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Abstract
Classical planning is the problem of finding a sequence of actions for achiev-
ing a goal from an initial state assuming that actions have deterministic effects.
The most effective approach for finding such plans is based on heuristic search
guided by heuristics extracted automatically from the problem representation.
In this thesis, we introduce alternative approaches for performing inference over
the structure of planning problems that do not appeal to heuristic functions, nor
to reductions to other formalisms such as SAT or CSP. We show that many of
the standard benchmark domains can be solved with almost no search or a poly-
nomially bounded amount of search, once the structure of planning problems is
taken into account. In certain cases we can characterize this structure in terms
of a novel width parameter for classical planning.
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Preface

The classical planning problem consists of finding a sequence of actions, a plan,
that maps a given initial state of the world into a goal situation. The problem
can be cast as a path finding problem in an implicitly defined directed graph,
whose nodes represent states, and whose edges represent the state transitions
made possible by the actions. A domain-independent planner searches for a path
in the graph connecting the initial state to a state satisfying the goal condition,
given a compact representation of the planning problem.

Heuristic Search is the dominant approach in classical planning. In order to
guide the search for a solution, heuristic search planners use a heuristic function
that estimates the cost of reaching the goal of the problem from any given state.
Heuristic functions derived from a simplified (relaxed) version of the original prob-
lem, introduced by McDermott (1996); Bonet et al. (1997), improved significantly
the scalability of domain-independent planners. State-of-the-art heuristic search
planners such as FF (Hoffmann and Nebel, 2001) and LAMA (Richter and West-
phal, 2010), go beyond the choice of the search algorithm and the heuristic func-
tion, and incorporate a variety of search enhancements such as helpful actions,
landmarks and multiple queues for combining various heuristic functions.

Satisficing classical planning in the worst case is PSPACE-complete, even when
no guarantee on the optimality of the solution is given. Still as Bylander (1994)
said:

If the relationship between intelligence and computation is taken se-
riously, then intelligence cannot be explained by intractable theories
because no intelligent creature has the time to perform intractable
computations. Nor can intractable theories provide any guarantees
about the performance of engineering systems.

Current planners solve most existing benchmark domains in a few seconds
(Hoffmann and Nebel, 2001; Richter and Westphal, 2010), after quickly exploring
many of the states in the problem. Their performance has been improved by
devising new search algorithms, and new heuristic estimators. On the other
hand, simple problems that should be solved with almost no search, still require
the planners to perform extensive search before finding a solution. Consider
for example a known variation of the Blocks World domain, Tower-n, where n
blocks on the table must be arranged in a single tower with block i on top of
block i + 1. The actions available are to pick up and put down one block at a
time. This problem does not feature a complex combinatorial structure such as
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Rubik’s cube or the 15-puzzle; a simple solution consists of stacking first block
n − 1 on top of block n, then the block n − 2 on top of block n − 1, etc. In such
problems, planners should be able to find a solution without extensive search.
In contrast, a state-of-the-art planner like FF (Hoffmann and Nebel, 2001), still
needs to explore a significant part of the state space before finding a solution.
Moreover, a slight variation of the same problem, where initially all blocks are on
the table but block n, which is on top of block 1, may cause the planner even
to fail. Instead of improving performance of planners in such problems using
better heuristic estimators, in this thesis we explore alternative approaches to
perform inference over the structure of planning problems along with novel search
algorithms that exploit such structure. We show that problems like Tower-n
can be solved with no search, by means of cost effective domain independent
inferences.

In the first part of the dissertation we review the classical planning model and
the main computational approach to classical planning. In the second part, we
develop an inference scheme, in the context of forward-state search, that does
not appeal to a heuristic function but to the notion of causal links, originally
used in the context of partial order planning (Tate, 1977; McAllester and Rosen-
blitt, 1991). We show that by exploiting the semantics of causal links, we are able
to propagate information along sequences of causal links a0, p1, a1, p2, a2, . . . , pn, an
and show that some of such sequences are impossible to hold in any valid plan.
The information encoded by such sequences is exploited in different ways, re-
sulting in a planner that solves most of the benchmarks with almost no search.

To explore the synergy between different type of inferences, we also formulate
and test a new dual search architecture for planning based on the idea of probes:
single action sequences computed without search from a given state that can
quickly go deep into the state space, terminating either in the goal or in a failure.
We show experimentally that by designing these probes carefully using a number
of existing and new polynomial inference techniques, most of the benchmarks
can be solved with a single probe from the initial state, with no search. Moreover,
by using one probe as a lookahead mechanism from each expanded state in a
standard greedy best-first search, we show that we can solve as many problems
as state-of-the-art planners. The resulting planner PROBE, presented in the In-
ternational Planning Competition 2011 (IPC-7), was the second best planner in
terms of the quality of the first solution found.

In the third part of the dissertation, we present a new type of parameter that
bounds the complexity of a planning domain. Through this new parameter, we
develop an approach to recognize and exploit the structure of planning problems.
Specifically, we present two blind search algorithms that by only exploiting the
structure of the problem, with no heuristic estimator at all, perform as well as
baseline heuristic search planners. Finally, we show how the key ideas for ex-
ploiting this new parameter can be integrated in a standard best-first search
algorithm along with other inferences such as helpful actions and landmarks,
yielding a new state-of-the-art planner.

The work presented in this thesis has been published in the following articles:

• Nir Lipovetzky and Hector Geffner. Inference and Decomposition in Planning
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Part I

Background
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Chapter 1

Classical Planning

Había aprendido sin esfuerzo el inglés, el
francés, el portugués, el latín. Sospecho, sin
embargo, que no era muy capaz de pensar.
Pensar es olvidar diferencias, es generalizar,
abstraer. En el abarrotado mundo de Funes
no había sino detalles, casi inmediatos.

Without effort, he had learned English,
French, Portuguese, Latin. I suspect,
nevertheless, that he was not very capable of
thought. To think is to forget a difference, to
generalize, to abstract. In the overly replete
world of Funes there were nothing but
details, almost contiguous details.

Funes el Memorioso.
Jorge Luis Borges

In this chapter we review the classical planning model and the STRIPS factored
representation. We then review the main computational approach to classical
planning, and present its standard algorithms, heuristics and other techniques.

1.1 Introduction

Classical planning is the problem of finding a sequence of actions that maps a
given initial state to a goal state, where the environment and the actions are de-
terministic. The computational challenge is to devise effective methods to obtain
such action sequences called plans. The last two decades have brought signifi-
cant advances in classical planning (Kautz and Selman, 1996; Blum and Furst,
1995; Bonet and Geffner, 2001) with the heuristic search approach beign the
most successful (i.e. using heuristic search algorithms on the underlying state
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model guided by heuristic estimators extracted automatically from the classical
problem).

1.2 Model and Factored Representation

A classical planning problem can be understood as a path-finding problem in a
directed graph whose nodes represent states, and whose edges represent actions
that change the state represented by the source node of the edge, to the state
represented by the target node. A plan, the sequence of actions that transform
the initial state into a goal state, can be understood as a path from the initial
node in the graph to a node whose state is one of the goal states of the problem.
The formal model underlying a classical planning problem can be described as
follows:

Definition 1.1 (Classical Planning Model). A planning model Π = 〈S, s0, SG, A, f〉
consists of:

• A finite and discrete set of states S, i.e., the state space,

• An initial state s0 ∈ S,

• A set of goal states SG ∈ S,

• A set of actions A,

• The actions applicable A(s) ⊆ A in each state s ∈ S, and

• The deterministic transition function s′ = f(s, a) for a ∈ A(s).

The state resulting from an action a applied in a state s is f(s, a), also de-
noted as s[a]. The application of a sequence of actions to a state can be defined
recursively as

s[ε] = s

s[a0, . . . , an] = (s[a0, . . . , an−1])[an]

A classical plan π is a sequence of actions π = a0, . . . , an that generates a
sequence of states s0, . . . , sn+1, such that ai ∈ A(si) is applicable in si, results in
state si+1 = f(si, ai), and sn+1 ∈ SG is a goal state. That is, the sequence of actions
π is a plan if s0[π] ∈ SG.

In the presence of a cost function that maps each action in the model to a
non-negative cost, plans with lower cost are preferred, where the cost of a plan π
is defined as the sum of the cost of its actions:

cost(π) =

n∑
i=1

c(ai)

A plan is said to be optimal if it has minimum cost among all possible plans
achieving a goal state. If a cost function is not defined, actions are assumed to
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have uniform cost, i.e. each action is assumed to have a cost of 1, and plans of
lower length are preferred to those with higher length.

In large problems, explicitly enumerating the state space is not feasible. In this
case, factored representations are used in which states are complete assignments
to a set of variables whose domains are finite and discrete. The conditions and
effects of actions, the applicability function, and the transition function are also
defined in terms of these variables.

The most common representation in planning appeals to boolean variables
known as fluents, facts or atoms, whose domain are the values true or false,
stating whether a proposition about the world holds in a given state. This repre-
sentation is known as STRIPS (Fikes and Nilsson, 1971).

Definition 1.2 (STRIPS). A planning problem in STRIPS, Π = 〈F,O, I,G〉 consists of:

• A set of boolean variables (fluents, facts or atoms) F ,

• A set of tuples O representing operators, each having the form 〈Pre(o), Add(o),
Del(o)〉, where Pre(o), Add(o), Del(o) ⊆ F

• A set I ⊆ F , describing the initial state

• A set G ⊆ F , describing the set of goal states.

The state space model underlying the classical planning problem is implicitly
described by the STRIPS factored representation. Each state s ∈ S is a subset
s ⊆ F of the set of fluents in which the facts p ∈ s have the value true, while the
facts p′ ∈ F \ s are assumed to be false 1. Then, I describes the initial state s0,
and G describes the set of goal states SG = {s | G ⊆ s}. The applicable actions in
a given state s are A(s) = {o | Pre(o) ⊆ s} the actions whose preconditions are true
in s, and the transition function f(s, o) = (s ∪ Add(o)) \ Del(o) progress a state s
with operator o by setting the propositions in Add(o) to true and the propositions
in Del(o) to false, which corresponds to adding the propositions Add(o) to s and
subtracting the ones in Del(o).

An action sequence π = a0, . . . , an is a classical plan if each action ai is appli-
cable in si, i.e, Pre(ai) ⊆ si, and the state resulting from the application of the
plan from the initial state so = I contains the goal fluents G ⊆ s[π] ∈ SG.

Most work in classical planning has been done for problems expressed in
STRIPS. More recently, however, the Planning Domain Definition Language, PDDL

(McDermott et al., 1998), has become a standard, as it is the language for the In-
ternational Planning Competitions (IPC) (McDermott, 2000; Bacchus, 2001; Fox
and Long, 2003; Hoffmann and Edelkamp, 2005; Gerevini et al., 2009; Helmert
et al., 2008; Olaya et al., 2011). PDDL represents STRIPS problems as well as
extensions to STRIPSin a first-order language with a finite number of predicates,
variables and constants. Classical planners (systems that solve the planning
problem) ground the actions defined in PDDL, i.e. they transform predicates, vari-
ables, and constants into a propositional representation like STRIPS.

Other factored representations have been proposed, such as SAS+ (Bäckström
and Nebel, 1995), which describes the planning problem in terms of variables
1 It corresponds to the closed world assumption, in which any fact not mentioned in the initial state
is assumed to be false
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with domains of finite size, known as multivalued variables. Only STRIPS repre-
sentation is used in this dissertation and we do not discuss further representa-
tions.

Blocks World Domain To illustrate the PDDL language, consider the Blocks
World domain. Blocks World is a planning domain that consists of stacking tow-
ers made of a finite number of blocks, from one initial situation into a desired
one. All blocks are either on the table, held by a single arm, or on top of another
block. The actions available for the single arm are to pick up a block from the
table, to unstack and hold a block that is on top of another block, to put down on
the table the block the arm is holding, and to stack the block held by the arm on
top of another block. A description in PDDL of the Blocks Word domain is shown
in Figure 1.1.

Many examples in this thesis will make use of simple Blocks World instances
to illustrate and help elucidate the ideas that will be presented. Though it has
little practical significance, this domain has been widely used in AI planning
over the last 30 years. Moreover, domain-independent planners until the late
90’s could not solve problems even with very few blocks. This domain offers
a crisp, clear and simple setting in which to understand the techniques that
planning systems employ. A thorough analysis of Blocks World has been carried
out by Slaney and Thiébaux (2001), where they enhance the understanding of
the complexity of Blocks World problems.

1.2.1 Complexity

Given a classical planning problem Π in its factored representation, the decision
problem PlanExt(Π) is defined by the question: does a plan π for Π exist? and the
decision problem PlanCost(Π, k), given a positive real constant value k, is defined
by the question: does a plan π for Π with cost(π) < k exist? Both decision problems
are PSPACE-complete (Bylander, 1994), and since theoretically in the worst-case
planning problems are intractable, planning approaches are generally assessed
in terms of their practical performance on a set of benchmarks, regardless of
their worst-case guarantees.

Computational approaches to classical planning differ if a guarantee on the
optimality of the solution is needed (PlanCost(Π, k)). If the algorithm is con-
cerned instead with finding a plan without an optimality guarantee, trading
plan quality for speed, the problem is known as satisficing classical planning
(PlanExt(Π)).

1.3 Planning as Heuristic Search

Given that the state space S of classical planning problems Π can be understood
as directed graphs whose nodes represent states, and whose edges represent
actions, any graph-search algorithm can be used in order to find a plan, a path
from the initial state to a goal state in the graph. Yet, blind search algorithms
such as Dijkstra (Cormen et al., 2001) do not scale up due to the size of the
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(define (domain BLOCKS)
(:requirements :strips :typing :equality)
(:types block)
(:predicates (on ?x ?y - block) (ontable ?x - block) (clear ?x - block)

(handempty) (holding ?x -block))

(:action pick-up
:parameters (?x - block)
:precondition(and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty))
(holding ?x))

)

(:action put-down
:parameters (?x - block)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x))

)

(:action stack
:parameters (?x ?y - block)
:precondition (and (holding ?x) (clear ?y) (not (= ?x ?y)))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x) (handempty)

(on ?x ?y))
)

(:action unstack
:parameters (?x ?y - block)
:precondition (and (on ?x ?y) (clear ?x) (handempty) (not (= ?x ?y)))
:effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not (handempty))

(not (on ?x ?y)))
)

)
...
(define (problem blocks-sussman)
(:domain BLOCKS)
(:objects A B C - block)

(:init (clear C) (clear B) (ontable B) (ontable A) (on C A) (handempty))
(:goal (and (on A B) (on B C)))

)

Figure 1.1: PDDL encoding of the famous Sussman anomaly instance of the
Blocks World domain.
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state space S, which can be exponential to the number of fluents of the problem
Π. On the other hand, heuristic search algorithms have been proven to perform
effectively, provided they use a heuristic function sufficiently informed to guide
the search.

Indeed, the most successful planners from previous International Planning
Competitions use this approach (Bonet and Geffner, 2001; Hoffmann and Nebel,
2001; Helmert, 2006; Richter and Westphal, 2010). Since the first heuristic
search planner HSP (Bonet and Geffner, 1999) appeared, many heuristic func-
tions have been proposed that improve their accuracy. The gap on performance
with present planners, however, seems to be more related to search enhance-
ments included in later systems. In the remainder of the section, we briefly
review heuristics and search algorithms, along with the search enhancements
that state-of-the-art systems use.

1.3.1 Heuristic Search Algorithms

Heuristic search algorithms use a heuristic estimator to guide the search in a
graph for a path from the initial node to a goal node. Given a classical planning
problem Π = 〈F, I,O,G〉, the path takes the form of a sequence of actions that
reach a goal node from the initial situation. The state space of the problem
explored by the algorithm is represented by nodes n, which are structures that
contain the state s ⊆ F description along useful information, such as the action
used to reach the state in order to recover recursively the path up to the initial
state, the cost of the complete path leading to s, and the value of the evaluation
function used to ranks nodes. For simplicity we hereafter refer to nodes and
states indistinctly.

The algorithms we discuss next perform forward search in the state space
induced by the planning problem Π. We discuss two of the most successful
algorithms in satisficing classical planning, used by most of the high performance
planners, and with which we compare in the experiments shown throughout the
thesis. The first one is the family of search algorithms known as best-first search
and the second is enforced hill-climbing.

Best-First Search

Best-first search (BFS) algorithms use two distinct sets of nodes for storing search
nodes, the closed list and the open list, where nodes are sorted according to the
evaluation function. Nodes that have not yet been expanded, i.e., those whose
successors have not yet been generated, are placed in the open list. Nodes which
have been already expanded are placed in the closed list. Intuitively, the state
space explored so far by the algorithm can be understood as a tree whose leaf
nodes (search frontier) are in the open list, and the inner nodes are in the closed
list. Thus, the choices of the algorithm are to select iteratively which node in the
open list (frontier) to expand next. Once a node from the open list is selected, the
node is moved to the closed list (inner nodes) and its successors are generated.
The successors are then evaluated through the heuristic estimator and inserted
into the open list, as all these nodes belong to the search frontier. If a node n
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from the open list is selected for expansion and the goal G is true in n, the path
is retrieved up to the initial node and the solution is returned. The algorithms
below differ in how they select the next node to be expanded, and how they
treat duplicated states. Best-first search algorithms rank all nodes in the open
list according to some evaluation function f(n) = z · g(n) + w · h(n), which is
typically a linear combination of the accumulated cost g(n) up to node n, and the
estimated cost of reaching the goal from n according to the heuristic estimator
h(n) used by the algorithm (Pearl, 1983). The node to expand next is the one with
minimum f(n). The following algorithms differ in the value they assign to the
constant values z and w, changing the properties of the search. In the simplest
case where z = 1, w = 0, the resulting search algorithm is the blind (uninformed)
uniform-cost search 1 or breadth-first search if costs are uniform, where the
current shortest path in the search is always expanded first without taking into
account the heuristic value. As the search space induced by classical planning
problems is finite, best-first search algorithms are complete since eventually they
will exhaust the search space.

Greedy Best-First Search. The first variant heuristic search algorithm is greedy
best-first search (GBFS), using the constants z = 0, w = 1 rendering the evalu-
ation function to be f(n) = h(n) (Pearl, 1983). It always expands first the node
with the lowest heuristic value in the open list, the one whose estimated cost to
the goal is lower according to the heuristic estimator. Greedy best-first search is
called greedy, because it only pays attention to getting closer to the goal, no mat-
ter how expensive the paths to the goal are. Therefore, when a duplicated node
is generated, i.e., the node resulting from an expansion is already in the closed
or open list, it is simply deleted. GBFS does not take into account path length
g(n) in f(n), and a shorter path is considered to be the same as a longer one.
GBFS is widely used in satisficing classical planners, also throughout this thesis,
as GBFS trades solution quality for speed, generally finding solutions faster than
other variants of BFS.

A∗ and Weighted A∗ The A∗ algorithm uses the constants z = w = 1, expanding
first the node in the open list that minimizes the evaluation function f(n) = g(n)+
h(n). If more than one node has the same f(n) value, it prefers the one with the
lowest distance to the goal h(n) (Hart et al., 1968). A∗ is typically used in optimal
classical planning along heuristic estimators that satisfy some properties. Given
a consistent and admissible heuristic estimator that satisfies h(n) ≤ cost(an′) +
h(n′) for all n and n′, where cost(an′) is the cost of the action leading to n′ from
n; the algorithm does not ever need to re-expand a node to guarantee optimality,
and therefore duplicate nodes are deleted directly. When an inconsistent but
admissible heuristic estimator is used, where previous inequality does not hold
but still h(n) ≤ h∗(n)2 for all nodes n, the algorithm still can guarantee optimal
solutions. If a previously expanded node is reached through a different path with
lower accumulated cost g(n), the new value g(n) is propagated to the successors
1 Uniform cost is a variant of Dijkstra where only the shortest paths up to a goal node are expanded
instead of the shortest paths to all nodes 2 h∗ maps any state to the optimal solution from that
state.
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already generated in the search tree. A deeper discussion about A∗ optimality
can be found in Dechter and Pearl (1985).

An alternative to A∗ is WA∗, that trades solution quality for speed by weighting
the heuristic value h(n) with a factor w > 1 (Pohl, 1970). As z = 1, the evaluation
function becomes f(n) = g(n) + w · h(n). The larger the value of w is, the more
greedily the search algorithm acts, and pays more attention to minimizing the
distance to the goal h(n) than the distance up to the node g(n). The use of a large
w factor generally results in a speed up, finding solutions faster but without
any optimal guarantee, as w > 1 makes the heuristic estimator inadmissible.
Nevertheless, the ratio between the solution cost found by WA∗and the optimal
solution is bounded by w. This property is exploited by anytime planners that
do not stop after the first solution. They search initially with a high value of w,
and once a solution is found and time is still left, the search is started again but
with lower w values until w = 1, using previous solutions to bound the depth
of subsequent searches (Richter et al., 2010). Anytime planners have become
common in the last two International Planning Competitions (2008 and 2011
IPC) where a window of 30 minutes is given to each planner to give the best
possible solution. One planner proposed in this thesis uses this approach as
well.

Enforced Hill-Climbing

Enforced hill-climbing (EHC) is a local search algorithm that keeps track only
of its current node n and the path from the initial node up to n. It iteratively
searches for a successor state with lower heuristic value h(n), and once it is
found, EHC commits to setting the current state to this node. Each iteration is
a breadth-first search from the current node until a better state is found. Recall
that breadth first search is equivalent to a best-first search with the evaluation
function f(n) = g(n) assuming all action costs to be 1. If the planning problem
contains non-uniform costs, they are ignored, and EHC always first expands the
nodes closer to the current state (Hoffmann and Nebel, 2001). While scaling up
effectively by avoiding many oscillations in the search, the algorithm is incom-
plete as it can get trapped in dead-ends: states from which there is no solution.
Moreover, the actions considered in every state are only a subset of the applicable
actions, known as helpful actions (Hoffmann and Nebel, 2001). EHC is used by
the FF planner, which has represented the state-of-the-art from 2000 until 2008.
EHC is used in the experiments of the first chapter of this thesis.

1.3.2 Model-Based Heuristics

Heuristic functions h : S 7→ R+
0 are estimators that compute from a given state

the cost of reaching the goal. Although being impractical, the perfect heuristic
estimator h∗ maps any state to the optimal solution from that state. Admissible
heuristic estimators never overestimate the cost of the optimal solution from any
state s, i.e., h(s) ≤ h∗(s) for all states s ∈ S. For example, the euclidean distance
between two cities in a map that contains roads linking cities, is guaranteed to
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be a lower bound on the real minimum distance that must be driven. Admis-
sible heuristics have an important property when used with search algorithms
that always explore first the paths with lowest cost: they are guaranteed to find
an optimal solution. On the other hand, non-admissible heuristics may lead to
suboptimal solutions. Generally, both admissible and non-admissible heuris-
tics are defined over a simplified version of the original problem. These simpler
instances of the original problem Π are known as relaxations, as they abstract
away some properties from Π (Pearl, 1983). When any solution of the original
problem is also a solution to the relaxed one, the cost of the optimal solution of
the relaxed problem is an admissible estimator. We omit the discussion of im-
portant approaches to derive heuristics in classical planning such as the causal
graph (Helmert, 2004; Helmert and Geffner, 2008), pattern databases (Edelkamp,
2001; Haslum et al., 2005, 2007), merge-and-shrink (Helmert et al., 2007) and
structural patterns (Katz and Domshlak, 2008). We focus only on the heuristics
that are mostly used in satisficing classical planning and throughout this thesis,
either as building blocks for new ideas or taking part of state-of-the-art planners
that we compare with.

Delete-Relaxation Based Heuristics

The most used relaxation is the delete-relaxation Π+ (Bonet and Geffner, 2001),
where the delete effects of actions are ignored, i.e. Del(o) = ∅ for all o ∈ O; and
actions can only add fluents increasing monotonically the set of true facts from a
given state.

Definition 1.3 (Delete relaxation). Given a STRIPS problem Π = 〈F,O, I,G〉, its
delete relaxation Π+ is described by the tuple Π+ = 〈F,O+, I, G〉, where

O+ = {〈Pre(o),Add(o), ∅〉 | o ∈ O}

A relaxed plan for Π is a sequence of actions that form a plan for its relaxed
version Π+.

The cost(π+) of the optimal plan π+ for Π+ yields an admissible heuristic, and
is known as h+, although its computation is NP-hard (Bylander, 1994). Instead,
the plan existence in the delete free problem is in P. As the set of fluents achieved
in a relaxed plan increases monotonically and no operator needs to be applied
more than once; a set of goals can be achieved with at most |O| actions. Thus,
generally delete relaxation based heuristics seek to approximate h+ in polynomial
time.

The Max and Additive Heuristic. hmax and hadd, approximate both h+, the first
being admissible and the second not. Both heuristics estimate the cost of a set
of atoms, hmax estimate it as the maximum cost of an atom in the set, while hadd
heuristic as the sum of the costs of the atoms in the set. The cost of an atom
depends on the cost of its best supporter, i.e., the action that makes the fact true
with minimal estimated cost. The estimated cost of an action is determined by
the cost of the atoms in its precondition (Bonet and Geffner, 2001). Below we
give a formal definition first of hadd and then of hmax:
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hadd(p; s)
def
=

{
0 if p ∈ s
mina∈O(p) hadd(a; s) otherwise (1.1)

where O(p) range over the actions adding p, and

hadd(a; s)
def
= cost(a) + hadd(Pre(a); s) (1.2)

hadd(Q; s)
def
=

∑
q∈Q

hadd(q; s) (1.3)

hadd(s)
def
=

∑
q∈G

hadd(q; s) (1.4)

best_supp(p; s) def
= argmina∈O(p)hadd(a; s) (1.5)

The additive heuristic is pessimistic, as it assumes that achieving one fluent
in a set does not make any progress towards achieving other fluents in the set.
Thus, hadd ≥ h+ is an upper bound on the optimal cost of the delete relaxation
problem. Alternatively, the max heuristic is optimistic, assuming that achieving
the most expensive fluent of a set will be enough for achieving the other fluents
in the same set as a side-effect. It defines the cost of a set of fluents to be the
cost of the most expensive fluent as follows:

hmax(p; s)
def
=

{
0 if p ∈ s
mina∈O(p) hmax(a; s) otherwise (1.6)

where

hmax(a; s)
def
= cost(a) + hmax(Pre(a); s) (1.7)

hmax(Q; s)
def
= max

q∈Q
hmax(q; s) (1.8)

hmax(s)
def
= max

q∈G
hmax(q; s) (1.9)

best_supp(p; s) def
= argmina∈O(p)hmax(a; s) (1.10)

The only difference between the additive and the max heuristic is their def-
inition of the cost of a set of atoms. Indeed, this small change yields the max
heuristic hmax to be admissible, and can be used along some search algorithms
such as A∗ for optimal planning. On the other hand, the additive heuristic is
more adequate in terms of practical performance for satisficing planning, trading
optimality for solution time.

The FF Heuristic. hFF estimates the distance to a goal G from a given state s to
be the length of a suboptimal relaxed plan, extracted from the relaxed planning
graph (Hoffmann and Nebel, 2001). Thus, the FF heuristic is computed in two
phases, the first one builds the graph (forward), and the second extracts a relaxed
plan from it (backwards). The relaxed planning graph is a directed layered graph
with two types of layers (nodes), the fluent layer Fi and the action layer Oi. The
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first fluent layer F0 contains all facts true in a given state s, and the action layer
Oi contains all actions whose preconditions are in Fi, e.g., the first action layer
O0 contains all actions applicable in state s. Layer Fi+1 is then the fluents added
by actions in Oi along with fluents contained previously in Fi, without ever taking
into account the delete effects (Blum and Furst, 1995). Therefore, in a parallel
relaxed plan where more than one action can be applied in the same time step,
fluents in Fi are the reachable fluents in i-steps. Analogously, actions in Oi are all
actions that could be applied in the ith step of a parallel relaxed plan. Extra no-op
actions 1 for each fluent p ∈ F are added to the graph to denote the propagation
of facts that have been added at some time step into later time steps. Each action
o ∈ Oi has incident edges from its preconditions at Fi and outgoing edges to its
add effects at Fi+1. The graph can be computed in polynomial time reaching a
fixed point when it is not possible to add any new fact to a layer. Formally, given
a planning task Π = 〈F,O, I,G〉 and a state s, the layers of its relaxed planning
graph are defined as:

Fi
def
=

{
s if i = 0
Fi ∪∪a∈Oi−1

Add(a) if i > 0
(1.11)

Oi
def
= {a ∈ O | Pre(a) ∈ Fi} (1.12)

Both sets grow monotonically until reaching a fixed point. No-ops are not
considered in the equations for simplicity. Once the forward phase is finished
and the relaxed planning graph obtained, the second phase begins extracting a
relaxed plan π+ from the graph. Starting from the goals g ∈ G of the problem, the
actions adding each goal g are included to the relaxed plan π+. Then, actions are
added to π+ until all preconditions of actions in the relaxed plan are supported
by some action or they belong to F0. The FF heuristic then estimates the distance
to the goal as

hFF(s)
def
= |π+|

If the cost of the actions is taken to be the first i layer in which they appear,
there is a correspondence with the hmax(a; s) estimate. Alternatively, the relaxed
plan π+ can be defined recursively in terms of the best hmax supporters of the
fluents p: namely, π+ contains the best supporter ag of g, and for each action a
in π+, a best supporter for each precondition p of a not in s. The relaxed plan can
also be extracted following the best supporters according to hadd, which has been
proven experimentally to scale better in non-uniform cost planning problems
(Keyder, 2010).

The original definition in Hoffmann and Nebel (2001) uses the relaxed plan-
ning graph and no-ops, along with a preference for no-op supporters which
amounts to a preference for best (hmax) supports.

Heuristic Family hm A generalization of hmax is obtained through the family
of admissible heuristic estimators hm for m > 1; where as a special case hm =
hmax for m = 1, and for a sufficiently large m, hm = h∗ is the optimal heuristic.2

1 A no-op action for fluent p, contains p in its precondition and in its add effect. 2 The value of m
in order to converge into the optimal heuristic h∗ is at most the number of fluents in the problem.
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Intuitively, when m = 1 the heuristic hm estimates the cost of a set of atoms as
the cost of the most expensive single atom in the set. When m = 2, it estimates
the cost of a set of atoms as the cost of the atom pair most expensive in the set,
and so on. The hm family can be computed in polynomial time O(Fm) where F is
the number of fluents of the problem. Formally, hm is defined as:

hm(C; s)
def
=

 0 if C ∈ s
min〈B,a〉∈R(C)[cost(a) + hm(B; s)] if |C| ≤ m
maxD∈C,|D|=m hm(D; s) if |C| > m

(1.13)

where R(C) refers to the set of pairs 〈B, a〉 such that B is the result of re-
gressing the set C through action a, a adds an atom in C, Add(a) ∩ C 6= ∅, a does
not delete any atom in C, Del(a) ∩ C = ∅, and B = (C \ Add(a)) ∪ Pre(a) (Haslum
and Geffner, 2000). If m = |F |, the last condition of the definition never applies.
Note that the last condition is the one that approximates the cost of large sets of
fluents C as the cost of its most expensive subset of size m. In practice, h2 is too
expensive to be computed in every state visited by any search algorithm. But if it
is computed just once from the initial state, it can be used in a form of regression
search for optimal planning (Haslum and Geffner, 2000). h2 can be used also
to capture the notion of (structural) mutexes: pairs of atoms that cannot be both
true in any reachable state and which can be computed in polynomial time (Blum
and Furst, 1995). More precisely, pairs 〈p, q〉 are mutex if the heuristic h2(〈p, q〉),
closely related to the heuristic underlying Graphplan, is infinite (Haslum and
Geffner, 2000). Mutexes can be computed more effectively by setting the costs of
all actions to 0.

Landmark Heuristic. The landmarks of a problem Π are necessary features of
any possible solution (Porteous et al., 2001). Among these features, Fluent land-
marks are formulas over the set of fluents F that must be satisfied by some state
along any valid plan. Fluent Landmark formulas are typically used in the form
of atomic single fluents, although disjunction and conjunction of fluents have
also been proposed and used in different settings (Karpas and Domshlak, 2009;
Richter et al., 2008; Keyder et al., 2010). Instead Action landmarks are formulas
over the set of actions O that must be included in any valid plan. Their use in the
disjunctive form has been successfully used in optimal planning (Helmert and
Domshlak, 2009). Different landmark orderings can be defined and exploited
during the planning phase. Orderings over fluent landmarks are statements
about the order in which they must be made true.

The landmark heuristic is computed in two phases, the first one computed
only once from the initial state. The landmark heuristic extracts in polynomial
time an incomplete set of single fluent and disjunctive fluent landmarks, along
with their orderings; from which the landmark graph is built (Hoffmann et al.,
2004). Then, for every state s, the landmark heuristic approximates the distance
to the goal as the number of landmarks that still need to be achieved from s.
Given a partial plan π from the initial state s0 up to s, the set of landmarks to
achieve is defined as:

L(s, π)
def
= (L \Accepted(s, π)) ∪ReqAgain(s, π) (1.14)
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where L is the set of all landmarks discovered, Accepted(s, π) is the set of land-
marks achieved along π up to s, and ReqAgain(s, π) is the set of accepted landmarks
that are required again. A landmark l ∈ L is accepted if it is true in s and all land-
marks ordered before l are accepted in the state preceding s along π. An accepted
landmark l is required again if it is not true in s and either l ∈ G is a goal or is
ordered to be true strictly before some other landmark l′ that is not accepted yet.
The landmark heuristic is then defined as the size of L(s, π):

hL(s, π)
def
= |L(s, π)| (1.15)

Note that the landmark heuristic is not a state heuristic like the ones pre-
sented before, as its definition does not only depends on the state s, but on the
way s has been achieved. As a single action can achieve more than one landmark,
the landmark heuristic is not admissible.

1.3.3 Search Enhancements

A number of improvements to search algorithms have been proposed in the con-
text of planning. Successful satisficing planners use a variety of search enhance-
ments, being less monolithic than the first plain heuristic search planner HSP
(Bonet and Geffner, 2001). One such enhancement is helpful actions 1 (Hoffmann
and Nebel, 2001), a subset of the applicable actions that are heuristically goal ori-
ented. Delayed evaluation is another technique that reduces the computational
cost derived from the use of heuristics (Helmert, 2006), and multiple queues pro-
poses an approach to combine several heuristics in the same search algorithm
(Helmert, 2006). We now briefly review these three search enhancements that are
used in some experimental results presented in this thesis.

Helpful Actions

Helpful Actions is a technique that allows planners to reduce the branching fac-
tor, avoiding the generation of all successors but those considered to be helpful,
and therefore allowing such planners to scale up to larger problems (Hoffmann
and Nebel, 2001). Heuristics, rather than estimating only the distance to the goal
from a given state, also estimate a subset of the applicable actions considered to
be promisingly goal oriented.

Relaxation-based heuristics typically estimate as helpful the actions from the
relaxed solution that are applicable in the current state. For example, hFF does
not only return the estimated distance to the goal as the size of the relaxed so-
lution it finds, but also the actions from that solution applicable in the current
state. Various approaches have been proposed for incorporating helpful actions
into search algorithms. The most common ones, either generate only successors
from the set of helpful actions, or give a preference to expand first successors
that come from helpful actions on top of the ones that come from non-helpful ac-
tions. The first planner to propose such actions and include a search approach
to exploit them is FF, reducing the state space through sacrificing completeness,

1 Helpful actions are also known as preferred operators.
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it initially considers only helpful actions, and resorts to a normal search if this
failed. Recently, the approach used by most planners is to alternate between
exploring states resulting from helpful actions and those resulting from all oth-
ers (Helmert, 2006). This approach gives the ability to search algorithms to take
advantage of the information encoded by such actions without loosing complete-
ness. From an algorithmic point of view, it is implemented through the use of
multiple open lists in the best-first search algorithms.

As helpful actions depend on the solutions of the relaxed problem, which typ-
ically include random tie-breaking of actions to be included, the set of helpful ac-
tions is not well defined where the same state can include different sets of helpful
actions depending on the order in which actions are considered. In Chapter 2,
we propose an alternative characterization of helpful actions, and in Chapter 9,
we lay an alternative method to include such actions into the search algorithm
through the evaluation function f(n).

Multiple Queues

Multiple queues (open lists) is an enhancement that has two proposes: first to
enable the incorporation of multiple heuristic estimators in an orthogonal way
under a single search algorithm, and second to incorporate helpful actions with-
out loosing completeness. If more than one heuristic estimator is used, the algo-
rithm employs one queue for each heuristic alternating between them for choos-
ing which state to expand next. Numerical priorities can be assigned to expand
nodes more often from one queue than another. When a state is chosen for
expansion, its successors are evaluated with every heuristic and introduced to
their respective queue. When a heuristic estimator also returns a set of helpful
actions, an extra queue is used, e.g., the search uses four queues if the algo-
rithm employs two heuristics that each return a set of helpful actions. When a
state is selected for expansion, the successors that result from helpful actions
are placed in one queue and the non-helpful in the other. As the number of help-
ful actions tend to be much smaller than the number of applicable actions, the
helpful actions queue explores deep into the search space faster. Note that states
chosen for expansion from the non-helpful queue can generate successors that
are helpful, and vice versa. Eventually, the search evaluates the states from each
queue, being less sensible to poorly informed heuristics that return shallow sets
of helpful actions, and being able to guarantee completeness (Helmert, 2006).

Delayed Evaluation

Most of the computational effort of heuristic search planners is spent in the com-
putation of the heuristic estimator h(n), up to 80% of the time in some instances
according to Bonet and Geffner (1999). Moreover, most of the states placed in the
open list are never expanded, using the heuristic estimation of each state just to
disqualify it from immediate expansion. The Fast Downward planner proposed a
technique to include a variation known as delayed evaluation, where states are
not evaluated before being introduced into the open list but just after they are
selected for expansion (Helmert, 2006). When a state is expanded the heuristic is
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computed and its successors are assigned the value of the parent. This technique
reduces the number of heuristic evaluations at the cost of a less informative eval-
uation function f(n), which in turn is compensated by the ability of the algorithm
to explore a larger portion of the state space. A deep analysis of the interaction
between helpful actions and delayed evaluation has been done by Richter and
Helmert (2009).

1.3.4 State-of-the-art Heuristic Search Planners

Heuristic Search Planners that combined the techniques explained above rep-
resent the state-of-the-art in satisficing classical planning since 1998, when the
first International Planning Competition took place (IPC). Since then, the compe-
tition has been held roughly every two years. Typically, each competition tested
planners with a new set of benchmark domains. A variety of performance criteria
have been considered, from the number of solved problems, to the amount of
time needed, etc. up to current criteria that takes into account the best possible
solution a planner can find in 30 minutes.

The first high performance heuristic search planner was introduced by Bonet
and Geffner (1999). The first version of HSP used hadd heuristic estimator along a
variation of hill-climbing,1 a local search algorithm that proceeds the search until
a fix number of impasses occurs, restarting the search if necessary. HSP2.0 in-
stead implemented greedy best-first search and WA∗ using the additive heuristic
as forward search, and h2 computed once and searched backwards from the goal,
alternating the time window for each approach (Bonet and Geffner, 2001).

The FF planner, which in large extent represented the state-of the art since
2000 up to 2008, has been shown to scale up much better than HSP, with the
heuristic hFF used in FF, however, playing a relatively small role. In addition
to the heuristic, FF introduced two ideas that account to a large extent for its
remarkable speed: helpful action pruning (HA) and enforced hill-climbing search
(EHC). The EHC search, looks iteratively for a state s′ that improves the heuristic
of the current state s by carrying a breadth-first search from s, while pruning
actions that are not helpful. Recall that helpful action pruning is not sound (it
may render problems unsolvable) and the EHC search is not complete (it can
miss the goal), yet together with the hFF heuristic it can yield a powerful planner
that constitutes the “basic architecture” of FF (Hoffmann and Nebel, 2001). When
this basic architecture fails, FF switches to a slower but complete search mode:
a best-first search from the initial state where no actions are pruned guided by
hFF heuristic.

The LAMA planner represents nowadays the state-of-the-art in satisficing clas-
sical planning. It was first introduced in 2008 and a second version was imple-
mented in 2011, winning the last two international planning competitions. LAMA
is based on several ideas introduced by FD and is built on top of this planner.
FD uses a multivalued variable representation instead of STRIPS, and introduces
the ideas of delayed evaluation, multiple open lists and helpful actions used as a
preferential option. LAMA combines all these ideas in a greedy best-first search
1 Hill-climbing is similar to enforced hill-climbing but without the breadth-first search procedure
triggered to lower the heuristic value of the state. Instead, it just selects a successor and commits to
it.
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with four queues, one for the landmark heuristic hL, another for the FF heuristic
hFF , and one queue for each set of helpful actions returned by each heuristic.
In addition LAMA does not stop after the first solution is found, instead it con-
tinues searching for better solutions until the search space is exhausted or the
time limit is reached. After finding the first solution with greedy best-first search,
it switches to WA∗ with decreasing weights, restarting the search from scratch
every time an improved solution is found (Richter and Westphal, 2010).

