61 87.79 86.54 86.42 86.31 86.09 85.86 85.42 84.14

2007 69.02 45.85 65.63 64.70 64.61 64.52 64.34 64.16 63.80 62.76

2008 42.57 43.02 54.91 52.66 52.59 52.52 52.38 52.24 51.97 51.18

2009 41.71 39.41 49.31 44.93 44.87 44.80 44.67 44.55 44.29 43.55

2010 38.94 37.43 42.56 40.89 40.82 40.75 40.61 40.48 40.01 39.24

2011 30.67 33.95 31.12 29.13 29.04 28.95 28.76 28.58 28.13 27.09

2012 45.80 26.08 23.10 23.39 23.31 23.23 23.08 22.92 22.59 21.68

2013 53.58 24.85 20.21 19.89 19.81 19.73 19.58 19.43 19.11 17.77

2014 42.86 33.47 22.92 22.21 22.10 21.98 21.73 21.49 21.01 19.53

2015 34.10 43.78 33.16 31.71 31.49 31.27 30.82 30.38 29.49 26.83

2016 49.35 40.25 31.59 31.32 31.14 30.95 30.57 30.19 29.40 26.89

2017 94.25 57.08 69.62 67.78 67.48 67.15 67.17 66.43 65.01 59.83

2018 95.68 66.88 81.36 80.52 80.01 79.48 79.19 78.42 77.52 71.89

2019 120.01 119.06 103.80 103.44 102.58 101.70 99.99 98.35 95.45 84.13

2020 70.53 64.24 77.96 77.92 77.39 76.85 75.63 74.53 72.46 65.04
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Table B.4: Historical validation results for Tariff Prices . Units are in ¢/KWh.

Year Historical 0.5hr 1hr 2hr 3hr 4hr 6hr 8hr 12hr 24hr

2001 15.70 7.71 7.50 7.48 7.47 7.44 7.42 7.36 7.21 27.32

2002 10.39 6.87 6.89 6.88 6.86 6.84 6.82 6.77 6.65 27.03

2003 18.99 11.49 11.51 11.49 11.47 11.43 11.40 11.33 11.12 N/A

2004 20.72 14.85 14.71 14.69 14.66 14.62 14.58 14.50 14.25 N/A

2005 20.24 18.44 18.45 18.42 18.39 18.34 18.29 18.19 17.88 N/A

2006 24.92 36.75 36.70 36.65 36.60 36.50 36.40 36.21 35.63 N/A

2007 14.39 22.10 22.00 21.98 21.95 21.89 21.84 21.73 21.42 23.38

2008 11.58 14.45 14.45 14.43 14.41 14.37 14.34 14.26 14.05 25.55

2009 21.22 27.67 26.78 26.75 26.71 26.64 26.57 26.44 26.03 27.74

2010 19.93 24.25 20.83 20.80 20.78 20.72 20.66 20.55 20.21 24.96

2011 24.29 29.09 27.21 27.16 27.11 27.02 26.92 26.73 26.16 25.77

2012 31.34 30.57 27.36 27.26 27.15 26.94 26.74 26.20 24.99 29.10

2013 13.66 10.09 10.12 10.08 10.04 9.96 9.89 9.73 9.26 31.92

2014 12.13 8.75 8.72 8.70 8.67 8.62 8.58 8.48 8.20 30.89

2015 27.14 17.26 16.19 16.09 16.00 15.80 15.60 15.20 13.96 27.81

2016 34.96 25.23 24.82 24.65 24.48 24.13 23.79 23.10 21.05 27.82

2017 24.35 17.25 17.14 17.05 16.95 16.74 16.53 16.08 14.61 29.44

2018 23.99 29.27 29.23 29.11 28.97 29.14 28.79 28.10 25.42 23.31

2019 22.31 23.84 23.85 23.73 23.61 23.50 23.31 23.33 21.79 21.77
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Appendix C

Augmenting Uncertainty Appendix

C.1 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) [128] is a method for pseudo-randomly sets of values from
multi-dimensional spaces. It is widely utilised in deep uncertainty literature [141], as it
ensures that the values of each dimension are represented evenly across the entire sampled
set [47]. In this study, the multi-dimensional space is the space of all possible scenarios for
the GSE , where each dimension is one of the 33 uncertain parameters of the GSE (Appendix
A.1). LHS requires specifying the number of samples (scenarios) required by the user. Given
a specified number of scenarios, s, LHS divides the range of each uncertain parameter into s
equal bins, and samples one value from each bin, resulting in s distinct values. To construct
a scenario, a value is selected from the s sampled values for each uncertain parameter. This
scenario construction is repeated until all s scenarios have been created. All sampling of
scenarios in this paper is completed using LHS.