1.4 Thesis Outline

All inference schemes for planning in this thesis are used in the context of
forward-state search. The first one proposed in Chapters 2 and 3 does not ap-
peal to a heuristic function but to the notion of causal links developed in the
context of partial order planning (Tate, 1977; McAllester and Rosenblitt, 1991).
A causal link a, p, b is a triple that states that action a provides the support for
precondition p of b. This is taken as a constraint that implies that a must precede
b in the plan and that no other action that adds or deletes p can appear between
them. We show that by exploiting the semantics of causal links, we are able to
propagate information along sequences of causal links a0, p1, a1, p2, a2, . . . , pn, an
and show that some of such sequences are impossible to hold in any valid plan.
Actions a0 that cannot start any consistent causal chain can then be pruned.
We then present an algorithm that uses such paths as decomposition backbones
and a heuristic estimate of the cost of achieving the goal along these paths. This
results in a planner that solves most of the benchmarks with almost no search,
and suggests that planning with paths may be a meaningful idea both cogni-
tively and computationally. As a result, a planner called C3 participated in the
International Planning Competition 2008 (IPC-6) getting the ‘jury award’.

In Chapters 4 and 5, we explore further the synergy between different type of
inferences, by formulating and testing a new dual search architecture for plan-
ning that is based on the idea of probes: single action sequences computed with-
out search from a given state that can quickly go deep into the state space, termi-
nating either in the goal or in failure. We show experimentally that by designing
these probes carefully using a number of existing and new polynomial inference
techniques, most of the benchmarks can be solved with a single probe from the
initial state, with no search. Moreover, by using one probe as a lookahead mech-
anism from each expanded state in a standard greedy best-first search, the num-
ber of problems solved increases and compares well to state-of-the-art planners.
The resulting planner PROBE, presented in the International Planning competi-
tion 2011 (IPC-7), was the second best planner in terms of the quality of the first
solution found. The success of probes suggests that many domains can be solved
easily once a suitable serialization of the subgoals is found.

On the other hand, various approaches have been developed for explaining
the gap between the complexity of planning mentioned before, and the ability of
current planners to solve most existing benchmarks in a few seconds. Existing
proposals, however, do not appear to explain the apparent simplicity of the stan-
dard domains. In Chapters 6 to 8, we introduce a new type of width parameter
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for planning that bounds the complexity of a planning domain in terms of the
goal structure of the problem, which opens a new approach to understanding the
complexity of classical domains. We then present a blind search algorithm that
runs in both time and space exponential in the problem width, showing experi-
mentally that many standard domain benchmarks have low width provided that
goals are restricted to single atoms. As most benchmark goals are not expressed
as single atoms, we explore a method to deal with problems that feature conjunc-
tive goals by using the same blind search algorithm for generating a serialization
of these goals while solving the induced subproblems.

Finally, in Chapter 9 we show how key ideas from the blind search algorithm
presented in Chapter 8, novelty based pruning and goal decomposition, can be
integrated into a standard best-first search algorithm; along with other inferences
that have proven to be crucial for high performance planners. We then evaluate
the resulting best-first search planner which performs as well as other state-of-
the-art planners.
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Part II

Inference
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Chapter 2

Causal Chains (Paths)

Ahí estaban las causas y los efectos y me
bastaba ver esa Rueda para entenderlo todo,
sin fin. ÂąOh dicha de entender, mayor que
la de imaginar o la de sentir!

There they were the causes and the effects
and I only had to look at that Wheel to
understand it all, endlessly. Oh, the
happiness of understanding, greater than the
one of imagining or the one of feeling!

La escritura del dios.
Jorge Luis Borges

In this chapter we introduce a different approach to the problem of inference in
planning that is not based on either the extraction and use of heuristic functions
or reductions into SAT or CSPs. The proposed approach is based on a new notion
of consistent causal chains: sequences of causal links ai, pi+1, ai+1 starting with
an action a0 applicable in the current state s and finishing in the goal, where
pi+1 is an effect of action ai and a precondition of action ai+1. We first show
that by enforcing the semantics of causal links, it is possible to propagate side
effects along such chains and detect that some of these chains cannot be part of
any plan. Actions a0 that cannot start any consistent causal chain can then be
pruned. We then show that while simple, this pruning rule is quite powerful: a
plain backtracking forward-state search planner with a version of this pruning
rule solves more problems than a plain heuristic search planner, and as many as
the effective Enforced Hill Climbing search of FF that uses both helpful actions
and hFF heuristic. Moreover, many problems are solved backtrack-free.
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2.1 Introduction

Current state-of-the-art planners solve problems, easy and hard alike, by search,
expanding hundreds or thousands of nodes. Yet, given the ability of people to
solve easy problems and to explain their solutions, it seems that an essential
inferential component may be missing. The LAMA and FF planners (Richter et al.,
2008; Hoffmann and Nebel, 2001) represent the best examples of such systems,
being the best performers in many benchmarks for the last years. In spite of its
success, the approach lacks transparency. It is not clear why it works, it is not
easy to understand why some actions are chosen and others discarded, and most
importantly, it is hard to explain each decision made by the system.

There is no question that more extensive search techniques and better heuris-
tics are necessary for solving hard combinatorial problems, yet problems such as
Tower-n in Vidal and Geffner (2005), are not hard, and the same can be said of
many of the benchmarks in planning. This does not mean that ’easy’ problems
are easy for a domain-independent planner; the challenge is to recognize and
exploit the structure that makes those problems easy by domain-independent
methods, something that does not appear to be simple at all. Yet people appear
to do that, and are able to explain their solutions, even if they are not particularly
good at solving hard problems. In a problem such as Tower-n, where n blocks 1,
2, . . . , n on the table must be arranged into a single tower with block i on block
i + 1 for all i < n, they can immediately see that picking up a block other than
n−1 is a wasted move. The reason for this, indeed, is not heuristic but structural:
picking up a block m other than n-1 appears relevant to the goal through the
’path’

pick(m)→ hold(m)→ stack(m,m+ 1)→ on(m,m+ 1)

yet it can be formally proven that if this path is understood as a sequence of
causal links (Tate, 1977), no plan for achieving the goal can comply with it.

The key notion is the consistent causal chain: a sequence of causal links
ai, pi+1, ai+1 starting with an action a0 applicable in the current state s and finish-
ing with the End action an, where pi+1 is an effect of action ai and a precondition
of action ai+1. We show that by exploiting the causal relations and the semantics
of the actions, we are able to propagate side effects along these chains recognizing
those that can not be a part of any plan. In other words, all a0 that cannot start
any consistent causal chain to the End action, can be pruned from the search
space in this state. We demonstrate with a simple backtrack forward-state search
planner the power of this pruning rule, with which we are able to solve as many
benchmark problems as the Enforced Hill Climbing (EHC) search of FF, in most
cases backtrack-free1. While we are able to work with this simple rule, in con-
trast, FF’s EHC requires not only the helpful actions pruning rule, but also a
heuristic estimator for measuring progress towards the goal.

The problem of determining whether there is a consistent causal chain a0,
p1, a1, p2, a2, . . . , pn, an ending in the goal turns out to be intractable, as there
are an exponential number of causal chains. For this reason we try to obtain a
subset of those: only the causal chains that do not contain irrelevant actions,

1 FF(EHC), dominates FF(BFS) and each queue of LAMA independently
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considering as relevant those actions that ‘best help’ the planner to reach the
goal. Thus, we focus on the computation of the consistent causal chains where
for each atom pi+1, the action ai is a best supporter of pi+1. The notion of best
supporters is obtained from a simple reachability analysis from the goal to the
current state. By focusing on only a subset of possible consistent causal chains,
the method is still sound but not complete, since a consistent causal chain might
exist that does not belong to the subset we consider. We show empirically that
the computation of these ’minimal’ consistent causal chains, in every state s
expanded in the search, can be carried out efficiently, resulting in solution times
that are similar to and sometimes better than FF’s EHC.

Another system called CPT has reported interesting backtrack-free behavior
(Vidal and Geffner, 2005), approaching the problem using structural inferences
and constraint propagation with a complex formulation of partial-order causal-
link planning (Weld, 1994).

In the following sections we introduce the notions of relevant, minimal, and
consistent paths. We explain then the basic formal properties of consistent paths,
discussing their semantics and complexity, and show how to carry out the com-
putation of minimal paths that are consistent. Building on these notions, we
consider a simple forward-state planner that relies on a backtracking search and
consistency-based pruning criteria, and report empirical results.

2.1.1 Basic Concepts

The inference scheme for planning below is used in the context of a forward-state
search that does not appeal to a heuristic function, but to the notion of causal
links developed in the context of partial order planning (Tate, 1977; McAllester
and Rosenblitt, 1991). A causal link a, p, b is a triple that states that action a
provides the support for precondition p of b. Semantically, this is taken as a con-
straint that implies that a must precede b in the plan and that no other action
that adds or deletes p can appear between them. We will show below that by
exploiting causal links as constraints, we will be able to propagate information
along sequences of causal links a0, p1, a1, p2, a2, . . . , pn, an and show that some of
such sequences are impossible. For this, we will make use of the notion of (struc-
tural) mutexes: pairs of atoms that cannot be both true in any reachable state
and which can be computed in polynomial time (Blum and Furst, 1995). More
precisely, pairs 〈p, q〉 are mutex if the heuristic h2(〈p, q〉), closely related to the
heuristic underlying Graphplan, is infinite (Haslum and Geffner, 2000), and can
be computed even more effectively by setting the costs of all actions to 0. Pro-
vided with mutexes, it is simple to show that a causal link a, p, b must rule out
from the interval between a and b not only the actions that delete p but also the
actions c that do not add p and have a precondition q that is mutex with p. We
say in these cases that c e-deletes p (Nguyen and Kambhampati, 2001; Vidal and
Geffner, 2006).

In this chapter, given a STRIPS planning problem P = 〈F, I,O,G〉, without loss of
generality, we assume as in partial order planning that O contains an End action
whose preconditions are the real goals of the problem and whose only effect is a
dummy goal Gd so that G = {Gd}. Thus all plans for P must include the action
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End.

2.2 Minimal Paths

We are interested in the conditions under which an applicable action in an ar-
bitrary state s can be pruned. helpful action pruning (Section 1.3.3) provides
one such criterion but its justification is empirical; from a theoretical point of
view sometimes it is too strong (rendering a problem unsolvable) and sometimes
too weak (failing to prune actions that cannot help, as we will see). So we start
with the more basic notion of relevance as captured by sequences of causal links
ai, pi+1, ai+1 that we refer to as causal chains.

Definition 2.1 (Causal Chains). A sequence a0, p1, a1, p2, a2, . . ., pn, an of actions
ai and fluents pi is a causal chain in a state s if action a0 is applicable in s, and
fluent pi+1 is a precondition of action ai+1 and a positive effect (add) of ai.

A Causal chain defines a subset of plans for which the causal chain is a
subsequence. We say then that an action a0 is relevant to the goal if there is a
causal chain that starts with a0 and leads to the goal. We will actually refer to
such complete causal chains simply as paths:

Definition 2.2 (Paths). A path in a state s is a causal chain a0, p1, a1, p2, a2 , . . . pn, an
where an is the End action.

This notion of relevance, considered already in Nebel et al. (1997), has a prob-
lem that is immediately apparent: a path may connect an applicable action a0 to
the goal, and yet fail to be goal-oriented in a meaningful sense.

For illustrating this and related definitions, we will appeal to a simple class of
Block-World problems, where n blocks 1, 2, . . . , n on the table must be arranged
into a single tower with block i on block i+ 1 for all i < n. This so-called Tower-n
domain is considered in Vidal and Geffner (2005), where it is shown that most
planners have to search in this domain in spite of its simplicity. Actually, the FF
planner fails to solve a slight variation of the problem where block n is initially
on top of block 1.1

The paths generated in the initial state of Tower-n include reasonable causal
chains such as

t1 : pick(i), hold(i), stack(i, i+ 1), on(i, i+ 1), End

for every i other than n, where a block i is picked up and stacked on its target
destination, but also less reasonable ones such as:

t2 : pick(i), hold(i), stack(i, j), on(i, j), unstack(i, j),

hold(i), stack(i, i+ 1), on(i, i+ 1), End

where, after block i is picked up, it is placed on top of another block j 6= i+1 along
the way, for no apparent reason. Yet intuitively the irrelevant action stack(i, j) is

1 In our experiments, FF fails to solve such variation for n > 20, with a timeout of 30 minutes.
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in this path for a ’reason’: it supports the fluent on(i, j) which is a precondition
of the following unstack(i, j) action that undoes the effect of the spurious action.
Therefore, any applicable action can be relevant in Tower-n, e.g., in the state s′

that results from picking up block 1, all actions stack(1, i), and even the action
putdown(1), are deemed as relevant.

A simple way to prune such spurious paths from consideration is by requiring
that the action ai that supports (adds) the fluent pi+1 is not any supporter of pi+1,
but a reasonable one; i.e., a best supporter action a that adds pi+1 and has min
hmax(a; s) over the actions adding pi+1. We call the resulting paths minimal paths:

Definition 2.3 (Minimal Paths). A minimal path in state s is a path a0,p1,a1,p2,a2,
. . .,pn,an where each action ai, for i = 0, . . . , n− 1, is a best supporter of fluent pi+1

in the state s.

For example, while the path t1 above is minimal, the path t2 is not, as pick(i)
is the only best supporter of hold(i) and not unstack(i, j).

Minimal paths do not only exclude spurious actions from getting in but have
a convenient monotonicity property: if action ai precedes ai+1 in the path, then
hmax(ai; s) < hmax(ai+1; s). This follows because ai being a best supporter of pi+1

implies hmax(pi+1; s) = 1 + hmax(ai; s), and since pi+1 is a precondition of ai+1,
hmax(pi+1; s) ≤ hmax(ai+1; s).

Minimal paths do not refer to paths with the shortest length; indeed minimal
paths come in different lengths. Yet if we define the length of a path as the number
of actions in the path, we can establish a relation between the length of the longest
minimal paths in s and the value of the hmax heuristic in the same state:

Proposition 2.4 (Path Length and hmax Heuristic). The length of the longest min-
imal paths t in s is equal to hmax(s).

Proof sketch: Given Π = 〈F, I,O,G〉 and a state s ⊂ F , hmax(s) can be defined
inductively in terms of the following sets:

• P0 = s

• Ai = {a ∈ O | pre(a) ⊆ Pi}

• Pi+1 = Pi ∪ {p ∈ add(a) | a ∈ Ai}

where the value of hmax(s) is the index k of the first propositional set Pk that
contains the Goals’ set G. The indexes i of each action ai and fluent pi of a
minimal path t : a0,p1, a1,p2,a2,. . .,pn,an correspond to the indexes of the sets Pi

and Ai, i.e., a0 ∈ Ao, p1 ∈ P1, . . . , an ∈ An. Given that an is the End action, whose
preconditions are the goals g ∈ G, and Pk the first set P that contains the goal set
G; the longest minimal path t is then the path where the last atom of the path
pn ∈ G is a goal atom and pn ∈ Pk. As the value of hmax(s) is the highest index k
of Pk, hmax(s) is equal to the longest minimal path t in s plus the End action.

Indeed, hmax(s) represents the length of all the minimal paths a0, p1, a1, . . . pn, an
where pi, for every i = 1, . . . , n, is a ’critical’ precondition of the action ai (i.e., a
precondition with highest hmax value). The length of the minimal paths where
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at least one of the atoms pi is not a critical precondition of ai will be necessarily
smaller than hmax(s).

Minimal paths are implicit in the definition of helpful actions in FF. If we say
that an action a is minimal in state s when there is a minimal path starting with
a0 = a, then we obtain the following:

Proposition 2.5 (Helpful and Minimal Actions). If an action a is helpful in the
state s according to FF, then a is minimal in s.

Proof sketch: Assume that a 6∈Minimal and a ∈ HA. If a is not in a minimal path
in state s, a does not start a path a0,p1, a1,p2,a2,. . .,pn,an where each action ai, for
i = 0, . . . , n − 1, is a best supporter of fluent pi+1. The set of helpful actions (HA)
is built by doing a regression from the goal set up to layer P0 through the relaxed
planning graph. The process starts by propagating alternately the preconditions
of the best-supporters that add each goal, and then the best-supporters of these
preconditions until reaching applicable actions in state s. Therefore, if a is not
minimal, it can not be a best-supporter of any atom p propagated backward from
the goal. The set of helpful actions only contains actions that are best-supporters,
if a is not minimal, a can not be in HA.

In other words, actions that are not minimal are never helpful. On the other
hand, FF may declare actions that are minimal as unhelpful. This is actually
because FF selects as helpful only the minimal actions that occur in the selected
relaxed plan contained in the relaxed planning graph. Note that more than one
relaxed plan can be extracted from the relaxed planning graph. Minimal and
helpful actions thus coincide when a single relaxed plan (taken as a set of ac-
tions) complies with hFF heuristic (Section 1.3.2). Otherwise, the minimal actions
correspond to the applicable actions that occur in some relaxed plan; where dif-
ferent relaxed plans are obtained according to the way ties among best hmax

supporters are broken.
In Tower-n, there is a single relaxed plan for the initial state s0 that includes

the actions pick(i) and stack(i, i + 1) for i = 0, . . . , n − 1. Thus, the minimal and
helpful actions in s0 coincide and correspond to the pick(i) actions, which in turn
represent the set of all the actions that are applicable in s0. This is reasonable,
as indeed, all these actions are necessary for solving the problem. Yet only the
action pick(n− 1) makes sense in s0; all the other pickup actions do not help in s0
as blocks i cannot be placed on top of block i + 1 until block i + 1 is well-placed.
Heuristic search planners evaluate the heuristic h(sa) of the states that result
from executing the applicable action a in s, with the hope that the action that
is best leads to a state with a lower heuristic value. Yet, this does not always
happen; in this case, actually, FF assigns the heuristic value of 2n to s0 and
the value 2n − 1 to all its possible sons sa. FF ends up solving these problems
anyway, but not due to its heuristic, that fails to distinguish the action that
makes sense from all the others, but due to an extra device that finds orderings
among subgoals.

We want to argue that the ’wrong’ actions can be ruled out in this and many
other cases, not on heuristic grounds – namely, because they lead to states that
appear to be farther away from the goal – but on logical or structural grounds –
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namely, because they can be shown not to ’lead’ to the goal in a precise sense
that we define below.

2.3 Consistency

The key idea is to show that certain causal chains and paths cannot be part of
any ’reasonable’ plan. We will articulate this idea in two parts. First we will
show that side effects can be propagated along causal chains a0, p1, a1, . . . , pn, an,
provided that each segment ai, pi+1, ai+1 in the chain for i < n is regarded as a
causal link. Second, we will show that if an action a cannot start a causal chain
ending in the goal (a path), then the action a cannot appear as the first action of
any plan that is not redundant; i.e., where every action supports the precondition
of a later action or is the End action.

Recall that a causal link ai, pi+1, ai+1 states that action ai supports the pre-
condition pi+1 of action ai+1 and implies that no other action that either adds
or deletes pi+1 can occur between ai and ai+1. A causal link ai, pi+1, ai+1 thus
ensures that the fact pi+1 is preserved in a given interval, and yet by preserving
pi+1 it may preserve other facts as well. For example, if q is true after the action
ai, and all actions that delete q either add or (e-)delete p as well, then due to the
semantics of the causal link ai, pi+1, ai+1, q must remain true until the action ai+1

is applied.
We formalize the notion of side-effects along causal chains using the following

definition of labels:

Definition 2.6 (Labels). For a causal chain t : a0, p1, a1, . . ., pn, an in a state s,
Label−t (ai) and Label+t (ai) for i = 0, . . . , n are sets of fluents defined recursively as:

• Label−t (a0) = s

• Label+t (ai) = Update(ai;Label
−
t (ai))

• Label−t (ai+1) = Persist(pi+1;Label+t (ai))

where Update(a; s) is the set of facts

(s ∪ Pre(a) ∪Add(a)) \Del(a)

and Persist(p; s) is the set

{q ∈ s | ∀a∈D(q) (p ∈ Add(a) ∨ p ∈ eDel(a))}

Where D(q) stands for the actions of the problem that delete q. Taking the causal
chain ao, p1, a1, . . . , pn, an as a sequence of causal links that starts in the state
s, Label−t (ai) (Label+t (ai)) captures what can be inferred to be true right before
(respectively right after) action ai is executed in any plan that makes the causal
chain t true (more about this below). Thus, since a0 is applied in s, s must be
trivially true right before a0 is applied, and Update(a0, s) must be true right after.
The definition of the Update(ai+1; s) operator is standard as it says that right after
ai+1 whatever was true before the action ai+1 is applied that is not deleted, must
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be true after the action, along with the positive effects of the action. The operator
Persist(pi+1, Label

+
t (ai)) is used in turn to infer that if q was true right after action

ai, then it will remain true at least until the action ai+1 is applied, if every action
that deletes q violates pi+1. Namely, These actions are ruled out by the causal
link ai, pi+1, ai+1 and q persists.1

By propagating the side effects along causal chains, we easily can detect that
certain causal chains are impossible. We say then that such causal chains are
inconsistent:

Definition 2.7 (Inconsistent Chains). A causal chain a0, p1, a1, . . ., pn, an is in-
consistent if for some action ai, i = 1, . . . , n, Label−t (ai) is mutex with Pre(ai).

Consider for example the minimal path

t : pick(k), hold(k), stack(k, k + 1), on(k, k + 1), End

in the initial state s0 of Tower-n. We show that this path is inconsistent for any
block k < n− 1, meaning that all such paths provide no ’evidence’ that the action
pick(k) is relevant to the goal in s0. For this, we show that the atom ontable(k + 1)
which is true in s0, gets propagated until the end of the path, thus being part of
Label−t (End). Then since ontable(k + 1) for k < n − 1 is mutex with the real goal
on(k + 1, k + 2), which is a precondition of the action End, the path t must be
inconsistent. Notice that ontable(k + 1) is true right after the action pick(k) in s0.
Moreover, the only action that deletes ontable(k + 1) is pick(k + 1) which e-deletes
the condition hold(k) in the first causal link of t (this is because hold(k) is mutex
with the precondition handfree of pick(k + 1) and is not added by the action).
This means that ontable(k + 1) must be true right before, and also right after the
action stack(k, k+1) in t. Finally, since the only action that deletes ontable(k+1) is
pick(k+1) which also e-deletes on(k, k+1) (the action has a precondition clear(k+1)
mutex with the atom on(k, k + 1)), then we obtain that the atom ontable(k, k + 1)
must be true right before the action End. Indeed, the labels that are obtained for
the path t above for any block k < n− 1, that we abbreviate as L−t (ai) and L+

t (ai)
for each of the 3 actions ai in t (pick,stack,End) are:

• L−t (a1) = {ontable(j), clear(j), handfree}

• L+
t (a1) = {ontable(i), clear(i), hold(k)}

• L−t (a2) = {ontable(i), clear(i), hold(k)}

• L+
t (a2) = {ontable(i), on(k, k+1), clear(z), handfree}

• L−t (a3) = {on(k, k+1), ontable(k +1)}

where i, j and z range over [1..n] with i 6= k and z 6= k + 1.

Before describing the formal properties of consistent paths, let us define the
consistent actions in s as follows:
1 The use of the notion of e-deletes in the set Persist(p; s), that appeals to the notion of mutexes,
arises because a causal link that preserves a condition p does not only rule out the actions that
explicitly delete p but also those that presume that p is false. On the other hand, for removing an
atom q from the label, q must be explicitly deleted by an action; the actions that presume q to be false
do not need to be taken into account.



Structure and Inference in Classical Planning 31

Definition 2.8 (Consistent Actions). An action a is consistent in s when it is the
first action in a consistent path in s.

2.3.1 Formal Properties

There is a positive and a negative aspect about consistent paths: the positive
one is that inconsistent paths and actions can be safely ignored; the negative
one is that determining whether there is a consistent path is computationally
intractable. Our strategy will be to keep the positive part and avoid the negative
part by considering later only the minimal paths that are consistent.

Soundness

Causal links have been used in the context of partial order planning (Tate, 1977;
McAllester and Rosenblitt, 1991), where search branches on the flaws in the
current partial plan (open supports and causal link threats) and the possible
ways to fix these. We can interpret the semantics of causal chains and paths in
the context of partial order planning, but we do not need to. Since we aim to use
these notions in the context of a forward-state planner, we can rather talk about
the implicit causal structure of standard, sequential STRIPS plans, and state the
conditions under which a causal chain is true in a plan. For this, we need to
map actions in the chain to actions in the plan, as the same action can appear
multiple times in the plan. We use the notation π(k) to refer to the k-th action in
the plan π.

Definition 2.9. A causal chain a0, p1, a1, . . ., pn, an is true in a plan π = 〈b0, . . . , bm〉
for the mapping f(i), i = 0, . . . , n, 0 ≤ f(i) < f(i+1) ≤ m, if the following three
conditions hold:

1. f(0) = 0

2. ai = π(f(i)) for i = 0, . . . , n

3. π(f(i)) adds the precondition pi+1 of π(f(i+1) for i = 0, . . . , n− 1 and no action
bk in the plan , f(i) < k < f(i+1), adds or deletes pi+1.

The definition says that the actions in the chain occur in the right order in
the plan, that the first action in the chain and in the plan coincide, and that the
causal links in the chain are all true in the plan. The side effects captured in the
Label function can then be shown to be sound in the following sense:

Proposition 2.10. If the causal chain t : a0, p1, a1, . . ., pn, an is true in the plan
π = 〈b0, . . . , bm〉 for the mapping f(i), then the atoms in Label−t (ai) (Label+(ai)) are
true in the plan right before (resp. right after) the action π(f(i)) is executed in the
plan π .

Proof sketch: We first introduce some notation: given a chain t : a0, p1, a1, . . .,
pn, an, true in a plan π = 〈b0, . . . , bm〉 and applicable in state s; the state resulting
from applying the sequence of actions 〈b0, . . . , bj〉 from plan π for j ≤ m in s, is
denoted by s[b0, . . . , bj ].
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Proof by Induction on the value of i. For i = 0, Label−t (a0) = s is the initial
state and Label+(a0) = Update(a0; s) = s[a0] is the state s[a0] that results from
progressing s through the applicable action a0 = π(f(0)).

By inductive hypothesis and for 0 < i < n, following Definition 2.6:

1. the set Label−t (ai−1) ⊂ s[b0, . . . , bf(i−1)−1] (Label+(ai−1) ⊂ s[b0, . . . , bf(i−1)]) con-
tains atoms that are true in the plan right before (resp. right after) ai−1 =
π(f(i− 1)) is applied;

2. and no action bk adds or deletes pi in the chain, for f(i− 1) < k < f(i).

For ai = π(f(i)),

• Because of (2) above, the set of atoms true right before ai is Label−t (ai) =
Persist(pi;Label

+
t (ai−1)) ⊂ s[b0, . . . , bf(i)−1], as no action that adds or deletes

pi is applied since ai−1.

• The atoms right after applying the action ai = π(f(i)) are obtained from the
previous state s′ = s[b0, . . . , bf(i)−1] plus the preconditions Pre(ai), which are
guaranteed to hold as the action ai is applicable in the state. To this set of
atoms, the effects Add(ai) and Del(ai) of the action are applied, ending up in
a state s′′ given by

s′′ =
(
s′ ∪ Pre(ai) ∪Add(ai)

)
\Del(ai) (2.1)

The new state s′′ corresponds to the definition of Label+t (ai) =
Update(ai;Label

−
t (ai)), thus Label+t (ai) ⊂ s[b0, . . . , bf(i)]).

Proposition 2.11. If a mapping f(i) exists for which the path a0, p1, a1, . . . , pn, an is
true in some plan π, then the path is consistent.

Proof sketch: In contradiction, assume that there is an inconsistent path t : a0, p1,
a1, . . ., pn, an, true in a plan π. From the Definition 2.7, there is some action ai (i =
1, . . . , n) for which Label−t (ai) is mutex with Pre(ai)

1. This brings a contradiction,
as by Proposition 2.10, for a true path in π, every Label−t (ai) ⊂ s[b0, . . . , bf(i)] and
therefore Label−t (ai) cannot be mutex with Pre(ai).

A direct consequence is that inconsistent paths cannot be true in any plan
for any mapping. We then say that a plan π = b0, . . . , bm is irredundant if every
action bi 6= End is the support of a precondition p of action bj, for i = 0, . . . ,m, and
0 ≤ i < j ≤ m, i.e., there is a true causal link bi, p, bj in π for every action bi in π
other than the End action.

Proposition 2.12. If the action a is inconsistent in s, then a cannot be the first
action of any irredundant plan from s.

1 For the index i = 0, Label−t (a0) is mutex with Pre(a0), therefore a0 is not applicable and according
to Definition 2.1, t is not a causal chain.



Structure and Inference in Classical Planning 33

Proof sketch: In contradiction, assume that an inconsistent action a is the first
action of an irredundant plan π from s. If a is in π, a mapping f(i) exists that
makes the chain t : a, p1, a1, . . . , pn, an true. From Definition 2.8, if action a is
inconsistent then all the paths starting with a are inconsistent in s. However, the
Proposition 2.11 states that if there is a mapping that makes t true in a plan,
then the path t is consistent, which brings the contradiction.

The results above show that a path t : a0, p1, a1, . . ., pn, an can be taken as
evidence of the relevance of the action a0 to the goal, except when the path t
is inconsistent, and hence impossible to belong in any (irredundant) plan. In-
consistency pruning is thus sound but it is not complete; i.e., an action a may
be consistent in s and yet not head any (irredundant) plan. Indeed, later we
will consider another definition of path consistency that is stronger, sound, and
polynomial, but hence incomplete as well.

Complexity

Determining whether a given path is consistent can be done in polynomial time,
but the problem of determining whether there is a consistent path is intractable.

Proposition 2.13. Determining whether there is a consistent path from a state s
is NP-Complete.

Proof sketch: The result follows from a reduction from the NP-Complete problem
‘Paths with Forbidden Pairs’ (PFP): this is the problem of determining whether
there is a path in a directed graph from a given source node n0 to a given target
node nm that contains at most one node from each pair of nodes in a ‘forbidden
pairs list’ (Garey and Johnson, 1990). It suffices to create for each node ni two
fluents pi and qi, and for each directed edge ni → nj in the graph, an action with
preconditions pi and qi, positive effect pj, and negative effects qk for each node nk
in a forbidden pair (nj , nk). In the initial state all fluents qi must be true for all i
along with the fluent p0. The goal is pm. There is then a 1-to-1 correspondence
between the causal chains that terminate in the goal and the directed paths in
the graph that connect n0 to nm (no action adds fluents qi, hence all causal chains
can mention only the fluents pi), and also a 1-to-1 correspondence between the
directed paths connecting n0 and nm with no forbidden pairs and the consistent
causal chains ending in the goal.

2.4 Minimal Consistent Paths: Computation

We seem to have arrived nowhere: the computation of consistent paths is com-
putationally hard. Yet, a simple refinement will solve this problem: rather than
considering the paths that are consistent, we will consider only the minimal paths
that are so. We call these the minimal consistent paths: these are the paths
a0, p1, a1, . . . , pn, an that are consistent and where each action ai is a best sup-
porter of fluent pi+1 (actions a that add pi+1 and have min hmax(a; s) from a given
state s).
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Rather than pruning an action a in state s when it is not the first action in
a consistent path, we will prune it when it is not the first action in a minimal
consistent path. The resulting pruning criterion, that we refer to as minimal con-
sistency, is neither sound nor complete, but it seems adequate from a heuristic
point of view: it tends to be correct (pruning actions that are not good), power-
ful (pruning many actions), and efficient (as it can be computed sufficiently fast,
even if it is also intractable in the worst case).

We focus now on the computation of all the minimal consistent paths. The
algorithm computes the labels Label−t (ai) and Label+t (ai), for all minimal paths
t, while pruning the minimal paths that are not consistent. Recall that a path
t = a0, p1, a1, . . . , pn, an is not consistent if for some action ai in the path, Label−t (ai)
is mutex with Pre(ai).

While Label−t (ai) and Label+t (ai) were used before to carry the side effects that
are true before and after the action ai, LBS−(ai) and LBS+(ai) below will capture
the collection of labels that express the true conditions in a plan that complies
with some minimal consistent causal chain up to ai. In other words, the set of
fluents L (a single label) will be in the set of labels LBS−(ai) (LBS+(ai)) if and
only if L = Label−t (ai) (resp. L = Label+t (ai)) for some consistent minimal causal
chain t : a0, p1, . . . , ai.

Input: A planning problem P = 〈F, I,O,G〉
Output: The set of consistent minimal paths

1. Compute hmax for all p and a

2. Determine the minimal paths

3. Propagate labels along minimal paths keeping pointers

LBS−(a0) = {s}
LBS+(ai) = {Update(ai; s′) | s′ ∈ LBS−(ai)}
LBS−(ai+1) = {P (pi+1; s′) | pi+1∈Pre(ai+1),

s′∈LBS+(aj), aj ∈ O∗(pi+1) s.t.
Pre(ai+1) not mutex with P (pi+1, s

′)}

4. Read off and return the consistent minimal paths

Figure 2.1: Computation of minimal consistent paths

We use some abbreviations in the algorithm: O∗(p) stands for the best sup-
porters of fluent p, P (pi+1; s′) refers to Persist(pi+1; s′), and actions ai stand for
actions in minimal paths with hmax(ai; s) = i. Algorithm 1 then proceeds in four
steps:

Step 1 and 3 involve forward passes from the initial situation: the first to
compute the heuristic hmax and the third to propagate the labels. Steps 2 and
4, on the other hand, involve backward passes from the goal (End action): the
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second to determine the minimal paths, the fourth, to determine the minimal
paths that are consistent. Step 3 takes advantage of the fact that the propaga-
tion of labels along a given path is markovian (only the last label matters), and
prunes a path as soon it is found to be inconsistent (this is the role of the mutex
condition). The consistent minimal paths are retrieved in Step 4 following stored
pointers; namely, using the precondition pi+1, label s′, action aj responsible for
the inclusion of a label in LBS−(ai+1), Step 3.

In the worst case, this computation grows with the number of minimal paths,
which can be exponential although seldom is. A tighter measure of the complexity
of the computation is obtained by assessing the size of the collections of labels
|LBS−(ai)| and |LBS+(ai)| that measure the number of minimal paths up to the
action ai that are consistent, which in most of the benchmarks appears to be
small.

2.5 Experimental Results

The planner C1 that we consider is a simple forward-state backtracking planner
that repeats this computation in every state visited, pruning the actions that do
not head any consistent path (the inconsistent actions). Notice that hmax(s) is
not used as an estimator of the goal distance, but only to retrieve the minimal
paths. We will see that this planner, while simple, is very effective, solving more
problems than the basic architecture of FF captured by the EHC search, taking
only 20% more time. From a pool of 546 problems, FF(EHC) solves 78% while
C1 solves 80%, more than half of them backtrack-free. The results appear in the
columns for FF(EHC) and C1 of Table 2.1.

We evaluate the planner C1 in relation to FF using only EHC, which is the
incomplete planner that constitutes the basic architecture of FF and accounts
for its speed. In FF, a complete but slower best-first search (BFS) mode is trig-
gered when EHC fails. We do not compare with FF running in both modes, as one
could also switch from C1 to such BFS when it fails after a few minutes or sim-
ply when it has to backtrack. Furthermore, a standard greedy best-first search
(GBFS) guided by the landmark heuristic or by hFF , either using only helpful ac-
tions pruning or not, performs worse than FF(EHC) and C1 in terms of coverage.
Note that these GBFS correspond to each search queue used by LAMA, without
interaction between them, and to the complete mode of FF (Section 1.3.4).

C1 is written in C++ and uses the parser from Metric-FF. The experiments
below were conducted on a CPU with a clock speed of 2.33 GHz and 8 GB of RAM
with cutoffs in time and memory of 2 hours and 2GB.

Table 2.1 shows the coverage of both planners on a collection of 546 instances
from previous International Planning Competitions. Remarkably, only pruning
actions that do not head minimal consistent causal chains are as important as
the use of hFF heuristic to distinguish good from bad helpful actions. If helpful
actions are used without the heuristic, the performance of FF(EHC) is very poor.
FF(EHC) solves 78% of the problems while C1 solves 80%, 47% backtrack-free
without any heuristic estimator. In terms of overall time, FF(EHC) is 19% faster
than C1. FF(EHC) does significantly better in Free-Cell, Rovers, Grid, and TPP,
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FF(EHC) C1
Domain I S T S BF NS T
Blocks World 50 42 0.22 46 26 4M 1.63
Depots 22 19 44.08 18 11 4T 36.82
Driver 20 6 41.28 12 8 8T 21.65
Ferry 50 50 < 1 msec 50 6 – 0.03
Free Cell 20 14 39.88 2 2 18M 6.58
Grid 5 5 < 1 msec 3 – 1T,1M 186.26
Gripper 50 50 < 1 msec 50 – – 0.16
Logistics 28 28 < 1msec 28 28 – 0.11
Miconic 50 50 < 1 msec 50 50 – 0.01
Mystery 30 15 323.08 20 8 1R,9T 4.83
Open Stacks 30 30 7.12 28 28 2T 381.04
Pipes World 50 4 18.01 10 4 9T,31M 150.32
Rovers 40 40 26.97 36 36 4T 448.96
Satellite 20 20 0.02 20 20 – 2.13
Storage 30 3 15.00 27 11 2T,1M 150.28
TPP 30 30 426.90 16 0 3T,11M 170.01
Zeno Travel 20 18 2.04 20 19 – 79.25
Total 546 425 78.72 436 257 96.47
Percentage 100% 78% 80% 47%

Table 2.1: Coverage of FF-EHC and C1: S is the total number of solved instances,
NS stands for the unsolved instances with nT, nM, and nR meaning the number
of time outs, memory outs, and no solutions found after finishing the (incom-
plete) search. T is the average time in seconds and BF stands for the number of
instances solved backtrack-free.
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while C1 does best in Blocks, Driver, Mystery, Pipes World, and Storage.
In terms of plan quality, the plans found by C1 tend to be very long, which

is not surprising, as C1 does not use any criterion for ordering the consistent
actions. In the problems that it solves backtrack-free, C1 does better, where the
lengths of the plans are slightly above the lengths of the plans found by FF.

2.6 Summary

We have approached the problem of inference in planning from a different per-
spective, building on the notion of causal chains; sequences of causal links. We
have shown that the semantics of causal links along such chains can be used to
detect that some of the chains are inconsistent and cannot be true in any plan,
and furthermore, that actions that do not head any consistent causal chain lead-
ing to the goal can be pruned. We showed that while simple, this inference rule
is quite powerful, as a plain backtracking forward-state search planner using a
version of this rule, that considers only the minimal paths, solves as many bench-
mark problems as the effective Enforced Hill Climbing search of FF, many of them
backtrack-free.

At the same time, this perspective opens new doors to the problem of inference
in planning that can lead to improvements in current planning technology on the
one hand, and to a better understanding of the types of planning problems that
are simple, on the other. It appears, for example, that in simple problems, there
are always minimal consistent paths that provide a route to the goal, while in
puzzle-like problems, the minimal paths are often inconsistent. Interestingly, the
EHC search in FF relies also on paths that are minimal, and hence, the range
of problems that are solved by (minimal) consistent pruning and by FF’s EHC
appear to be closely related, even if in the former there is no explicit heuristic
measure of progress. Most of the information that is captured by the computation
of the consistent minimal paths is thrown away in each node, except for the first
action or link. In the following chapter we show how to make further use of this
information.
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Chapter 3

Exploiting Causal Chains

Man is so intelligent that he feels impelled to
invent theories to account for what happens
in the world. Unfortunately, he is not quite
intelligent enough, in most cases, to find
correct explanations. So that when he acts on
his theories, he behaves very often like a
lunatic.

Texts and Pretexts.
Aldous Huxley

This chapter presents different techniques to exploit further the information en-
coded by causal consistent chains, and extensions to make stronger inferences.
We first introduce the planner C3 which competed in the International Planning
Competition 2008 (IPC-6). The planner uses a stronger definition of consistency
and a first attempt to exploit all the causal links of consistent chains. We then
refine further the ideas of C3 and present an algorithm that uses paths as de-
composition backbones and a heuristic estimate of the cost of achieving the goal
along such paths, resulting in a planner that solves most of the benchmarks with
no search at all, suggesting that planning with paths may be an interesting idea
from both a cognitive and computational standpoint. Finally we explain how
causal chains can be used to build a path dependent heuristic that while being
more computationally intense, takes deletes into account, and expands an order
of magnitude less nodes than a standard delete-based relaxation heuristic.

3.1 The Classical Planner C3in IPC-6

The classical planner C3 competed in the sequential satisficing track of the inter-
national planning competition 2008 (IPC-6). This track covered classical STRIPS

with non-negative action costs. The goal of the track was to find the lowest-cost
plan in 30 minutes, although C3 returns only the first solution. The planner was
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a proof-of-concept to illustrate how causal chain inference can be integrated in
a classical planner (Lipovetzky et al., 2008). Anytime behavior was out of our
scope.

C3 is a complete classical planner supporting action costs, where the search
consists of two stages:

• A hill-climbing search is conducted, pruning actions a applicable on the
current state s that are not a prefix for a minimal consistent causal chain.

• If hill-climbing fails, it tries to solve the problem from the initial state using
a complete heuristic search algorithm.

The first stage is similar to C1 but stops when the first backtrack occurs. In
addition C3 uses a lazy scheme for computing the minimal consistent chains in
every state, introducing an approach to exploit all the causal links of consis-
tent chains rather than only the first one, and defining a stronger consistency
criterion.

The complete heuristic search algorithm implemented is Weighted A∗, with the
evaluation function f(n) = g(n) + (w ∗ h(n)), where w is set to 5. We commit to
this particular weight since it is the same as that used by Metric-FF (Hoffmann,
2003), and we have observed Metric-FF’s own WA∗ implementation to behave
quite well on existing IPC benchmarks. The heuristic function h(n) is similar to
hFF, but the relaxed plan is extracted from the hadd best supporters, which tend
to be more cost sensitive (Keyder and Geffner, 2008; Keyder, 2010).

3.1.1 Refining C1

C3 incomplete search is derived from doing three refinements and optimizations
in the C1 basic scheme. We optimize consistent causal chains computation by
finding these lazily in order to avoid the overhead of computing all of them. When
a consistent causal chain is computed, the sub-goaling information inherent in
it is explicitly used during the search. Finally, we strengthen the notion of causal
consistency to account for negation, and joint persistency to strengthen the atoms
Q that persist along a causal chain from a given state s. All three refinements are
discussed next.

Lazy Computation of Consistency and Ordering

The algorithm for pruning inconsistent actions computes all the minimal consis-
tent chains at once and discards applicable actions that do not head any such
chain. Then it applies any of the consistent actions and starts the process again.
The lazy computation aims to minimize the computational cost of this pruning
technique since there is no need to compute all consistent chains aside from one
in order to prove that an applicable action is consistent. Thus the label prop-
agation scheme described in Algorithm 1 is replaced by a “lazy” scheme where
for each action a0 that starts one or more minimal paths, as soon as one path
is found to be consistent, it stops the propagation for the paths starting in a0.
Since only one consistent action is needed in order to progress the search, C3
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applies the action a0 as soon as a consistent minimal path is found and does
not compute the other possible consistent paths starting with other applicable
actions a′0.

In order to account for non-uniform cost problems, C3 sorts actions a applica-
ble on a state s by computing the additive relaxed plan heuristic on state s′, the
state resulting from action a on s. Applicable actions a are sorted according to
these estimated values, so that the first action proven to lead a consistent causal
chain is also the best action according to the relaxed plan heuristic. This simple
scheme has the effect of improving notably the quality of the plans obtained.

Causal Chain Subgoaling

Generally, if the planning problem is not trivial, many consistent causal chains
can be found in every state and many actions can lead to the goal. The complexity
of the search space decreases if one is able to decompose the problem into sub-
problems by finding intermediate subgoals. Some systems generate automatic
abstractions for defining subproblems, mostly known as abstraction hierarchies
(Knoblock, 1994) and other planners, like SHOP2, rely on being provided with
these decompositions as part of the problem description (Nau, 2003). We ap-
proach planning decomposition by enforcing the semantics of consistent chains.

Consider the consistent chain a0, p1, a1, . . . , pn, an. Once a0 is applied, C3 com-
mits to the complete chain by changing the goal of the problem. Search nodes
n keep track of the index i of the next action in the causal chain, so that the
goal, for the search subtree rooted at n becomes Pre(ai). For instance, once ai is
applicable in s, it is executed and the goal of the search for its successor is set to
Pre(ai+1). Once all the actions in the chain have been executed, the goal of the
search is set to the precondition of the End dummy action, which corresponds
with the original goal of the problem. When the goal is set to Pre(End), C3 then
computes a new consistent chain and commits to it, decomposing the problem
again.

An applicable action a0 is consistent in a given state s when it heads a mini-
mal consistent causal chain up to a fluent p ∈ Pre(ai), where the preconditions
of ai are the current goals. Consistency is checked not only along the chain
ao, p1, a2 . . . , pi, ai but also along the remainder of the chain ai, pi+1, . . . , pn, an where
an is the End action.

Taking into account all the information of the causal chains through this
subgoaling scheme, makes the search more focused, with as few oscillations as
possible among different possible paths to the goal.

This hill-climbing scheme will fail when no applicable action is found to be the
head for a consistent chain. In order to avoid switching to the slower best-first
search stage, the causal chain driving the search is reset, when either of the two
following conditions apply:

• If no action is consistent with the tail, C3 resets the tail and computes a
new minimal path to the original goal.

• C3 resets the tail if the state s′ resulting from action a in state s has h(pre(at)|s′)
> h(pre(at)|s).
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The first decision avoids quitting the search when the tail 1 cannot be made
consistent and there are still other consistent paths to the original goal that can
repopulate the tail. The second decision generally improves plan quality, avoiding
plateaus induced by the tail.

Consistency: Negation and Joint Persistence

Two simple ways for strengthening the notion of path consistency while keeping
it sound result from using negative literals in labels in addition to atoms, and a
stronger function Persist(p; s) to detect what set of literals q in s are required to
persist if an atom p is to be preserved.

Negative literals can be introduced in the labels of chains t = a0, p1, a1, . . . , pn, an
through a slight change in the Definition 2.6 of the Label function (the change in
the LBS functions of Algorithm 1 is then direct).2 First, negative literals ¬L that
are true in the seed state s are added to Label−t (a0). Second, the Update(a; s)
function is revised so that negative literals ¬L in s are removed when a adds
L, while negative literals ¬L are added when a deletes L. Finally, Persists(p; s)
is revised as well, so that negative literals ¬L in s are allowed to persist when
all actions a that add L, either add or e-delete p. Once negation is added, two
complementary literals must be taken as mutex too.

For a stronger definition of the function Persists(p; s), C3 takes the maximal
subset Q ⊆ s such that for every q ∈ Q, all the actions a that delete q, add or
e-delete p, or have a precondition that is mutex with an atom q′ ∈ Q. The only nov-
elty from the previous definition is the last condition, which allows one to identify
more atoms which persist as a consequence of maintaining p. It is straightfor-
ward to extend this stronger definition to both positive and negative literals. The
set Q can then be computed iteratively, initializing Q to s, and removing from Q
every atom q that violates the above condition until no more such atoms are left
in Q. The computation of this stronger form of joint persistence is more costly but
in many cases, pays off.

3.1.2 Experimental Results

Like C1, C3 is written in C++ and uses the parser from Metric-FF. The experi-
ments below were conducted on a CPU with a clock speed of 2.33 GHz and 8 GB
of RAM with cutoffs in time and memory of 2 hours and 2GB.

Table 3.1 shows the coverage of the C3 and FF over a collection of 545 in-
stances over 17 benchmarks, many of them used in previous International Plan-
ning Competitions. All of the problems solved by hill-climbing in C3, indicate
that these problems were solved backtrack-free, as hill-climbing aborts when no
more actions are consistent. FF(EHC) solves 78% of the problems while C3(HC)
solves 77%. Overall, with the complete best-first search, C3 outperforms FF solv-
ing 90% of the problems, 2% more than FF. This difference is due mainly to the

1 The tail refers to the actions of the causal chain committed in the node that have not been ap-
plied yet. 2 Alternatively, the same definition of labels can be used, but assuming that atoms p̄
representing the negation of the atoms p ∈ F in the problem have been added, as when negation is
compiled away (Gazen and Knoblock, 1997). The result is equivalent.
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C3
Domain I S HC BFS TO MO Avg. Time Q
Blocks World 50 50 46 4 – – 2.38 216%
Depots 22 22 18 4 – – 58.88 113%
Driver 20 17 6 11 3 – 103.52 107%
Ferry 50 50 50 0 – – 0.02 114%
Free Cell 20 17 5 12 2 1 80.79 126%
Grid 5 5 5 0 – – 10.97 112%
Gripper 50 50 50 0 – – 0.06 132%
Logistics 28 28 28 0 – – 0.04 136%
Miconic 50 50 50 0 – – < 1 msec 141%
Mystery 30 27 19 8 2 1 4.79 103%
Open Stacks 30 27 27 0 2 1 60.42 101%
Pipes World 50 18 6 12 32 – 104.66 96%
Rovers 40 40 40 0 – – 25.37 110%
Satellite 20 20 20 0 – – 0.46 101%
Storage 30 19 10 9 11 – 63.27 120%
TPP 30 30 30 0 – – 47.10 119%
Zeno Travel 20 19 11 8 1 – 98.47 127%
Totals 545 489 421 68 53 3 38.89
Percentage 90% 77% 12% 13% 4% 122%

FF 2.3

Domain I S EHC BFS TO MO Avg. Time
Blocks World 50 42 42 0 – 8 0.22
Depots 22 22 19 3 – – 44.08
Driver 20 16 6 10 3 – 41.28
Ferry 50 50 50 0 – – < 1 msec
Free Cell 20 20 14 6 – – 39.91
Grid 5 5 5 0 – – 0.30
Gripper 50 50 50 0 – – < 1 msec
Logistics 28 28 28 0 – – 0.00
Miconic 50 50 50 0 – – < 1 msec
Mystery 30 19 15 4 10 1 323.078
Open Stacks 30 30 30 0 – – 7.116
Pipes World 50 22 4 18 28 – 18.0125
Rovers 40 40 40 0 – – 26.97
Satellite 20 20 20 0 – – 0.10
Storage 30 18 3 15 – 12 15.00
TPP 30 30 30 0 – – 426.90
Zeno Travel 20 20 18 2 – – 2.15
Totals 545 482 424 58 41 21 55.60
Percentage 88% 78% 11% 10% 36%

Table 3.1: Coverage of C3 and FF 2.3: S is the total number of solved instances, BF
stands for the number of instances solved backtrack-free, HC stands for hill-climbing,
EHC stands for enforced hill-climbing, BFS stands for best-first search, TO and MO stands
for the number of time outs and memory outs found after finishing the (complete) search,
and Q stands for C3 average plan quality with respect to FF, e.g., 200% stands for plans
twice as long as those of FF.
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heuristic used in C3(BFS). FF does better in Free-Cell, Zeno and Open Stacks
while C3 does better in Blocks, Mystery, Pipes World, and Storage. In terms of
overall time, C3 needs almost half the time FF needs to solve the same instances.
FF is very slow in Mystery and TPP (323 s. and 426 s) compared to C3 (4 s. and
63 s.). C3 has 53 timeouts, 49 of them happen in the BFS mode. The number of
memory outs is reduced compared to C1 due to the lazy computation of consis-
tent chains. In terms of plan quality, C3 finds longer plans in every benchmark
but in Pipes World, on average returning plans 22% longer than FF.

3.1.3 Conclusions

We have introduced a planner based on causal consistent chains pruning and
subgoaling as a proof of concept for the international planning competition. The
resulting planner is composed of a hill-climbing search that prunes inconsistent
actions while decomposing the original problem. It uses a stronger consistency
definition, improves the computational time of consistency and exploits further
the information contained by consistent chains. If hill-climbing fails to find a
solution, a complete search is triggered. In the next section we formalize further
the use of consistent causal chains in order to decompose the problem and a
heuristic to assess the cost of achieving the goal along such paths.

3.2 Paths as Decomposition Backbones

Based on the good performance of C3, in this section we develop three techniques
for performing inference over causal chains from which a path-based planner is
obtained. We first refine the conditions under which a path is consistent, provide
a heuristic estimate of the cost of achieving the goal along a consistent path, and
introduce a planning algorithm that uses paths as decomposition backbones.
The resulting planner, called C3 (version 2), is not complete and does not perform
as well as recent planners that carry extensive but extremely efficient searches
such as LAMA, but is competitive with FF and in particular, with FF running in
EHC mode which yields very focused but incomplete searches, and thus provides,
a more apt comparison. Moreover, more domains are solved backtrack-free, with
no search at all, suggesting that planning with paths may be a meaningful idea
both cognitively and computationally.

3.2.1 Consistency: Forward and Backward

We assume that the reasons for performing an action take the form of a sequence
of causal links, that we call causal chains. When these causal chains reach the
goal, we call them paths. They are not plans but rather plan skeletons, where
actions may have to be filled in for achieving all the preconditions of the actions
in the path.

A path starting with an action a that is applicable in the state s is said to be
applicable in s. Such a path can be taken to suggest that a may be relevant for
achieving the goal in s (Nebel et al., 1997). However, as argued before, it can be
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shown that certain paths, understood as sequences of causal links, cannot occur
in any plan. We have seen an example in Tower-n, where blocks 1, . . . , n initially
on the table are to be arranged so that i is on top of i + 1 for i = 1, . . . , n − 1. For
this problem, the paths

t : pick(k), hold(k), stack(k, k + 1), on(k, k + 1), End

for any k 6= n− 1 can be shown not to be true in any plan.1 Indeed, if there is any
plan where the path holds, one can show that ontable(k+1) will be true when End
is executed, but this atom is mutex with the precondition on(k + 1, k + 2) of End
because ontable(k + 1) is initially true and remains true when hold(k) is preserved
(first causal link), and when on(k, k + 1) is preserved (second causal link). This
sort of inference, that captures side-effects along causal chains was formalized
in Section 2.3.

We characterize the sets of fluents that must be true before and after applying
each action ai in a causal chain t, for any plan complying with the chain, as in
Definition 2.6 but with joint persistence (Section 3.1.1). Thus the sets F−t (ai) and
F+
t (ai) are defined as follows:

Definition 3.1. The sets F−t (ai) and F+
t (ai), for a causal chain t : a0, p1, a1, . . ., pn,

an applicable in a state s, 0 ≤ i ≤ n, are

• F−t (a0) = s

• F+
t (ai) = Update(ai;F

−
t (ai))

• F−t (ai+1) = Persist(pi+1;F+
t (ai))

where Update(a; s) is the set of facts

(s ∪ Pre(a) ∪Add(a)) \Del(a)

and Persist(p; s) is the maximal subset Q ⊆ s, such that for every q ∈ Q, all the
actions a that delete q, either add or e-delete p, or have a precondition that is mutex
with a q′ ∈ Q.

This definition does not provide a complete characterization but can be com-
puted efficiently in low polynomial time. The only subtlety is in the computation
of Persists(p; s) that must be done iteratively, in no more iterations than fluents
in the problem, and usually much fewer.

The definition above captures side effects by reasoning forwards along a causal
chain. It is also possible to infer necessary side effects by reasoning backwards.
The definition of the backward labels B+

t (ai) and B−t (ai) proceeds in an analogous
way:

Definition 3.2. The sets B−t (ai) and B+
t (ai), for a causal chain t : ao, p1, a1, . . ., pn,

an 0 ≤ i < n, are
1 A causal link a, p, b is true in a sequential plan when a precedes b in the plan, a adds p, p is
a precondition of b, and no action between a and b either adds or deletes p. If there are many
occurrences of a and b in the plan, then the CL is true in the plan when it is true for one pair of such
occurrences. It is direct to extend this to sequences of causal links being true in a plan.
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• B−t (an) = Pre(a)

• B+
t (ai) = PersistB(pi+1;B−t (ai + 1))

• B−t (ai) = UpdateB(ai;B
+
t (ai))

where UpdateB(a; s) is the set of facts

(s ∪ Pre(a)) \Add(a))

and PersistB(p; s) is the maximal subset Q ⊆ s, such that for every q ∈ Q, all the
actions a that add q, either add or e-delete p.

Indeed, in the same way that the atom ontable(k + 1), for k 6= n, can be propa-
gated forward along the path t into the set F−t (End), the atom on(k+1, k+2) can be
propagated backwards from Pre(End) into B−t (pick(k)). This is because the only
action that adds on(k+ 1, k+ 2), namely stack(k+ 1, k+ 2), e-deletes on(k, k+ 1), as
its precondition clear(k+1) is mutex with this atom, while it also e-deletes hold(k).
The atom on(k + 1, k + 2) in B−t (pick(k)) thus means that in any plan complying
with the chain t, the atom on(k + 1, k + 2) must be true just before the first action
of the chain; an inference that can be understood as a form of goal ordering along
a chain (Koehler and Hoffmann, 2000). We will indeed refer to the fluents p in a
label B−t (ai), such that p 6∈ Pre(ai), as the implicit preconditions of the action ai
along the chain t. These conditions are needed at the time a is executed, not by
a, but by the actions that follow a along the path.

Forward and backward inference along a chain can be combined to inter-
act synergistically. For example, knowing that a certain fluent p must persist
backwards along an interval, can help to establish that a certain other fluent q
must persist forward along the same interval, if the actions that delete q, e-delete
p. This combination of forward and backward inference yields fixed point labels
that we will refer to as the final labels L−t (ai) and L+

t (ai). The consistency of a
path is defined as follows:

Definition 3.3. A causal chain applicable in a state s is inconsistent in s if one of
the final labels along the chain include a mutex pair. If the chain is not inconsistent,
it is said to be consistent.

Note that the previous definition of path consistency (Definition 2.7) checked
explicitly if pre(ai) was mutex with L−t (ai) as the labels were only propagated
forwards.

The notion of implicit preconditions along a path and the notion of path consis-
tency, will be two of the building blocks of the planning algorithm below.

3.2.2 Minimality

The only paths considered are the minimal paths (Definition 2.3). This is what
makes the planner incomplete, in the same way that the EHC search with only
helpful actions is incomplete in FF. There is a difference though: while FF com-
putes the helpful and hence minimal actions without restriction, we will see that
C3 computes the minimal actions in the context of a set of commitments. As
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a consequence, the minimal actions are not necessarily the same actions that
are minimal when no commitments are made. A simple example illustrates the
difference.

A simple problem that requires non-minimal actions is what we call the ‘suit-
case’ problem. A passenger is at location L1 with a suitcase on the floor, and he
must get to location L10 holding the suitcase. For getting from L1 to L10 there are
two paths: a direct one L2, L3, . . . , L10 and a longer one. On the shorter path,
however, there is a catch: the passenger cannot pass from L4 to L5 while hold-
ing the suitcase. No such restriction exists on the longer path. The solution to
the problem is to pick up the suitcase, and head to L10 through the longer path.
The minimal and helpful actions in the initial state, however, are to pick up the
suitcase and head for the shorter path. FF will thus solve the problem once the
helpful action restriction is dropped. A different approach is taken in C3.

In the new C3 algorithm that we introduce next, we always stick to the min-
imal actions but commit to paths, and therefore, to causal links. So all actions
that constitute ‘threats’ to a causal link a, p, b that has been temporarily commit-
ted to, i.e. that delete or e-delete p, are excluded until the action b is executed.
By excluding some actions, paths that were not minimal in the original problem
P , may become minimal in the modified problem. In the problem above, once the
suitcase is picked up to support the precondition ‘holding suitcase’ of the action
End, this causal link is maintained by dropping from the problem all the actions
that ‘threat’ (delete or e-delete) the causal link. The action of moving from L4 to
L5 is then excluded as it e-deletes ‘holding suitcase’. Once the suitcase is picked
up and this action is excluded, the longer path to L10 becomes the minimal path,
leading to a plan without backtracks.

We will say that a path t is minimal in a state s in the context of a set of
atoms p that must be preserved, if t is minimal in the modified problem where
the actions that delete or e-delete p are excluded. Such paths are obtained from
the minimal graph induced by the hmax heuristic with the exclusion of those
actions, by tracing backward from the goal all their best supporters and the best
supporters of their preconditions recursively.

3.2.3 Decomposition: The Planning Algorithm

The plan algorithm in C3 regards a consistent path t : a0, p1, a1, . . . , pn, an in a
state s as a recipe for a decomposition where the actions a0, a1, etc. are executed
in that order by solving a series of subproblems: after applying the action ai, the
preconditions of the next action ai+1 become the goal, and so on, until reach-
ing the End action an. In this decomposition, the implicit preconditions of each
action ai in the path, derived backward from the goal, are included among the
explicit preconditions Pre(a). A planning problem is solved by finding first a con-
sistent path to decompose the problem, and using the same method recursively
to decompose the first subproblem until the path can be reduced.

We refer to the operation of applying the action ai after its (explicit and implicit)
preconditions have been achieved, as a reduction step. In the reduction of a path
ai, pi+1, ai+1, . . . , pn, an, the current state is progressed through the action ai, and
the algorithm is then called on the subproblem with path ai+1, . . . , pn, an, where
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the atom pi is maintained until the action ai+1 is executed.

A reduction is not possible when the preconditions of the first action do not
hold in the current state s. If t : ai, pi+1, ai+1, . . . , pn, an is the path, then a new
path t′ is created by composing a minimal chain for an ‘open’ precondition of ai
(that is not true in s), and the ‘tail’ t. This operation is called an extension. For the
construction of the minimal chain, the actions that delete or e-delete conditions
that must be maintained until ai is executed, are excluded.

The paths that are created by the extensions are always checked for consis-
tency: inconsistent paths are skipped over while the implicit preconditions are
computed for the paths found to be consistent.

The state of the planning algorithm or solver is a tuple comprising the current
state s, the committed path t , the set K of pairs 〈p, a〉 so that p needs to be
preserved until a is applied, and the plan prefix π. Initially, s = s0, t = {End}, and
K = π = {}.

The reduction and extension steps modify the state of the solver. The algo-
rithm terminates when the tail t = {End} is reduced. On the other hand, when
the current path t cannot be reduced or extended with a consistent path, the com-
mitments, i.e., t and K, are reset. The option here is to backtrack rather than to
reset, yet this option produces weaker empirical results. The solver backtracks
though when there is nothing to reset; namely, when the solver state is a reset
state with K = {} and t = {End} in which the path cannot be reduced or extended
consistently.

Pseudo-code for the planning algorithm is shown in Figure 3.1. The minimal
chains in the extend operation are computed very much like relaxed plans, in two
phases: in the forward phase, the heuristic hmax(p) is computed for all fluents p
from the current state s; in the second phase, all the best hmax supporters of the
goals are marked, and the process is applied recursively to the preconditions of
such actions, excluding the goals and preconditions that are true in s. In this
process, actions a that e-delete an atom p that must be preserved at that stage,
i.e. atoms p for a pair (p, b) in K, are excluded. The minimal chains compatible
with the commitments in K that extend the current path t can then be obtained
starting with the actions applicable in s that are marked. The CHOOSEMINPATH

construct in the algorithm expresses a non-deterministic choice that is critical for
the actual performance of the algorithm: the order in which consistent minimal
paths are constructed and considered, given by the best supporter marks. We
address this issue next.

There are two sources of incompleteness in the algorithm. First, the exclusion
of paths that are not minimal in the extension operation, and second, the inter-
pretation of paths as sequential decompositions. Neither choice, however, turns
out to be as restrictive as it may appear. In the first case, because the minimal
paths are computed given a set of commitments; in the second, because the im-
plicit preconditions take into account not only the immediate goals, given by the
preconditions of the first action in the path, but further goals down the path as
well.
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Input: An initial state s = s0; initial path t = {End}; atoms to keep K = {};
plan prefix π = {}

Output: A plan π

function Solve(s, t,K, π):
begin

G← Prec of first action in t
if G true in s then

if t = End then (* Plan found *)
return π

else
Solve(s′, t′,K ′, π + a) (* Reduce *)

where t = a, p, t′

s′ = do(a, s)
K ′ = (K − ∀(q, a) ∈ K) + (p, b)
s.t. b is the first action in t′

else
ComputeMinGraph excluding actions that e-delete q for (q, b) ∈ K

ChooseMinPath a, p, t1 for G in min graph that is consistent, computing
implicit preconditions
Solve(do(a, s), t1 + t,K + (p, b), π + a) (* Extend *)
if no consistent path left then

if if t = {End} and K = {} then
return fail (* Backtrack *)

else
Solve(s, {END},K = {}, π) (* Reset *)

Figure 3.1: C3 Decomposition Planning Algorithm
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3.2.4 Preferences: Sorting Causal Chains

The order in which the consistent minimal paths are constructed after marking
the best hmax supporters backwards from the goal, has a significant impact on
the performance of the algorithm. This operation is needed when the current
path t needs to be extended. Ideally, we would like to find quickly a minimal path
t′ + t that is consistent and which yields a good decomposition towards the goal.
The criterion that we use to achieve this is heuristic, and the strategy greedy.

The building block for ordering the paths in the extension step, is a new
heuristic h(t|s) built from a known base heuristic, that estimates the cost of
achieving the goal along the path t. The interesting thing about this new heuristic
is that it takes deletes into account, even if the base heuristic does not, and it pe-
nalizes paths t that provide bad decompositions. Moreover, h(t|s) = 0 if and only
if the sequence of actions in t constitutes a plan from s, as the heuristic excludes
the cost of the actions already committed (actions in t). The base heuristic is the
additive heuristic, but other heuristics could be used as well.

Let t be the consistent path a1, p2, . . . , pn, an. This path does not have to be
applicable in the state s, but as any path, it must reach the goal (i.e. an = End).
For any such path, we provide first an (heuristic) estimation of the state si+1 that
results right after the action ai in the path is applied. We use the expression
π(ai; si) to denote a relaxed plan that achieves the (explicit and implicit) precon-
ditions of action ai in the state si along the path. This relaxed plan is obtained by
collecting the best supporters according to the base heuristic, backwards from
the goal (Keyder and Geffner, 2008).

If πi = π(ai, si) is the relaxed plan for achieving the preconditions of ai from si,
then the state si+1 projected after applying the action ai is estimated as

si+1 = (((si \Del(πi)) ∪Add(πi)) \ eDel(ai)) ∪Add(ai) (3.1)

where Add(πi) is the set of fluents added by the actions in πi, eDel(ai) is the set
of fluents e-deleted by the action ai and Del(πi) refers to a subset of the fluents
deleted by actions in πi. This subset is defined as the fluents that are deleted
not just by one action in πi, that is a best supporter of some fluent p in the
the relaxed plan, but by all the best supporters of p, whether they made it in
the relaxed plan or not. The reason is that the choice of best supporters in the
relaxed plan is rather arbitrary, and deleting a fluent because an arbitrary best
supporter deletes it turns out to be more critical than adding a fluent that an
arbitrary supporter adds. So these deletions aim to be cautious.

A state sequence s1, . . . , sn is then generated for a consistent chain t : a1, p2, . . . , pn, an
in a state s, according to the formula above by setting s1 to s, π(ai, si) to the re-
laxed plan for obtaining the preconditions of ai from si, and si+1 as in the formula
above. This sequence is used to compute the heuristic h(t|s), that estimates the
cost of achieving the goal along the path t and can be expressed as

n∑
i=1

h(Pre(ai)|si)

where implicit preconditions in the path are treated as action preconditions. This
estimate is just the sum of the estimated costs of solving each of the subprob-
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lems along the path, assuming that the states si along the path are those in the
projected state sequence.

A problem with this estimate, however, is that due to the use of deletes, it
is often infinite. This may reflect the fact that the projected state sequence is
misleading, but more often, that the decomposition expressed by the path t is
not perfect. For example, if precondition p of an action ai cannot be established
from the state si, yielding h(ai|si) =∞, it is possible that such a precondition can
be established in the previous subproblem from the state si−1 and maintained
into the following subproblem if the action ai−1 does not e-delete it.

With this in mind, we define the estimated cost of achieving the goal through
a consistent path t : a1, . . . , pn, an as

h(t|s) =

n∑
i=1

hi(Pre(ai)|si)

where h1 is equal to the base heuristic h, and hi+1 is

hi+1(p|si+1) = min [h(p|si+1) , hi(p|si) + ∆i(p) ]

where ∆i(p) is a penalty term for bringing p from the subproblem i along the path
t to subproblem i+ 1. We have set ∆i(p) to a large constant, independent of i and
p (10 in our experiments), except when the action ai e-deletes p where ∆i(p) is
set to ∞. In the computation of the base heuristic h(p|si) for all fluents p in the
subproblem that corresponds to s = si, all the actions that e-delete a fluent in
the label L−t (ai) are excluded, as those are the fluents that must hold prior to ai
in any plan that complains with the path t.

Provided with this heuristic function, the extensions t′ = b1, q1, b2, . . . , qm, bm of
a path t in a state s in the planning algorithm, are constructed incrementally,
starting with the actions that are applicable in s that have been marked as best
supporters in the extension step in the algorithm. The action b1 is chosen as the
action that minimizes h(t|s1) where s1 is the state that results from applying b1 in
s, and given the action bi and the state si projected along the t′ path, the action
bi+1 is chosen as the one that minimizes h(t|si+1), among the actions in the min
graph with a precondition qi that is added by bi.

In these extensions, we prune the chains that contain actions bi that either
appear already in one of the relaxed plans π(bk, sk), for some k < i, or that support
an atom qi in the path that some action in those relaxed plans add. This is
because when the planner commits to a path like b1, q1, b2, q2, . . . where bi is a best
supporter for qi, it is reasonable to assume that in the plans that comply with
this path, bi and qi do not occur prior to their occurrence in the path. In other
words, the assumption of best supporters in the path, is also an assumption of
first supporters in the plans complying with the path.

3.2.5 Examples

The C3 planner is supposed to be a transparent planner where the choice for
the actions selected can be explained in terms of reasons given by paths. Thus,
before reporting the tables that are standard in the experimental evaluation of
planners, we analyze the behavior of C3 over two examples.
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Figure 3.2: A blocks-world instance requiring goal interleaving

Blocks World

The so-called Sussman Anomaly is a small instance of the Blocks-World domain
known because it requires some form of goal interleaving. The instance is shown
in Figure 3.2: the problem has two goals, b on c, and a on b, but no goal can be
tackled first while leaving the other goal aside; the subgoals of the two problems
need to be interleaved, something that appears to defy the decomposition in the
C3 planner.

The first consistent path that extends the initial path given by the End action,
in the initial state, is

t1 : unstack(c, a), clear(a), pick(a), hold(a),

stack(a, b), on(a, b), End

with the goal on(b, c), which is the other precondition of End, inferred to be an
implicit precondition of pick(a), as the actions that add on(b, c) e-deletes both
hold(a) and on(a, b). This is the second path considered in the extension step,
because the first path

t2 : pick(b), hold(b), stack(b, c), on(b, c), End

is found to be inconsistent: the precondition on(a, b) is mutex with the atom
ontable(a) that is propagated along the path from the initial state to the End ac-
tion.

Once the path t1 is returned, it is then reduced by applying its first action
unstack(c, a) in the initial state s = s0. This reduction implies a commitment to
the fluent clear(a) until pick(a) is executed, and a new path t′1 given by the tail
of t1 starting with pick(a). This new path cannot be reduced because pick(a) has
explicit and implicit preconditions that do not hold in the resulting state s1 where
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Figure 3.3: A Grid instance: key 1 needed to unlock positions 11 and 10 to reach
key 2. Key 2 must be placed at 11 and key 1 at 02.

block c is being held. The planner then extends t′1 with the chain

t3 : putdown(c), handfree, pick(b), hold(b),

stack(b, c), on(b, c)

that supports one of open (implicit) preconditions of pick(a) and yields the con-
sistent path t3 + t′1. It turns out that the actions in this path form a plan from the
state s1, and thus, the problem is solved after 6 successive reductions. Since no
more extensions are needed, the problem is solved backtrack-free in two exten-
sions: the first that generated the path t1 that extended the initial path t = {End};
the second, that generated the path t3 + t′1 that extended the tail t′1 of t1.

Grid Problem

The Grid domain consists of an agent, that can carry a key, moving around in
a grid. Some of the cells in the grid are locked and can be opened by keys
of a certain shape. Before moving into a locked place, however, the agent has to
unlock it from an adjacent position. The lower-right numbers are the cell indexes
in the grid, and the lower-left shapes indicate whether or not the positions are
locked and the shape needed to unlock them. The square at position 10 is the
shape of key 2 (k2) and the triangle is the shape of key 1 (k1) at position 22. The
arrows indicate where the keys have to be moved (Figure 3.3).

Before finding the first consistent path from the initial state s0 in the instance
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shown, the following paths are generated

t1 : pick(22, k1), hold(k1), put(02, k1), k1@02, End.

t2 : pick(22, k1), hold(k1), put(11, k1), k1@11,

pick&lose(11, k1, k2), k2@11, End.

and pruned, although this time not because they are inconsistent but because
both have heuristic values h(ti|s0) =∞. In the first case, because of the last sub-
problem, where the precondition k2@11 must be achieved from a projected state
where k2 is at the (still) locked position 10, while the atom k1@02 is preserved.
In the second, because of the subproblem where the precondition hold(k2) of
pick&lose(11, k1, k2) must be achieved from a projected state where k2 is at the
locked position 10 while maintaining the atom k1@11. Actually, the generation of
the path t2 is pruned at that point and never reaches the End action.

The third path generated turns out to be consistent and is

t3 : pick(22, k1), hold(k1), unlock(12, 11, k1),

open(11),move(12, 11), atrobot(11),

unlock(11, 10, k1), open(10),move(11, 10),

atrobot(10), pick&lose(10, k2, k1), hold(k2),

put(11, k2), k2@11, End,

that describes a plan skeleton where after picking up k1, the robot unlocks 11
from 12, moves then to 11, unlocks 10, moves then to 10, exchanges k1 with k2,
and places k2 at its target cell. This is a plan skeleton as some actions need to be
filled in by suitable extensions. Indeed, this path can be reduced up to End after
two successive and successful extensions calls, involving the action move(22, 12)
before unlock(12, 11, k1), and the action move(10, 11) before put(11, k2).

After this reduction, the tail contains the End action only, that cannot be
reduced since its other precondition k1@02 does not hold, and then an extension
call that keeps the atom k2@11, results in the following consistent path:

t4 : move(11, 10), atrobot(10), pick(10, k1),

hold(k1), put(02, k1), k1@02, End

whose first two actions can be reduced right away, and where the ‘open’ precon-
dition atrobot(02) of the third action, put(02, k1), results in an extension call that
fills in the moves needed to apply this action and get to the goal. The plan is thus
obtained after 3 main extensions, the first one extends the initial path that just
contains the End action and results in the path t2, the second that extends the
initial path but in a different state and with the commitment to keep k2@11, and
the third that extends the tail put(02, k1), k1@02, End of t4 with the move actions
to get to atrobot(02).
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FF C3 LAMA
Domain I S EHC T S BF T Q S T Q
Blocks World 50 42 42 0.22 50 50 8.79 114% 50 0.87 187%
Depots 22 22 19 44.08 22 22 107.82 90% 20 46.58 102%
Driver 20 16 6 41.28 20 17 41.02 118% 20 4.67 104%
Ferry 50 50 50 < 1msec 50 50 0.07 117% 50 0.18 104%
Free Cell 20 20 14 38.80 6 3 26.21 139% 20 34.30 115%
Grid 5 5 5 < 1msec 5 3 107.72 98% 5 5.58 95%
Gripper 50 50 50 < 1msec 50 50 0.98 132% 50 0.00 100%
Logistics 28 28 28 < 1msec 28 28 0.76 135% 28 0.25 101%
Miconic 50 50 50 < 1msec 50 50 0.02 154% 50 0.15 100%
Mystery 30 19 15 323.08 23 14 2.44 103% 22 15.31 93%
Open Stacks 30 30 30 7.12 29 29 557.51 99% 30 12.80 102%
Pipes World 50 22 4 18.01 28 22 957.33 152% 28 112.25 118%
Rovers 40 40 40 26.97 39 39 548.88 102% 40 13.44 103%
Satellite 20 20 20 0.02 20 20 3.24 101% 20 0.90 107%
Storage 30 18 3 15.00 29 10 446.06 100% 18 1.62 121%
TPP 30 30 30 426.90 27 25 586.84 122% 30 13.11 87%
Zeno Travel 20 20 18 2.14 20 20 53.15 129% 20 3.55 117%
Total 545 482 424 78.63 496 452 202.87 501 15.62
Percentage 88% 78% 91% 83% 118% 92% 109%

Table 3.2: C3 vs. FF and LAMA on instances of previous IPCs: S is the number of solved
instances, EHC is the number of problems solved by EHC, BF is the number of instances
solved Backtrack-free, T is the average time in seconds, and Q is the plan quality ratio;
e.g. 200% means plans twice as long as those reported by FF on average

3.2.6 Experimental Results

We compare C3 with FF and LAMA over a broad range of planning benchmarks.1

C3 is written in C++ and uses Metric-FF as an ADL to Propositional STRIPS com-
piler (Hoffmann, 2003). LAMA is executed without the plan improvement option,
reporting the first plan that is found. All experiments were conducted on a dual-
processor Xeon Woodcrest running at 2.33 GHz and 8 GB of RAM. Processes time
or memory out after 2 hours or 2 GB. All action costs are assumed to be 1 so that
plan cost is plan length.

Table 3.2 compares C3 with FF and LAMA over 545 instances from previous
IPCs. In terms of coverage, C3 solves 5 fewer problems than LAMA but 14 more
than FF, and more remarkably, it solves 452 problems (30 fewer than FF and 28
more than FF in EHC) backtrack-free, that is, heading directly to the goal, without
ever having to revise a plan prefix. There are several domains where C3 solves
more problems than both FF and LAMA, the largest difference being in Storage,
where C3 solves 29 problems, and FF and LAMA 18. On the other extreme, FF
and LAMA solve all the 20 Free Cell instances, while C3 solves only 6.

The average quality of the plans found by C3 is 18% worse than those found
by FF, and 9% worse than those found by LAMA, with the largest differences in
Miconic and Pipesworld. In some cases, however, it delivers shorter plans, like in
1 FF is FF2.3, while LAMA is the version used in the 2008 IPC.
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FF C3 LAMA
Domain I S EHC T S BF T Q S T Q
Cybersecure 30 4 4 0.74 20 20 170.71 100% 25 402.26 100%
Elevator 30 30 30 1.34 30 29 226.25 125% 30 3.28 103%
Openstacks 30 30 30 0.59 30 30 180.84 100% 24 0.48 105%
ParcPrinter 30 30 21 0.05 30 30 6.03 102% 30 3.53 104%
Pegsol 30 30 0 9.87 21 4 70.67 104% 28 25.84 100%
Scanalyzer 30 30 22 55.57 25 25 173.31 94% 30 41.02 97%
Transport 30 30 30 355.50 24 14 806.67 125% 30 9.83 85%
Wood 30 17 12 5.08 8 8 34.70 98% 30 3.68 104%
Total 240 201 149 53.59 188 160 208.65 227 61.24
Percentage 100% 84% 62% 78% 67% 106% 95% 100%

Table 3.3: C3 vs. FF and LAMA on instances from the 2008 IPC

Depots, where it delivers plans that are 10% shorter.

Table 3.3 compares C3 with FF and LAMA over 240 instances of the IPC-6 held
in 2008. In this set of benchmarks, C3 does relatively worse, with LAMA solving
227 of the problems, FF solving 201, and C3 solving 188; 85% backtrack-free.

Domains like M-Prime, Pathways, Pipes-NT, and Psr-Small, are not included
in the tables because one or more of the planners had problems parsing the
instances. On the other hand, in Sokoban, C3 could not solve any instance, very
similar to FF in EHC mode. In both, the problem arises from the focus on the
paths that are minimal. The version of C3 used in IPC-6 solves these instances
by triggering a best-first search when the basic algorithm fails, very similar to FF.
For clarity, however, we have excluded this option here.

A measure of the number of choices made in FF and LAMA is given by the
number of nodes expanded. In C3, this measure is given by the number of ex-
tension operations. As we have seen, the number of extension operations can be
smaller than the number of actions in the plan, as often many of the actions in
a path can be reduced one after the other. While in many cases, FF and LAMA
expand thousands of nodes as shown in Table 3.4, C3 appear to solve a similar
number of problems by performing a much reduced number of extensions in all
domains but Pegsol, where C3 falls in many deadends. This, however, does not
mean that C3 is faster; actually, it is not, due to the overhead in the ordering,
filtering, and selection of paths.