122



C.2 Sobol Indices

Sobol Indices [123] is a model independent, GSA technique, that is based on decomposing
the variance of a given output value of concern. To determine the Sobol Indices of a model’s
n different uncertain parameters, a probabilistic perspective is considered on the model’s
input parameters, such that the input is a random vector U ∈ Rn represented as:

X = M(U) = M(U1, . . . , Un)

where X ∈ R is the model output of concern.

For a set of input parameters, Sobol suggested to decompose the function M into summands
with increasing dimensionality:

X = M0 +
n∑

i=1

Mi(Ui) +
∑

1≤i<j≤n

Mij(Ui, Uj) + · · ·+M1..n(Ui, . . . , Un)

where:

M0 = E[X]

Mi(Ui) = E[X|Ui]−M0

Mij(Ui, Uj) = E[X|Ui, Uj]−M0 −Mi −Mj

. . .

such thatM0 is the expected value ofX, and values of increasing order are recursively defined
conditional expected values [120]. From this, the total variance in the output value can be
represented as:

V ar(X) =
∑
k

V ar(Mk(Uk)), s.t. ∅ ̸= k ⊂ {1, . . . , n}

where V ar(Mk(Uk)) is the conditional variance of Uk, and contains the uncertain parameters
who are sampled according to the subset k. Therefore, the Sobol Index of the subset of
uncertain parameters denoted by k is the ratio between the contribution to the output value
by the uncertain parameters within k, and the total variance of the output value:

Sk =
V ar(Mk(Yk))

V ar(X)

Following this equation, for k ⊂ {1, . . . , n}, k ̸= ∅, the sum of all Sobol Indices are equal to
1. ∑

k

Sk =
n∑

i=1

Si +
∑

1≤i<j≤n

Sij + · · ·+ S1..n = 1
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The order of a Sobol Index determines the insights into the impacts and interactions of
uncertain parameters in the model the index can provide [120]. First order indices measure
the contribution of Ui to the total variance of output value X [126]. Alternatively, it can be
considered as the (expected) fraction of the output value’s variance that would be removed
if Ui were to be fixed [126]. First order indices are defined as:

Si =
V ar(Mi(Ui))

X
, i = 1, . . . , n

Second order indices add an additional uncertain parameter, Uj, and calculate the contribu-
tion and interactions of Ui and Uj:

Sij =
V ar(Mij(Uij))

V ar(X)
, 1 ≤ i < j ≤ n

Such construction of the Sobol Indices can be done using more uncertain parameters, to
identify the different contributions and interactions between parameters. In addition, a
value known as the total Sobol Index [152] for an uncertain parameter can be computed.
Total Sobol Indices ST compute the full contribution of Ui to the total variance, considering
all orders of Sobol Indices.

ST
i =

∑
k⊂{1,...,n}

i∈k

Sk i = 1, . . . , n
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C.3 Sobol Indices Results

Table C.1: Sobol Indices - GHGE Levels .