Overall, these results are surprisingly good, as C3 did not aim to compete with
state-of-the-art planners, but with algorithms such as FF’s EHC that provide very
focused but incomplete searches, and that work very well in problems that are not
particularly hard. In this sense, C3 does extremely well, solving more problems
backtrack-free than those solved by FF in EHC mode. Moreover, overall C3 solves
more instances than FF, 684 vs. 683, although LAMA does better than both,
solving 728 instances in total.
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FF C3 LAMA
Domain I Expands Extends Expands
Blocks World 50 9,193 23 1,496
Cybersecure 30 228 15 151
Depots 22 57,777 23 42,609
Driver 20 7,062 21 7,892
Elevator 30 1,254 61 666
Ferry 50 50 17 108
Free Cell 20 5,573 28 3,091
Grid 5 301 12 174
Gripper 50 102 51 80
Logistics 28 94 29 97
Miconic 50 52 26 37
Mystery 30 75,031 4 63,597
Openstacks 30 993 87 162
OpenstacksIPC6 30 866 78 397
Parc Printer 30 252 18 13,980
Pegsol 30 32 4,021 873
Pipes World 50 36,572 37 36,140
Rovers 40 10,341 42 1,750
Satellite 20 389 21 412
Scanalyzer 30 2,166 14 4,882
Storage 30 142,526 45 3,348
Transport 30 105,754 77 6,828
TPP 30 116,904 63 1,805
Wood 30 1,027 21 146
Zeno Travel 20 135 21 482
Total 785 22,987 194 7,648

Table 3.4: C3, FF and LAMA on instances of previous IPCs: Expands is the average
number of expanded nodes and Extends is the average number of path extensions.

3.2.7 Conclusion

We have focused on the study of paths for planning and developed three tech-
niques for performing inference over them. We refined the conditions under
which a path is consistent, provided an heuristic estimate of the cost of achiev-
ing the goal along a consistent path, and introduced a planning algorithm that
uses paths recursively as decomposition backbones. The resulting planner is not
complete and does not perform as well as recent planners, but surprisingly, does
not lag far behind. Moreover, of the collection of 728 problems, 78% of them are
solved backtrack-free.

The use of causal links is a feature of POCL planners (McAllester and Rosen-
blitt, 1991), and some recent POCL planners perform various forms of inference
over them (Nguyen and Kambhampati, 2001; Younes and Simmons, 2003; Vidal
and Geffner, 2006). The proposed planner, however, is not a POCL planner but
a path-based planner, as it explores, evaluates, and commits to complete paths
rather than to individual causal links. As hinted above, some of the inference
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over these paths are structural rather than heuristic. Other forms of structural
inference in modern planners are the notion of helpful actions in FF, and the
use of landmarks in LAMA (introduced in Hoffmann et al. (2004)). Many of these
notions have been incorporated in various planners as they are compatible with
the use of heuristic estimators and different search strategies. The same is true
for the forms of inference over paths that we consider, some of which can find
uses in other contexts.

3.3 Path-Based Heuristic

The version of C3 just introduced, computes paths a0, p1, a1, . . . , , pn, an with an =
End from the current state, and uses them to decompose the problem into sub-
problems: achieving first the preconditions of a0, then from the resulting state
the preconditions of a1 while preserving p1, etc. Moreover, this decomposition is
recursive, and thus if the preconditions of the first action in the path are true,
the action is applied and otherwise, the problem of achieving them is handled in
the same manner by finding a path to an open precondition of the first action,
and so on.

A key aspect of the algorithm is the way paths t are ranked and constructed
in a given state s. This is done by means of a new heuristic h(t|s), built from
a known base heuristic, that estimates the cost of achieving the goal along the
path t. Since the path t is built incrementally, in order to define this heuristic on
paths, we let t range not only on full paths that reach the goal through the End
action, but also over partial paths or chains that do not. The new state heuristic
that we want to define and evaluate here can be roughly stated as hpath(s):

hpath(s) = min
t
h(t|s) (3.2)

where t ranges among the paths applicable in s; namely, the causal chains that
connect s with the goal. This is the general idea, although later we will restrict the
space of paths to be considered. We take the basic building blocks from previous
sections.

3.3.1 Ranking Chains and Projected States

Let t be a causal chain a1, p2, . . . , pn, an. For generality, we do not assume that the
first action is applicable in s nor that the last action is the End action. We want
the heuristic h(t|s) to estimate the cost of achieving the goal along this chain. For
defining this heuristic, we estimate the sequence of states s1, . . . , sn induced by
the chain so that si is the state that is estimated to be true right after the action
ai in the chain that is applied.

The sequence of states induced by a chain is defined in Equation 3.1 from
Section 3.2.4. The heuristic h(t|s) for the chain t : a1, p2, . . . , pn, an in a state s is
defined in terms of a base heuristic h, and a sequence s1, . . . , sn of states induced
by t

h(t|s) =

n∑
i=1

[ cost(ai) + h(Pre(ai)|si) ] (3.3)
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where in the computation of the heuristic h(Pre(ai)|si) for 1 < i ≤ n, all the
actions that interfere with the causal link ai−1, pi, ai in t are excluded (actions
that e-delete pi). This estimate is thus the sum of the estimated costs of solving
each of the subproblems along the path, assuming that the states si along the
path are those projected and that causal links are respected.

As stated in Section 3.2.4, a problem with this estimate, however, is that
due to the use of deletes in the projection and the preservation of causal links,
it is often infinite. For example, if a precondition p of an action ai cannot be
established from the state si, yielding h(ai|si) = ∞, it is possible that such a
precondition can be established in the previous subproblem from the state si−1
and maintained into the following subproblem if the action ai−1 does not e-delete
it. With this in mind, the estimated cost of achieving the goal through the chain
t : a1, . . . , pn, an is defined as

h(t|s) =

n∑
i=1

[ cost(ai) + hi(Pre(ai)|si) ] (3.4)

where h1 is equal to the base heuristic h, and hi+1 is

hi+1(p|si+1) = min [h(p|si+1) , hi(p|si) + ∆i(p) ] (3.5)

where ∆i(p) is a penalty term for bringing p from the subproblem i along the
path t to subproblem i + 1. We have set ∆i(p) to a a constant, independent of
i and p, except when the action ai e-deletes p where ∆i(p) is set to ∞. This is
the same heuristic used by C3 for sorting causal chains but takes into account
action costs.

3.3.2 Computing hpath(s)

Given the heuristic h(t|s) for causal chains t, the path-based heuristic hpath(s)
over states is defined as mint h(t|s), where t ranges over a suitable class of paths
applicable in s.

In C3, the path t is constructed by computing the measure mint h(t|s) greed-
ily. Here, we instead use the A* algorithm over a graph where nodes are causal
chains whose first action applies in the state s, and goal nodes represent (full)
paths. For uniformity, we take the source nodes in this search to be the chains
a0, p1, a1 where a0 is the dummy Start action, a1 is an action applicable in s,
and p1 is a dummy atom not deleted by any action in the problem. Last, the
children of a node t = a0, p1, . . . , pn, an such that an 6= End, are the nodes t′ =
a0, p1, . . . , pn, an, pn+1, an+1 where pn+1 is a precondition of action an+1 added by
action an.

For the A* search, in this graph of causal chains, the evaluation function
f(n) = g(n)+h(n) is defined so that for n representing the path t = a0, p1, . . . , pn, an,
g(n) = h(t|s) and h(n) = h(End|sn), where h(t|s) is defined as in Equation 3.4 and
h(End|sn) is the base heuristic with sn being the last state projected along the
chain t.

This search is not guaranteed to yield the exact minimum mint h(t|s) over all
the paths t because the heuristic h(n) = h(End|sn) is not always a lower bound,



60 N. Lipovetzky

hadd hpath

Domain I S D T S D T Quality
Blocks World 50 50 0 13.89 48 45 126.18 65%
Depots 22 11 3 184.69 9 3 79.20 87%
Driver 20 16 0 28.70 14 6 20.36 90%
Ferry 50 50 6 0.06 50 43 0.57 95%
Grid 5 2 0 3.12 2 1 72.81 100%
Gripper 50 50 50 0.39 50 2 33.85 100%
Logistics 28 28 1 0.45 28 11 53.15 87%
Miconic 50 50 20 0.02 50 50 0.50 77%
Mystery 30 26 9 13.47 22 12 38.94 94%
Open Stacks 30 20 0 184.55 10 0 201.43 100%
Rovers 40 17 1 125.05 13 4 102.78 98%
Satellite 20 20 14 9.42 12 7 268.79 101%
Storage 30 17 3 59.24 14 5 72.12 97%
TPP 30 15 5 110.30 10 5 168.31 89%
Zeno Travel 20 19 2 185.12 13 6 33.28 95%
Totals 475 391 114 61.23 345 200 84.82
Percentage 82% 24% 73% 42% 92%

Table 3.5: Additive heuristic vs. Path-based heuristic in a standard greedy best-first
search on instances from previous IPCs: I is the number of instances, S is the number of
solved instances, D is the number of instances where search goes straight to the goal, T is
the average time in seconds, and Quality is the plan quality ratio; e.g. 200% means that
it plans twice as long as those reported by ha on average

even if h(n) = 0 when n represents a path. Moreover, we consider two pruning
techniques for speeding up the search that affect the optimality of the resulting
measure as well.

First, in order to restrict the size of the search graph, we prune the nodes n
representing a path t = a0, p1, . . . , pi, ai if there is another node n′ representing a
path that ends in the same pair pi, ai such that f(n′) < f(n). Second, we prune
from the search all causal links ai, pi+1, ai+1 that do not lie along a minimal path
from s. Recall that a minimal path a0, p1, a1, . . . , pi, ai is one where the actions ai
are best (hmax) supporters of the fluent pi+1.

The value of the heuristic hpath(s) is then set to the value f(n) = g(n) of the
first goal node n found in the A* search. This value stands for the heuristic value
h(t|s) associated to some minimal path t from s, and is only an approximation of
the optimal value mint h(t|s) when t ranges over all paths.

3.3.3 Experimental Results

In order to test the quality and cost-effectiveness of the new heuristic hpath
1, we

compared it with the additive heuristic hadd in the context of a greedy best-first
state search. The planners were evaluated with a timeout of 1800 seconds and a

1 We use as the base heuristic for h(t|s) the same heuristic that we compare with, the additive
heuristic.
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hadd hpath

Domain I Ex Ev Ex Ev
Blocks World 50 1,912 14,834 41 402
Depots 22 13,369 165,834 45 667
Driver 20 548 17,679 78 995
Ferry 50 65 462 29 186
Grid 5 72 389 22 124
Gripper 50 98 2,726 121 1,692
Logistics 28 75 1,256 55 1,031
Miconic 50 81 725 30 289
Mystery 30 60 2,141 5 84
Open Stacks 30 3,916 126,393 75 606
Rovers 40 4,791 159,923 123 3,106
Satellite 20 36 5,066 25 1,775
Storage 30 2,065 31,449 67 739
TPP 30 8,982 111,056 1,910 21,236
Zeno Travel 20 58 3,601 17 415
Totals 475 2,409 42,902 176 2,223

Table 3.6: Additive heuristic vs. Path-based heuristic search effort in a standard greedy
best-first search on instances from previous IPCs: I is the number of instances, S is the
number of solved instances, Ex and Ev stand for the average number of nodes expanded
and evaluated

memory limit of 2GB. The experiments were run on Xeon Woodcrest computers
with clock speeds of 2.33 GHz.

The results are shown in Table 3.5. In terms of coverage, hpathsolves 9% fewer
problems than hadd, but at the same time, the solutions that it obtains are 8%
shorter on average (35% shorter in Blocks). In terms of time, the search with
hpathis slower than with ha because of the higher overhead, yet this is compen-
sated by the additional information gained, that translates in a highly reduced
number of expanded nodes (Table 3.6). Indeed, in 42% of the problems, the
heuristic hpathtakes the plan straight to the goal without expanding any node off
the solution. This is shown in the D column. The corresponding number for the
hadd heuristic is 24%.

Table 3.7 shows an experiment aimed at making the search more focused by
considering only the actions applicable in states that are minimal. These are
the actions that head the applicable minimal paths. Compared to Table 3.5,
the coverage is improved, hpathsolving 50% of the problems straight to the goal.
The minimality requirement increases the number of expanded nodes by hpathin
Driver and Storage while it decreases in TPP, suggesting how suitable a focused
search is for certain domains (Table 3.8). On the other hand, hadd expands just
half of the nodes compared to Table 3.6.
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hadd hpath

Domain I S D T S D T Quality
Blocks World 50 49 0 15.22 43 30 35.18 65%
Depots 22 12 2 50.11 16 4 50.51 88%
Driver 20 18 1 152.34 14 6 157.50 93%
Ferry 50 50 4 0.04 50 49 0.08 97%
Grid 5 2 0 1.65 4 1 276.54 117%
Gripper 50 50 50 0.22 50 50 1.75 76%
Logistics 28 28 2 0.22 28 1 25.08 86%
Miconic 50 50 12 0.01 50 48 0.05 100%
Mystery 30 25 12 1.87 21 11 65.42 96%
Open Stacks 30 20 0 99.60 17 0 233.29 100%
Rovers 40 34 4 102.63 26 5 85.38 97%
Satellite 20 20 9 1.07 19 17 11.36 100%
Storage 30 16 4 3.47 8 4 228.91 111%
TPP 30 16 5 68.00 12 4 27.36 84%
Zeno Travel 20 20 5 81.30 18 9 171.36 94%
Totals 475 410 110 38.29 376 239 91.32 Average
Percentage 86% 23% 79% 50% 94%

Table 3.7: Additive heuristic vs. Path-based heuristic in a standard greedy best-first
search considering only minimal actions applicable in a state: I is the number of instances,
S is the number of solved instances, D is the number of instances where search goes
straight to the goal, T is the average time in seconds, and Quality is the plan quality ratio;
e.g. 200% means plans twice as long as those reported by ha on average

3.3.4 Discussion

We have presented a new heuristic for a forward state-based planner and em-
pirical results. The heuristic is defined on top of a delete-relaxation heuristic
and yet takes deletes into account by means of the notion of paths. The other
heuristics that take deletes into account are (1.) the admissible hm heuristics
(Haslum and Geffner, 2000), used mainly in the context of optimal planning,
(2.) the semi-relaxed plan heuristic that introduces special fluents that explic-
itly represent conjunctions of fluents in the original planning task (Emil Keyder
and Haslum, 2012), and (3.) the causal graph heuristic (Helmert, 2004), that is
closely related to the additive heuristic, but is defined over multivalued variables
and keeps track of side effects pertaining to each variable’s parents (Helmert and
Geffner, 2008). The path heuristic hpath, keeps track of side effects through the
states that are projected along paths. From this perspective, it is fruitful to look
at the enforced hill-climbing (EHC) search procedure in FF, not as a search pro-
cedure, but as a lookahead device for producing a more informed heuristic value
for the seed state. This lookahead is common in chess playing programs where
the backed-up value is assumed to be more reliable that the root value. From this
point of view, while the EHC lookahead considers paths in the (local) state space
until a state with a better value is found, the lookahead in the path-based heuris-
tic considers paths in an abstraction, where all but one of the preconditions and
positive effects are thrown away, but which are evaluated with all the informa-
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hadd hpath

Domain I Ex Ev Ex Ev
Blocks World 50 2,145 13,931 87 889
Depots 22 5,670 45,741 43 535
Driver 20 3,693 30,405 3,080 23,318
Ferry 50 68 284 29 100
Grid 5 39 142 79 347
Gripper 50 101 1,426 77 807
Logistics 28 70 557 219 3,318
Miconic 50 46 221 35 199
Mystery 30 7 49 8 58
Open Stacks 30 1,195 28,894 289 1,259
Rovers 40 185 3,664 64 955
Satellite 20 38 617 36 697
Storage 30 821 3,996 2,346 12,875
TPP 30 4,137 28,489 564 3,483
Zeno Travel 20 59 1,211 34 656
Totals 475 1,203 10,539 466 3,300

Table 3.8: Additive heuristic vs. Path-based heuristic search effort in a standard greedy
best-first search considering only minimal actions applicable in a state: I is the number of
instances, S is the number of solved instances, Ex and Ev stand for the average number
of nodes expanded and evaluated

tion available in the original problem. The paths in the state-space considered in
EHC have the benefit that the local states are true, reachable states. On the other
hand, projected states along the abstract paths considered in this section, may
represent Ât’unreal’ states that cannot be reached. However, while EHC looks
over real states in the local neighborhood, the abstract paths are forced to reach
the goal, and thus, can probe much more deeply.



64 N. Lipovetzky



Structure and Inference in Classical Planning 65

Chapter 4

Searching for Plans with
Probes

Tiger got to hunt, bird got to fly; Man got to
sit and wonder, ’Why, why, why?’ Tiger got to
sleep, bird got to land; Man got to tell himself
he understand.

Cat’s Cradle.
Kurt Vonnegut

In this chapter, we explore further the synergy between different type of in-
ferences, by formulating and testing a new dual search architecture for planning
that is based on the idea of probes: single action sequences computed without
search from a given state that can quickly go deep into the state space, terminat-
ing either in the goal or in failure. We show experimentally that by designing these
probes carefully using a number of existing and new polynomial inference tech-
niques, most of the benchmarks can be solved with a single probe from the initial
state, with no search. Moreover, by using one probe as a lookahead mechanism
from each expanded state in a standard greedy best first search, the number of
problems solved increases and compares well to state-of-the-art planners like FF
and LAMA. The success of probes suggests that many domains can be solved
easily once a suitable serialization of the landmarks is found, a finding that may
open new connections between recent work in planning and more classical work
concerning goal serialization and problem decomposition in planning and search.

4.1 Introduction

Heuristic search has been the mainstream approach in planning for more than
a decade, with planners such as FF, FD, and LAMA being able to solve prob-
lems with hundreds of actions and variables in a few seconds (Hoffmann and
Nebel, 2001; Helmert, 2006; Richter and Westphal, 2010). The basic idea be-
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hind these planners is to search for plans using a search algorithm guided by
heuristic estimators derived automatically from the problem (McDermott, 1996;
Bonet and Geffner, 2001). State-of-the-art planners, however, go well beyond
this idea, adding a number of techniques that are specific to planning. These
techniques, such as helpful actions and landmarks (Hoffmann and Nebel, 2001;
Hoffmann et al., 2004; Richter et al., 2008), are designed to exploit the propo-
sitional structure of planning problems; a structure that is absent in traditional
heuristic search where states and heuristic evaluations are used as black boxes.
Moreover, new search algorithms have been devised to make use of these tech-
niques. FF, for example, triggers a best-first search when an incomplete but
effective greedy search that uses helpful actions only, fails to find a solution. In
FD and LAMA, the use of helpful or preferred operators is not restricted to the
first phase of the search, but to one of the open lists maintained in a multi-queue
search algorithm. In both cases, dual search architectures that rely on either two
successive searches or to a single search with multiple open lists, are aimed at
quickly solving large problems that are simple, without giving up completeness
on problems that are not.

In this chapter, we formulate and test a new dual search architecture for
planning that is based on the idea of probes: single action sequences computed
without search from a given state that can quickly go deep into the state space,
terminating either in the goal or in failure. We show that by designing these
probes carefully using a number of existing and new polynomial inference tech-
niques, 683 out of 980 benchmarks (70%) can be solved with a single probe from
the initial state. Moreover, by using one probe as a lookahead mechanism from
each expanded state in a standard greedy best-first search informed by the ad-
ditive heuristic, the number of problems solved jumps to 900 (92%), a number
that compares well to state-of-the-art planners like FF and LAMA that solve 827
(84%) and 879 (89%) problems respectively.

The main contribution is the design of these effective probes. A probe is an
action sequence computed greedily from a seed state for achieving a serializa-
tion of the problem subgoals that is computed dynamically along with the probe.
The next subgoal to achieve in a probe is chosen among the first unachieved
landmarks that are consistent. Roughly, a subgoal that must remain true until
another subgoal is achieved, is consistent, if once it is made true, it does not
have to be undone in order to make the second subgoal achievable. The action
sequence to achieve the next subgoal uses standard heuristics and helpful ac-
tions, while maintaining and enforcing the reasons for which the previous actions
have been selected in the form of commitments akin to causal links. The compu-
tational value of the subgoal serialization, the consistency checks, and the use of
commitments, is evaluated empirically as well.

The success of probes, like the improvements of FF and LAMA over HSP before,
suggest that effective heuristic search planning is more than heuristic search
with automatically derived estimators. Structural inference techniques in the
form of helpful actions or landmarks, play an important role as well. The probes
are designed to take advantage of these and other inference techniques. Critical
for the effectiveness of the probes is the use of causal commitments of the form
〈a, p,B〉 to express that a fluent p was made true by action a in order to achieve one
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of the fluents in B.1 Nodes generated during the probes do not only maintain the
state of the fluents but also the reasons for which these fluents were made true.
Then in a node where the causal commitment 〈a, p,B〉 is true, actions that delete
p without adding one of the fluents in B are pruned. The result is that probes are
more goal-directed than arbitrary sequences of helpful actions in FF that tend
to exhibit more ‘oscillations’ on the way to the goal when multiple goals are in
‘conflict’ (Section 4.2). Moreover, probes are not used to improve the heuristic
value of the seed state, but to reach the goal, and thus can go arbitrarily deep.
They terminate like the EHC search, however, when the goal is reached (success),
or when the helpful actions yield no new states, or the heuristic becomes infinite.
An important difference, however, is that the heuristic used in the probes takes
the causal commitments into account, and hence, reports infinite values much
more often.

In the remainder of this chapter, we first illustrate the limitations of heuristic
search planners using a simple example. We then introduce the new planner
PROBE, present the experimental results, illustrate the behavior of PROBE over
two specific problems, and finish with a brief summary.

4.2 Effects of Multiple Conflicting Goals

The heuristics used in state-of-the-art (satisficing) planners are a decade old and
are based on the delete-relaxation.2 Several heuristics that take deletes into
account have been formulated but they have not been shown to be cost-effective
(Haslum and Geffner, 2000; Emil Keyder and Haslum, 2012). One problem that
surfaces with delete-relaxation based heuristics, that approximate the optimal
delete free heuristic h+, appears in instances with multiple ‘conflicting’ goals.
In these very common cases, progress towards one goal means diverting from
other goals. Such instances produce large plateaus where the heuristic is almost
useless. Indeed, in some cases, state-of-the-art heuristics are no better than
heuristics that ignore the problem structure completely and just count, for example,
the number of unachieved goals.

As an illustration, consider the Visit-All domain from the 2011 International
Planning Competition (IPC7) where an agent in the middle of a square grid n× n
must visit all of the cells in the grid. This is an extremely simple problem to solve
non-optimally, and a version of this problem is related to one of the domains
used in the Conformant track of the 2008 IPC (Bryce and Buffet, 2008).3

Table 4.1 shows the results for several planners over this domain. Although
being intractable, solving optimally the delete relaxation, h+ gives the exact goal
distance as long as there exists a hamiltonian path visiting every cell4. Interest-
ingly, the planner that does best in this domain is based on a greedy best-first
1 The causal commitments are similar to causal links in partial order planning (Tate, 1977;
McAllester and Rosenblitt, 1991), but are used in a forward state search in a different way. 2 The
exception is the landmark heuristic in LAMA, discussed below. 3 We are referring to the Dispose
domain where an agent has to pick up objects in a grid without knowing their locations, and thus
has to attempt a pick up action in each cell. In this domain, a conformant planner guided by the
’number of unachieved goals’ heuristic did much better than the classical FF planner over a suitable
translation. Table 4.1 explains how this can happen. 4 In the simplest version of Visit-All, a 1 × n
grid, no hamiltonian path exists.



68 N. Lipovetzky

LAMA LAMA-ff LAMA-lm FF
I time cost time cost time cost time cost
5 0.15 26 0.22 36 0.17 26 0.05 38
10 0.43 128 0.55 352 0.40 111 0.16 177
15 1.39 270 118.60 1,258 1.00 271 15.38 428
20 3.42 493 M M 2.92 453 M M
25 10.32 757 M M 5.98 732 M M
30 26.38 1,149 M M 14.10 1,082 M M
35 R R R R R R M M
40 R R R R R R M M
45 R R R R R R M M
50 R R R R R R M R

GBFS-hadd GBFS-hgoals PROBE

I time cost time cost time cost
5 0.02 98 0.01 30 0.02 24
10 7.15 883 0.04 104 0.21 99
15 M M 0.32 276 1.4 224
20 T T 1.14 417 8.52 399
25 T T 3.58 660 20.32 624
30 T T 9.07 956 76.58 899
35 T T 20.65 1330 146 1220
40 T T 47.43 1920 320.28 1600
45 T T 74.04 2140 557.44 2020
50 M M 122.19 2550 805.47 2500

Table 4.1: Planners performance over the Visit-all domain. The planners are
LAMA and versions of it using only the FF and Landmark heuristic respectively,
FF, two greedy best-first search planners using the additive and number of un-
achieved goal heuristics respectively, and the new planner PROBE. The size of the
grids are n×n, with the number n reported in each row. For the non-solved prob-
lems, M, T, and R stand for memory-out (2GB), time-out (30min.), and grounding
error respectively.
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search using the number of unachieved goals heuristic (hgoals), that manages to
solve the larger 50×50 instance in 122 seconds. The greedy best search using the
additive heuristic does much worse, and cannot even solve the 15 × 15 instance.
FF, like LAMA1 when run with the FF heuristic only, does not perform much bet-
ter and does not solve the 20 × 20 instance. On the other hand, LAMA and the
version of LAMA that uses the landmark heuristic only, do quite well and break
over the 35 × 35 instance due to ‘grounding errors’. The performance of LAMA,
however, is not surprising as the landmark heuristic in this case is quite close
to the ‘number of unachieved goals’ heuristic. Finally, the planner PROBE to be
explained below, which also uses landmarks, does well too, scaling up well and
producing plans of slightly better quality. A key aspect in PROBE is the selection
of the action for extending the current probe in a state s. One could select, for
example, the action a that minimizes the distance to the joint goal G from the
resulting state sa as captured by the heuristic h(sa, G). The problem, as argued
above, is that planning heuristics used in this form are non-informative in sit-
uations such as this one, where the goals are in conflict, and approaching one
goal means to divert from other goals. Thus, rather than selecting the action
that minimizes the distance to the joint goal h(sa, G), PROBE selects the action
that minimizes the distance to the nearest ‘first’ unachieved landmark L; i.e.,
arg minaminLh(sa, L). This is an important idea that is present in LAMA and
does not follow directly from the use of the delete-relaxation or the landmark
heuristic.

We emphasize that domains like Visit-All show that some of the problems that
are difficult for ‘pure’ heuristic search planners are not hard at all, they are just
the result of multiple easy but conflicting goals that can often be achieved triv-
ially, once they are serialized. The use of delete-relaxation heuristics to appraise
the cost of achieving all goals together runs into a situation resembling Buridan’s
ass: where a hungry and thirsty donkey, placed between a bundle of hay and
a pail of water, dies of hunger and thirst for not finding a reason to choose one
over the other. The action selection criterion based on the distance to the nearest
landmark achieves some form of serialization. Yet, as it is known, not every se-
rialization works, and thus additional criteria are needed to rule out some of the
nearest landmarks as possible subgoals.

4.3 PROBE: Dual Search Architecture

Heuristic search planners that plug a delete-relaxation heuristic into a well known
search algorithm are useful, as they can be easily understood. As we have shown
in Section 4.2, one problem that they face, however, is that the search plateaus.
This situation arises when goals are in ‘conflict’, and approaching one goal means
to move away from the others. Since the formulation of more effective estimators
has not been simple after more than a decade, the solution to this problem has
given rise to other types of inferences and techniques. These techniques are ab-
sent in the first generation of planners such as UNPOP and HSP, but are present
in FF, FD, and LAMA. These planners are less monolithic, and their details are

1 LAMA is the version used in IPC6.
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Probe Generator

Greedy Best First Search
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Best State 
in Open List

State
Sequence

Solution / Fail

Figure 4.1: PROBE’s base dual architecture

often more difficult to follow, but it is precisely those ‘details’ that make the dif-
ference. The planner PROBE is no exception to this trend towards ‘finer-grained
planning’, and incorporates a number of design decisions that we explain below.

PROBE is a complete, standard greedy best-first (GBFS) STRIPS planner using
the standard additive heuristic, with just one difference: when a state is selected
for expansion, it first launches a probe from the state to the goal. If the probe
reaches the goal, the problem is solved and the solution is returned. Otherwise,
the states expanded by the probe are added to the open list, and control returns
to the GBFS loop (Figure 4.1). The crucial and only novel part in the planning
algorithm is the definition and computation of the probes.

We assume a STRIPS problem whose top goals G are the preconditions of a
dummy End action that adds a dummy goal Gd. As in POCL planning, this is
needed due to the use of causal commitments that are similar to causal links
(Tate, 1977; McAllester and Rosenblitt, 1991).

4.3.1 Probe Construction

A probe is an action sequence a0, a1, . . . , ak that generates a sequence n0, n1, . . . , nk+1

of nodes, each of which is a pair ni = 〈si, Ci〉 made up of the problem state si
and a set of causal commitments Ci. The initial node of a probe is n0 = 〈s, ∅〉
where s is the state from which the probe is triggered, and ∅ is the empty set of
commitments. The action selection criterion decides the action ai to choose in
node ni = 〈si, Ci〉 greedily without search. This action generates the new node to
ni+1 = 〈si+1, Ci+1〉, where si+1 is the result of progressing the state si through ai,
and Ci+1 is Ci updated with the causal commitments consumed by ai removed,
and the causal commitments produced by ai added.

The actions in a probe are selected in order to achieve subgoals chosen from
the landmarks that are yet to be achieved. A number of techniques are used
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to make the greedy selection of the next subgoal to achieve and the actions for
achieving it effective. A probe that reaches the goal is the composition of the
action sequences selected to achieve the next subgoal, the one following it, and
so on, until all landmarks including the dummy goal Gd are achieved. Probes are
not complete; yet they are supposed to capture the plans that characterize ‘simple
domains’ even if a formal characterization of such domains is still missing.

The subgoal to pursue next is selected in a node n in two cases: when n is the
first node of the probe, or when the subgoal g associated with its parent node n′

in the probe is achieved in n. Otherwise, n inherits the subgoal from its parent
node. The action a selected in a node n is then the action that appears to be ‘best’
for the subgoal g associated with n. If a does not achieve g, then g stays active for
the next node, where the action to include in the probe is selected in the same
way.

The formal definition of the subgoal and action selection criteria below uses
notions that will be made fully precise later on, like the heuristic h(G|s, C) that
takes both the state s and the commitments C into account, the precomputed
partial ordering among landmarks, and the conditions under which a subgoal is
deemed as consistent from a given node.

4.3.2 Subgoal and Action Selection

The criterion for selecting the subgoal g in node n = 〈s, C〉 is the following. First,
the set S of first unachieved landmarks that are consistent in n = 〈s, C〉 is com-
puted. Then, the landmark p ∈ S that is nearest according to the heuristic
h(p|s, C) is selected as the subgoal for n.

The selection of the action a in n is in turn the following. First, the set of
actions a that are deemed helpful in n = 〈s, C〉 for either the subgoal or commit-
ments associated with n are computed, and those that lead to a node n′ = 〈s′, C ′〉
for which either h(G|s′, C ′) is infinity or s′ has been already generated are pruned.1

Then, among the remaining actions, if any, the action that minimizes the heuris-
tic h(g|s′, C ′) is selected.2 In the case of a tie, two other criteria are used lexi-
cographically: first ‘min

∑
L h(L|s′, C ′)’, where L ranges over the first unachieved

landmarks, then ‘min h(Gd|s′, C ′)’, where Gd is the dummy goal. Thus, the action
selection mechanism tries to achieve a subgoal while preferring those actions
that minimize the distance to next subgoal candidates.

In the next few sections, we specify fully the notions assumed in these defini-
tions.

4.3.3 Enhanced Helpful Actions

Only the actions deemed to be helpful are considered along the states of a probe.
Such actions are those used in the solution to the relaxed problem found by the
1 Notice that we are forcing probes to explore new states only. This is a heuristic decision that does
not compromise the completeness of the best-first search algorithm that uses probes. 2 Except
for a few details, this criterion is similar to the one used by LAMA for preferring actions in the
landmark heuristic queue; namely, that “if no acceptable landmark can be achieved within one step,
the preferred operators are those which occur in a relaxed plan to the nearest simple acceptable
landmark” (Richter and Westphal, 2010).
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heuristic h(s, C) that are applicable in the state s. The relaxed solution π+ is
extracted backwards from the goals G recursively adding to π+ each action a that
adds a goal g ∈ G with the lowest h(pre(a)|s, C) value, i.e. the best supporter a
for each goal g, and by adding the best supporters of preconditions p ∈ pre(a) of
actions a in the relaxed solution a ∈ π+; until all preconditions and goals p are
either supported by one action a ∈ π+ or belong to the state p ∈ s. When more
than one action can be the best supporter for an atom p, that is, more than one
action a adding p has the same h(pre(a)|s, C) value, ties are broken randomly.
Thus, the set of helpful actions considered in each state s is not uniquely defined
when more than one action can be the best supporter according a heuristic h.

In order to overcome the stochastic nature of the set of helpful actions H,
we define a sequence of enhanced helpful actions that systematically collect all
possible helpful actions in the following way:

Definition 4.1 (Enhanced Helpful Actions). The enhanced helpful actions EH0, . . . ,
EHn over Π = 〈F, I,O,G〉 induced by heuristic h in state s consists of a sequence of
helpful actions H(s,Πi) over problems Πi = 〈F, I,Oi, G〉 where:

1. EH0(s) = H(s,Π)

2. EHi+1(s) = H(s,Πi+1), with Oi+1 = O \ {a | a ∈ ∪k=0,...,iEHk(s)}

3. EHn(s) = ∅, no relaxed solution exists for Πn, such that h(G|s, C) =∞

The first set EH0 is the set of helpful actions from the original problem. Each
EHi is extracted from the relaxed plan induced by heuristic h in problem Πi,
where actions considered to be helpful previously are excluded, until no relaxed
solution is possible and the heuristic h(G|s, C) =∞.

Thus, probes incrementally go beyond helpful actions. While constructing
a probe, if a node n = 〈s, C〉 is reached such that all helpful actions EH0 are
pruned, a second attempt to extend the current probe is made before giving up.
PROBE recomputes the relaxed plan from n with those actions excluded, resulting
in a new set of helpful actions EH1 if the heuristic does not become infinite.
The new set of helpful actions EH1 is pruned again as above, and the process
is iterated, until a non-pruned helpful action a ∈ EHi is obtained at s, or the
heuristic becomes infinite. In the latter case, the probe terminates with failure. If
before failing, it reaches a goal state, it terminates successfully with the problem
solved.

4.3.4 Causal Commitments

A node n = 〈s, C〉 along a probe is a pair consisting of state s and causal com-
mitments C, similar to the notion of a causal link (Tate, 1977; McAllester and
Rosenblitt, 1991). While causal link 〈a, p, c〉 encodes that an action a adds a flu-
ent p required by some action c, causal commitments do not commit to a single
action c but to a disjunctive set of fluents added by some action that requires p:

Definition 4.2 (Causal Commitment). Given a planning problem Π = 〈F, I,O,G〉,
a causal commitment is a triple C = 〈a, p,B〉 where a ∈ O is an action, p ∈ add(a)
is a fluent added by a, and B ⊆ F is a set of fluents.
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The intuition is that fluent p was added by a in order to achieve (at least) one
of the fluents in B, and hence that p should remain true until an action adds
some fluent in B, consuming the causal commitment. Consequently, in a node
n = 〈s, C〉 with a commitment 〈a, p,B〉 in C, any action a applicable in s that
deletes p but does not add any fluent in B, is taken to threat the commitments in
C, and is pruned from the set of applicable actions.

Definition 4.3 (Causal Commitment Threat). Given a node n = 〈s, C〉, an action
a applicable in s is a threat to a causal commitment 〈ai, pi, Bi〉 ∈ C, if a deletes pi
and does not add any fluent q ∈ Bi.

There are two differences with a causal link threat: only applicable actions
can threat a causal commitment, and actions that add a fluent p but do not add
any fluent in B are not considered as a threat for C = 〈a, p,B〉.

We now show how a causal commitment is consumed and generated by an
action a in node n = 〈s, C〉.

Definition 4.4 (Consume(a,n)). An action a consumes a commitment 〈ai, pi, Bi〉 in
n = 〈s, C〉 if a adds a fluent in Bi (whether or not a deletes pi).

Definition 4.5 (generate(a,n)). An action a generates the commitments 〈a, p,B〉 in
n = 〈s, C〉, if p is a fluent added by a, and B is the set of fluents added by actions
in the relaxed plan π+ in n that have p as a precondition.

An action a selected in a node n = 〈s, C〉 generates the new node n′ = 〈s′, C ′〉
where s′ is the result of progressing s through a, and C ′ is the result of removing
the commitments consumed by a in n, and adding the commitments generated
by a in n, that is, s′ = (s∪add(a)\del(a)) and C ′ = (C \consume(a, n))∪generate(a, n).

The relaxed plan associated with a node n = 〈s, C〉 and a goal G is obtained by
collecting backwards from G, the best supporters ap for each p in G, and recur-
sively the best supporters for their preconditions that are not true in s (Keyder
and Geffner, 2008). The best supporter for an atom p is an action a that adds p
and has minimum h(a|s, C) value. The helpful actions for a subgoal g in a node
n = 〈s, C〉 are defined then as in FF, as the actions a with heuristic h(a|s, C) = 0
that add a precondition or goal in the relaxed plan. For convenience, however,
this relaxed plan is not defined as the relaxed plan for g in n, but as the relaxed
plan for the joint goal formed by g and the (disjunctive) targets Bi in the commit-
ments 〈ai, pi, Bi〉 in C. This reflects the notion that such targets also represent
subgoals associated with the node n = 〈s, C〉, even if unlike g, they do not have to
be achieved necessarily.1

In order to take advantage of the information contained in the causal com-
mitments, we introduce a heuristic h(G|s, C) that estimates the cost to a set G of
fluents from a node n = 〈s, C〉. This heuristic takes the set of causal commitments
C into account and is defined like the standard additive heuristic (hadd):

h(G|s, C) =
∑
p∈G

h(p|s, C) (4.1)

1 Indeed, a probe may reach the goal with a non-empty set of commitments.



74 N. Lipovetzky

C
B
A

Goal

CB

A

CB
A

Current State
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Figure 4.2: Blocks world example where the goal is reachable but h(G|s, C) =∞.
The figure in the middle shows the state s with commitment C that results from
action stack(A,B).

where

h(p|s, C) =

{
0 if p ∈ s
mina∈O(p)[cost(a) + h(a|s, C)] otherwise (4.2)

and
h(a|s, C) = δ(a, s, C) + h(Pre(a)|s, C) (4.3)

where O(p) range over the actions adding p and Pre(a) are the preconditions of
action a.

Compared to hadd, the only novelty in this definition is the offset term δ(a, s, C)
that penalizes actions a that threat causal commitments 〈ai, pi, Bi〉 in C. The offset
for such actions is the cost of achieving one of the fluents in Bi, as the action a
cannot be executed until those commitments are consumed. More precisely:

δ(a, s, C) =

{
0 if a threat no commitment in C
maxi minq∈Bi

h(q|s, C) otherwise, (4.4)

where Bi are the sets of fluents in the commitments 〈ai, pi, Bi〉 in C threatened
by a. Intuitively, the offset δ(a, s, C) delays the application of action a at least
until the first action that consumes the threatened commitment can be applied
(minq∈Bi

term). Moreover, if a threatens more than one commitment it has to be
delayed until the last commitment can be consumed (maxi term). The result of
the offsets arising from the commitments C is that actions a applicable in s may
get heuristic value h(a|s, C) greater than zero when they threaten a commitment
in C.

The offset δ causes h(G|s, C) to be unsafe, that is, a goal G reachable from
s may get an infinite heuristic value h(G|s, C). This situation arises when G
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requires an action a with an infinite offset δ(a, s, C)1. For example, consider the
blocks world instance shown in Figure 4.2. Goal G stands for the atoms on(A,B)
and on(B,C), and Gd is the dummy goal added by action END with precondition
G. The heuristic h(Gd|s, C) associated with the node n = 〈s, C〉 shown in the figure
that results from stacking A on B when B is not on C, has infinite value. The
reason is that the offset δ(a, s, C) for action a = unstack(A,B) is infinite and no
solution exists if a is not applicable. More precisely, a threatens the commitment
〈stack(A,B), on(A,B), {Gd}〉, and the offset δ(a, s, C) implied by Equation 4.4 is at
least h(Gd|s, C). As every sequence of actions that achieves Gd contains action a2,
and a cannot come before Gd is added, Gd is unreachable and h(Gd|s, C) =∞.

4.3.5 Disjunctive Commitments

For the purpose of the presentation, we have made a simplification that we now
correct. From the description above, it is clear that an action a can introduce
commitments 〈a, pi, Bi〉 for more than one effect pi of a. This will be the case
when the preconditions of the actions in the relaxed plan involve more than one
effect of a. The heuristic h(G|s, C) and the notions above are all correct provided
that this situation does not arise. On the other hand, when it does, the above
definitions interpret multiple commitments 〈a, pi, Bi〉 in C for a common action
a conjunctively, as if each such commitment must be respected. This, however,
is too restrictive. If a adds two relevant effects p1 and p2, this rules out the
possibility that a is the causal support of p1 in the plan but not of p2.

For example, consider the instance shown in Figure 4.3 where a block A must
be placed on top of block C, given that A is on B, and B on C. In such a case,
the action a = unstack(A,B) is done in order to get the precondition clear(B) of
unstack(B,C), but not for getting the precondition hold(A) of stack(A,C). Thus, in
PROBE, multiple commitments 〈a, pi, Bi〉 for the same action a in C are treated not
conjunctively, but disjunctively. Based on the relaxed plan in the figure, action a
adds the disjunctive commitment 〈a, clear(B), {clear(C)}〉 ∨ 〈a, hold(A), {on(A,C)}〉.
It is assumed that every action in a probe is made with some purpose encoded
by a commitment, but not with all purposes that are possible.

We adapt previous definitions in order to account for disjunctive commit-
ments. First, an action threatens a disjunctive commitment if it violates every
commitment of the same disjunction.

Definition 4.6 (Disjunctive Causal Commitment Threat). Given a node n = 〈s, C〉,
an action a applicable in s is a threat to a disjunctive commitment 〈b, pi, Bi〉, i =
1, . . . , nb, where these are all the commitments involving the action b in C, when a
threatens each one of them; i.e. it deletes each pi without adding any fluent in Bi,
for i = 1, . . . , nb.

1 δ(a, s, C) = ∞ if in order to consume any of the commitments 〈ai, pi, Bi〉 in C threatened by
a, it is necessary to violate one of such commitments 2 The dummy goal Gd is added only
by action END with preconditions on(A,B) and on(B,C), thus given Equations 4.1 and 4.3
h(Gd|s, C) = h(END|s, C) = h(on(A,B)|s, C) + h(on(B,C)|s, C). The fluent on(B,C) is reachable
only if we allow sequences that contain unstack(A,B).
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Figure 4.3: Blocks world example of a disjunctive causal commitment. The
relaxed plan is induced by h(G|s, C).

The offsets δ(a, s, C) for the heuristic h(G|s, C) must be defined as:

δ(a, s, C)
def
=

{
0 if a violates no disjunctive commitment in C
maxb maxi=1,nb

minq∈Bi
h(q|s, C) otherwise (4.5)

where 〈b, pi, Bi〉, i = 1, . . . , nb, nb ≥ 1, constitute the disjunctive commitments
threatened by action a. The new term maxi=1,nb

states that the delay of a disjunc-
tive commitment is the maximum among the elements of the disjunction. Finally,
a commitment is consumed or generated as follows:

Definition 4.7 (Consume(a,n)). An action a consumes a disjunctive commitment
〈b, pi, Bi〉 with a common action b in n = 〈s, C〉 if a adds a fluent in some Bi (whether
or not a deletes pi). If a is not a threat to any disjunctive commitment 〈b, pi, Bi〉 in
C, i = 1, . . . , nb, these are updated by removing from C the individual commitments
〈b, pi, Bi〉 violated by a.

Note that after an action a updates individual threatened commitments 〈b, pi, Bi〉,
at least one such commitment must remain in the disjunction involving action
b, otherwise according to Definition 4.6 a will be considered to violate the dis-
junctive commitment. Moreover, a cannot be a helpful action in this case, as the
heuristic will be h(G|s, C) 6= 0 due to the delay imposed by δ(a, s, C). Thus, dis-
junctive commitments may eventually evolve into single commitment as actions
discard incompatible possible commitments from previous actions.

Definition 4.8 (generate(a,n)). An action a generates a disjunctive commitment
〈a, pi, Bi〉 in n = 〈s, C〉, if pi is a fluent added by a, and Bi is the set of fluents added
by actions in the relaxed plan π+ in n that have pi as a precondition.

The size of the disjunction generated by an action a is at least 1 and at most
the number of fluents pi added by a that appear in the relax plan π+. If no fluent
pi appears in π+, a is not helpful and it is not considered as a possible successor
of a probe.

The commitments C ′ in the node n′ = 〈s′, C ′〉 that follows the action a in node
n = 〈s, C〉 are formed from C by removing the disjunctive commitments consumed
by a (the set of commitments 〈b, pi, Bi〉 with a common action b such that a adds
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a fluent in some Bi), by updating the rest of the disjunctive commitments in C,
and last, by adding the disjunctive commitments made by a (as already defined).

4.3.6 Subgoal Candidates

The subgoal candidates are the fluent landmarks of the problem. The overall pic-
ture for landmarks and their ordering is not too different from LAMA except that
we do not deal with disjunctive landmarks, nor with a landmark-based heuristic.
A minor difference is that we define and compute landmarks using a formulation
that is a slight variation of the set-additive heuristic (Keyder and Geffner, 2008;
Keyder et al., 2010).

The landmarks are computed as a preprocessing step using the equations
below, where L(p) and L(a) stand for the landmarks of fluent p and action a from
the given initial state s, and O(p) stands for the actions that add p:

L(p) =

{
{p} if p ∈ s
∩a∈O(p) L(a) otherwise (4.6)

where
L(a) = ∪q∈Pre(a)L(q)

Provided that all labels L(p), except for p ∈ s, are initialized to L(p) = ⊥ (‘unde-
fined’), and that no ‘undefined’ label is propagated, the computation converges
to labels L(p) that are sound and complete relative to the delete-relaxation. The
landmarks of the problem are then those in L(Gd), where Gd is the dummy goal.

Furthermore, landmarks can have precedence relations. Orderings over land-
marks are statements about the order in which they must be made true. In
the following definition, we use the notation s[o1, . . . , on] to denote the state that
results from applying the sequence of actions 〈o1, . . . , on〉. While many ordering
criteria have been proposed by Hoffmann et al. (2004), we take into account only
sound orderings that are valid in every possible plan:

Definition 4.9 (Orderings between landmarks). Given a planning problem Π =
〈F, I,O,G〉 and two landmarks L1 and L2.

• There is a natural ordering L1 → L2 if for any plan π = o1, . . . , on, I[o1, . . . , oj ] |=
L2 implies it exists i < j such that I[o1, . . . , oi] |= L1 .

• There is a necessary ordering L1 →n L2 if L1 → L2 and for any plan π =
o1, . . . , on, I[o1, . . . , oj ] |= L2 implies I[o1, . . . , oj−1] |= L1.

• There is a greedy necessary ordering L1 →gn L2 if L1 →n L2 and for any
plan π = o1, . . . , on, I[o1, . . . , oj ] |= L2, I[o1, . . . , oi] 6|= L2 for all i < j implies
I[o1, . . . , oj−1] |= L1.

• There is a goal ordering L1 →g L2 if all actions adding L1 e-delete L2 and
L1, L2 ∈ G.
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Intuitively, L1 → L2 states that L1 must be true before L2 is made true, L1 →n

L2 states that L1 is true immediately before L2, and L1 →gn L2 states that L1

must be made true immediately before L2, but only the first time L2 becomes
true. Every necessary ordering is greedy necessary but not vice versa, and every
necessary or greedy necessary ordering is natural but not vice versa (Hoffmann
et al., 2004).

Taking advantage of the notion that top goals must all be true at the same
time, goal orderings are computed for all pairs p, q ∈ G based on the notion of
e-deletes1. This is due to the fact that if all actions adding p e-delete q, one can
show then that the last action in a plan that achieves p and q jointly, must be the
action that adds q.

Natural orderings are inferred from labels L(p) such that p → q if p ∈ L(q).
Necessary and greedy necessary orderings can also be inferred from these labels:
p→n q if p ∈ L(q), and all achievers of q have p in their preconditions; and p→gn q
if p ∈ L(q), and all the first achievers of q have p in their preconditions. The first
achievers of q are those actions a for which q ∈ add(a) and q 6∈ L(a), i.e, q must not
be achieved before a adds q.

Other commonly used precedences between landmarks are the reasonable
and obedient reasonable orderings. We omit them from this work for two rea-
sons: these orderings are heuristic, they do not hold in every plan, and more
importantly, we subsume them through a more powerful heuristic method called
consistency that we introduce in the next section.

The landmarks in L(Gd) are ordered by means of a directed acyclic graph with
landmark orderings as arcs. In order to avoid redundant edges, natural orderings
p→ q are added to the graph only if p ∈ L(q), and p is not a landmark for another
r, r ∈ L(q). Namely, we can infer these orderings from the transitive closure of
the graph.

The set of achieved landmarks Achieved(L(Gd)) contains initially the land-
marks that are true in the initial state. A landmark L is added to the set when an
action adds it, and when all landmarks preceding L in the graph are in the set. A
landmark L is deleted from the set when an action deletes it, and L is a top goal
or L is a greedy necessary landmark L →gn L

′ for an unachieved landmark L′ 6∈
Achieved(L(Gd)). Analogously, The set Unachieved(L(Gd)) = L(Gd)\Achieved(L(Gd))
of unachieved landmarks in a state s are the landmarks in L(Gd) that are not in
the set of achieved landmarks.

Then, the subgoal candidates considered in nodes along the probe are ex-
tracted from the set of first unachieved landmarks FirstUnachieved(L(Gd)). These
are the unachieved landmarks that are not strictly preceded by any other un-
achieved landmark, that is, FirstUnachieved(L(Gd)) = { L | L ∈ Unachieved(L(Gd)) ∧
∀L′ →x L : L′ ∈ Achieved(L(Gd)) }. If every achieved landmark is deleted from the
landmark graph, the first unachieved landmarks would correspond to the roots
of the graph.

1 An action e-deletes a fluent when the fluent must be false after the action, or more precisely, when
the action either deletes the fluent, has a precondition that is mutex, or adds a mutex.
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Figure 4.4: Blocks world example of a Landmark Graph. The labels on edges
stand for the ordering type: n for necessary, g for goal. Landmarks in the current
state are omitted.

4.3.7 Consistent Subgoal Candidates

When a subgoal must be selected in a node n, it is chosen as the nearest first
unachieved landmark that is consistent relative to n. The notion of consistency,
adapted from Chapter 2, was previously used to prune applicable actions in ar-
bitrary states. Here we explore instead the conditions under which a subgoal
candidate can be pruned. We start with the notion of landmark chain induced by
the ordering relations in the landmark graph of the problem.

Definition 4.10 (Greedy Necessary Chain). A Greedy necessary landmark chain
is a sequence p1, p2, ..., pk, k ≥ 1 of landmarks pi ∈ Unachieved(L(Gd)), where p1 ∈
FirstUnachieved(L(Gd)), pi →gn pi+1, and pk →x r, r ∈ L(Gd) such that x 6= gn or
pk = Gd.

In other words, a greedy necessary chain is a sequence of unachieved land-
marks p1, p2, ..., pk, k ≥ 1, where p1 is a first unachieved landmark, pi is greedy
necessary for pi+1, and pk precedes a landmark but is not greedy necessary for it
or pk is the dummy goal Gd.1

A first unachieved landmark g is consistent in n = 〈s, C〉 if it heads a consis-
tent greedy necessary chain of unachieved landmarks. Intuitively, exploiting the
semantics of greedy necessary orderings, a greedy chain p1, . . . , pk is consistent
when it does not need to be broken; i.e, when the landmark pi+1 can be achieved
from the state si that results from achieving the precedent landmark pi, while
keeping pi true until pi+1 is true for i = 1, . . . , k − 1. Recall that all landmarks in
the chain are greedy necessary and have to be true until the next one is made
true. Indeed, it does not make sense to choose p1 as the next subgoal, in order to
achieve then p2, . . . , pk, if this chain of causal commitments cannot be sustained.

For example, given the landmark graph of Blocks World problem shown in Fig-
ure 4.4, where on(A,B) and on(B,C) must be achieved starting with both blocks
on the table; it does not make sense to adopt the ‘first unachieved landmark’
hold(A) that heads the greedy chain hold(A), on(A,B), Gd as a subgoal. Indeed,

1 A greedy chain can contain a single atom p1 if p1 complies with the conditions on pk. Recall also
that all necessary orderings are greedy necessary.



80 N. Lipovetzky

after achieving hold(A), either hold(A) or on(A,B) will have to be undone in order
to achieve Gd. Thus, while a greedy chain headed by a landmark p1 provides a
potential reason for selecting p1 as the next subgoal, the notion of consistency is
aimed at detecting that some of these reasons are spurious.

The definition of the conditions under which a greedy chain is consistent bor-
rows a number of ideas from Section 3.2, in particular, the notion of projected
states that provide a fast approximation of the state that results from the achieve-
ment of a given goal.

The criterion for checking if pi+1 can be achieved while preserving pi, is based
on projecting the node 〈si+1, Ci+1〉. It approximates the fluents that will be true
when pi+1 is achieved from si, without violating the commitments in Ci, and the
set of commitments that no action can consume.

Input: A planning problem Π = 〈F, I,O,G〉
Input: A relaxed plan extractor function RelPlan : P(F ) 7→ P(O)
Input: A mutual exclusivity function Mutex : P(F ) 7→ P(F )
Output: A relaxed plan π

π ← ∅
to-support← G
while to-support 6= ∅ do

π ← π ∪ {RelPlan (to-support)}
to-support← ∅
foreach p ∈ add(a) such that a ∈ π do

if p ∈ Mutex(G) and 6 ∃b ∈ π such that p ∈ del(b) then
to-support← to-support ∪ ¬p

return π

Figure 4.5: The mutually exclusive extended relaxed plan extraction algo-
rithm.

Given a greedy necessary landmark chain p1, . . . , pk, k ≥ 1 relative to a node
n = 〈s, C〉, the projected nodes ni = 〈si, Ci〉, are obtained differently for i = 1 and
i > 1. The projected node n1 = 〈s1, C1〉 is obtained from the relaxed plan π for
the goal G1 = {p1} from n. The state s1 is defined as s extended with the atoms p
added by the actions in π. Since some of these atoms are mutex with p1 they are
not added to s1 and, the process is iterated, as shown in Figure 4.5, by extending
the goal G1 and the relaxed plan π, until π includes actions that delete the atoms
in s1 that are mutex with p1; a process that can potentially add new atoms into
s1. Likewise, the set of commitments C1 true in the projected node n1 are those
in C, but with the commitments consumed by actions in π removed, and the
commitment 〈∅, p1, {p2}〉 added if p1 is not the last landmark in the chain.

The projected node ni+1 = 〈si+1, Ci+1〉 for the greedy chain pi, . . . , pk is defined
in a slightly different way for i > 1, as while the choice of the chain makes p1 the
first unachieved subgoal, it does not necessarily make p2 the second. Instead, af-
ter achieving p1, the probe may select other landmarks to achieve and only then
come back to p2. For this reason, si+1 is defined as the set of atoms reachable
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GBFS PROBE

Figure 4.6: Sketch of GBFS’ and PROBE’s state space expansion. In PROBE,
Squares are nodes generated by greedy best-first procedure, and circles by
probes.

from si that are not mutex with pi+1. Three type of actions a must be excluded in
this reachability analysis: those with infinite offsets δ(a, si, Ci), those that make
pi false without making pi+1 true, and those with pi+1 in the precondition. Sim-
ilarly, Ci+1 is obtained from Ci by removing the commitments consumed by the
remaining reachable actions, and adding the commitment 〈∅, pi+1, {pi+2}〉.

A greedy chain is defined to be consistent in node n = 〈s, C〉 as follows:

Definition 4.11 (Consistent Greedy Chain). Given the projected nodes ni = 〈si, Ci〉
for i = 1, . . . , k along a greedy chain p1, . . . , pk, with n0 = 〈s, C〉, the chain is consis-
tent if h(Gd|sk, Ck) 6=∞ and h(pi|si−1, Ci−1) 6=∞, for i = 1, . . . , k.

Note that if the last landmark pk of a chain p1, . . . , pk is the dummy goal Gd,
then h(Gd|sk, Ck) for that chain is either infinite, if it is inconsistent, or zero if it
is consistent.

Then, PROBE selects a subgoal g in n = 〈s, C〉 among the nearest first un-
achieved landmarks according to h(g|s, C) that head a consistent greedy chain.

4.3.8 Summary

PROBE is a greedy best-first planner that, throws a probe from the node n = 〈s, C0〉
where C0 is the empty set of commitments each time that a state s is expanded. In
order to understand the intuition on how PROBE explores the state space, Figure
4.3.8 gives a visual sketch of the state space generated by a standard greedy
best-first search and PROBE. The best-first search makes the planning algorithm
complete, while the probes are designed to reach the goal greedily and fast. A
probe is a sequence of actions that is computed without search by selecting at
each node n = 〈s, C〉 the action that is helpful to the subgoal g associated with n or
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Figure 4.7: The landmark graph for Sussman’s anomaly. The labels on edges
stand for the ordering type: n for necessary, g for goal. Landmarks in current
state are omitted.

the commitments C in n. A node n = 〈s, C〉 inherits the subgoal g from its parent
node in the probe, except when s achieves g or n is the first node of the probe.
In these two cases, the subgoal g is selected as the nearest first unachieved
landmark that heads a consistent greedy chain. Probes terminate in the goal or
in failure, and they are not allowed to visit states in memory (open or closed).
All the states expanded by failed probes are added nonetheless to the open list
of the best-first search algorithm. As we will see in the next section through
some examples, a single probe can solve problems with multiple conflicting goals
without search, choosing always the correct subgoals and action sequences to
achieve them.

4.3.9 Examples

PROBE is a ‘fine-grained’ planner that can solve many problems without search,
and thus it is illustrative to see its behavior over concrete instances. We discuss
3 different instances solved by a single probe from the initial state and 1 instance
solved by two probes.

Blocks World

The Sussman Anomaly is a Block World problem that starts with blocks b and
a on the table, and c on top of a, and requires some form of goal interleaving
for achieving the goals b on c and a on b. Indeed no goal can be tackled first
while leaving the other goal aside; progress towards the two subgoals needs to be
interleaved, which can defeat naive serialization schemes.

The landmark graph generated for this problem is shown in Figure 4.7. The
goal on(b,c) must be achieved before on(a,b), as the actions that add the first goal
e-delete the second. The landmarks of on(a,b) are hold(a), which is necessary for
on(a,b), and clear(a) which is necessary for hold(a). The goal on(b,c) is preceded
only by the necessary landmark hold(b). The two goals are in turn necessary for
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the dummy end goal Gd.
As described above, the first probe is launched from the initial state. First, it

must select a subgoal. The selection process computes the set of consistent first
unachieved landmarks and chooses the one with the lowest heuristic value. In
this case, the only consistent landmark is clear(a). The other first unachieved
landmark hold(b) is not consistent, as the heuristic h(Gd|s2, C2) over the pair
〈s2, C2〉 that results from the projection when on(b, c) is achieved in the greedy
chain hold(b), on(b, c), Gd, is infinite, meaning that from that state on(a, b) cannot
be achieved by maintaining on(b, c).

Once the subgoal clear(a) is selected, the action selection process is triggered.
There is one helpful action with respect to hold(a), unstack(c, a), which leaves the
subgoal at distance 0. The action a0 = unstack(c, a) adds the commitment

〈a0, clear(a), {hold(a)}〉

that can only be consumed by the action pickup(a) given that a is on the table.
Notice that committing to maintain clear(a) until hold(a) is achieved results in all
possible stack(X, a) actions being penalized with an offset by the heuristic.

In the resulting node, goal selection is triggered because the previous sub-
goal has been made true in the parent node. Among the two first unachieved
landmarks hold(a) and hold(b), only the latter is consistent. hold(a) is not con-
sistent as h(Gd|s3, C3) = ∞, where the pair 〈s3, C3〉 represents the state and
set of commitments resulting from the projection along the chain p1, p2, p3 =
hold(a), on(a, b), Gd

1. Once hold(b) is selected as the new subgoal, the helpful ac-
tions with respect to hold(b) and hold(a) are computed. Notice that though hold(a)
is not the current subgoal, helpful actions are computed for it as well, as it is a
goal of one of the active commitments. The only action that respects the current
commitments is then a1 = putdown(c), adding the commitment

〈a1, freearm, {hold(a), hold(b)}〉 .

As the current subgoal is not yet achieved in the resulting node, goal selec-
tion is skipped and the action selection procedure computes the helpful actions
with respect to hold(b) and hold(a). There are two actions: pickup(b) which leaves
the subgoal at distance 0, and pickup(a) that leaves the subgoal at distance 2.
Therefore, a2 = pickup(b) is selected, consuming the last commitment and adding
instead the commitment

〈a2, hold(b), {on(b, c)}〉 .
In the resulting node, goal selection is triggered again, selecting the top goal

on(b, c) and discarding hold(a), because it still does not begin a consistent greedy
chain. The only helpful action for on(b, c) and hold(a) is a3 = stack(b, c), which
consumes the last commitment, and adds the disjunctive commitment

〈a3, on(b, c), {g}〉 ∨ 〈a3, freearm, {hold(a)}〉 .

The probe continues, selecting the only possible new subgoal hold(a), which is
consistent because on(b, c) is already true in the current state. It then selects the
1 It is not possible to reach Gd because the precondition on(b, c) of the only action that adds Gd is
unreachable
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Figure 4.8: The landmark graph for the Suitcase problem. The label n on edges
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helpful action a4 = pickup(a) that consumes the two existing commitments (a0,
a3), and adds

〈a4, hold(a), {on(a, b)}〉 .

Finally the subgoal on(a, b) is selected, and the helpful action a5 = stack(a, b)
is applied, consuming the last commitment and adding 〈a5, on(a, b), {Gd}〉. The
probe ends successfully with the selection of the End action that adds that last
landmark, that stands for the dummy goal Gd.

Suitcase

The Suitcase benchmark consists of an agent whose goal is to move a metallic
suitcase. The agent can move through all connected cells except for those with
a metal detector if he is carrying the suitcase, and he can pickup the suitcase
only if he is at the same location. The actions available for the agent are Move
from one cell to another connected cell, pick up suitcase and put down suit-
case. Movement to cells with metal detectors has the precondition not holding
in the Move actions. For example in the instance shown in Figure 4.8, the ac-
tion move(l1, l2) has the preconditions at(robot, l1) and (notholding suitcase). Delete
relaxation based heuristics will guide the search towards the shortest path con-
necting the suitcase to its goal location without taking into account whether or
not the path has a metal detector. Thus, if the solution implies taking the longest
path, it will be typically the last one to be explored.

The landmark graph generated for the problem shown in Figure 4.8 consists
of the landmarks holding(suitcase) and at(agent, l4), which are necessary for the
goal landmark at(suitcase, l4).

The first probe is launched from the initial state where the agent and the
suitcase are at location l1. It first selects the subgoal holding(suitcase), since
the other first unachieved landmark at(agent, l4) is inconsistent. The only chain
at(agent, l4), at(suitcase, l4), Gd headed by at(agent, l4) is inconsistent since the
heuristic h(Gd|, s1, C1) over the pair 〈s1, C1〉 that results from the projection when
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the first landmark is achieved, is infinite, meaning that once at(agent, l4) is achieved
and maintained until at(suitcase, l4), there is no way to achieve holding(suitcase).
The projected pair 〈s1, C1〉 is constructed from the initial state s0 plus the atoms
added in the relaxed plan π+ = {move(l1, l2), move(l2, l3),move(l3, l4)} for at(agent, l4)
extended with actions that delete the mutex atoms of at(agent, l4): at(agent, x) for
x = l1, l2, l3. In this case no new actions are added into the relaxed plan, as all
the mutex atoms are already deleted by some action. The resulting projected
state is s1 = {at(suitcase, l1), at(agent, l4)} with commitment C1 = 〈∅, at(agent, l4),
{at(suitcase, l4)}〉 from which h(at(suitcase, l4)|s1, C1) =∞.

Once the subgoal holding(suitcase) is selected, the only helpful action is a0 =
pickup(l1), which achieves the subgoal and adds the commitment

〈a0, holding(suitcase), {at(suitcase, l4)}〉

that can only be consumed by the action putdown(l4). The only atom appearing
in the set B of the commitment 〈a, p,B〉 is at(suitcase, l4) because the only ac-
tion in the relaxed plan for the dummy goal Gd that requires holding(suitcase) is
drop(suitcase, l4). Notice that this commitment results in all drop(suitcase, x) for
any x different from l4 being penalized with an offset by the heuristic.

In the next node, goal selection is triggered as the previous subgoal is true
in n1. The first unachieved landmark at(agent, l4) is now consistent, and it is
selected as the next subgoal. The action selection mechanism is triggered again
and the only helpful action is a1 = move(l1, l5), adding the commitment

〈a1, at(agent, l5), {at(agent, l6)}〉

Note that the action move(l1, l2) is not applicable as it is penalized for e-deleting
holding (suitcase) and not adding at(suitcase, l4). The action selection is triggered
again six times until the subgoal at(agent, l4) is achieved, resulting in the action
sequence a2 = move(l5, l6), a3 = move(l6, l7), a4 = move(l7, l8), a5 = move(l8, l9), a6 =
move(l9, l10) and a7 = move(l10, l4) consuming the last commitment and adding

〈a7, at(agent, l4), {at(suitcase, l4)}〉

Finally the subgoal at(suitcase, l4) is selected and the action a8 = drop(suitcase, l4)
is suggested by the action selection process as the only helpful action for the ac-
tive subgoal. Action a8 consumes the two active commitments and adds 〈a8, at(suitcase, l4),
{Gd}〉. The probe ends successfully with the selection of the End action that adds
that last landmark, standing for the dummy goal Gd.

Gripper Unit and Gripper Infinite

Gripper Unit and Gripper Infinite are variations of the Gripper classical bench-
mark. It consists of a gripper with a single hand that can move to adjacent cells,
grab balls and deposit them in other locations. The difference between Gripper
Unit and Infinite, is the number of balls that a gripper can hold; in the former
a single ball while in the later an unlimited number of balls. Both examples
have the same single line grid initially with one ball in every cell and the gripper
standing in the middle of the line. The goal of both problems is to drop all of the
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Figure 4.9: Landmark graph for Gripper Unit and Infinite. The labels on the
edges stand for the ordering type: n for necessary, gn for greedy necessary. Land-
marks in the current state are omitted.

balls into the middle cell, where the gripper is initially located. Both problems
pose a challenge similar to the one posed by the Visit-All domain from Section
4.2, where heuristics based on the delete relaxation find themselves constantly
in search plateaus. Instead of illustrating the solution of a single probe over
Visit-All, we prefer to show the solutions for these two variations, as solutions to
Visit-All are achieved backtrack free only due to the nature of selecting the clos-
est subgoal and the action to achieve it, where commitments and the heuristic
do not play an important role.

The landmark graph shown in Figure 4.9 for the problem over a line of five
cells l1, . . . , l5, with the gripper located at l3 and balls located at every li for
i = 1, . . . , 5, is the same for both gripper unit and infinite, where the goal is to
place every object in cell l3, which is the cell in the middle of the line. The ob-
jects are denoted by b,r and l standing for ball, robot and location respectively.
The goals at(bx, l3) are necessary landmarks for Gd

1, and hold(bx) are necessary
landmarks for their respective at(bx, l3) for x = 1, . . . , 5. The landmark at(r, l1) is
greedy necessary for hold(b1), and at(r, l2) is greedy necessary for both at(r, l1) and
hold(b2). Similarly, at(r, l5) is greedy necessary for hold(b5), and at(r, l4) is greedy
necessary for both at(r, l5) and hold(b4). Note that the last ordering relations
are greedy necessary because they hold only the first time that the landmark is
achieved. For example, the first time hold(b1) is achieved, the robot has to be
at l1, which is the initial location of b1, but once b1 is held and moved to an-
other location, this relation does not stand anymore since at(r, l1) will not be true
necessarily right before holding the ball again.

Gripper Unit. First, we start explaining the behavior of a probe in the gripper
unit variation. The probe is launched from the initial state while selecting the first

1 Goal at(b3, l3) is omitted from the landmark graph because it is already true in the initial state and
does not affect the behavior of the probe in this example.
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subgoal. Both first unachieved landmarks at(r, l2) and at(r, l4) are consistent, and
at distance 1 according to the heuristic, thus one of them is selected randomly,
for example at(r, l4). Once the subgoal is selected, the action selection procedure
is triggered, applying the only helpful action a1 = move(l3, l4), which adds the
commitment

〈a0, at(r, l4), {hold(b4), at(r, l5)}〉
that can only be consumed by pick(b4) or move(l4, l5).

As the subgoal is already true in the resulting node, the subgoal selection com-
putes the consistent first unachieved landmarks. Again landmarks at(r, l5) and
hold(b4) are consistent and at the same distance 1, so at(r, l5) is chosen randomly.
The action a1 = move(l4, l5) is selected, consuming the previous commitment and
adding

〈a1, at(r, l5), {hold(b5)}〉
that can be consumed by pick(b5). Note that all move actions from l5 will be
penalized by this commitment while hold(b5) is not true.

The subgoal selection then sets hold(b5) as the next subgoal for being the clos-
est consistent first unachieved landmark at distance 1. The other two consistent
first unachieved landmarks at(r, l4) and at(r, l2) are at distance 2 and 4 respec-
tively. Note that while at(r, l4) is really at distance 1, (i.e., only action move(l5, l4)
needs to be applied) a penalty of 1 is added by the heuristic because this action
threatens the active commitment. 1 Once hold(b5) is selected, the only helpful
action a2 = pick(b5) is applied, consuming the active commitment and adding

〈a2, hold(b5), {at(b5, l3)}〉

The next consistent subgoal is at(b5, l3) and the action selection applies the
sequence a3 = move(l5, l4), a4 = move(l4, l3) and a5 = drop(b5) consuming all active
commitments and adding

〈a5, at(b5, l3), {Gd}〉
The next subgoal is selected among at(r, l2) and at(r, l4) again as both are con-

sistent and at distance 1, choosing at(r, l4) randomly. The action a6 = move(l3, l4)
is applied, adding the commitment

〈a6, at(r, l4), {hold(b4)}〉

This commitment is similar to the first commitment added in the probe, but with-
out at(r, l5) ∈ B because the atom not longer appears in the relax plan. The closest
consistent subgoal is hold(b4) and the action a7 = pick(b4) is applied consuming
the last commitment and adding

〈a7, hold(b4), {at(b4, l3)}〉

The next subgoal selected is then at(b4, l3), and the actions a8 = move(l4, l3)
and a9 = drop(b4) are applied, consuming the last commitment and adding

〈a9, at(b4, l3), {Gd}〉
1 The penalty is given by the cheapest h(p|s, C) among p ∈ B over the commitments threatened in C.
The only atom in B is p = hold(b5) with h(p|s, C) = 1, thus the penalty is 1.
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The other two balls b2, b1 located at l2, l1 respectively are achieved by following
a similar chain of decisions. Briefly, the subgoal at(r, l2) is selected and the action
a10 = move(l3, l2) is applied, adding 〈a10, at(r, l2), {hold(b2), at(r, l1)}〉. The subgoal
hold(b2) then, is selected randomly among hold(b2) and at(r, l1) for being both con-
sistent and at distance 1. Then, the action a11 = pick(b2) is applied, consuming
last commitment and adding 〈a11, hold(b2), {at(b2, l3)}〉, and the subgoal at(b2, l3) is
selected and achieved by actions a12 = move(l2, l3) and a13 = drop(b2), consum-
ing last commitment, and adding 〈a13, at(b2, l3), {Gd}〉. The last subgoals at(r, l1),
hold(b1), and at(b1, l3) are selected sequentially and achieved by the sequence
of actions a14 = move(l3, l2), a14 = move(l2, l1), a15 = pick(b1), a16 = move(l1, l2),
a17 = move(l2, l3), and a18 = drop(b1).

Gripper Infinite. We now explain the differences involved in solving the gripper
infinite variant. The first subgoals, commitments and actions are the same up
until the node resulting from the sequence a0 = move(l3, l4), a1 = move(l4, l5),
a2 = pick(b5), with the active commitment 〈a2, hold(b5), {at(b5, l3)}〉.

The next subgoal is at(r, l4), as it is the closest consistent first unachieved
landmark. Recall that previously this landmark was not consistent, and the
closest one was instead at(b5, l3). The landmark at(r, l4) leads the chain at(r, l4),
hold(b4), at(b4, l3) that is consistent now because the gripper can hold more than
one ball without threatening the active commitment. The action a3 = move(l5, l4)
is applied and adds the commitment

〈a4, at(r, l4), {hold(b4), at(r, l3)}〉

The closest consistent landmark then is hold(b4) at distance 1 while at(b5, l3)
lays at distance 2. The first landmark is selected and achieved through action
a5 = pick(b4), which adds the commitment

〈a5, hold(b4), {at(b4, l3)}〉

Then all first unachieved landmarks are consistent and at distance 2: at(b5, l3),
at(b4, l3) and at(r, l2). If the last landmark is selected, the probe will proceed by
grabbing the other two balls located at l1 and l2. If either at(b5, l3) or at(b4, l3)
is selected, the probe will drop the ball at l3 and it will be one step closer and
continue grabbing the other balls.

Bribery

The Bribery domain consists of an agent that has to get from one location to
another and may have to bribe police officers in some known locations. In order to
bribe a police officer, there may be some goods that the agent can grab. Consider
an instance where two paths x1, . . . , x10 and y1, . . . , y10 connect an initial location
a with a final location b. Starting from a the agent can go either to x1 or y1 and
from x10 or y10 to b, but at the beginning and end of both paths there is an officer
to bribe. The agent starts at location a holding res1 and there is another resource
res2 laying on the ground of location a. The agent can grab an infinite number
of resources, and indeed, it needs at least two resources to cross from a to b.
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Heuristics based on the delete relaxation do not realize the need to grab both
resources, and moreover, grabbing the second resource is not even considered
to be a helpful action while the agent holds the other. As probes rely on helpful
actions, they fail too. Aside from the helpful actions failing to suggest grabbing
the other resource, two other reasons make the probe fail: once it makes the
wrong choice of moving without grabbing the second resource, the probe is not
allowed to go back and amend the mistake in the same probe, as it is only allowed
to visit new states; and, there is no landmark other than the goal at(agent, b),
because there are two paths that the agent can take. This shows that the more
landmarks the problem has, the merrier, (i.e., as more subgoals are available,
the inference done by PROBE can be stronger). Indeed more subgoals such as
disjunctive landmarks of the form xi ∨ yi for i = 1, . . . , 10 can be inferred (Porteous
and Cresswell, 2002), and later we will discuss in Section 4.5 a simple way to
compile them into the problem in order to keep probe’s inference techniques
unchanged. Nevertheless, we now show how PROBE solves the problem with 2
probes.

The first probe is triggered from the initial state. We skip the goal selection
mechanism since the only available goal at(agent, b) is selected. The action se-
lection suggests the helpful action move(a, x1). Action move(a, y1) is not helpful
because the relaxed plan breaks ties randomly and chooses the path x1, . . . , x10.
Neither is action pick(res2) helpful, as the relaxed plan does not realize that res1
is deleted. The action a0 = move(a, x1) is applied and adds the commitment

〈a0, x1{x2}〉

Yet the subgoal is still active and the sequence of actions move(xi, xi+1) for
i = 1, . . . , 8 is applied, resulting in the robot at location x9 and commitment
〈a8, x9{x10}〉, from which the only helpful action a9 = move(x9, x10) results in a
state with an infinite heuristic. The reason for the heuristic to be infinite is due
to the commitment 〈a9, x10{b}〉 added by the last action, which implies that x10 can
be consumed only by the action move(x10, b). As crossing to b requires a resource
that is not available without moving from x10, the goal at(agent, b) is unreachable
and the probe fails. At this point, every state along the probe is added to the open
list of the greedy best first search without recomputing their heuristic value. We
could indeed recompute the heuristic h(Gd|s, C) with C = ∅ before adding those
states, but it has almost no impact on the overall performance. All states other
than the initial one have the same heuristic value of 13. For example, at every
state where the agent is at xi for i = 1, . . . , 10 without an available resource, the
distance from xi to the goal at(agent, b) as well as holding the resource located at
a, is always 12 plus a penalty of 1 for the action used to go back and violate the
commitment 〈ai−1, xi, {xi+1}〉. The distance from the initial state where the agent
is at a holding one resource is 11: the distance from a to b.

Once all states are in the open list, the greedy best-first search picks the initial
state as the most promising one. It then expands all its possible successors
resulting from actions pick(res2) and move(a, y1), (the two actions not considered
in the expansion done by the probe) and adds the expanded node into the closed
list. The node resulting from the first action is at distance 11, and the second is
at distance 12 given by h(Gd|s, C) with C = ∅. Both nodes are inserted in the open
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FF LAMA PROBE

Domain I S EHC EX S EX S 1P EX #P
Blocks World 50 42 42 9,193 50 1,077 50 50 40 1.0
Cyber 30 4 4 228 25 73 24 13 30 111.5
Depots 22 22 19 71,649 20 44,738 22 14 108 11.8
Driver 20 16 6 11,476 20 2,445 20 15 54 2.1
Elevator 30 30 30 1,429 30 666 30 25 114 1.2
Ferry 50 50 50 50 50 108 50 50 29 1.0
Freecell 20 20 14 1,506 20 2,071 18 7 261 35.1
Grid 5 5 5 301 5 174 5 5 59 1.0
Gripper 50 50 50 102 50 79 50 50 101 1.0
Logistics 28 28 28 94 28 97 28 28 55 1.0
Miconic 50 50 50 52 50 37 50 50 45 1.0
Mprime 35 34 34 23 4 12 34 33 7 1.0
Mystery 30 18 15 258 22 238 25 23 8 1.1
Openstacks 30 30 30 504 30 124 30 30 121 1.0
Openstacks-IPC6 30 30 30 968 30 146 30 30 139 1.0
Parc-Printer 30 30 21 173 24 409 27 21 49 9.7
Pegsol 30 30 0 15,287 30 5,174 29 1 1,681 864.7
Pipesworld-No-Tan 50 35 17 3,540 44 1,363 45 19 65 6.4
Pipesworld-Tan 50 22 4 46,189 39 40,015 41 16 1,055 108.7
PSR-Small 50 41 0 39,533 50 276 50 0 70 30.8
Rovers 40 40 40 10,341 40 1,750 40 38 114 1.1
Satellite 20 20 20 389 20 412 20 20 41 1.0
Scanalyzer 30 30 22 1,905 28 257 28 26 39 2.8
Sokoban 30 27 0 19,355 26 16,066 14 0 12,027 11,120.6
Storage 30 18 3 261,299 18 3,645 21 15 15 2.5
TPP 30 28 28 28,388 30 1,340 30 30 119 1.0
Transport 30 29 29 45,593 30 4,964 30 24 157 1.2
Trucks 30 11 6 135,863 16 169 9 0 2,762 2,818.4
Woodworking 30 17 12 1,329 30 7,040 30 30 31 1.0
Zeno Travel 20 20 18 148 20 482 20 20 50 1.0

Total 980 827 627 23,572 879 4,515 900 683 648
Percentage 84% 64% 89% 92% 70%

Table 4.2: PROBE vs. FF and LAMA on instances of previous IPCs: I is the number
of instances, S is the number of solved instances, EHC is number instances
solved by EHC, EX is the average number of expanded nodes, 1P is the number
of instances solved with one probe, #P is the average number of probes triggered.
EX is reported for problems solved by all three planners.

list and the second probe is triggered from the most promising one.

The node with the lowest value is the one resulting from action pick(res2)
applied in the initial state. Thus, the second probe is launched from the state
where the agent is at a holding both resources. The second probe selects the
only available goal at(agent, b) and finds the sequence that successfully achieves
it: move(a, x1) followed by move(xi, xi+1) for i = 1, . . . , 9 and move(x10, b). Note
that none of those nodes have been expanded in the first probe, as these states
contain the atom hold(res2).