S1 ST

Uncertain Parameter Median Max Median Max

domesticConsumptionPercentage 0.431463 0.643033 0.465691 0.662504

nameplateCapacityChangeBrownCoal 0.160818 0.318758 0.222259 0.353898

consumption 0.043654 0.100362 0.067349 0.150037

priceChangePercentageBrownCoal 0.041143 0.109466 0.110609 0.217251

priceChangePercentageWind 0.016998 0.065526 0.069585 0.126808

nameplateCapacityChangeWind 0.014701 0.035224 0.052023 0.060377

generatorRetirement 0.011720 0.848524 0.021551 0.932369

priceChangePercentageWater 0.010176 0.031380 0.034546 0.068517

nameplateCapacityChangeWater 0.001673 0.006412 0.012510 0.013258

learningCurve 0.000854 0.008169 0.015394 0.036049

nameplateCapacityChangeSolar 0.000773 0.003466 0.005183 0.008689

nonScheduleMinCapMarketGen 0.000461 0.000832 0.000215 0.000739

priceChangePercentageCcgt 0.000219 0.000801 0.000186 0.000550

nonScheduleGenSpotMarket 0.000211 0.001612 0.000584 0.001701

includePublicallyAnnouncedGen 0.000206 0.000068 0.000080 0.000503

semiScheduleGenSpotMarket 0.000202 0.000041 0.000158 0.000516

scheduleMinCapMarketGen 0.000199 0.000019 0.000221 0.000526

importPriceFactor 0.000164 0.000629 0.000081 0.000550

nameplateCapacityChangeOcgt 0.000136 0.003313 0.000139 0.003845

rooftopPV 0.000131 0.000694 0.001623 0.004772

annualCpi 0.000106 0.000942 0.000073 0.000530

priceChangePercentageSolar 0.000079 0.000668 0.000110 0.000553

generationRolloutPeriod 0.000078 0.007252 0.016452 0.030729

semiScheduleMinCapMarketGen 0.000070 0.004374 0.009572 0.018025

technologicalImprovement 0.000058 0.000418 0.000113 0.000561

energyEfficiency 0.000054 0.000923 0.000211 0.000752

priceChangePercentageOcgt 0.000046 0.000614 0.000076 0.000535

annualInflation 0.000039 0.000971 0.000152 0.000653

priceChangePercentageBattery 0.000038 0.000391 0.000195 0.000730

solarUptake 0.000031 0.000988 0.001716 0.004140

nameplateCapacityChangeCcgt 0.000023 0.000639 0.000201 0.000507

nameplateCapacityChangeBattery 0.000023 0.000925 0.000116 0.000579

wholesaleTariffContribution 0.000009 0.000405 0.000193 0.000725
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Table C.2: Sobol Indices - Renewable Market Share.

S1 ST

Uncertain Parameter Median Max Median Max

nameplateCapacityChangeBrownCoal 0.300210 0.785678 0.403402 0.873972

priceChangePercentageBrownCoal 0.116118 0.235053 0.281622 0.422706

nameplateCapacityChangeWind 0.043432 0.136078 0.106786 0.190687

priceChangePercentageWind 0.042516 0.127547 0.181685 0.251495

priceChangePercentageWater 0.025920 0.069706 0.087901 0.153378

generatorRetirement 0.021296 0.958307 0.036776 0.973439

consumption 0.017770 0.001858 0.038763 0.163584

nameplateCapacityChangeWater 0.007145 0.035239 0.028130 0.054407

learningCurve 0.005602 0.023136 0.043468 0.069374

rooftopPV 0.000488 0.000680 0.002552 0.008926

nameplateCapacityChangeCcgt 0.000465 0.000989 0.000405 0.002120

semiScheduleGenSpotMarket 0.000450 0.001047 0.000359 0.002114

priceChangePercentageSolar 0.000409 0.001214 0.000224 0.002094

domesticConsumptionPercentage 0.000366 0.000299 0.000414 0.002111

priceChangePercentageOcgt 0.000349 0.001264 0.000196 0.002300

importPriceFactor 0.000322 0.000292 0.000197 0.002293

priceChangePercentageBattery 0.000277 0.000313 0.000413 0.002094

scheduleMinCapMarketGen 0.000264 0.000229 0.000468 0.002132

includePublicallyAnnouncedGen 0.000256 0.000003 0.000200 0.002087

annualCpi 0.000234 0.001508 0.000207 0.002214

semiScheduleMinCapMarketGen 0.000219 0.000779 0.000240 0.002237

technologicalImprovement 0.000211 0.000429 0.000256 0.002248

solarUptake 0.000133 0.002083 0.002644 0.006967

wholesaleTariffContribution 0.000124 0.000457 0.000390 0.002238

energyEfficiency 0.000121 0.000237 0.000449 0.002114

nameplateCapacityChangeOcgt 0.000113 0.023649 0.001382 0.025742

nonScheduleGenSpotMarket 0.000074 0.001791 0.001012 0.002980

nameplateCapacityChangeBattery 0.000056 0.000728 0.000216 0.002268

nameplateCapacityChangeSolar 0.000053 0.002920 0.007602 0.015943

priceChangePercentageCcgt 0.000007 0.001150 0.000357 0.002277

nonScheduleMinCapMarketGen 0.000004 0.000934 0.000428 0.002207

generationRolloutPeriod 2.80×
10−7

0.013919 0.030006 0.072395

annualInflation 1.31×
10−7

0.002739 0.000278 0.002267
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Table C.3: Sobol Indices - Wholesale Prices .

S1 ST

Uncertain Parameter Median Max Median Max

consumption 0.057733 0.186906 0.237841 0.570887

nameplateCapacityChangeBrownCoal 0.055466 0.677626 0.449189 0.836375

importPriceFactor 0.036200 0.071432 0.085651 0.135825

nameplateCapacityChangeWind 0.028912 0.119166 0.237297 0.606252

annualInflation 0.019931 0.063219 0.041057 0.115406

generationRolloutPeriod 0.016797 0.189495 0.181518 0.742689

generatorRetirement 0.013760 0.156183 0.126162 0.545121

nonScheduleGenSpotMarket 0.012657 0.081262 0.053675 0.339448

priceChangePercentageOcgt 0.005330 0.030499 0.014375 0.044014

nameplateCapacityChangeWater 0.005053 0.020434 0.059608 0.109959

scheduleMinCapMarketGen 0.003274 0.018614 0.078897 0.264053

nameplateCapacityChangeSolar 0.003254 0.013686 0.021550 0.035302

nameplateCapacityChangeOcgt 0.002825 0.021705 0.028074 0.110454

priceChangePercentageCcgt 0.001180 0.005606 0.002888 0.008254

priceChangePercentageBrownCoal 0.000887 0.029749 0.002490 0.033989

nameplateCapacityChangeBattery 0.000879 0.017924 0.099476 0.283960

rooftopPV 0.000677 0.007393 0.006577 0.023680

solarUptake 0.000416 0.004689 0.005750 0.031444

priceChangePercentageBattery 0.000336 0.033534 0.046182 0.191041

nameplateCapacityChangeCcgt 0.000191 0.002661 0.000515 0.006362

priceChangePercentageWater 0.000153 0.001909 0.000624 0.006788

learningCurve 0.000122 0.003615 0.000944 0.006581

wholesaleTariffContribution 0.000079 0.001676 0.000221 0.006444

semiScheduleGenSpotMarket 0.000074 0.001793 0.000220 0.006446

priceChangePercentageSolar 0.000042 0.002471 0.000214 0.006458

annualCpi 0.000032 0.004723 0.000293 0.006908

includePublicallyAnnouncedGen 0.000029 0.002171 0.000223 0.006680

domesticConsumptionPercentage 0.000025 0.002462 0.000269 0.006393

technologicalImprovement 0.000024 0.002846 0.000377 0.006868

energyEfficiency 0.000019 0.003670 0.000188 0.006240

semiScheduleMinCapMarketGen 0.000009 0.002027 0.000271 0.006492

nonScheduleMinCapMarketGen 0.000007 0.001575 0.000294 0.006562

priceChangePercentageWind 0.000001 0.009579 0.002526 0.018020
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Table C.4: Sobol Indices - Tariff Prices .