As we will see in the next section, most IPC domains are solved with a single
probe, and only two domains require thousands of expansions and probes.
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FF LAMA PROBE

Domain I Q T Q T Q T
Blocks World 50 39 (9) 0.22 86 (1) 0.69 40 (2) 0.21
Cyber 30 30 (0) 0.74 30 (0) 48.48 30 (0) 1.46
Depots 22 47 (0) 38.28 52 (1) 46.58 42 (6) 3.01
Driver 20 34 (2) 11.73 37 (4) 1.32 50 (1) 0.99
Elevator 30 86 (4) 1.34 88 (0) 3.28 110 (0) 30.81
Ferry 50 28 (0) 0.01 29 (0) 0.18 29 (1) 0.02
Freecell 20 55 (7) 2.81 64 (0) 19.78 67 (1) 45.45
Grid 5 61 (1) 0.30 56 (1) 6.43 59 (1) 7.74
Gripper 50 76 (0) 0.01 76 (0) 0.26 101 (0) 0.06
Logistics 28 41 (1) 0.01 42 (0) 0.25 55 (0) 0.13
Miconic 50 30 (0) 0.01 30 (0) 0.15 45 (0) 0.02
Mprime 35 6 (1) 0.03 6 (0) 3.72 7 (0) 2.62
Mystery 30 7 (0) 0.08 6 (4) 2.36 8 (0) 1.21
Openstacks 30 136 (0) 0.46 145 (0) 3.03 139 (0) 20.22
Openstacks-IPC6 30 156 (0) 0.59 159 (0) 3.68 158 (0) 54.76
Parc-Printer 30 32 (0) 0.03 34 (0) 0.41 31 (0) 0.26
Pegsol 30 34 (0) 1.35 35 (0) 1.34 34 (0) 2.10
Pipesworld-No-Tan 50 28 (5) 0.45 37 (1) 1.04 33 (5) 0.35
Pipesworld-Tan 50 30 (8) 62.23 31 (2) 32.41 55 (5) 59.14
PSR-Small 50 17 (1) 60.96 17 (0) 0.89 20 (0) 0.07
Rovers 40 100 (4) 26.97 106 (1) 13.44 113 (0) 28.16
Satellite 20 38 (0) 0.10 39 (1) 0.90 41 (0) 0.86
Scanalyzer 30 24 (1) 1.89 24 (2) 8.52 24 (4) 6.15
Sokoban 30 141 (2) 0.82 138 (4) 3.52 160 (0) 96.71
Storage 30 16 (0) 49.90 20 (0) 1.62 15 (6) 0.08
TPP 30 122 (0) 42.41 104 (8) 6.91 119 (0) 20.88
Transport 30 28 (1) 133.52 27 (0) 41.23 26 (4) 42.27
Trucks 30 23 (0) 5.66 24 (0) 0.61 26 (0) 20.55
Woodworking 30 117 (1) 0.26 100 (15) 5.84 154 (0) 5.45
Zeno Travel 20 31 (13) 0.13 36 (1) 3.55 50 (0) 6.21

Total 980 54 14.77 56 8.75 61 15.26

Table 4.3: PROBE vs. FF and LAMA on instances of previous IPCs: I is the number
of instances, T is average time in seconds and Q is the average plan length. T
and Q are reported for problems solved by all three planners. In parenthesis is
the number of problems where each planner produces solutions that are at least
10% better than the other two planners

4.4 Experimental Results

We compare PROBE with FF and LAMA over a broad range of IPC domains. 1

PROBE is written in C++ and uses Metric-FF as an ADL to Propositional STRIPS

compiler (Hoffmann, 2003). LAMA is executed without the plan improvement
option, reporting the first plan that it finds. All experiments were conducted on a
dual-processor Xeon Woodcrest running at 2.33 GHz and 8 GB of RAM. Processes
time or memory out after 30 minutes or 2 GB. All action costs are assumed to be
1 so that the plan cost is equal to the plan length.

Table 4.2 compares PROBE with FF and LAMA over 980 instances from pre-
vious IPCs. In terms of coverage, PROBE solves 21 more problems than LAMA
and 73 more than FF. More remarkably, 70% of problems are solved with just
one probe (56 problems more than FF in EHC). Enhanced helpful actions provide
more actions than just those that are helpful to a single probe before giving up
and returning to GBFS. If enhanced helpful actions were not used, a single probe

1 FF is FF2.3, while LAMA is the version used in the 2008 IPC.
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Feature Off S 1P Q T
None 92% 70% 67.0 34.8
Probes 75% – 71.0 99.6
Consistency 91% 40% 91.4 56.9
Subgoaling 86% 44% 80.7 55.2
Commitments 90% 63% 85.0 39.0

Table 4.4: Ablation Study. The columns indicate the feature of PROBE that has
been turned off, the % of problems solved (S) and solved by a single probe (1P),
and the average plan length (Q) and time (T) in seconds. The averages are com-
puted over all problems solved by PROBE.

would solve 40 fewer problems, but just 10 fewer in the general dual search ar-
chitecture. There are several domains where PROBE solves more problems than
LAMA or FF, the largest difference being in Mprime due to LAMA’s parsing prob-
lems.1 On the other hand, the largest gain of LAMA and FF over PROBE is in
Sokoban, where LAMA and FF solve 12 and 13 more instances respectively.

Column #P shows the average number of probes required in each domain,
which corresponds to the number of nodes expanded in the greedy best-first
search (not the number of total expanded nodes that are shown). Interestingly,
this number is one in most domains, and large in three domains only; Sokoban,
Trucks, and Pegsol, where probes do not pay off.

A measure of the search effort is given by the number of nodes that each
planner expands over the instances solved by all three planners. LAMA expands
around 7 times more nodes than PROBE, and FF expands 36 times more. In some
domains this difference is even larger. In Depots, for example, LAMA (FF) solves
fewer instances than PROBE, but it expands 414 (663) times more nodes. This,
however, does not mean that PROBE is faster. One reason is the use of deferred
evaluation by LAMA, which leads to faster node expansions and fewer heuristic
evaluations. Another reason is the overhead in PROBE. Interestingly, FF is the
fastest in 18 out of the 30 domains, while LAMA and PROBE are each fastest in
6. The average plan length of the instances solved by the three planners is 61 for
PROBE, 56 for LAMA and 54 for FF. PROBE performes the worst in Sokoban and
Gripper, while best in Depots and Blocks (Table 4.3).

We have also evaluated the impact of the different design decisions made in
PROBE. The results are summarized in Table 4.4, where the columns show the
percentage of problems solved, the percentage of problems solved with a single
probe, the average plan length and time that results from dropping some feature
from PROBE; namely: the probes themselves, the subgoal consistent tests, the
subgoaling mechanism itself, and the commitments.2 In this table, the averages
are computed over the problems solved by PROBE with all of these features, and
thus they differ from the averages in the previous table computed over the prob-

1 Changing the domain definition of Mprime, allows LAMA to solve 35 instances. Pipesworld domains
were solved with LAMA 2010, as some bugs were fixed in order to parse them. 2 The removal of
the subgoaling mechanism means that the heuristic minimization used to select the next action, is
not done for the selected subgoal, but over all the possible first subgoals.
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lems solved by the three planners. As can be seen from the table, dropping the
probes from PROBE, (i.e., making it a standard greedy BFS planner) reduces the
coverage from 92% to 75%, while the times increase by a factor of 3. The removal
of consistent tests and the removal of the whole subgoaling mechanism, in turn,
do not affect coverage as much, but reduce the percentage of problems solved
with a single probe from 67% to 40% and 44%, while increasing times and lengths
by roughly 50% and 25% respectively. Likewise, if only commitments are dropped,
the loss is mainly on the average length of plans which jumps up 26%.

From these figures, a number of conclusions can be drawn. First, the use
of probes helps significantly along all relevant dimensions. Second, subgoal-
ing helps as well but only when used in combination with the consistency tests
(degradation from turning off consistency is similar to degradation from turning
off whole subgoaling mechanisms). Third, commitments help, but mainly to im-
prove the quality of the resulting plans; something that is achieved by keeping
track of the reasons for the introduction of the actions in the plan.

4.5 Limitations and Extensions

In this section we discuss some of the limitations and improvements that we
left out of PROBE to keep the design of probes as simple as possible. Generally,
such improvements had a small impact on overall performance even if they tackle
interesting limitations.

Probes map the original problem into a series of subproblems by inferring the
next subgoal to achieve from the set of landmarks. Serializations are built heuris-
tically by changing the original goal of the problem with a series of single land-
mark fluents. The experiments shown above suggest that most of the planning
benchmarks accept such serializations, as most of the domains can be solved
by single probes. When a probe fails it may be due to the non-decomposable
structure of the goal in a domain, or if decomposable, it may be that finding a
decomposition that renders the subproblems easy, involves more than the use
of landmarks. Tower of Hanoi is an example of the first situation where once a
subgoal is achieved, it has to be undone in order to achieve the remaining ones.
Sokoban is an example of the last situation, where even if serializations are easy
to find, the subproblems still contain many dead-ends and search plateaus. Gen-
erally, when more landmarks are available, the subproblems are more simple to
solve. Determining whether or not a fluent is a Landmark is PSPACE-complete
(Hoffmann et al., 2004), but if the problem does not contain deletes, determining
whether or not a fluent is a landmark is in P (Hoffmann et al., 2004). The method
we use for discovering single fluent landmarks finds the complete set relative
to the delete relaxation of the original problem, although small variations of the
same problem may render no fluent landmarks at all. For example, consider the
gripper domain, where a gripper has to move a number of balls from one room to
another. If the gripper has a single hand, every fluent such as hold(hand1, ball) is
a landmark, but if instead the gripper has two hands or more than one gripper
exists, there is not a single fluent landmark but a disjunctive landmark such as
hold(hand1, ball) ∨ hold(hand2, ball).
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Disjunctive fluent landmarks capture a wider range of subgoals, and although
being less committed than a single fluent subgoal, they may be useful for getting
better serializations. We do not include them in probes for simplicity. Thus, in-
stead of explicitly representing the knowledge of disjunctive landmarks, we use
an extension of the original problem that encodes the disjunction of atoms with
single fluents, (i.e., implicitly encoding disjunctive landmarks in the problem).
State-of-the-art planners ground the actions of a PDDL problem before attempt-
ing to solve it, (i.e., they transform predicates, objects, and constants into a
propositional representation). Predicates may have arguments as parameters
specifying the set of objects that make the grounded fluents, (e.g., a predicate
pred(arg1, arg2) where arg1 and arg2 refer to different sets of objects, is grounded
into propositional fluents taking the cross product of both sets). In order to in-
troduce fluents that represent the disjunction of the objects’ set (i.e., disjunction
of grounded fluents), we add to each set the symbol ∗. We call such predicates
the star-predicates. To enforce semantically that ∗ stands for any object of a set,
every action that adds a grounded fluent that contains an object in the set, also
adds the fluent with the symbol ∗. For example, in the Gripper domain, every
time the action pickup(armi, balli) adds the predicate hold(armi, balli), it also adds
the predicates hold(∗, balli), hold(armi, ∗) and hold(∗, ∗). The number of fluents of
the problem grows linearly. Note that we do not add such predicates in action
preconditions and deletes, so they do not add extra complexity to the problem and
they are just surrogates of the first time a disjunctive fluent is achieved. Not every
possible disjunction is captured, rather those that come from the same predicate
are, (i.e., we cannot capture disjunctions such as pred1(args)∨pred2(args)). When
the set of single fluent landmarks is computed over the transformed relaxed prob-
lem, star-predicates can appear as single fluent landmarks as well. Just a single
change is needed in order to account for such predicates in the inferences done
by the probes. When a star-predicate is selected as a subgoal and is achieved, the
commitment added to the probe should refer to the real predicate represented by
the star-predicate. As no action deletes any star-predicate, the commitment will
not be threatened by any action if we state that the star-predicate should be true
until some other predicate is made true. The impact of such disjunctions pay-off
experimentally in specific instances, but overall the impact is not substantial,
improving only slightly the overall plan quality.

Further heuristic orderings such as reasonable and obedient-reasonable or-
derings can be added to the landmark graph, but the results were not consistent.
In some domains they render better overall performance, in some worse.

Probes use a small variation of the additive heuristic, were a penalty is added
to actions that threaten active commitments. The definition of the penalty fits
perfectly with other known heuristics such as hmax or hFF , but none dominate
hadd in our experiments. When a probe fails, the nodes are inserted into the open
list of the greedy best-first search (GBFS) without recomputing their heuristic
values. When a node is expanded by GBFS it computes the heuristic with an
empty set of commitments. It is arguable that the heuristic value of such nodes
are different from the heuristic value of the nodes in the open list that come from
probes, where the set of commitments indeed is not empty. Thus, it may seem
to be appropriate to recompute the heuristic value of the nodes that come from
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probes before inserting them into the open list of the GBFS. But, as heuristics are
approximations of the distance from a given state to the goal, we treat the values
obtained along the probe as a similar approximation of the same value, and
indeed, in some instances, the penalties help to differentiate nodes that may be
treated as equally distant if they were expanded by GBFS. More importantly, it is
known that heuristic functions are computationally expensive, thus the outcome
of recomputing heuristic values does not pay off in our scheme. A more in-
depth analysis of the different strategies to incorporate nodes from the probes
into another search algorithm is out of scope of this work.

The commitments taken into account by the heuristic h(G|s, C) render the
goal unreachable from many states, even if they are not real dead ends. If a
state s is infinite given the set of commitments C but not if those commitments
are omitted, the right interpretation is that state s is a dead-end given that each
action ai in the commitments 〈ai, pi, Bi〉 is the last supporter of the atom p for
achieving an atom q in B. For example, consider a Blocks World instance where
a set of blocks x1, . . . , xn are in the table and the goal is to build a tower with the
block xn on the table and each xi on top of xi+1 for i = 1, . . . , n − 1. If the actions
pick(x1) and stack(x1, x2) are applied in the initial state, and the commitment
〈stack(x1, x2), on(x1, x2), {Gd}〉 is added, the resulting state is a dead-end given the
semantics introduced above. The commitment states that the action stack(x1, x2)
is the last supporter of fluent on(x1, x2) in order to achieve the dummy goal.
Indeed, if at this point on(x1, x2) is added for the last time, there is no possible
way to achieve the other goal on(x2, x3), as it would require undoing on(x1, x2),
violating the semantic implied by the commitment.

4.6 Conclusion

We have formulated and tested a new dual search architecture for planning based
on the notion of probes: single action sequences constructed greedily but care-
fully, that can quickly get deep into the state space, terminating in the goal or
in failure. The probes are used as part of a greedy best-first search algorithm
that throws a single probe from every state that is expanded. We have shown
that most IPC domains are solved with a single probe, while in a few difficult do-
mains such as Sokoban and Trucks, probes do not help and introduce overhead.
Overall, the performance of the planner is comparable with state-of-the-art plan-
ners such as FF and LAMA, while its coverage over the 980 planning instances
considered is slightly better (92% for PROBE vs. 84% and 89% for FF and LAMA
respectively).

The design of probes uses and extends a number of techniques developed in
modern planners that go well beyond the use of heuristic functions to guide the
search. They include helpful actions, landmarks, causal commitments, subgoals,
and consistency tests, all of which help in the greedy selection of the subgoal to
achieve next, and the actions needed to reach it.

From the success of probes and their computation, in which problems are
mapped into a series of subgoals that are heuristically computed along with the
probes, two conclusions can be drawn. The first is that most of the classical
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benchmarks admit good serializations of the landmarks under which the solu-
tion of the problems becomes simple. The second is that while not every seri-
alization is good, the mechanisms in PROBE and in particular the consistency
tests, appear to find good ones. These observations raise two questions. The first
is which methods are good for finding good serializations when they exist? PROBE

implements one such method but it is not necessarily the best such method, and
moreover, probes are greedy and incomplete. In Chapter 8 we develop an al-
ternative method for finding such serializations. The second question is which
methods are good for finding and exploiting serializations in problems that have
good but no perfect decompositions? The 8-puzzle is an example of this situation:
one can place the tile 1 in position 1, the tile 2 in position 2, but then one needs
to undo this last subgoal, in order to have tiles 2 and 3 at their target positions.

The ideas of goal serialization and problem decomposition have received a lot
of attention in search and in the early days of planning (Korf, 1987), and it may be
worth revisiting those ideas equipped with the techniques that have been devel-
oped more recently in planning research. The challenge is explicitly to recognize
and exploit the structure of problems that are nearly-decomposable, even if they
are not perfectly decomposable. Indeed, planning used to be defined originally
as being mainly concerned with those problems (Newell and Simon, 1963). While
the notion has practically disappeared from the modern language of planning, it
is still very much there: classical planners do best on those problems1, simply
because the heuristics used, like delete-relaxation heuristics, assume that prob-
lems are in fact decomposable. Nonetheless, there is the possibility that modern
planners could do better still on nearly-decomposable problems, if they would
more explicitly address and exploit the good but not perfect serializations that
such problems hide.

1 Planners can solve other problems too, but expanding much larger number of nodes, and not
scaling up as well.
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Chapter 5

The Classical Planner PROBE
in IPC-7

‘Beware of the man who works hard to learn
something, learns it, and finds himself no
wiser than before,’ Bokonon tells us. ‘He is
full of murderous resentment of people who
are ignorant without having come by their
ignorance the hard way.’

Cat’s Cradle.
Kurt Vonnegut

In this chapter we explain the changes introduced to PROBE for the sequential
satisficing track of the international planning competition IPC-7. The 14 domains
with 20 instances each, including costs and planners, had 6 GB of available
memory for reporting the best solution they found in 30 minutes.

5.1 Practical Improvements

The Sequential Satisficing track covers classical STRIPS planning (non-durative
actions) with actions having associated non-negative costs (not necessarily uni-
form). The goal of the track is to solve and find low-cost plans, where the cost is
defined as the sum of the costs of each plan’s actions.

The evaluation criteria emphasizes good plan quality and puts less emphasis
on solving time. If two plans are found within the time and memory limits, then
a plan with better quality, as defined by the objective function, will have a better
score. The objective function is the ratio between the best known solution divided
by the solution of the planner Q∗

Q for every solved instance.
In order to improve the performance of PROBE for the planning competition we

explain how probes are used in the dual search architecture, how costs are taken
into account and how once the first solution is found, the planner continues the
search in order to find better solutions.



98 N. Lipovetzky

5.1.1 GBFS + probes

In most classical benchmarks a single probe suffices to find a solution, suggest-
ing that most problems admit good serializations of landmarks. In problems with
no perfect serializations, such as Sokoban or 8-puzzle, many probes are needed
to find a solution and rather than boosting the GBFS loop, they slow down the
search algorithm. As puzzle-like problems tend to be solved by extensive search,
it is better to decrease the number of launched probes and let the GBFS control
the search. To behave properly in both kind of problems, we launch a probe every
R expanded nodes by the GBFS. When the search begins, R is initialized to 1.
R is increased according to the ’usefulnessÂt’ of a probe when it fails. A simple
approximation is to increase R by 1 when the tail state of the failed probe has an
heuristic estimation greater than the seed state. Intuitively, we decrease the rate
of probes launched in GBFS search, when a probe does not find the solution and
it does not decrease the distance to the goal.

5.1.2 Anytime search

In order to convert PROBE into an anytime planner, once it finds the first solution,
it iteratively triggers a Weighted A* with decreasing weights to get better plan
qualities. Each WA* is bounded by the best solution founded so far. WA* uses
|π(hadd)| heuristic, the size of the relaxed plan extracted by the cost sensitive
additive heuristic (Keyder, 2010).

5.1.3 Costs

In planning with costs, rather than optimizing plan length the planner needs to
optimize plan cost. In this planner, costs are treated in two different ways. First,
costs are ignored in the GBFS+probes phase in order to get a first quick solu-
tion. Avoiding the extra complexity added by taking into account costs, increases
coverage. The drawback is that the first solution quality may be worse. Thus, in
the bounded WA* phase, costs are taken into account through the cost sensitive
heuristic |π(hadd)|. We found that some problems could be solved by the cost sen-
sitive WA* only when they were bounded by the first solution that did not take
costs into account. The second phase improves the solution quality of the first
phase by taking costs into account.

An important issue appears with the presence of zero cost actions that can
lead to heuristic plateaus, in which the application of such operators do not
decrease the cost to the goal. In order to overcome those situations, we add a
base cost of 0.01 to all zero cost actions (Keyder, 2010).

5.2 IPC-7 performance

PROBE is written in C++ and uses Metric-FF as an ADL to Propositional STRIPS

compiler (Hoffmann, 2003). Results are taken from the 7th International Plan-
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planner pegsol scan. parc. openst. nomys. tidybot wood. sokoban trans. visitall elevators parking barman floortile total
lama-2011 20.00 18.12 19.30 18.58 9.92 14.71 14.64 17.22 15.74 16.51 10.28 18.11 17.70 5.49 216.33
fdss-1 18.49 18.52 18.68 16.86 11.26 16.09 19.99 17.05 12.22 3.97 12.52 14.79 16.34 5.30 202.08
fdss-2 14.44 17.86 18.31 16.94 11.21 16.08 19.82 16.67 9.37 2.12 14.50 15.28 16.81 6.60 196.00
fd-autotune-1 19.23 16.67 19.40 16.28 9.50 13.25 14.71 18.57 8.99 1.71 11.04 10.93 19.37 5.46 185.09
roamer 17.74 17.59 6.22 17.80 9.67 13.99 12.51 15.35 16.72 8.62 13.61 14.08 15.18 2.38 181.47
fd-autotune-2 19.95 15.95 13.57 19.09 18.36 15.89 10.24 15.93 8.79 4.14 16.17 7.19 4.01 8.87 178.15
forkuniform 19.90 14.88 19.28 16.22 10.45 12.44 14.49 17.35 6.61 5.19 18.01 14.59 4.47 4.02 177.91
probe 18.44 16.34 12.11 12.41 5.90 16.32 17.10 13.14 10.03 18.05 8.24 7.63 18.60 2.83 177.14
arvand 20.00 18.53 19.42 15.38 18.97 16.56 17.05 2.00 12.25 7.38 11.22 3.31 0.00 3.00 165.07
lama-2008 19.54 17.15 0.88 18.05 11.44 13.17 9.97 14.62 16.44 17.59 4.94 13.86 3.60 2.07 163.33
lamar 19.36 16.71 2.55 17.96 11.46 16.67 13.63 12.99 9.17 9.17 7.34 14.76 5.08 2.36 159.20
randward 19.58 15.68 1.00 18.93 8.55 15.57 13.83 14.01 4.46 10.92 4.29 10.55 2.06 2.00 141.43
brt 12.68 17.77 5.17 3.75 5.75 14.91 1.64 7.66 9.65 2.13 13.84 4.42 13.83 2.82 116.01
cbp2 16.64 2.29 5.00 13.29 4.00 13.78 1.63 11.39 12.16 10.82 7.34 0.00 0.00 0.00 98.34
daeyahsp 4.00 14.23 15.70 0.00 9.67 0.00 6.32 0.00 15.48 19.71 0.00 0.00 5.72 4.39 95.23
yahsp2 9.46 8.08 17.70 0.00 6.70 0.00 9.65 0.00 10.92 18.09 0.00 5.24 5.85 3.29 94.97
yahsp2-mt 7.43 7.63 10.95 0.00 9.61 0.00 12.41 0.00 11.39 18.18 0.00 1.73 7.55 4.08 90.95
cbp 16.58 2.29 5.00 11.30 4.00 13.83 0.49 10.55 5.73 10.82 4.86 0.00 0.00 0.00 85.43
lprpgp 12.43 10.63 6.86 7.21 7.26 0.00 0.00 8.51 0.00 2.82 4.56 3.89 1.81 1.09 67.07
madagascar-p 12.98 11.30 18.31 0.00 13.93 6.60 0.71 1.50 0.60 0.00 0.00 0.00 0.00 0.00 65.93
popf2 6.39 13.65 13.58 0.00 8.22 0.00 2.51 4.92 0.00 2.82 4.73 2.40 0.00 0.67 59.88
madagascar 11.83 7.11 18.88 0.00 12.98 0.73 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51.98
cpt4 1.00 3.00 14.00 0.00 15.00 0.00 14.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 47.85
satplanlm-c 6.00 5.92 15.04 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 29.96
sharaabi 11.88 0.00 5.26 2.81 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.00 0.00 0.00 20.52
acoplan 17.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.41 0.00 0.00 0.00 0.00 19.33
acoplan2 17.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.00 19.09
total 391.63 307.90 302.18 242.85 236.79 230.58 228.65 219.43 196.71 193.49 168.04 162.78 157.98 66.73

Table 5.1: Best quality ratio scores IPC-7

ning Competition official data. 1 Table 5.1 shows the performance of each par-
ticipating planner using the objective function Q∗

Q that takes into account only
the quality of the best solutions found. Each column stands for a different do-
main and the last column shows the total score for each planner. The maximum
score that a planner can get if it finds the best solutions for every instance of a
domain is 20.00, as 20 instances are available for each domain. Thus the overall
possible maximum score is 280.00. PROBE outperformed LAMA-2008 but did not
perform as well as the last version of LAMA-2011, and in fact, 6 other planners
also outperformed it. The best 10 planners were all implemented on top of the
FD framework except for PROBE. As we will show in the next tables, PROBE per-
formed poorly due mainly to the fact that the anytime algorithm responsible of
improving the first solution was much slower than planners implemented on FD,
where almost all of them adopted a similar anytime algorithm.

Table 5.2 shows the same quality ratio, but instead takes into account only
the first solution reported by each planner. PROBE was the second best performer,
outperformed only by LAMA-2011. The only difference from the previous table is
that the anytime behavior is not taken into account. Thus, if only the greedy best
first search with probes alone is compared to the first solutions found by other
planners, the score is much higher, suggesting that indeed the anytime algorithm
of PROBE did not compete well with the implementation of FD based planners.

Table 5.3 shows the ratio between the fastest solution and the solution given
by each planner. PROBE is the second best performer with nearly the same score
as LAMA-2011, suggesting that the computationally intense inferences employed
during the construction of probes, pay off compared to planners that perform a
more exhaustive search.

Finally, Table 5.4 shows the coverage of each planner, where again PROBE is
the second best performer, solving 233 out of 280 instances.
1 source: http://www.plg.inf.uc3m.es/ipc2011-deterministic/Results
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planner pegsol scan. parc. openst. nomys. tidybot wood. sokoban trans. visitall elevators parking barman floortile total
lama-2011 15.77 13.08 17.03 15.44 17.04 17.17 12.07 16.92 15.60 8.65 17.52 15.32 17.94 4.83 204.37
probe 16.35 11.66 8.73 18.48 14.21 9.25 16.82 13.56 13.77 4.35 13.21 17.71 19.40 4.02 181.54
fdss-2 15.32 10.95 15.24 18.40 16.68 13.21 13.40 8.57 17.57 9.26 15.75 2.20 14.22 6.55 177.33
fd-autotune-1 14.04 11.19 16.86 15.30 17.49 13.77 10.99 8.89 15.78 7.18 13.80 0.86 16.87 6.03 169.03
roamer 15.53 11.38 3.87 12.56 14.75 14.54 12.38 16.95 14.73 8.55 15.32 8.75 15.36 1.98 166.66
fdss-1 13.10 9.93 14.64 13.19 17.06 12.84 12.82 9.00 13.11 8.70 15.17 2.25 14.68 4.23 160.72
forkuniform 10.25 12.81 13.92 16.26 16.99 14.05 11.46 6.34 16.98 8.41 15.55 2.96 3.89 4.24 154.11
lama-2008 14.08 13.53 0.47 8.73 13.99 15.28 10.86 17.79 4.57 10.15 15.07 17.67 3.65 2.20 148.02
fd-autotune-2 10.74 12.86 10.48 9.26 14.32 16.71 13.13 6.51 15.32 16.59 6.83 1.98 4.33 8.78 147.84
lamar 13.86 12.73 1.78 13.38 12.63 15.24 14.46 9.87 8.81 10.17 18.03 9.00 5.02 1.91 146.88
randward 12.69 14.65 0.64 13.60 14.57 16.03 13.92 4.18 5.27 6.76 15.03 13.13 2.02 1.59 134.09
arvand 16.08 14.74 13.40 12.37 1.77 11.56 14.64 10.15 12.51 16.02 2.70 5.53 0.00 2.04 133.53
brt 14.04 8.49 3.38 1.50 6.61 2.83 15.10 11.30 16.38 4.15 6.25 3.65 15.67 3.07 112.42
yahsp2-mt 8.92 12.10 8.77 12.21 0.00 0.00 0.00 14.14 0.00 7.89 2.31 18.73 8.75 6.23 100.04
yahsp2 10.15 6.02 14.56 9.35 0.00 0.00 0.00 14.20 0.00 5.33 6.14 17.28 5.57 4.40 92.98
cbp2 1.63 9.24 3.80 1.69 10.39 12.59 12.71 12.38 9.21 3.62 0.00 9.47 0.00 0.00 86.74
daeyahsp 9.49 10.53 12.15 4.51 0.00 0.00 0.00 12.38 0.00 7.55 0.00 14.45 5.88 5.07 81.99
cbp 1.63 8.68 3.80 0.46 9.93 12.18 12.67 9.36 6.02 3.62 0.00 9.47 0.00 0.00 77.84
lprpgp 10.23 8.37 5.79 0.00 8.32 10.65 0.00 0.00 11.07 4.82 5.77 1.67 1.55 1.12 69.37
madagascar-p 12.04 9.82 17.37 1.00 1.64 0.00 6.99 0.94 0.00 12.15 0.00 0.00 0.00 0.00 61.95
popf2 11.22 3.60 10.32 2.12 4.63 0.00 0.00 0.00 5.64 5.76 3.01 1.67 0.00 0.67 48.62
madagascar 6.85 6.72 17.44 1.00 0.00 0.00 0.71 0.00 0.00 12.86 0.00 0.00 0.00 0.00 45.59
cpt4 2.03 0.00 11.17 15.48 0.00 0.00 0.00 0.00 0.00 13.81 0.00 0.00 0.00 0.00 42.49
satplanlm-c 4.26 2.26 11.98 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 21.50
sharaabi 0.00 6.75 4.22 0.00 0.00 3.64 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 15.04
acoplan2 0.00 8.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 9.44
acoplan 0.00 8.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 9.22
total 260.27 259.79 241.81 216.28 213.01 211.55 205.15 203.42 202.76 199.34 187.46 174.72 154.81 68.96

Table 5.2: Quality of first solution ratio scores IPC-7

planner pegsol scan. parc. openst. nomys. tidybot wood. sokoban trans. visitall elevators parking barman floortile total
lama-2011 11.33 19.77 10.42 16.86 6.41 17.15 11.98 10.35 10.99 7.34 7.79 8.72 13.99 2.17 155.27
probe 10.35 12.65 15.00 15.29 2.45 11.55 5.71 11.76 14.22 17.25 8.11 8.66 18.59 3.15 154.74
fdss-2 16.74 17.98 11.16 13.71 7.74 14.12 7.83 13.31 10.35 8.66 4.58 1.75 5.99 3.35 137.26
fd-autotune-1 8.77 18.60 10.81 14.33 6.23 15.45 12.18 10.63 8.98 6.71 4.80 0.60 8.77 2.74 129.59
roamer 10.00 2.98 9.42 11.23 8.31 11.63 10.09 9.69 11.08 8.08 7.36 7.31 10.69 0.94 118.81
lamar 10.91 1.34 10.57 15.53 10.31 6.45 10.96 8.87 16.10 8.76 4.87 6.15 3.96 0.91 115.68
forkuniform 11.42 9.93 6.53 16.92 6.75 11.49 10.20 12.41 10.13 7.86 4.36 1.84 1.73 2.08 113.67
fd-autotune-2 11.85 10.93 5.51 8.42 11.84 12.08 10.11 8.80 4.04 8.02 3.60 1.32 1.61 5.71 103.84
randward 14.13 0.47 8.08 15.12 6.45 3.72 9.13 11.15 13.10 8.87 2.60 7.89 1.00 0.68 102.40
yahsp2-mt 14.53 11.47 14.61 10.74 7.03 0.00 0.00 0.00 2.40 0.00 13.96 17.43 4.31 5.58 102.07
lama-2008 12.24 0.62 9.56 7.31 10.13 2.98 9.77 9.22 10.35 6.82 7.88 10.05 3.19 1.63 101.76
fdss-1 7.47 12.75 7.82 7.29 6.24 8.32 8.00 9.81 8.81 6.89 4.19 1.66 8.72 1.66 99.63
yahsp2 13.21 19.68 15.34 7.73 4.46 0.00 0.00 0.00 3.92 0.00 17.39 13.33 2.02 2.40 99.48
madagascar-p 19.17 20.00 14.90 1.00 14.27 0.00 0.00 1.43 0.00 6.38 0.76 0.00 0.00 0.00 77.91
arvand 12.63 5.80 8.11 7.40 9.23 8.07 7.23 0.78 1.65 8.04 4.44 3.27 0.00 0.80 77.46
brt 8.75 3.22 8.22 1.40 2.72 12.72 1.84 2.41 4.13 10.07 6.46 2.80 8.03 1.63 74.38
lprpgp 11.69 6.54 15.08 0.00 4.35 9.92 13.91 3.95 4.06 0.00 0.00 2.00 0.59 0.58 72.68
cbp2 8.70 2.70 1.39 1.63 2.66 5.99 12.37 6.22 0.00 7.40 5.90 4.97 0.00 0.00 59.92
cbp 8.15 2.74 1.48 0.60 3.10 4.62 13.01 5.60 0.00 7.34 5.24 4.97 0.00 0.00 56.84
madagascar 7.04 20.00 6.85 1.00 13.10 0.00 0.00 0.00 0.00 0.53 0.00 0.00 0.00 0.00 48.52
daeyahsp 6.49 9.68 4.90 2.66 4.73 0.00 0.00 0.00 0.00 0.00 5.37 5.65 2.12 2.17 43.76
popf2 6.29 9.93 9.49 2.20 3.65 4.02 0.00 2.00 2.15 0.00 0.00 1.87 0.00 0.35 41.93
cpt4 0.31 9.26 0.97 12.51 9.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.41
satplanlm-c 1.67 9.66 3.12 0.00 2.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.58
sharaabi 6.22 4.44 0.00 0.00 0.00 0.27 2.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.91
acoplan 8.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 9.05
acoplan2 7.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 8.12
total 266.29 243.11 209.34 190.88 163.67 160.54 157.30 138.39 136.45 135.00 119.67 113.21 95.30 38.53

Table 5.3: First solution time ratio scores IPC-7
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planner pegsol scan. parc. openst. nomys. tidybot wood. sokoban trans. visitall elevators parking barman floortile total
lama-2011 20.00 20.00 20.00 20.00 20.00 19.00 20.00 16.00 10.00 20.00 20.00 19.00 20.00 6.00 250.00
probe 20.00 20.00 14.00 20.00 14.00 20.00 20.00 18.00 6.00 20.00 19.00 17.00 20.00 5.00 233.00
fdss-2 20.00 20.00 20.00 20.00 19.00 15.00 20.00 18.00 12.00 6.00 20.00 19.00 17.00 7.00 233.00
fdss-1 20.00 20.00 20.00 20.00 19.00 15.00 20.00 17.00 12.00 6.00 20.00 19.00 18.00 6.00 232.00
fd-autotune-1 20.00 20.00 20.00 20.00 20.00 11.00 20.00 15.00 10.00 2.00 19.00 19.00 20.00 7.00 223.00
roamer 18.00 20.00 7.00 20.00 20.00 19.00 17.00 16.00 10.00 10.00 19.00 16.00 18.00 3.00 213.00
forkuniform 20.00 18.00 20.00 20.00 18.00 10.00 20.00 15.00 11.00 7.00 19.00 18.00 5.00 6.00 207.00
lamar 20.00 20.00 3.00 20.00 20.00 14.00 13.00 19.00 12.00 11.00 20.00 14.00 6.00 3.00 195.00
fd-autotune-2 20.00 17.00 14.00 14.00 20.00 10.00 17.00 17.00 19.00 5.00 9.00 16.00 6.00 9.00 193.00
arvand 20.00 20.00 20.00 20.00 20.00 15.00 20.00 17.00 19.00 10.00 4.00 2.00 0.00 3.00 190.00
lama-2008 20.00 20.00 1.00 14.00 20.00 19.00 6.00 14.00 12.00 20.00 20.00 15.00 4.00 3.00 188.00
randward 20.00 18.00 1.00 20.00 20.00 8.00 9.00 18.00 9.00 20.00 20.00 16.00 3.00 2.00 184.00
brt 13.00 20.00 6.00 2.00 4.00 17.00 20.00 19.00 6.00 8.00 10.00 8.00 20.00 4.00 157.00
yahsp2 14.00 19.00 20.00 15.00 0.00 20.00 0.00 0.00 7.00 20.00 9.00 0.00 8.00 6.00 138.00
yahsp2-mt 15.00 17.00 13.00 19.00 0.00 20.00 0.00 0.00 10.00 20.00 3.00 0.00 12.00 8.00 137.00
cbp2 17.00 5.00 5.00 3.00 20.00 20.00 16.00 18.00 4.00 15.00 0.00 12.00 0.00 0.00 135.00
cbp 17.00 5.00 5.00 1.00 20.00 17.00 10.00 18.00 4.00 15.00 0.00 11.00 0.00 0.00 123.00
daeyahsp 14.00 17.00 16.00 8.00 0.00 20.00 0.00 0.00 10.00 20.00 0.00 0.00 8.00 7.00 120.00
lprpgp 20.00 18.00 7.00 0.00 19.00 0.00 19.00 0.00 8.00 4.00 9.00 10.00 2.00 2.00 118.00
madagascar-p 20.00 18.00 20.00 1.00 0.00 2.00 0.00 10.00 15.00 0.00 0.00 2.00 0.00 0.00 88.00
popf2 9.00 18.00 16.00 3.00 0.00 0.00 11.00 0.00 9.00 4.00 5.00 5.00 0.00 1.00 81.00
madagascar 17.00 11.00 20.00 1.00 0.00 0.00 0.00 1.00 17.00 0.00 0.00 0.00 0.00 0.00 67.00
cpt4 1.00 3.00 14.00 19.00 0.00 0.00 0.00 0.00 15.00 0.00 0.00 0.00 0.00 0.00 52.00
sharaabi 19.00 0.00 6.00 0.00 7.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.00
satplanlm-c 6.00 7.00 16.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 32.00
acoplan2 18.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 20.00
acoplan 18.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 20.00
total 456.00 391.00 324.00 300.00 300.00 291.00 279.00 266.00 250.00 247.00 245.00 238.00 187.00 88.00

Table 5.4: Number of problems solved in IPC-7
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Part III

Structure
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Chapter 6

Width

Hubo una vez un Rayo que cayó dos veces en
el mismo sitio; pero encontró que ya la
primera había hecho suficiente daño, que ya
no era necesario, y se deprimió mucho.

Once there was a Flash of Lightning that
struck in the same place twice. But it found
that it had done enough damage the first time
round and was no longer necessary, and it
got very depressed.

El Rayo que cayó dos veces en el mismo sitio.
Augusto Monterroso

Various approaches have been developed for explaining the gap between the
complexity of planning (Bylander, 1994), and the ability of current planners to
solve most existing benchmarks in a few seconds (Hoffmann and Nebel, 2001;
Richter and Westphal, 2010). Existing proposals, however, do not appear to ex-
plain the apparent simplicity of the standard domains. In this Chapter, we in-
troduce a new type of width parameter for planning that bounds the complexity
of a planning domain in terms of the goal structure of the problem. This offers
a new approach for understanding the complexity of classical domains. In order
to define the new notion of width w(Π), we first define a new parametric graph Gi
of problem Π, and then prove the width of the most known benchmark domains,
provided that goals are restricted to single atoms.

6.1 Tuple Graph

Many graphs have been introduced in classical planning to reason about the
structure of a problem. For instance, planning graph was introduced to rea-
son about possible valid plans allowing interfering actions to appear at the same
time-step, and then searching for valid plans in the graph through conflict anal-
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ysis among mutually exclusive actions (Blum and Furst, 1995). Planning graphs
are also related to the computation of delete relaxation based heuristics and the
extraction of helpful actions. Another example is the causal graph. In multival-
ued domain representations, this graph captures the dependencies of variables
through action conditions and effects. The domain transition graph instead stud-
ies the dependencies between the values of each multivalued variable (Helmert,
2004). Both have been widely used in classical planning for deriving new heuris-
tics (Helmert and Geffner, 2008; Helmert, 2004) and new complexity results (Katz
and Domshlak, 2008).

The tuple graph belongs to the same family of graphs that encode the struc-
tural features of a problem. More precisely, the tuple graph encodes reachability
relations over tuples t that represent conjunctions of atoms.

For simplicity we assume that action costs are all 1. Thus, plan cost is equal to
plan length, and the optimal plans are the shortest ones. We write Π(t) to denote
the planning problem that is like Π but with goal t. In order to define the tuple
graph, the key question is when a tuple t′ can be regarded as a ‘successor’ of a
tuple t in Π. We will define indeed that t′ is a successor of t if every optimal plan
for t can be extended into an optimal plan for t′ by adding just one action 1. Note
that the ‘side-effects’ of the optimal plans for t can be used to achieve t′ optimally
from t. We refer to the side-effects of t as the set of atoms that will be true in
every optimal plan that achieves t.