S1 ST

Uncertain Parameter Median Max Median Max

wholesaleTariffContribution 0.097860 0.345687 0.238982 0.452541

nameplateCapacityChangeBrownCoal 0.042759 0.744182 0.426918 0.873710

consumption 0.027486 0.128416 0.200478 0.555375

generationRolloutPeriod 0.024005 0.963153 0.177147 0.982268

nameplateCapacityChangeWind 0.022471 0.089508 0.168062 0.538636

importPriceFactor 0.016905 0.040269 0.062917 0.115676

annualCpi 0.015158 0.070229 0.035442 0.132687

generatorRetirement 0.014246 0.133075 0.104980 0.465400

annualInflation 0.011083 0.030658 0.024162 0.096082

nonScheduleGenSpotMarket 0.007451 0.044419 0.031451 0.244640

priceChangePercentageOcgt 0.005053 0.011647 0.014894 0.025679

nameplateCapacityChangeOcgt 0.004142 0.016702 0.019049 0.124381

priceChangePercentageBattery 0.003386 0.026684 0.044553 0.186332

nameplateCapacityChangeBattery 0.002267 0.018350 0.084584 0.270836

nameplateCapacityChangeWater 0.001961 0.029085 0.046588 0.133640

nameplateCapacityChangeSolar 0.001565 0.009612 0.011775 0.017680

priceChangePercentageCcgt 0.001547 0.005310 0.004974 0.014277

priceChangePercentageWind 0.001069 0.013254 0.002842 0.022981

semiScheduleMinCapMarketGen 0.000937 0.006864 0.003905 0.017319

rooftopPV 0.000875 0.003895 0.004399 0.014687

domesticConsumptionPercentage 0.000606 0.002697 0.001288 0.016380

solarUptake 0.000564 0.003712 0.004265 0.015816

learningCurve 0.000411 0.005644 0.001443 0.015504

semiScheduleGenSpotMarket 0.000385 0.016962 0.002444 0.027532

priceChangePercentageBrownCoal 0.000373 0.022543 0.002937 0.033463

energyEfficiency 0.000359 0.004101 0.001459 0.015085

scheduleMinCapMarketGen 0.000331 0.015167 0.067067 0.336423

nameplateCapacityChangeCcgt 0.000207 0.004225 0.001721 0.016560

priceChangePercentageWater 0.000096 0.003812 0.001589 0.015734

technologicalImprovement 0.000058 0.003060 0.001649 0.015117

includePublicallyAnnouncedGen 0.000024 0.002239 0.001092 0.014326

priceChangePercentageSolar 0.000014 0.004148 0.001279 0.016042

nonScheduleMinCapMarketGen 0.000010 0.004428 0.001328 0.016236
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Table C.5: Sobol Indices - Unmet Demand Days .

S1 ST

Uncertain Parameter Median Max Median Max

nameplateCapacityChangeBrownCoal 0.251168 0.815854 0.551708 0.906850

consumption 0.131273 0.371806 0.354537 0.593065

nameplateCapacityChangeWind 0.110605 0.172955 0.273726 0.573481

nameplateCapacityChangeOcgt 0.010744 0.025341 0.041535 0.120860

nameplateCapacityChangeWater 0.010017 0.033263 0.055669 0.160904

nameplateCapacityChangeSolar 0.008458 0.021746 0.027402 0.042458

solarUptake 0.003054 0.015850 0.007374 0.045531

rooftopPV 0.002941 0.013204 0.009798 0.093998

generatorRetirement 0.002151 0.271412 0.049243 0.812973

nameplateCapacityChangeBattery 0.000182 0.001741 0.000059 0.001720

technologicalImprovement 0.000105 0.001285 0.000026 0.001801

semiScheduleGenSpotMarket 0.000094 0.001425 0.000023 0.001780

energyEfficiency 0.000010 0.002409 0.000002 0.001628

scheduleMinCapMarketGen 0.000010 0.000504 0.000003 0.001679

priceChangePercentageOcgt 0.000009 0.002049 0.000002 0.001785

learningCurve 0.000008 0.001980 0.000002 0.001779

domesticConsumptionPercentage 0.000006 0.001922 0.000002 0.001685

annualInflation 0.000004 0.002276 0.000002 0.001698

priceChangePercentageWind 0.000003 0.001315 0.000002 0.001736

wholesaleTariffContribution 0.000003 0.000461 0.000002 0.001602

nonScheduleMinCapMarketGen 0.000003 0.002178 0.000002 0.001695

nonScheduleGenSpotMarket 0.000002 0.000406 0.000003 0.001836

generationRolloutPeriod 0.000002 0.017681 0.000004 0.144904

nameplateCapacityChangeCcgt 0.000002 0.003550 0.000037 0.001709

semiScheduleMinCapMarketGen 0.000001 0.001545 0.000003 0.001799

includePublicallyAnnouncedGen 0.000001 0.001518 0.000002 0.001801

annualCpi 0.000001 0.002911 0.000002 0.001708

importPriceFactor 0.000001 0.000910 0.000002 0.001744

priceChangePercentageCcgt 0.000001 0.002432 0.000002 0.001781

priceChangePercentageBrownCoal 0.000001 0.002720 0.000002 0.001771

priceChangePercentageBattery 3.84×
10−7

0.001534 0.000002 0.001628

priceChangePercentageWater 2.52×
10−7

0.000369 0.000002 0.001712

priceChangePercentageSolar 6.35×
10−8

0.001975 0.000002 0.001529
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C.4 Ordered Uncertain Parameters

Table C.6: Pearson correlations coefficients computed during the factor fixing algorithm in
chapter 6.

Top GHGE Renewable Wholesale Tariff Unmet
Uncertainties Levels Market Prices Prices Demand

Sampled (tCO2e) Share (% ) ($/MWh) (¢/KWh) Days (Days)

1 0.483 0.367 0.183 0.412 0.336

2 0.535 0.485 0.458 0.509 0.555

3 0.582 0.514 0.482 0.537 0.686

4 0.810 0.565 0.513 0.550 0.732

5 0.812 0.581 0.532 0.550 0.770

6 0.845 0.592 0.545 0.642 0.799

7 0.865 0.742 0.690 0.748 0.832

8 0.925 0.756 0.731 0.827 0.855

9 0.965 0.797 0.735 0.831 0.931

10 0.968 0.825 0.740 0.839 0.949

11 0.974 0.842 0.774 0.861 0.954

12 0.977 0.889 0.854 0.887 0.969

13 0.985 0.913 0.898 0.920 0.970

14 0.990 0.948 0.919 0.932 0.973

15 0.992 0.949 0.946 0.995 0.978

16 1.000 1.000 1.000 1.000 1.000
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Table C.7: Uncertain parameters ordered by their maximum median S1 value using the
Sobol Indices results (Appendix C.3) for all five performance indicators.

Rank Uncertain Parameter Median S1 (Max)

1 domesticConsumptionPercentage 0.431463

2 nameplateCapacityChangeBrownCoal 0.300210

3 consumption 0.131273

4 priceChangePercentageBrownCoal 0.116118

5 nameplateCapacityChangeWind 0.110605

6 wholesaleTariffContribution 0.097860

7 priceChangePercentageWind 0.042516

8 importPriceFactor 0.036200

9 priceChangePercentageWater 0.025920

10 generationRolloutPeriod 0.024005

11 generatorRetirement 0.021296

12 annualInflation 0.019931

13 annualCpi 0.015158

14 nonScheduleGenSpotMarket 0.012657

15 nameplateCapacityChangeOcgt 0.010744

16 nameplateCapacityChangeWater 0.010017

17 nameplateCapacityChangeSolar 0.008458

18 learningCurve 0.005602

19 priceChangePercentageOcgt 0.005330

20 priceChangePercentageBattery 0.003386

21 scheduleMinCapMarketGen 0.003274

22 solarUptake 0.003054

23 rooftopPV 0.002941

24 nameplateCapacityChangeBattery 0.002267

25 priceChangePercentageCcgt 0.001547

26 semiScheduleMinCapMarketGen 0.000881

27 nameplateCapacityChangeCcgt 0.000465

28 nonScheduleMinCapMarketGen 0.000461

29 semiScheduleGenSpotMarket 0.000445

30 priceChangePercentageSolar 0.000409

31 energyEfficiency 0.000359

32 includePublicallyAnnouncedGen 0.000256

33 technologicalImprovement 0.000211
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Table C.8: Final 12 uncertain parameters, ordered by their importance.

Rank Uncertain Parameter

1 domesticConsumptionPercentage

2 nameplateCapacityChangeBrownCoal

3 consumption

4 priceChangePercentageBrownCoal

5 nameplateCapacityChangeWind

6 wholesaleTariffContribution

7 priceChangePercentageWind

8 importPriceFactor

9 priceChangePercentageWater

10 generationRolloutPeriod

11 generatorRetirement

12 annualCpi

C.5 Factor Fixing Algorithm

Algorithm 4 Factor Fixing

Input: U , set denoting the ordering of uncertain parameters according to table C.7.
Input: ns, number of scenarios to evaluate.
Input: SBAU, BAU scenario values for each uncertain parameter.
Output: C, Pearson correlation coefficient values.

1: procedure FACTOR FIXING(U, ns, sBAU)
2: S ← sample scenarios(ns) ▷ |S| = ns, ∀s ∈ S ordered by U
3: Od ← run experiments(S)
4: C ← {} ▷ Correlation results, |C| = |U | − 1
5:

6: for i = 1..|U | do ▷ Loop all uncertainties
7: S1 = {}
8: for j = 0..ns − 1 do ▷ Loop all scenarios
9: s← S[j]
10: S1[j]← {s[k] |0 ≤ k < i} ∪ {SBAU [k] |i ≤ k < |U |}
11: O1 ← run experiments(S1)
12: C[i− 1] = corr(Od, O1) ▷ Compute Pearson correlation coefficient

13: return C
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Appendix D

Metro Map Appendix

D.1 Stability Tests
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Figure D.1: Stability test results of the four robustness metrics for GHGE Levels .
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Figure D.2: Stability test results of the four robustness metrics for Renewable Market Share.
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Figure D.3: Stability test results of the four robustness metrics for Wholesale Prices .
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Figure D.4: Stability test results of the four robustness metrics for Tariff Prices .
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Figure D.5: Stability test results of the four robustness metrics for Unmet Demand Days .
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D.2 ϵ-NSGAII Hyperparameters

Table D.1: Hyperparameters for the ϵ-NSGAII experiments. Pi denotes the population
archive after generation i.