This is formalized below in terms of tuple graphs Gi, where T i stands for the
collection of tuples from Π with a size no greater than a given positive integer i:

Definition 6.1. For Π = 〈F, I,O,G〉 , Gi is the graph with vertices from T i defined
inductively as follows:

1. t is a root vertex in GI iff t is true in I,

2. t→ t′ is a directed edge in Gi iff t is in Gi and for every optimal plan π for Π(t)
there is an action a ∈ O such that π followed by a is an optimal plan for Π(t′).

Definition 6.2. A path t0, t1, . . . , tn is in Gi when t0 is true in the initial situation
and any optimal plan for tk can be extended by means of a single action into an
optimal plan for tk+1, 0 ≤ k < n.

In other words, the presence of the tuple t′ of at most i atoms in the graph
Gi, indicates that either t′ is true in I or that there is another tuple t of at most i
atoms in Gi such that all the optimal plans π for t yield optimal plans for t′, once
a suitable action a is appended to π.

The directed graph Gi is acyclic because an edge t → t′ implies that the opti-
mal cost for achieving t′ is the optimal cost of achieving t plus 1. Since we are
associating plan cost with plan length, this means also that a tuple at depth k in
the graph has optimal cost k.

As an illustration of this definition, consider a problem Π = 〈F, I,O,G〉 with
the following actions, where the expression a : X → Y denotes an action a with
preconditions X and postconditions Y (negated if they are deleted):

1 If this is taken to represent the presence of an action a in Π such that the regression of t′ through
a is in t, the reachability relation on tuples ends up being too weak.
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a : p1 → p2 ; b : p2 → p3 ; c : q1 → q2 ; d : p2, q2 → q3 .

If I = {p1, q1} and F comprises all of these fluents, the graph Gi for i = 1 is
defined over vertices drawn from T 1, the tuples that contain a single atom from
F . If we denote such tuples by the single atom that they contain, then the graph
will feature the atoms p1 and q1 as roots, along with the edges p1 → p2, p2 → p3,
and q1 → q2. The roots are true in the initial situation, while all optimal plans for
p1 can be extended with a single action (a) into optimal plans for p2, all optimal
plans for p2 can be extended with a single action (b) into optimal plans for p3,
and finally all optimal plans for q1 (the empty plan) can be extended with a single
action (c) into optimal plans for q2.

Note that the tuple corresponding to the atom q3 does not make it into the
graph G1. This is because there is no tuple t of size 1 in the graph such that
the optimal plans for t can be extended by means of a single action into optimal
plans for t′ = {q3}. Indeed, q2 is false in the optimal plans for p2, and p2 is false in
the optimal plans for q2. The tuple q3, however, makes it into the graph G2. This
is because the tuple t = {p2, q2} that belongs to T 2 makes it into the graph G2,
as the optimal plans for either t′′ = {p2} or t′′′ = {q2} can be extended by means
of a single action into optimal plans for t, and likewise, the optimal plans for
t = {p2, q2} can be extended by a single action into optimal plans for t′ = {q3}.

Below we will show that if an atom appears in the graph Gi for a low value of
i, then the atom will be easy to achieve, and moreover, that in most benchmark
domains, all of the atoms appear in Gi for low values of i.

The reasons for bringing in optimality considerations, and moreover, for re-
quiring all optimal plans for t to be extensible by means of a single action into
optimal plans for t′ for adding the edge t → t′ in the graph, will become appar-
ent below. Indeed, in this setting, we will see why optimality requirements make
things easier, not harder.

6.2 Width Definition

Let us say now that a goal formula G1 optimally implies goal formula G2 in a
problem Π, if all of the optimal plans for G1 are also optimal plans for G2.

Definition 6.3 (Optimal Implication, |=∗). A goal formula G1 optimally implies a
goal formula G2 in a problem Π, denoted as G1 |=∗ G2, if all optimal plans for G1

are also optimal plans for G2.

Note that this is not the standard logical implication that requires G2 to be
true in all reachable states where G1 is true, and hence to be an invariant. The
Optimal Implication G1 |=∗ G2 uses implicitly the information in the initial sit-
uation and the actions of Π, that is, the set of atoms that will be true in ev-
ery optimal plan that achieves G1. For example, in the Blocks World domain if
on(b, a) is true in the initial situation (regardless of whether other blocks are ini-
tially on b), the goal G1 = {ontable(b)} does not logically imply the conjunctive goal
G2 = {clear(a), handfree}. Yet, G1 |=∗ G2 in Π. In such a case, the last two actions
for optimally achieving ontable(b) are unstack(b, a) and putdown(b). The result is
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that both clear(a) and handfree will hold in the resulting state, and moreover, that
there is no cheaper way to get both atoms from such an initial situation. Note,
however, that G1 = {ontable(b)} does not imply the single atom G2 = {clear(a)}
in Π, as the cost of clear(a) is the cost of G1 minus one; namely, unstack(b, a)
already achieves clear(a), and while the action putdown(b) is needed for achieving
G1, it is not needed for achieving G2. Consider another simple example where
G1 = {clear(a)} and G2 = {holding(b)}. In that case G1 |=∗ G2, yet is not an invari-
ant either. The examples show that the focus on optimality allows us to capture
inferences that go beyond the purely logical inferences that are warranted in the
domain.

Provided with the notion of goal optimal implication, we define the width of a
planning problem Π and, more generally, the width of an arbitrary goal formula
φ relative to Π, as follows:

Definition 6.4 (Width of formula φ). For a formula φ over the fluents in Π that is
not true in the initial situation I, the width w(φ) of φ relative to Π is the min w such
that Gw contains a tuple t ∈ Gw that optimally implies t |=∗ φ. If φ is true in I, its
width is 0.

Definition 6.5 (Width of problem Π). The width of a planning problem Π, w(Π), is
the width of its goal G relative to Π.

As in the case of graphical models, the width of a problem will give us a bound
on the complexity of solving the problem:

Theorem 6.6. Given a problem Π, if w(Π) = i, Π can be solved optimally in time
that is exponential in i.

This result establishes a bound on the complexity of a planning problem in
terms of its goal structure. We later describe an algorithm that achieves this
bound and runs in time exponential in the width of the problem.

Of course, the crucial question is whether or not there are interesting planning
problems that have a bounded, and hopefully small width. The answer is that
indeed, most domain benchmarks appear to have a small width independent of the
size of the problems, provided that the problem goal G is restricted to a single atom.
Of course, this result does not settle the complexity of the existing benchmark
instances, where goals are not single atoms. As far as we know, however, it is
the first formal result that places the complexity of these benchmarks squarely
in terms of the goal structure, and not on the domain structure.

6.3 Low Width Benchmarks

Some of the classical benchmarks are easily provable to have a low constant
bounded width k for atomic goals G. Most of the proofs show that a chain
t0, t1, . . . , tn that optimally implies every possible atomic goal, independent of the
initial state, exists in the tuple graph Gk for k = 1, 2. A chain exists in Gk if the
maximum size of a tuple ti in the chain is |ti| ≤ k, and optimally implies a goal G
if the last tuple optimally implies the goal tn |=∗ G.
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Theorem 6.7. The domains Blocks World, Logistics, Gripper, and N-puzzle have a
bounded width of 2 independent of the problem size and initial situation, as long
as the goals are restricted to single atoms.

Proof. (The width of single atoms in the Blocks World domain is at most 2) Given
a goal G, we will prove w(G) ≤ 2 for single atoms (|G| = 1) in Blocks World, first
by showing that the width of goals like clear(b) and ontable(b) is 1, while the max
width for an atomic goal is 2, which results in formulas such as on(a, b). Let us
prove first w(G) = 1 for G = ontable(b). Clearly, if G is true in the initial situation,
then the tuple G will belong to the graph Gi for i = 1. Thus, assume that G is not
true initially, and let b1, . . . , bn−1 be the blocks on top of b, starting from the top,
and let b = bn. According to Definition 6.2, in order to prove w(G) = 1 we need to
show that a path which optimally implies G, such as

clear(b1), hold(b1), ontable(b1), hold(b2), . . . , ontable(bn)

makes it into G1.
This is trivial in this case. First, the only optimal plan for clear(b1), the empty

plan, can be extended into an optimal plan for hold(b1) by means of the single
action unstack(b1, b2). Then, optimal plans for hold(bi) can always be extended
with the action putdown(bi) into optimal plans for ontable(bi), while the optimal
plans for ontable(bi) from the above situation can all be extended with the action
unstack(bi+1, bi+2) into optimal plans for hold(bi+1), for i = 1, . . . , n − 1. Finally, the
last hold(bn) can be extended into an optimal plan for ontable(bn) with the action
putdown(bn). Thus, the path exists in G1 and w(ontable(b)) = 1.

The same path proves that w(clear(b)) = 1, as explained in Definition 6.3,
hold(bn−1) optimally implies clear(b), where all optimal plans for hold(bn−1) are
optimal plans for clear(b).

To complete the proof for Blocks, consider the achievement of a goal G =
on(a, b) from an arbitrary initial situation where the goal is false. We should
consider three possible cases:

• blocks a1, . . . , an above a, and blocks b1, . . . , bm above b

• block cn above a and b above c1 for c1, . . . , cn

• block cn above b and a above c1 for c1, . . . , cn

In all three cases, there is no tuple in G1 that implies G. For the first setting, the
reason that w(on(a, b)) is not 1 is that some optimal plan for ontable(bm) cannot
be extended by means of a single action into optimal plans for hold(a), as the
former do not imply preconditions that are required such as clear(a). Indeed, in
all the optimal plans for ontable(bm) in such settings, on(an, a) remains true from
the initial situation. In the second setting, some optimal plan for hold(a) cannot
be extended to on(a, b), as some blocks ci might be on top of b. In the last setting,
all optimal plans for hold(a) imply that c1, . . . , cn are on top of b. By considering
pairs, this problem is removed.

We will prove that w(G) is not 1 but actually 2. In the first setting, a path to
consider in the graph G2 is that which starts with any tuple t0 true in I, e.g.,
clear(b1), and then has the sequence of 2n pairs (tuples of two atoms)
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(hold(a1), clear(b1)), (ontable(a1), clear(b1)), . . .

. . . , (hold(an), clear(b1)); (ontable(an), clear(b1))

followed by the sequence of 2m pairs

(ontable(an), hold(b1)), (ontable(an), ontable(b1)), . . .

. . . (ontable(an), hold(bm)); (ontable(an), ontable(bm))

completed by a pair and a singleton tuple

(hold(a), clear(b)), (on(a, b)) .

We need to check that for any edge ti → ti+1 in this path t0, . . . , tk, k =
2 + 2n + 2m, i < k, all the optimal plans for ti can be extended by means of a
single action into optimal plans for t+1. For the first sequence, optimal plans
for (hold(ai), clear(b1)) can be extended into optimal plans for (ontable(ai), clear(b1))
with putdown(ai), while optimal plans for (ontable(ai), clear(b1)) can be extended
with unstack(ai+1, ai+2) into optimal plans for (hold(ai+1), clear(b1)). The optimal
plans for the last tuple of the first sequence can be extended into optimal plans
for the first tuple (ontable(an), hold(b1)) with unstack(bi, bi+1), i = 1, which can
be extended with action putdown(bi) for tuples (ontable(an), ontable(bi)). Finally,
optimal plans for (ontable(an), ontable(bm)) can be extended with pickup(a) for
(hold(a), clear(b)), and then be extended with stack(a, b) for the last tuple on(a, b).
Thus, w(G) = 2 for the first setting.

In the second setting, a path to consider in the graph G2 is that which starts
with tuple clear(b) followed by the sequence of singleton tuples

(hold(b)), (ontable(b))

then followed by the sequence of 2n pairs (tuples of two atoms)

(hold(c1), clear(b)), (ontable(c1), clear(b) . . .

. . . , (hold(cn), clear(b)); (ontable(cn), clear(b))

completed by a pair and a singleton tuple

(hold(a), clear(b)), (on(a, b))

For the first sequence, optimal plans for (clear(b)) can be extended into optimal
plans for ((hold(b)) with only unstack(b, c1), while optimal plans for (hold(b)) can be
extended with only putdown(b) into optimal plans for (ontable(b)). The optimal
plans for the last tuple of the first sequence can be extended into optimal plans
for the first tuple (hold(c1), clear(b)) with action unstack(c1, c2). Then, optimal plans
for (hold(ci), clear(b)) can be extended into optimal plans for (ontable(ci), clear(b))
with putdown(ci), while optimal plans for (ontable(ci), clear(b)) can be extended
with unstack(ci+1, ci+2) into optimal plans for (hold(ci+1), clear(b)). Finally, optimal
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plans for (ontable(cn), clear(b)) can be extended with pickup(a) for (hold(a), clear(b)),
and then can be extended with stack(a, b) for the last tuple on(a, b). Thus, w(G) = 2
for the second setting as well.

In the last setting, a path to consider in the graph G2 is that which starts with
tuple clear(a) followed by the sequence of singleton tuples

(hold(a1)), (ontable(a))

then followed by the sequence of 2n pairs

(ontable(a), hold(c1)), (ontable(a), ontable(c1)), . . .

. . . (ontable(a), hold(cn)); (ontable(a), ontable(cn))

completed by a pair and a singleton tuple

(hold(a), clear(b)), (on(a, b)) .

For the first sequence, optimal plans for (clear(a)) can be extended into optimal
plans for ((hold(a)) with only unstack(a, c1), while optimal plans for (hold(a)) can
be extended with only putdown(a) into optimal plans for (ontable(a)). The optimal
plans for the last tuple of the first sequence can be extended into optimal plans for
the first tuple (ontable(a), hold(c1)) with action unstack(c1, c2). Then, optimal plans
for (ontable(a), hold(ci)) can be extended into optimal plans for (ontable(a), ontable(ci))
with putdown(ci), while optimal plans for (ontable(a), ontable(ci)) can be extended
with unstack(ci+1, ci+2) into optimal plans for (ontable(a), hold(ci+1)). Finally, opti-
mal plans for (ontable(a), ontable(cn)) can be extended with pickup(a) for (hold(a),
clear(b)), and then can be extended with stack(a, b) for the last tuple on(a, b). Thus,
w(G) = 2 for the last setting as well.

It is important to notice that without the restriction to optimal plans this rea-
soning would not get through. Optimality is key for predicting what will be true
when a subgoal is achieved, and this capability is central for decomposing plans
into subplans, which is what tuple graphs do.

Recall that in general, in order to prove that the width of a domain is bounded
by a constant k for a goal G, one needs to show that a graph Gi for some i ≤ k
contains a path t0, . . . , tn such that all optimal plans for tn are optimal plans for
G. Often it is not necessary to fully specify the tuples ti in such paths.

Proof. (The width of single atoms in the N-puzzle domain is at most 2) To show
that the width of the singleton goals at(tile, pos) in the sliding puzzles is 2, we
take the tuples ti to be the pairs (at(tile, pos), at(blank, pos)) encoding the position
of tile and blank at time i in some optimal plan π for at(tile, pos). We show that
any optimal plan πi for ti can be extended into an optimal plan πi+1 for ti+1 by
appending one action a. Clearly, the physical action that mapped ti into ti+1 in
π, is the action that moved the blank from its position in ti to its position in ti+1,
and this is indeed the physical action that is needed to transform πi into πi+1.
Now, the name or identity of action a in STRIPS will depend on: the position pi of
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the blank in ti, the position pi+1 of the blank in ti+1, and the name of the tile that
is sitting in pi+1 after πi. Yet, we know that such an action exists, and this is all
that is needed in order to prove that w(at(tile, pos)) is bounded by 2.

Proof. (The width of single atoms in the Logistics domain is at most 2) The task in
the logistics domain is to transport several packages from their initial location to
their desired destinations. Packages can be moved by trucks among locations in
the same city, and by planes among airports located in different cities. In order
to load a package into a truck (or plane), the package has to be located at the
same position as the truck (or plane). Then the truck (or plane) can move and
unload a package at its destination.

The width of goals like at(Truck, Loc) and at(Plane, airport) is 1, while the max
width is 2 for the atomic goal at(Pkg, Loc). Let us prove first w(G) = 1 for G =
at(Truck, Loc). We assume that G is not true in the initial situation, as the tuple
G would belong to the graph Gi for i = 0. Assume that a location path L1, . . . , Ln is
the shortest trajectory from the initial location of the Truck and the final location
Ln = Loc. We can show that the path

at(Truck, L1), at(Truck, L2), . . . , at(Truck, Ln)

makes it into G1, as the optimal plans for at(Truck, Li) can be extended with the
action Move( Truck, Li, Li+1) into optimal plans for at(Truck, Li+1). The proof for
G = at(Plane, airport) follows from the same path that makes it into G1, where
instead of Truck we have Plane.

To complete the proof, consider the achievement of a goal G = at(Pkg, Lg)
from an arbitrary initial state where truck location at(Truck, Loct) and package
location at(Pkg, Lp) are all different Lt 6= Lp 6= Lg. For simplicity we consider just
one truck, but the same reasoning holds for many trucks, selecting the closest
one to the package as the only truck, used in the proof. In this case, there is no
tuple in G1 that implies G. If the problem is solvable, there is a path L1, . . . , Ln

where L1 and Ln are the initial truck Lt and package Lp locations respectively
connecting the truck and the package, and a path L′1, . . . , L

′
m where L′1 and L′m

are the initial Lp and goal Lg package locations. We consider paths in the graph
G2 that start with a tuple that is true in I and then has the sequence of n pairs
(tuples of two atoms)

(at(Trk, L1), at(Pkg, Ln)), (at(Trk, L2), at(Pkg, Ln)), . . .

. . . , (at(Trk, Ln), at(Pkg, Ln))

followed by the sequence of m pairs and 2 singletons

(at(Pkg, Trk)), (at(Trk, L′2), at(Pkg, Trk)), . . .

. . . , (at(Trk, L′m), at(Pkg, Trk)), (at(Pkg, L′m))

For the first sequence, optimal plans for (at(Trk, Li), at(Pkg, Ln)) can be ex-
tended into optimal plans for (at(Trk, Li+1), at(Pkg, Ln)) with the action Move(
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Truck, Li, Li+1). The optimal plans for the last tuple can be extended into an opti-
mal plan for the first tuple of the second sequence by applying action load(Pkg, Trk).
Then applying Move( Truck, L′i, L

′
i+1) extend the optimal plans for the following tu-

ples until (at(Trk, L′m), at(Pkg, Trk)). Finally, an optimal plan for (at(Pkg, L′m)) can
be achieved by extending the last optimal plan with the action unload(Pkg, Trk).

In the case of having the package goal location Lg in a different city than the
initial location Lp, we need the use of an airplane. For this case, a path leading
to G also exists in G2. Assuming that the airport location of the city that contains
location Lp is L′m (the same location of the last tuple from the previous sequence,
where a plane is at(Plane, L′m), and the airport of the goal location is at L′′), we
extend the previous path with the tuple sequence

(at(Plane, L′m), at(Pkg, P lane)), (at(Plane, L′′), at(Pkg, P lane)), ((at(Pkg, L′′))

that can be extended optimally for each tuple with the actions Load(Pkg, P lane),
fly(Plane, L′m, L

′′), and unload(Pkg, P lane) respectively. Moving the package from
L′′ to the goal location with a truck can be achieved with a similar sequence that
we have shown to be in G2. If the plane is in a different location than the initial
airport, we have to interleave the last two sequences with a path that moves the
plane to the right location, similar to moving a truck from one location to the
other.

Proof. (The width of single atoms in the Gripper domain is at most 2) We prove
w(G) ≤ 2 for single atoms in Gripper by showing that the width of goals like
atRobot(l) is 1, while the width of atBall(l) is at most 2. Let us prove first w(G) = 1
for G = atRobot(l). Assume that G is not true initially and that the robot is located
in room lI , such that atRobot(lI) is different from the goal atRobot(lG). Recall that
all the locations are connected by a single action move. According to Definition 6.2
any path

atRobot(x), atRobot(y)

makes it into G1 as all locations can be achieved optimally by a single action.
Thus, w(atRobot(l)) = 1 for any l.

To complete the proof, we show that w(G) ≤ 2 for G = atBall(lG). Consider the
achievement of G from an arbitrary initial situation where the goal is false and
the initial location of the robot lR is different from the ball lB. There is no tuple
in G1 that implies G. The reason is that all optimal plans for a robot at location
lG do not imply the other required precondition CarryBall for achieving G. We
will prove that w(G) is not 1, but 2. A path in the graph G2 that optimally implies
G can be one that starts with the tuple atRobot(lR) and then has the sequence of
pairs and a singleton tuple

(atRobot(lB), atBall(lB)), (atRobot(lB), CarryBall),

(atRobot(lG), CarryBall), (atBall(lG))
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Optimal plans for (atRobot(lR)) can be extended into optimal plans for (atRobot(lB),
atBall(lB)) with only move(lR, lB), and then extended to optimal plans for (atRobot(lB),
CarryBall) with action pickBall(lB). Optimal plans again can be extended from
(atRobot(lB), CarryBall) to optimal plans for (atRobot(lG), CarryBall) with move
(lB , lG) to finally extend it with putBall(lG) into an optimal plan for (atBall(lG)).
Thus, w(G) = 2 for G = atBall(l). The setting where the ball and the robot
are initially in the same location follows the same proof where the first tuple
is (atRobot(lB), atBall(lB)) instead of atRobot(lB).
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Chapter 7

Iterated Width

Salomon saith, There is no new thing upon
the earth. So that as Plato had an
imagination, that all knowledge was but
remembrance; so Salomon giveth his
sentence, that all novelty is but oblivion.

Francis Bacon

In this chapter we prove experimentally that many standard domain bench-
marks have low width, provided that goals are restricted to single atoms. We
present a blind search algorithm that runs in both time and space exponentially
on the problem width. We also show that the algorithm can be used to approx-
imate a lower bound on the real width of the problem, and give experimental
results of the approximated width of all standard domains.

7.1 Iterated Width Algorithm

We turn now to the planning algorithm that achieves the complexity bounds
expressed by Theorem 6.6. The algorithm, called Iterated Width search (IW ),
consists of a sequence of calls IW(i) for i = 0, 1, 2, . . . over a problem Π until the
problem is solved. Each iteration IW(i) is an i-width search that is complete for
problems whose width is bounded by i, and its complexity is O(ni), where n is the
number of problem variables. If Π is solvable and its width is w, IW will solve Π
in at most w + 1 iterations with a complexity O(nw). IW(i) is a plain forward-state
breadth-first search with just one change: right after a state s is generated, the
state is pruned if it does not pass a simple novelty test that depends on i.

Definition 7.1 (novelty). A newly generated state s produces a new tuple of atoms
t iff s is the first state generated in the search that makes t true. The size of the
smallest new tuple of atoms produced by s is called the novelty of s. When s does
not generate a new tuple, its novelty is set to n+1 where n is the number of problem
variables.
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In other words, if s is the first state generated in the search that makes an
atom p true, its novelty is 1. If s does not generate a new atom, but instead
generates a new pair (p, q), its novelty is 2, and so on. Likewise, if s does not
generate a new tuple at all because the same state has been generated before,
then its novelty is set to n + 1. The higher the novelty measure, the less novel
the state. The iterations IW(i) are plain breadth-first searches that treat newly
generated states with a novelty measure greater than i as if they were ‘duplicate’
states:

Definition 7.2. IW(i) is a breadth-first search that prunes newly generated states
when their novelty measure is greater than i.

Notice that IW(n), when n is the number of atoms in the problem, prunes only
truly duplicate states and it is therefore complete. On the other hand, IW(i) for
lower i values prunes many states and is not complete. Indeed, the number of
states not pruned in IW(1) is O(n) and similarly, the number of states not pruned
in IW(i) is O(ni). Likewise, since the novelty of a state is never 0, IW(0) prunes
all of the child states of the initial state s0, and thus IW(0) solves Π iff the goal
is true in the initial situation. The resulting planning algorithm IW is a series of
i-width searches IW(i), for increasing values of i:

Definition 7.3. Iterated Width (IW) calls IW(i) sequentially for i = 0, 1, 2, . . . until
the problem is solved or i exceeds the number of problem variables.

Iterated Width (IW ) is thus a blind-search algorithm similar to Iterative Deep-
ening (ID) except for two differences. First, each iteration is a pruned depth-first
search in ID, and a pruned breadth-first search in IW . Second, each iteration
increases pruning depth in ID, and pruning width or novelty in IW .

We have only considered planning problems where actions have uniform costs.
However, the algorithm presented so far extends naturally to non-uniform costs
provided that the breadth-first search in IW is replaced by a uniform-cost search,
(e.g. Dijkstra).

From the considerations above it is straightforward to show that IW like ID
is sound and complete. On the other hand, while IW(w) is optimal for a problem
Π of width w, IW is not necessarily so. The reason is that IW may solve Π in an
iteration IW(i) for i smaller than w.

As an illustration, consider the following problem, where the goal G of width 2
is achieved non-optimally by IW(1) when I = {p1, q1} and the actions are ai : pi →
pi+1 and bi : qi → qi+1 for i = 1, . . . , 5, along with b : p6 → G and c : p3, q3 → G.
Indeed, IW(2) achieves G optimally at cost 5 using the action c, yet this action is
never applied in IW(1), where states that result from applying the actions ai when
qj is true for j > 1 are pruned, and states that result from applying the actions
bi when pj is true for j > 1 are pruned also. As a result, IW(1) prunes the states
with pairs such as (p3, q2) and (p2, q3), and does not generate states with the pair
(p3, q3), which are required for reaching G optimally. IW(1), however, reaches G
at the non-optimal cost 7 using the action b.

Nonetheless, the completeness and optimality of IW(w) for problems with
width w provides the right complexity bound for IW:
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Theorem 7.4. For solvable problems Π, the time and space complexity of IW are
exponential in w(P ).

It is important to realize that this bound is achieved without knowing the
actual width of Π. This follows from the result below:

Theorem 7.5. For a solvable problem Π with width w, IW(w) solves Π optimally in
time exponential in w.

Proof. The time bound is direct, as the number of states generated in IW(w) is
bounded by b · nw, where b is the branching factor of the problem and n is the
number of atoms. The number of states generated in IW(w) that are not pruned
is bounded in turn by nw.

For the optimality part, note that if the width of Π is w, there must be a rooted
path t0, t1, . . . , tn in the graph Gw such that tn implies the goal G of Π. It then
suffices to show that the call IW(w) will achieve each tuple ti in such a path
optimally, and therefore G as well. It is worth working this out in detail, as the
proof illustrates why edges t → t′ in the graph Gi require that all optimal plans
for t be extendable into optimal plans for t′ by means of a single action.

From the construction of the graph, the optimal cost of achieving the tuple ti
in the chain t0, t1, . . . , tn must be i. We need to show that there is an unpruned
state si in the call IW(w) that generates ti, and moreover, that the cost of si is i.
We prove this inductively. This is clearly true for i = 0 as t0 is true in the initial
situation. Let us assume then that this is true for all k = 0, . . . , i − 1, and prove
that this must be true for k = i. From the inductive hypothesis, it follows that
IW(w) achieves ti−1 optimally, resulting in the state si−1 with cost equal to i − 1.
Likewise, from the edge ti−1 → ti in the graph Gw, any optimal plan for ti−1 must
extend into an optimal plan for ti by means of an action. In particular, since
we know from the inductive hypothesis that the state si−1 must be the result of
an optimal plan πi−1 for ti−1, there must be an action a so that πi−1 followed by
a is an optimal plan for ti that results in the state si. Since the state si−1 was
generated and not pruned in IW(w), the state si that follows from the application
of the action a in si−1 must be generated in IW(w). Now, let s′i be the first state
that generated the tuple ti. From the argument above it follows that there must
be one such state, and moreover, that such a state cannot have been pruned in
IW(w) since the size of ti is less than w, and hence the novelty of such a state in
IW(w) cannot be greater than w. Moreover, whether or not si is the first state that
generates ti, the cost of achieving ti in IW(w) is the optimal cost i. Indeed, this is
the cost of the plan that results in si, and if si is pruned, it is because another
state s′i generated ti before at no more cost, as states in the breadth-first search
are generated in non-decreasing costs.

The algorithm IW(w) is guaranteed to solve Π if w(Π) = w, yet as discussed
above, the algorithm IW does not assume that this width is known and thus
makes the IW(i) calls in order, starting from i = 0. We will refer to the min value
of i for which IW(i) solves P as the effective width of P :

Definition 7.6. The effective width of Π, we(Π), is the min i for which IW(i) solves
Π.
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Clearly, from the results above it follows that:

Theorem 7.7. The effective width is bounded by the actual width: we(Π) ≤ w(Π).

The notion of effective width has virtues and shortcomings that are orthogonal
to those of the actual width: unlike the width, the effective width is not well-
defined, while on the other hand, it can be computed in time that is exponential
in we(Π) by running IW until a solution is found.

7.2 Experimental Results

The effective width we(Π) provides an approximation of the actual width w(Π).
While proving formally that most benchmark domains have a bounded width
for single atom goals is tedious, we have run the algorithm IW to compute the
effective width of such goals. All experiments discussed below were run on Xeon
Woodcrest computers with clock speeds of 2.33 GHz, using a 2GB memory limit.
We were using a time cutoff of 2 hours only for Table 7.1, while no time cutoff
was needed for Table 7.2.

The results are shown in Table 7.1. We tested domains from previous IPCs.
For each instance with N goal atoms, we created N instances with a single goal,
and ran IW over each one of them. The total number of instances is 37921. For
each domain we show the total number of single goal instances, and the per-
centage of instances that have effective widths we equal to 1, 2, or greater than
2. The last row in the table shows the average percentage over all domains: 37%
with we = 1, 51% with we = 2, and less than 12% with we > 2. That is, on average,
less than 12% of the instances have an effective width greater than 2. Actually, in
most domains all the instances have effective an width of at most 2, and in four
domains, all the instances have an effective width of 1. The instances with a ma-
jority of atomic goals with an effective width greater than 2, are from the domains
Barman, Openstacks, and Tidybot (the first and last from the 2011 IPC).

Iterated Width (IW ) is a complete blind-search algorithm like Iterative Deepen-
ing (ID) and Breadth-First Search (BrFS). We have also tested the three algorithms
over the set of 37921 single goal instances above. While ID and BrFS guarantee
optimality and IW does not, in most of the instances they all returned the same
result. We are not aware of other suboptimal blind search algorithms wit which
to compare. The results are shown in Table 7.2. ID and BrFS solve less than
25% of the instances, while IW solves more than 94%, which is even more than
a Greedy Best-First Search guided by the additive heuristic (also shown in the
Table). The result suggests that IW manages to exploit the low width of these
problems much better than the other blind-search algorithms. We will see in
the next chapter that a simple extension suffices to make IW competitive with a
heuristic planner over the standard benchmark instances that feature joint goals.

7.3 Conclusion

We have proven both theoretically and experimentally that most domain bench-
marks have a low width, provided that goals are restricted to single atoms. We
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Domain I we = 1 we = 2 we > 2
8puzzle 400 55% 45% 0%
Barman 232 9% 0% 91%
Blocks World 598 26% 74% 0%
Cybersecure 86 65% 0% 35%
Depots 189 11% 66% 23%
Driver 259 45% 55% 0%
Elevators 510 0% 100% 0%
Ferry 650 36% 64% 0%
Floortile 538 96% 4% 0%
Freecell 76 8% 92% 0%
Grid 19 5% 84% 11%
Gripper 1275 0% 100% 0%
Logistics 249 18% 82% 0%
Miconic 650 0% 100% 0%
Mprime 43 5% 95% 0%
Mystery 30 7% 93% 0%
NoMystery 210 0% 100% 0%
OpenStacks 630 0% 0% 100%
OpenStacksIPC6 1230 5% 16% 79%
ParcPrinter 975 85% 15% 0%
Parking 540 77% 23% 0%
Pegsol 964 92% 8% 0%
Pipes-NonTan 259 44% 56% 0%
Pipes-Tan 369 59% 37% 3%
PSRsmall 316 92% 0% 8%
Rovers 488 47% 53% 0%
Satellite 308 11% 89% 0%
Scanalyzer 624 100% 0% 0%
Sokoban 153 37% 36% 27%
Storage 240 100% 0% 0%
Tidybot 84 12% 39% 49%
Tpp 315 0% 92% 8%
Transport 330 0% 100% 0%
Trucks 345 0% 100% 0%
Visitall 21859 100% 0% 0%
Woodworking 1659 100% 0% 0%
Zeno 219 21% 79% 0%
Summary 37921 37.0% 51.3% 11.7%

Table 7.1: Effective width of single goal instances obtained from existing bench-
marks by splitting problems with N atomic goals into N problems with single
goals. I is number of resulting instances. The other columns show the percent-
age of instances with effective width 1, 2, or greater.
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# Instances IW ID BrFS GBFS + hadd
37921 35918 9010 8762 34849

Table 7.2: Blind-search algorithm IW compared with two other blind-search
algorithms: Iterative Deepening (ID) and Breadth-First Search (BrFS). Numbers
report coverage over benchmark domains with single atomic goals. Also included
for comparison is the figure for heuristic Greedy Best-First Search (GBFS) with
hadd.

proposed a simple novelty pruning rule which, along an iterative blind search
algorithm (IW ), runs in time and space exponential in w(Π). The first iteration
of this procedure that solves the problem Π gives a lower bound on the actual
width of Π. The algorithm IW, without looking at the goal, competes with a stan-
dard heuristic search planner over instances with single goals, outperforming
other common blind search procedures greatly. The major performance gap be-
tween IWand other blind search algorithms suggests that exploiting problems’
low width is as powerful as the use of heuristics for informed search algorithms.
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Chapter 8

Serialized Iterated Width

Ring the bells that still can ring
Forget your perfect offering
There is a crack in everything
That’s how the light gets in.

Selected Poems 1956-1968.
Leonard Cohen

In this chapter we extend the Iterated Width procedure to deal with problems
that feature conjunctive goals, by introducing a simple form of decomposition.
We present first the definition of the width induced by a given serialization of
the goals, then present an algorithm that generates the serialization at the same
time that it solves the subproblems by exploiting their width. Finally we give an
experimental evaluation of the resulting algorithm.

8.1 Serialized Width

The fact that single goal atoms can be achieved quite effectively in most bench-
mark domains by a pruned breadth-first search that does not look at the goal
in any way, suggests that the complexity of benchmarks comes from conjunctive
goals. Indeed, this has been the intuition in the field of planning since its begin-
nings, where goal decomposition was deemed to be a crucial and characteristic
technique. Previous Chapter analysis formalizes this intuition by showing that
the effective width of single atom goals in existing benchmarks is low. This older
intuition also suggests that the power of planners that can handle single goals
efficiently can be exploited for conjunctive goals through some form of decompo-
sition.

While the notion of decomposition had all but disappeared from previous
state-of-the-art planners, it has made a recent comeback in the form of land-
marks (Hoffmann et al., 2004) and in particular landmark heuristics such as that
used in the state-of-the-art planner LAMA (Richter and Westphal, 2010). In a
way, by treating landmarks as subgoals and ordering states by the number of
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subgoals achieved, LAMA serializes the problem without committing to a single
serialization. Likewise, the planner PROBE, that came in second right after LAMA
in the last 2011 IPC when the first plans were considered 1, uses explicit sub-
goal serializations in the probes (Lipovetzky and Geffner, 2011b). Thus, since
the width of benchmark problems when conjunctive goals are considered is not
bounded in general, we focus on the width of those problems provided a serial-
ization.

A serialization d for a problem Π with goal G refers to a sequence of formulas
G1, . . . , Gm such that Gm = G. In simple serializations, G1 contains one atom from
G, G2 extends G1 with an additional atom from G, and so on, with m being the
number of atoms in G. Other types of serializations are common too; e.g., using
landmarks of the problem or other formulas, as in the serialization for Blocks
where all blocks are placed on the table in order, and then towers are assembled
in order as well.

If we consider the optimal solution to the subproblems, any serialization d
for Π defines a family of sets of planning problems Pd = P1, . . . ,Pm, such that
P1 contains the problem P1 that is like Π but with goal G1, while Pi for i > 1
contains the problems Pi that are like Π but with goal Gi, and initial states si that
correspond to the states resulting from solving the problems in Pi−1 optimally.
The width of Π under an arbitrary serialization d can then be defined as follows:

Definition 8.1. The width of a problem Π given a serialization d, written w(Π, d),
is the max width over the subproblems in Pd.

It is clear that the width of a problem given a serialization can be much lower
than the width of a problem without it. For instance, in Tower, a version of Blocks
where n blocks need to be moved from the table into a given tower on(bi+1, bi),
i = 1, . . . , n − 1, the width grows with n, while the width that follows from the
simple serialization d where Gi adds the atom on(bi+1, bi) for i = 1, . . . , n − 1, is
bounded and equal to 1.

Of course, even if there exists a serialization d that yields a low width w(Π, d),
the question remains: how hard is to find it?. This is a difficult problem that we
do not intend to address here; rather, we focus on a simple extension of the iter-
ated width search procedure IW that uses IW for two purposes: for constructing
a simple serialization and for solving the subproblems. This extension will allow
us to test the value of IW over the actual planning benchmarks, which feature
multiple goals. Notice that IW can be applied to such problems without intro-
ducing a serialization, yet both the width and effective width of such problems
are too large. By decomposing a problem into subproblems, a serialization can
reduce both of them.

8.2 Serialized Iterated Width Algorithm

Serialized Iterated Width (SIW ) is a search algorithm that uses the iterated width
(IW ) searches both for constructing a serialization of the problem Π = 〈F, I,O,G〉
and for solving the resulting subproblems. While IW is a sequence of i-width
1 http://www.plg.inf.uc3m.es/ipc2011-deterministic/results
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searches IW(i), i = 0, 1, . . . over the same problem Π, SIW is a sequence of IW calls
over |G| subproblems Πk, k = 1, . . . , |G|. The definition of SIW takes advantage
of the fact that IW is a blind-search procedure that does not need to know the
goals of the problem in advance; it just needs to recognize them in order to stop.
Thanks to this feature IW is used both for decomposing Π into the sequence
of subproblems Πk, and for solving each one of them. The plan for Π is the
concatenation of the plans obtained for the subproblems.

Definition 8.2. Serialized Iterated Width (SIW) over Π = 〈F, I,O,G〉 consists of a
sequence of calls to IW over the problems Πk = 〈F, Ik, O,Gk〉, k = 1, . . . , |G|, where

1. I1 = I,

2. Gk is the first consistent set of atoms achieved from Ik such that Gk−1 ⊂ Gk ⊆
G and |Gk| = k; G0 = ∅,

3. Ik+1 represents the state where Gk is achieved, 1 < k < |G|.

In other words, the k-th subcall of SIW stops when IW generates a state sk
that consistently achieves k goals from G: those achieved in the previous subcall
and a new goal from G. The same is required from the next subcall that starts
at sk. The state sk consistently achieves Gk ⊆ G if sk achieves Gk, and Gk does
not need to be undone in order to achieve G. This last condition is checked by
testing whether hmax(sk) = ∞ is true in Π once the actions that delete atoms
from Gk are excluded (Bonet and Geffner, 2001). Notice that SIW does not use
heuristic estimators to the goal, and does not even know what goal Gk is when
IW is invoked on subproblem Πk. It finds this out when IW generates a set of
atoms G′ such that Gk−1 ⊂ G′ ⊆ G and |G′| = k. It then sets Gk to G′. This is
how SIW manages to use IW for both constructing the serialization and solving
the subproblems.

The SIW algorithm is sound and the solution to Π can be obtained by con-
catenating the solutions to the problems Π1, . . . , Πm, where m = |G|. Like IW,
however, SIW does not guarantee optimality. Likewise, while the IW algorithm is
complete, SIW is not. The reason is that the subgoal mechanism implicit in SIW
commits to intermediate states from which the goal may not be reachable. Of
course, if there are no dead-ends in the problem, SIW is complete.

Last, the benefit of SIW over IW is that SIW runs IW over subproblems which,
as we will see, often have a low effective width even if the effective width of the
original problem is high (recall that the effective width refers to the min value of i
for which IW(i) solves the problem). On the other hand, while in IW, the effective
width of a problem we(Π) is bounded by its actual width w(Π), while in SIW,
there are no similar guarantees. To express this more precisely, let us define the
effective width of a problem under SIW:

Definition 8.3. The effective width of a problem Π under SIW, written ws(Π), is
the max effective width we(Πk) of the subproblems Πk, k = 1, . . . , |G| induced by
SIW.

Then, while we(Π) ≤ ws(Π) and we(Πk) < w(Πk) are both true, it is not neces-
sarily the case that ws(Π) ≤ w(Π, d) is true for the goal serialization d = G1, . . . , Gm
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computed by SIW. The reason is that the serialized width w(Π, d) is defined using
the optimal solutions to the subproblems that arise from d, while SIW uses IW
to solve the subproblems. Since IW is not necessarily optimal, SIW may end up
generating subproblems Πk that are not in Pd and which may thus have a higher
width and effective width. Nonetheless, even if a low serialized width w(Π, d) does
not ensure a low effective width ws(Π), the experiments below reveal that ws(Π)
tends to be quite low over most benchmarks.