Hyperparameter Value

Initial population 100
Cross-over probability 1.0
Mutation probability 1/|Pi|

D.3 Robustness Metrics Results

Table D.2: Robustness metric results - GHGE Levels . Units are in tCO2e.

Baseline Maximax LPIR 90-P Maximin

Min 0.72 0.23 0.20 0.20 0.20
STD 1.06 0.84 0.88 0.80 0.74
Mean 2.87 1.83 1.76 1.62 1.62
IQR 1.28 1.10 1.14 1.05 0.97
25% 2.22 1.21 1.12 1.03 1.07
Median 2.75 1.70 1.61 1.49 1.51
75% 3.50 2.31 2.26 2.08 2.05
Max 6.32 6.32 6.32 6.32 6.25
Range 5.60 6.09 6.12 6.12 6.05

Table D.3: Robustness metric results - Renewable Market Share. Units are in % .

Baseline Maximax LPIR 90-P Maximin

Min 25.94 25.94 25.96 26.90 27.53
STD 11.88 10.63 11.51 10.34 9.29
Mean 51.76 67.71 68.77 71.07 71.37
IQR 17.62 14.24 15.33 14.33 12.51
25% 44.03 60.91 61.99 64.52 65.63
Median 51.56 68.75 69.99 71.74 71.86
75% 61.65 75.16 77.31 78.86 78.13
Max 81.93 90.93 91.77 91.73 91.72
Range 55.99 64.99 65.82 64.83 64.18
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Table D.4: Robustness metric results - Wholesale Prices . Units are in $/MWh.

Baseline Maximax LPIR 90-P Maximin

Min 17.38 17.38 17.38 17.38 32.22
STD 22.77 37.30 30.97 29.95 29.83
Mean 81.65 115.81 109.74 111.30 110.17
IQR 35.98 45.92 38.87 35.34 37.65
25% 63.59 89.87 87.75 90.37 88.84
Median 79.88 111.27 106.45 106.61 106.88
75% 99.57 135.80 126.62 125.72 126.49
Max 130.78 324.44 219.41 219.23 306.92
Range 113.40 307.06 202.03 201.85 274.69

Table D.5: Robustness metric results - Tariff Prices . Units are in ¢/KWh.

Baseline Maximax LPIR 90-P Maximin

Min 3.42 3.42 3.42 3.43 4.10
STD 9.66 15.06 14.45 14.53 13.81
Mean 15.52 24.84 23.67 24.06 23.49
IQR 10.78 17.70 16.12 16.09 15.57
25% 8.75 14.06 13.68 14.00 13.86
Median 12.75 20.91 19.85 20.33 19.97
75% 19.53 31.76 29.80 30.09 29.43
Max 52.38 128.47 125.76 126.66 126.65
Range 48.96 125.05 122.34 123.24 122.55

Table D.6: Robustness metric results - Unmet Demand Days . Units are in Days .

Baseline Maximax LPIR 90-P Maximin

Min 1.07 1.07 1.07 1.07 1.07
STD 50.57 63.93 57.45 48.54 51.25
Mean 103.39 169.57 143.00 144.06 166.33
IQR 62.68 88.77 83.41 65.64 75.84
25% 69.40 124.56 100.38 110.66 126.20
Median 99.52 171.74 140.93 142.16 164.97
75% 132.08 213.33 183.79 176.29 202.03
Max 280.17 350.48 336.31 336.45 350.48
Range 279.10 349.41 335.24 335.38 349.41
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Appendix E

Reinforcement Learning Appendix

E.1 Performance Indicator Mass Experiments

Table E.1: This table displays the GSE results for the performance indicators. The dataset
for the results was generated using 103 policy pathways in 103 scenarios (106 total GSE
runs). All pathways and scenarios were randomly sampled using LHS.

GHGE Renewable Wholesale Tariff Unmet
Levels Market Prices Prices Demand
(tCO2e) Share (% ) ($/MWh) (¢/KWh) Days (Days)

Mean 5.25 0.38 21.93 80.46 85.68
STD 0.61 0.07 9.70 23.48 35.34
Min 0.16 0.16 1.10 23.02 8.30
25% 4.80 0.34 15.28 63.27 59.23
50% 5.15 0.38 19.23 75.51 81.32
75% 5.62 0.43 25.56 91.67 110.11
Max 8.00 0.95 107.75 213.72 358.36

E.2 Reward Function Evaluation Results

Reward Function Wall Time (hours)

RF1 10.82
RF2 10.91
RF3 10.88

Total 32.61

Table E.2: Wall times for training with each reward function.
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Figure E.1: Mean episode reward during training for the three reward functions evaluated
for this study. Each plot has an exponential moving average [153] fitted, with α = 0.95.
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E.3 Agent Training Data

Table E.3: Runtime duration for training the two final agents, A1 and A2.

RL Agent Wall Time (hours)

A1 47.33
A2 46.83

Total 94.16

Figure E.2: Mean episode reward during training for the two final agents, A1 and A2. Each
plot has an exponential moving average [153] fitted, with α = 0.95.
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E.4 Agent Evaluation results

Table E.4: RL agent results - GHGE Levels . Units are in tCO2e.

A1-R A1 Baseline A2 A2-R

Min 0.13 0.29 0.29 0.12 0.10
STD 0.98 1.11 1.12 1.01 0.97
Mean 2.32 2.76 2.99 2.00 1.91
IQR 1.33 1.52 1.57 1.36 1.25
25% 1.59 1.93 2.14 1.25 1.20
Median 2.17 2.59 2.83 1.84 1.75
75% 2.92 3.45 3.72 2.61 2.45
Max 6.50 6.97 6.97 6.60 6.52
Range 6.37 6.68 6.68 6.48 6.43

Table E.5: RL agent results - Renewable Market Share. Units are in % .

A1-R A1 Baseline A2 A2-R

Min 23.32 18.35 18.35 21.71 18.72
STD 11.35 12.74 11.83 12.90 12.11
Mean 60.04 53.56 49.74 65.58 66.39
IQR 15.63 19.01 16.88 19.15 16.62
25% 52.41 44.50 41.40 56.23 58.56
Median 60.42 54.42 49.82 66.25 67.23
75% 68.04 63.52 58.28 75.38 75.18
Max 95.09 91.06 90.85 96.01 95.28
Range 71.76 72.71 72.50 74.30 76.56

Table E.6: RL agent results - Wholesale Prices . Units are in $/MWh.

A1-R A1 Baseline A2 A2-R

Min 20.80 14.41 13.31 25.27 18.01
STD 43.94 25.28 21.95 21.39 40.09
Mean 116.18 87.90 82.90 99.28 116.78
IQR 52.42 33.83 31.08 26.02 52.81
25% 84.19 70.00 66.78 84.61 87.39
Median 104.99 85.49 81.47 96.45 104.67
75% 136.61 103.83 97.86 110.63 140.20
Max 336.75 318.20 195.62 211.45 292.26
Range 315.95 303.79 182.32 186.18 274.24
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Table E.7: RL agent results - Tariff Prices . Units are in ¢/KWh.

A1-R A1 Baseline A2 A2-R

Min 2.30 1.67 1.38 2.35 1.82
STD 17.18 11.83 10.90 13.01 18.39
Mean 24.60 17.43 16.38 21.11 26.15
IQR 17.97 12.50 11.65 14.47 19.39
25% 12.82 9.38 8.89 11.96 13.38
Median 19.61 14.03 13.23 17.35 20.85
75% 30.78 21.88 20.55 26.43 32.76
Max 157.04 107.49 102.88 122.65 159.04
Range 154.74 105.82 101.50 120.30 157.22

Table E.8: RL agent results - Unmet Demand Days . Units are in Days .

A1-R A1 Baseline A2 A2-R

Min 0.31 0.31 0.28 1.41 0.31
STD 59.80 56.09 50.84 50.96 57.21
Mean 136.82 110.77 101.94 127.99 129.93
IQR 85.18 67.16 59.71 71.87 70.69
25% 92.93 72.75 67.75 88.58 89.03
Median 129.34 102.07 95.33 117.10 114.07
75% 178.11 139.91 127.46 160.45 159.72
Max 341.41 352.72 310.28 326.52 349.00
Range 341.10 352.41 310.00 325.10 348.69
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