8.3 Experimental Results

We have compared experimentally the blind-search algorithm SIW to a baseline
heuristic search planner using a Greedy Best-First Search (GBFS) and the addi-
tive heuristic (Bonet and Geffner, 2001). Neither planner is state-of-the-art, since
neither uses key techniques such as helpful actions or landmarks (Hoffmann and
Nebel, 2001; Richter and Westphal, 2010). However, the comparison shows that
the non-goal oriented form of pruning in IW and the simple form of decomposition
in SIW are quite powerful; as powerful indeed, as the best heuristic estimators. 1

SIW and GBFS are both written in C++ and use Metric-FF as an ADL to Propo-
sitional STRIPS compiler (Hoffmann, 2003). The experiments were conducted on a
dual-processor running at 2.33 GHz and 2 GB of RAM. Processes time or memory
out after 30 minutes or 2 GB. The results are summarized in Table 8.1. Out of
1150 instances, SIW solves 30 problems more than GBFS, and SIW is usually
faster and produces shorter solutions.

In terms of coverage, SIW performs the best on Parking, Pipesworld-Non-
Tankage, Visitall, Depots and Elevator, while GBFS is the best on PSRsmall,
ParcPrinter, OpenstacksIPC6, Pegsol and Sokoban. The difference in coverage is
considerable if we drop domains that feature dead-ends, as this causes both al-
gorithms to be complete. By dropping mainly two domains, Pegsol and Sokoban,
where GBFS solves 53 of the 60 instances and SIW solves only 9, the gap in
performance jumps from 2.6% to 6.8%.

Regarding plan times and lengths, the averages shown in the bottom row show
that SIW is 33% faster overall than GBFS. In part, the speed up is due to the
computation of the heuristic in GBFS that is avoided in ‘blind’ SIW . The differ-
ences are larger concerning plan length where SIW plans are three times shorter
on average. If the domain Visitall is excluded, where SIW plans are 13 times
shorter, SIW still produces plans that are half as long on average. Other large
differences in plan length occur in Pipesworld-Non-Tankage and Grid where SIW
plans are 4 and 5 times shorter on average respectively. Overall, SIW produces
better plans in 25 domains, while GBFS produces better plans in 5 domains by
a small margin.

Focusing now on the inner workings of SIW , Table 8.2 shows the average
number of nodes pruned overall in the calls to IW per domain (P), the average
number of nodes generated but not pruned (NP), and the selectivity ratio: NP

1 The results for GBFS with hadd are similar to those that can be obtained with the back-end planner
of FF that uses the relaxed planning heuristic instead (Hoffmann and Nebel, 2001) or the use of LAMA
with a single queue driven by FF heuristic hFF (Richter and Westphal, 2010).
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Serialized IW (SIW ) GBFS + hadd
Domain I S Q T S Q T

8puzzle 50 50 42.34 0.64 50 55.94 0.07
Barman 20 1 – – – –
Blocks World 50 50 48.32 5.05 50 122.96 3.50
Cybersecure 30 – – – – –
Depots 22 21 34.55 22.32 11 104.55 121.24
Driver 20 16 28.21 2.76 14 26.86 0.30
Elevators 30 27 55.00 13.90 16 101.50 210.50
Ferry 50 50 27.40 0.02 50 32.88 0.03
Floortile 20 – – – – –
Freecell 20 19 47.50 7.53 17 62.88 68.25
Grid 5 5 36.00 22.66 3 195.67 320.65
Gripper 50 50 101.00 3.03 50 99.04 0.36
Logistics 28 28 54.25 2.61 28 56.25 0.33
Miconic 50 50 42.44 0.08 50 42.72 0.01
Mprime 35 27 6.65 84.80 28 17.92 204.76
Mystery 30 27 6.47 42.89 28 7.60 15.44
NoMystery 20 – – 6 – –
OpenStacks 30 13 105.23 0.53 7 112.42 6.49
OpenStacksIPC6 30 26 29.43 108.27 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 30 15.67 0.01
Parking 20 17 39.50 38.84 2 68.00 686.72
Pegsol 30 6 16.00 1.71 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 25 113.84 68.42
Pipes-Tan 50 35 26.00 205.21 14 33.57 134.21
PSRsmall 50 25 13.79 28.37 44 18.04 4.99
Rovers 40 27 38.47 108.59 20 67.63 148.34
Satellite 20 19 38.63 216.69 20 34.11 8.44
Scanalyzer 30 26 26.81 33.96 28 28.50 129.42
Sokoban 30 3 80.67 7.83 23 166.67 14.30
Storage 30 25 12.62 0.06 16 29.56 8.52
Tidybot 20 7 42.00 532.27 16 70.29 184.77
Tpp 30 24 82.95 68.32 23 116.45 199.51
Transport 30 21 54.53 94.61 17 70.82 70.05
Trucks 30 2 31.00 4.58 8 34.50 14.08
Visitall 20 19 199.00 0.91 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 12 42.50 81.02
Zeno 20 19 34.89 166.84 20 35.11 101.06
Summary 1150 819 44.4 55.01 789 137.0 91.05

Table 8.1: Blind-Search SIW vs. Heuristic GBFS over real benchmarks (with joint
goals). I is the number of instances, S is the number of solved instances, Q is
the average plan length, T is the average time in seconds. Shown in bold are the
numbers S, Q, or T that one planner improves over the other by more than 10%.
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over NP + P. On average, 74% of the nodes are pruned right away after they
are generated. In 15 domains, more than 90% of the nodes are pruned, and in
Satellite and Mprime, this number reaches 99%.

Table 8.2 shows also the highest and average effective width of the subprob-
lems that result from the serializations generated by SIW . The effective width
gives an insight about how hard is to achieve joint goals sequentially. Indeed,
problems from the Visitall domain feature an average effective width of 1, as all
of the goals can be achieved one at a time with no disruption at all. On the other
hand, the maximal effective width is 4, which occurs in two domains: 8puzzle and
PSRsmall. On average, however, the effective width is between 1 and 2, except
for five domains with effective widths between 2 and 3: Sokoban (2.58), Barman
(2.56) PSRsmall (2.27), Grid (2.12), and TPP (2.03).

8.4 Conclusion

We have introduced the notion of width w(Π, d) induced by a serialization d, over
the goals G of a problem Π. While most benchmark domains appear to have
a bounded and small width provided that goals are restricted to single atoms,
they have large widths for arbitrary joint goals. We have shown, nonetheless,
that the algorithm derived for exploiting the structure of planning problems with
low width, IW , also pays off over benchmarks with joint goals once the same
algorithm is used for decomposing the problems into subproblems. Actually, the
resulting blind-search algorithm SIW is competitive with a baseline planner based
on a Greedy Best-First Search and the additive heuristic, suggesting that the two
ideas underlying SIW, novelty-based pruning and goal decomposition, are quite
powerful.
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Serialized IW (SIW )
Domain I Generated Pruned % Novel States Max we Avg. we

8puzzle 50 10,006 3,523 74% 4 1.75
Barman 20 – – – 3 2.56
Blocks World 50 14,980 53,366 22% 3 1.22
Cybersecure 30 – – – – –
Depots 22 46,288 845,864 5% 3 1.74
Driver 20 40,449 138,222 23% 3 1.31
Elevators 30 156,309 3,880,408 4% 2 2.00
Ferry 50 1,459 390 79% 2 1.98
Floortile 20 – – – – –
Freecell 20 6,663 32,781 17% 2 1.62
Grid 5 87,494 47,321 65% 3 2.12
Gripper 50 54,120 101,330 35% 2 2.00
Logistics 28 18,306 288,981 6% 2 2.00
Miconic 50 3,010 9,356 24% 2 2.00
Mprime 35 14,879 1,433,257 1% 2 2.00
Mystery 30 15,303 307,611 5% 2 1.19
NoMystery 20 – – – – –
OpenStacks 30 855 1,851 32% 3 1.80
OpenStacksIPC6 30 12,089 68,963 15% 4 1.48
ParcPrinter 30 510 1,030 33% 3 1.28
Parking 20 198,010 1,045,164 16% 2 1.14
Pegsol 30 190 47 80% 4 1.09
Pipes-NonTan 50 70,676 833,552 8% 3 1.62
Pipes-Tan 50 37,555 694,304 5% 3 1.63
PSRsmall 50 2,864 8,964 24% 4 2.27
Rovers 40 70,384 1,332,660 5% 2 1.39
Satellite 20 90,036 9,262,413 1% 2 1.29
Scanalyzer 30 27,608 552,240 5% 2 1.16
Sokoban 30 39,890 9,422 81% 3 2.58
Storage 30 13,264 205,295 6% 2 1.48
Tidybot 20 2,322 1,110 68% 3 1.81
Tpp 30 19,750 167,402 11% 3 2.03
transport 30 290,665 3,464,898 8% 2 2.00
Trucks 30 13,216 520,903 2% 2 2.00
VisitAll 20 8,119 0 100% 1 1.00
woodworking 30 16,486 376,906 4% 2 1.07
Zeno 20 147,423 1,626,078 8% 2 1.83
Summary 1150 46,399 827,746 26% 2.56 1.69

Table 8.2: Blind-Search SIW inner details is the number of instances, Generated
is the average nodes generated, Pruned is the average generated nodes pruned, %
Novel States stands for the average of nodes considered to be novel, Max we and
Avg. we stands for maximum and average effective width per domain.
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Chapter 9

Decomposition and Width
Revisited

Todas las teorías son legítimas y ninguna
tiene importancia. Lo que importa es lo que
se hace con ellas.

All theories are legitimate and none of them
are important. What matters is what one
does with them.

Jorge Luis Borges

In this chapter we show how the key ideas from the blind search algorithm SIW
presented in Chapter 8, novelty-based pruning and goal decomposition, can be
integrated in a standard best-first search algorithm; along with old ideas that
have been proven to be crucial for high performance planners. We first explain
how a heuristic that counts the number of unachieved goals can be used, not
as a heuristic term, but for serializing the problem. We then adapt the novelty
Definition 7.1 to take into account the serialization, and show how other im-
portant terms used by state-of-the-art planners can be integrated. Finally, we
evaluate the resulting best-first search planner and compare it with other high
performance planners.

9.1 Introduction

Three ideas that have proven crucial in the performance of state-of-the-art plan-
ners are delete-relaxation heuristics (McDermott, 1999; Bonet and Geffner, 2001),
helpful actions (Hoffmann and Nebel, 2001), and landmarks (Hoffmann et al.,
2004; Richter et al., 2008). The LAMA planner (Richter and Westphal, 2010) uses
them all in a search architecture made up of four open lists borrowed from Fast
Downward (Helmert, 2006). Half of these lists are ordered according to the delete-
relaxation heuristic, and half by the landmark heuristic. In addition, one open
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list for each heuristic is for the states obtained from the application of actions re-
garded as helpful, defined slightly differently in each case (Richter and Westphal,
2010). Unlike the delete-relaxation heuristic, the landmark heuristic provides
an implicit serialization of the problem in which plan prefixes that have achieved
more subgoals (landmarks) are preferred. Actually, the second best-performing
planner in the 2011 IPC when considering the first plans,1 was PROBE, which
appeals to explicit subgoal serializations (Lipovetzky and Geffner, 2011b). Since
an incorrect serialization can render a problem unsolvable by driving the search
towards a dead-end, LAMA ensures completeness by never committing to any
serialization. PROBE on the other hand, commits to a serialization in each of the
probes that it throws from the states expanded in a complete best-first search.

The aim of this chapter is to show that these and other relevant ideas can
be incorporated one by one into a standard best-first search algorithm by adding
suitable terms to a basic evaluation function given by a standard delete-relaxation
heuristic. From a practical point of view, the resulting planner seems to perform
as well as LAMA. From a conceptual point of view, by using a standard heuristic
search algorithm and thus reducing all of the planning know-how to the evalua-
tion function, the formulation sheds light on the nature of the key computational
ideas in classical planning, and the relation between planning and search. In-
deed, while heuristic search has become the mainstream approach in planning,
the algorithms used in planning are not the same as those used in search. This
raises the question: is this bound to happen due to the domain-independent and
factored representations used in planning? The results in this chapter suggest
that this is not strictly necessary, and that while inferences over factored repre-
sentations are crucial for performance, this does not translate necessarily into
changing the search algorithm. Indeed, in the resulting planner, the algorithm is
a standard best-first search that does not look into the structure of the states,
and all inference about planning is compiled into the evaluation function.

We assume STRIPS problems where the cost of the actions is assumed to be 1
so that plan cost is equal to plan length.

We define the evaluation function one term at a time: serialization term, nov-
elty, heuristic function, and helpful actions. Most of these ideas are well known
except for the interpretation of the landmark heuristic as a serialization term,
and for ‘novelty’ which is borrowed from the IW algorithm presented in Chapter
7; where it is used inside a breadth-first search algorithm that solves planning
problems in time exponential in their width. Here the search algorithm is a stan-
dard, forward-state, best-first search.

9.2 Serialization and Novelty

The algorithm SIW , detailed in Section 8.2, decomposes the original goal set G of
a problem Π into |G| subsets. Each subset Gk−1 ⊂ Gk achieves exactly the goals
previously achieved plus a new one, for k = 1, . . . , |G|, where G0 initially is empty.
SIW is a form of hill-climbing over goal set G committing to every intermediate
state that achieves a goal subset Gk. It avoids the combinatorial blowup of possi-

1 http://www.plg.inf.uc3m.es/ipc2011-deterministic/results.
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ble decompositions of goal G with the payoff of being incomplete in the presence
of dead-ends in problem Π. Thus, It does not search in the space of possible
decompositions of goal G, but rather commits to the first decomposition that it
finds when a state s achieves some Gk. In order to address this shortcoming,
we turn to best-first search, where the evaluation function basically provides a
‘reward’ when a subgoal is achieved, expressed as:

f1(n) = usg(n)

where usg(n) measures the number of subgoals not yet achieved in the path to n.
The reward that results from the achievement of a new subgoal while maintaining
previous ones, translates into a decrement of usg(n) in the evaluation function,
preferring first nodes with a small number of subgoals to go.

We then order only top goals so that a top goal gi is not counted as achieved if
there is a another top goal gj that cannot be achieved without undoing gi. More
precisely, gi is ordered after gj if all the actions that add gj e-delete gi: either
delete gi or have a precondition that is mutex with GI

1. The ordering is computed
only once from the initial state.

Notice that the search does not commit to any intermediate state. Intuitively,
the evaluation function f1(n) divides the state space into k subspaces, where k
is the maximum value that usg(n) can take. Given a problem Π = 〈F, I,O,G〉,
the best first search algorithm driven by f1(n) = usg(n) divides the original state
space S of problem Π into k state spaces Sk, where k = 0, . . . ,maxnf1(n), and
Sk ⊆ S. States s where goals G of problem Π are true G ∈ s, belong to state space
S0, while states s that achieve all goals but one, no matter which one, belong to
state space S1, etc.

As an illustration consider a grid of cells c = 1, . . . , n, such that the cells form
a single line, where a robot starting at the left most cell c = 1 must visit every
cell. Each state that has visited i cells so far, belongs to the state space Sn−i,
no matter the robot’s location. For example, states where the robot has visited
all but the right most cell c = n, and where the robot is located at any other cell
c = 1, . . . , n− 1, belong to the same state space S1.

The key aspect that we need to address, is how to drive the search in each
subspace Sk. Intuitively, the goal of any state s in space s ∈ Sk is to achieve any
state s′ that belongs to any state space Sj where j < k. SIW uses iterative width to
find a path between every subspace. Analogously, we can use either a heuristic
to estimate the distance to the goals, or we can use the novelty measure to prune
the underlying state space. In Chapter 8 we showed that goal decomposition
and novelty based pruning tuns out to be as powerful as the use of a standard
delete relaxation heuristic in a best-first search algorithm, and hence we can use
the novelty term to have a powerful blind search algorithm for finding a path
connecting a state from Sk to a state in Sj, j < k.

Roughly, the novelty measure of a state s is 1 if s makes an atom true that was
false in all previously generated states; it is 2 if there is no such atom but there is
one such pair of atoms, and so on. Here we define a similar measure that takes
into account both the serialization implicit in the function usg(n) and the novelty
novel(n).
1 A pair of atoms p, q are defined as mutex if h2(p, q) =∞
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We revise the definition of novelty as follows:

Definition 9.1 (novel(n)). In the context of a search algorithm, the novelty measure
of a node novel(n) is the size of the smallest tuple t of atoms that is true in n and
false in all previously generated nodes n′ in the search that belong to the same
state space n, n′ ∈ Sk.

Intuitively, the novelty of a node n depends only on previously generated nodes
in the search n′ with same number of unachieved goals usg(n′) = usg(n), which is
the main difference from the previous Definition 7.1 of novelty.

The evaluation function f2 then extends the evaluation function with a term
that ‘rewards’ nodes with low novelty measure, which are actually the ones that
the are most ‘novel’:

f2(n) = novel(n)

and breaking ties according to usg(n). As a result, each subspace Sk expands
first nodes with novelty 1, then 2, etc. Notice that the number of nodes with the
same novelty measure i is normally bounded by the number of atoms O(F i) in
the problem. The order in which nodes are generated can affect the novelty term,
but in our experiments the impact of breaking ties randomly does not change the
results significantly.

At first glance, f2 could render similar results as a function f ′ that considers
first usg(n) and then breaking ties by novel(n). The main difference is that the
later tries to greedily minimize the number of unachieved goals preferring always
states with smaller usg(n), while the former tries first to expand states of novelty
1 from every state space Sk, and then states of novelty 2 from every state space,
etc. Thus preferring always states with smaller novel(n) and alternating between
states with different usg(n).

9.3 Extensions

We have shown that it is possible to integrate the serialization and novelty term
into the evaluation function of BFS. We show now that other techniques common
in state-of-the-art planners can be easily integrated as well.

9.3.1 Integration of Landmarks

Landmarks are necessary features of any valid solution of a planning problem
Π (Hoffmann et al., 2004). These features can be action or fluent formulas,
either conjunctive or disjunctive, that must hold in every valid plan. Disjunc-
tive action landmarks have been used successfully in optimal planning (Helmert
and Domshlak, 2009). Conjunctive fluent landmarks have been deemed useful
for some benchmark domains (Keyder et al., 2010), while disjunctive and sin-
gle fluent landmarks have been widely used in satisficing planning (Richter and
Westphal, 2010; Lipovetzky and Geffner, 2011b). We focus on the integration of
single fluent landmarks.
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A fluent landmark L is a formula over the set of fluents F of a planning prob-
lem Π, such that any valid plan π = 〈a1, . . . , an〉 has a prefix π′ = 〈a1, . . . , ai〉,
possibly of length 0, whose application in the initial state results in a state in
which L is true, i.e. s0[π′] |= L (Porteous et al., 2001). All formulas that are true
in the initial state I and the goal G of a problem Π, are landmarks by choosing
the empty prefix π′ = ∅, or the entire plan π′ |= G.

A direct method to account for fluent landmarks in the evaluation function of
BFS proposed above, it is to consider the landmarks of the problem as subgoals
in the serialization, instead of the original top goals G. The count usg(n) is then
similar to the landmark heuristic in LAMA, simplified somewhat: we use only
atomic fluent landmarks (no disjunctions) and sound orderings.

Orderings over fluent landmarks state the order in which they must be true.
There is a natural order between two landmarks L1 < L2 if for every valid plan,
L1 is made true strictly before L2 is made true; there is a necessary ordering
L1 <n L2 if for every valid plan, L1 is made true strictly immediately before L2 is
made true; and a greedy necessary ordering L1 <gn L2 if for every valid plan, L1

is made true strictly immediately before L2 is made true the first time. Intuitively,
the orderings state that L2 cannot be made true without making L1 true first.
As in LAMA, the count usg(n) is path-dependent, yet this does not compromise
the completeness of the algorithm. Fluent landmarks and orderings are derived
using a standard polynomial algorithm over the delete-relaxation (Zhu and Givan,
2003; Keyder et al., 2010).

9.3.2 Integration of Delete Relaxation Heuristics

Delete relaxation based heuristics have been widely used by most high perfor-
mance planners (Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Richter
and Westphal, 2010). A heuristic h(n) estimates the cost from the state encoded
in the node n to the problem goal. The most common heuristic estimators used in
state-of-the-art planners are hadd (Bonet and Geffner, 2001) and hFF (Hoffmann
and Nebel, 2001). They have been used within a variety of search techniques,
HSP uses hadd in WA∗; FF uses hFF first in EHC and then in BFS; and LAMA
uses hFF in a dual queue search architecture.

We propose integrating the use of hadd to guide the search for a path from
a state s ∈ Sk to a state s′ ∈ Sj, j < k. Recall that the original state space S
is decomposed in several state spaces Sk, where every state in Sk has the same
number of unachieved goals usg(n). The only term that contributes to finding
such a path is novel(n), but we can further improve the evaluation function to
differentiate states with the same number of unachieved goals and novelty. Thus,
we extend the evaluation function f2, breaking ties lexicographically by usg(n) and
hadd(n). Intuitively, the heuristic term is used only to differentiate states with the
same novelty and number of unachieved goals (landmarks). As the heuristic
hadd(n) estimates the distance to any goal in G, it pushes the search towards
states that have fewer unachieved goals, i.e. states with lower values of usg(n),
that contribute to finding a path between states in different subspaces Sk and
Sk−1 for k = 1, . . . , |G|, tentatively, closer to sates that satisfy the goal G ∈ s ∈ S0.
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9.3.3 Integration of Helpful Actions

The term helpful actions 1 was first introduced by FF (Hoffmann and Nebel,
2001). Recall that delete relaxation based heuristics find a solution to the delete
free problem Π+ from a given state. The applicable actions from such a solution
are the helpful actions. Various search enhancements have been proposed to
take advantage of helpful actions. The approach of FF was initially to consider
only states resulting from helpful actions rendering the search incomplete, and
then considering all states in case of failure. More recently, planners have taken
the approach of alternating the exploration of states resulting from helpful ac-
tions and those resulting from all other actions in a multiple queue architecture
(Helmert, 2006). Helpful actions thus become a preference rather than a pruning
method.

We propose a different approach to integrating helpful actions in the evalua-
tion function of BFS. The novelty term considers actions that produce single new
atoms, i.e. (novel(n) = 1), as more ‘novel’ than actions that produce only new
pairs, i.e. novel(n) = 2. This ranking is useful even if it is not goal oriented. Of
course, a new atom generated in the ‘direction’ of the goal should be preferred to
other atoms. We propose capturing this directionality using the notion of helpful
actions, as those are the actions that adds a goal or the precondition of an action
in a relaxed plan extracted backwards from the goal (Hoffmann and Nebel, 2001).

The notion of helpful actions allows us to make the novelty distinctions finer
and goal-directed. The new evaluation function f3 refines the novelty term in f2
without adding a new one. The new evaluation function is

f3(n) = novelha(n)

breaking ties lexicographically by usg(n) and hadd(n), where

novelha(n) = 2[novel(n)− 1] + help(n)

That is, novelha(n) is 1 if the novelty of n is 1 and the action leading to n is helpful,
2 if the novelty is 1 and the action is not helpful, 3 if the novelty is 2 and the
action is helpful, and so on. Basically, novel states (lower novel(n) measure) are
preferred to less novel states, and helpful actions are preferred to non-helpful,
with the former criterion carrying more weight. Once again this simple criterion
follows from performance considerations. Other alternatives can be considered.

9.3.4 Integration of Delayed Evaluation

The largest computational effort made by heuristic search planners is done by
the computation of the heuristic estimators. Moreover, many of the nodes gen-
erated and placed in the open list (i.e., in the search frontier) do not contribute
to the solution, and the heuristic evaluation contributes only by delaying a node
from immediate expansion. Delayed evaluation introduced as a search enhance-
ment in FD (Helmert, 2006) and then also used in LAMA, aims at minimizing
the impact of this situation by computing the heuristic evaluation only when a

1 A similar concept called preferred operators was introduced in FD (Helmert, 2006).
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node is expanded. When a node is generated it uses the heuristic estimate of the
parent in the calculation of the evaluation function f(n).

While this results in less informative evaluation functions f(n), the search is
able to quickly generate a larger portion of the state space. It usually pays off in
problems with very large branching factors, where many more nodes are gener-
ated than expanded. In our implementation we use a similar idea, except that
we just delay the evaluation of non-helpful nodes rather than all generated nodes.
This implementation choice has an impact, especially in the largest problems.

9.4 Experimental Results

We compare the best performance configuration with FF, LAMA and PROBE; and
finish with a simple ablation study. All configurations are written in C++ and
use Metric-FF as an ADL to Propositional STRIPS compiler (Hoffmann, 2003). The
experiments discussed below were conducted on a dual-processor Xeon ‘Wood-
crest’ running at 2.33 GHz and 2 GB of RAM. Processes time or memory out after
30 minutes or 2 GB. FF is FF version 2.3, PROBE and LAMA are from IPC 2011.
LAMA is executed without plan improvement, reporting the first solution it finds.

Our tests confirm than delaying only non-helpful nodes results in more infor-
mative evaluation functions than delaying every node.

In the experiments below, we keep track of three possible values for novel(n):
1 if the size of the smallest tuple added by the node is = 1, 2 if the size is 2,
and 3 otherwise. We call the best-first search planner with f3(n) = novelha(n)
where ties are broken lexicographically by usg(n) and hadd(n), and delayed evalu-
ation, BFS(f ). We compare it with three state-of-the-art planners: FF, LAMA, and
PROBE(Hoffmann and Nebel, 2001; Richter et al., 2008; Lipovetzky and Geffner,
2011b). Like LAMA, BFS(f ) uses delayed evaluation, a technique that is use-
ful for problems with large branching factors (Richter and Helmert, 2009). The
novelha(n) measure combines the novelty of n and whether the action leading to
n is helpful or not (Hoffmann and Nebel, 2001). The novelty of a node novel(n) is
computed approximately, being set to 3 when it is neither 1 nor 2. Similarly, if
help(n) is set to 1 or 2 according to whether the action leading to n was helpful or
not, then novelha(n) takes six values: 1, 3, and 5, if novel(n) is 1, 2, and 3 respec-
tively, and the action leading to n was helpful, and 2, 4, and 6, if novel(n) is 1, 2,
and 3 respectively, and the action leading to n was not helpful.

Table 9.1 compares the four planners over the 1150 instances. In terms of
coverage, BFS(f ) solves 5 more problems than LAMA, 18 more than PROBE and
161 more than FF. Significant differences in coverage occur in Sokoban, Parking,
NoMystery and Floortile where either LAMA or BFS(f ) solve 10% more instances
than the second best planner. The largest difference is in NoMystery where BFS(f )
solves 19 instances while LAMA solves 11.

Time and plan quality averages are computed over the instances that are
solved by BFS(f ), LAMA and PROBE. FF is excluded from these averages because
of the large gap in coverage. LAMA and PROBE are the fastest in 16 domains
each, and BFS(f ) in 5. On the other hand, BFS(f ) finds shorter plans in 15
domains, PROBE in 13, and LAMA in 10. The largest differences between BFS(f )
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BFS(f ) PROBE LAMA’11 FF
Domain I S T S T S T S T

8puzzle 50 50 0.20 50 0.09 49 0.18 49 (0.03)
Barman 20 20 281.28 20 12.93 20 8.39 – (–)
Blocks World 50 50 2.40 50 0.23 50 0.41 44 (66.67)
Cybersecure 30 28 70.14 24 69.22 30 576.69 4 (0.73)
Depots 22 22 56.93 22 5.46 21 46.66 22 (32.72)
Driver 20 18 57.37 20 1.05 20 0.94 16 (14.52)
Elevators 30 30 93.88 30 26.66 30 4.69 30 (1.00)
Ferry 50 50 0.03 50 0.02 50 0.31 50 (0.02)
Floortile 20 7 29.52 5 71.33 5 95.54 5 (134.29)
Freecell 20 20 13.00 20 41.26 19 27.34 20 (22.95)
Grid 5 5 7.70 5 9.64 5 4.84 5 (0.27)
Gripper 50 50 0.37 50 0.06 50 0.36 50 (0.03)
Logistics 28 28 0.12 28 0.09 28 0.35 28 (0.03)
Miconic 50 50 0.01 50 0.01 50 0.28 50 (0.03)
Mprime 35 35 19.75 35 28.72 35 10.98 34 (14.82)
Mystery 30 27 0.92 25 1.08 22 1.70 18 (0.24)
NoMystery 20 19 1.09 5 5.47 11 2.66 4 (0.23)
OpenStacks 30 29 129.05 30 64.55 30 3.49 30 (6.86)
OpenStacksIPC6 30 30 40.19 30 48.89 30 4.91 30 (0.38)
ParcPrinter 30 27 6.48 28 0.26 30 0.28 30 (0.06)
Parking 20 17 577.30 17 693.12 19 363.89 3 (945.86)
Pegsol 30 30 1.17 30 8.60 30 2.76 30 (7.61)
Pipes-NonTan 50 47 35.97 45 3.18 44 11.10 35 (12.77)
Pipes-Tan 50 40 254.62 43 102.29 41 58.44 20 (87.96)
PSRsmall 50 48 2.62 50 0.08 50 0.36 42 (63.05)
Rovers 40 40 44.19 40 24.19 40 17.90 40 (31.78)
Satellite 20 20 1.26 20 0.84 20 0.78 20 (0.10)
Scanalyzer 30 27 7.40 28 5.59 28 8.14 30 (70.74)
Sokoban 30 23 125.12 25 39.63 28 58.24 26 (26.61)
Storage 30 20 4.34 21 0.07 18 8.15 18 (39.17)
Tidybot 20 18 198.22 19 35.33 16 113.00 15 (9.78)
Tpp 30 30 36.51 30 58.98 30 18.12 28 (53.23)
Transport 30 30 55.04 30 44.72 30 94.11 29 (167.10)
Trucks 30 15 8.59 8 113.54 16 0.53 11 (3.84)
Visitall 20 20 84.67 19 308.42 20 77.80 6 (38.22)
Woodworking 30 30 19.12 30 15.93 30 12.45 17 (0.22)
Zeno 20 20 77.56 20 6.18 20 4.28 20 (0.17)
Summary 1150 1070 63.36 1052 49.94 1065 44.35 909 (51.50)

Table 9.1: BFS(f ) vs. LAMA, FF, and PROBE. I is the number of instances, S is
the number of solved instances, T is the average time in seconds. T averages
are computed over problems solved by all planners except FF, which is excluded
because of the large gap in coverage. Numbers in bold show performance that is
at least 10% better than the other planners.
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BFS(f ) PROBE LAMA’11 FF
Domain I Q Q Q Q

8puzzle 50 45.45 61.45 58.24 (52.61 )
Barman 20 174.45 169.30 203.85 (– )
Blocks World 50 54.24 43.88 88.92 (39.36 )
Cybersecure 30 39.23 52.85 37.54 (29.50 )
Depots 22 49.68 44.95 61.95 (51.82 )
Driver 20 48.06 60.17 46.22 (25.00 )
Elevators 30 129.13 107.97 96.40 (85.73 )
Ferry 50 32.94 29.34 28.18 (27.68 )
Floortile 20 43.50 45.25 49.75 (44.20 )
Freecell 20 64.39 62.44 68.94 (64.00 )
Grid 5 70.60 58.00 70.60 (61.00 )
Gripper 50 101.00 101.00 76.00 (76.00 )
Logistics 28 56.71 55.36 43.32 (41.43 )
Miconic 50 34.46 44.80 30.84 (30.38 )
Mprime 35 10.74 14.37 9.09 (9.53 )
Mystery 30 7.07 7.71 7.29 (6.61 )
NoMystery 20 24.33 25.17 24.67 (19.75 )
OpenStacks 30 141.40 137.90 142.93 (155.67 )
OpenStacksIPC6 30 125.89 134.14 130.18 (136.17 )
ParcPrinter 30 35.92 36.40 37.72 (42.73 )
Parking 20 90.46 146.08 87.23 (88.33 )
Pegsol 30 24.20 25.17 25.90 (25.50 )
Pipes-NonTan 50 39.09 46.73 57.59 (34.34 )
Pipes-Tan 50 40.48 55.40 48.60 (31.45 )
PSRsmall 50 22.15 21.40 18.31 (16.71 )
Rovers 40 105.08 109.97 108.28 (100.47 )
Satellite 20 36.05 37.05 40.75 (37.75 )
Scanalyzer 30 29.37 25.15 27.52 (31.87 )
Sokoban 30 220.57 233.48 213.00 (213.38 )
Storage 30 20.94 14.56 24.33 (16.28 )
Tidybot 20 62.94 53.50 62.31 (63.20 )
Tpp 30 112.33 155.63 119.13 (122.29 )
Transport 30 107.70 137.17 108.03 (117.41 )
Trucks 30 26.50 26.75 24.12 (27.09 )
Visitall 20 947.67 1185.67 1285.56 (450.67 )
Woodworking 30 41.13 41.13 51.57 (32.35 )
Zeno 20 37.70 44.90 35.80 (30.60 )
Summary 1150 87.93 98.71 98.67 (67.75 )

Table 9.2: BFS(f ) vs. LAMA, FF, and PROBE. I is the number of instances, Q is
the average plan length. Q averages are computed over problems solved by all
planners except FF, excluded because of the large gap in coverage. Numbers in
bold show performance that is at least 10% better than the other planners.
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I S % S Q T

BFS(f ) 1150 1070 93% 82.80 62.89
No Delayed Eval 1150 1020 89% 80.67 65.92
No Heuristic 1150 965 84% 100.47 32.43
No Helpful Actions 1150 964 84% 81.82 64.20
No Novelty 1150 902 78% 86.40 46.11

Table 9.3: Ablation study of BFS(f ) when some features are excluded. Delayed
evaluation is excluded from the second and subsequent rows, in addition to the
feature shown. Columns show the number of instances (I), the number of in-
stances solved (S), % solved (%S), and average plan lengths (Q) and times in
seconds (T).

and the other planners are in 8puzzle, Parking, Pipesworld Tankage, Pipesworld
Non Tankage, and VisitAll (Table 9.2).

The results show that the performance of BFS(f ) is at the level of the best
planners. The question that we address next is: what is the contribution of
the four different ideas combined in the evaluation function f(n) and in the tie-
breakers; namely, the additive heuristic hadd(n), the landmark count usg(n), the
novelty measure novel(n), or the helpful action distinction help(n)? The last two
terms are the ones that determine the evaluation function f(n).

Table 9.3 shows the result of a simple ablation study. The first row shows the
results for the planner BFS(f ) as described above, while the following rows show
results for the same planner with one or several features removed: first delayed
evaluation, and then the additive heuristic, helpful actions, or novelty. This is
achieved by setting help(n) = 0, hadd(n) = 0, and novel(n) = 1 respectively in f(n)
for all n. The term novel(n) is set to 1 and not to zero because that is the value
needed to set the novelty term to 0. In table, the greatest drop in performance
arises when the novelty term is dropped; coverage then decreases by 11% from
89%, as opposed to the decreases that result from dropping either helpful actions
or the additive heuristic; which are respectively, 6% and 5%. In other words, the
novelty measure is no less important in the BFS(f ) planner than either the helpful
action distinction or the heuristic. Not delaying the evaluation of the heuristic
decreases the coverage by 50 problems. Recall that the only nodes delayed are
the non-helpful ones. Surprisingly if all nodes are delayed, the coverage drops
by 68 problems, even more than not delaying any node. The most important
term of all however is the usg(n) that counts the number of unachieved goals,
and whose effect is to ‘serialize’ the best-first search to the goal without giving
up completeness (as SIW ). Moreover, the definition of the novelty measure (9.3.3)
uses the usg(n) count to delimit the set of previously generated states that are
considered. Yet BFS(f ′) with the evaluation function f ′ = usg(n), i.e., without any
of the other features, solves just 776 instances. On the other hand, with the
term novelha(n) added, the number jumps to 965, surpassing FF, which solves
909 problems. This is interesting as BFS(f ′) then uses no heuristic estimator.
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9.5 Conclusion

We have formulated a number of known ideas in planning as suitable terms of an
evaluation function which has been used for driving a standard best-first search
from the initial state. The resulting planner is competitive with state-of-the-art
planners such as LAMA, solving more problems and resulting in slightly better
plans. The formulation provides a different angle on these ideas, and on the re-
lation between planning and search. While heuristic search has become a main-
stream approach in planning, the algorithms used in state-of-the-art planners
are not the ones used in search. Planning algorithms reason about states’ struc-
ture through search enhancements such as multiple queues for each heuristic
estimator, helpful actions pruning, etc. However, these results suggest that this
is not strictly necessary, and while inferences over factored representations are
crucial for performance, this does not translate necessarily into changes in the
search algorithm. Indeed, in the resulting planner, all inference about planning
gets compiled into the evaluation function, which is used in a standard best-
first search that does not look into the structure of the states. Rather, it uses
the evaluation function. Also, by providing a different interpretation of the land-
mark heuristic as a technique for serialization, we hope to make more visible its
limitations and the opportunities for further progress.
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Part IV
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Chapter 10

Conclusions

Estoy como parado en una esquina viendo
pasar lo que pienso, pero no pienso lo que
veo.

It’s like I’m standing on a corner watching the
things that I’m thinking go by, but I’m not
thinking what I see.

El Perseguidor.
Julio Cortázar

In this chapter we summarize the contributions of the dissertation, present
related work, and discuss current and future lines of research based on the work
developed so far.

10.1 Contributions

In this section we outline the main contributions of this thesis, and refer to the
chapters and publications were they appeared:

1. The notion of consistent causal chains: sequences of causal links ai, pi+1, ai+1

starting with an action a0 applicable in the current state s and finishing in
the goal, where pi+1 is an effect of action ai and a precondition of action
ai+1. We show that by enforcing the semantics of causal links, it is possible
to propagate side effects along such chains and detect that some of these
chains cannot be part of any plan. Consistent causal chains can be used
to select applicable actions in a given state, in a way analogous to helpful
actions, by pruning actions a0 that cannot start any consistent causal chain
(in Chapter 2, and Lipovetzky and Geffner (2009b) ).

2. The use of Consistent Causal Chains as decomposition backbones and as
devices for defining a heuristic estimate of the cost of achieving the goal along
such paths, resulting in a planner that solves most of the benchmarks with
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no search at all. A path dependent heuristic is proposed that, while being
more demanding computationally, takes deletes into account and expands
an order of magnitude fewer nodes than a standard delete-based relaxation
heuristic (in Chapter 3, and Lipovetzky and Geffner (2009a,b) ).

3. The idea of probes: single action sequences computed without search from a
given state that can quickly go deep into the state space, terminating either
in the goal or in failure. Using a number of existing and new polynomial
inference techniques, most of the benchmarks can be solved with a single
probe from the initial state, with no search. Moreover, the use of probes as a
lookahead mechanism from each expanded state in a standard greedy best
first search increases the number of problems solved, and compares well to
state-of-the-art planners (in Chapter 4, and Lipovetzky and Geffner (2011b))

4. A new width notion for planning domains that is useful, both theoretically
and practically. This width bounds the complexity of a planning domain
in terms of the goal structure of the problem. We prove that many of the
existing domains have a bounded and low width when goals are restricted
to single atoms (in Chapters 6,7, and Lipovetzky and Geffner (2012)).

5. A simple, blind-search planning algorithm (IW) that runs in time exponential
in the problem width; and a blind-search planning algorithm (SIW) that uses
IW for serializing a problem into subproblems and for solving such subprob-
lems. Both algorithms are competitive with a best-first search planner using
state-of-the-art heuristics over atomic and conjunctive goals (in Chapters
7,8, and Lipovetzky and Geffner (2012) ).

6. A state-of-the-art planner that integrates new and old inferences used in
planning in a standard greedy best-first search method. We show how the
key notion of novelty can be used by heuristic search algorithms (in Chapter
9, and Lipovetzky and Geffner (2012) ).

As a result, three high performance planners are presented: C3 (in Chapter
3, and Lipovetzky et al. (2008), PROBE (in Chapter 5, and Lipovetzky and Geffner
(2011a)) and BFS(f) (in Chapter 9 and Lipovetzky and Geffner (2012))

10.2 Related Work

In this section we present related work, first to causal chains and probes, and
then to the notion of width for classical planning proposed in this thesis.

10.2.1 Inference

Some of the inferences used by probes and causal chains in satisficing state
space planning are used in other approaches to planning as well. Causal links,
used in this thesis in the form of causal commitments and causal chains, are
used in partial order planning (Penberthy and Weld, 1992; McAllester and Rosen-
blitt, 1991), constraint based planning (Vidal and Geffner, 2005), and recently
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also in a path based admissible heuristic for optimal planning (Karpas and Domsh-
lak, 2012). Probe’s serialization of landmarks is similar to the subgoaling scheme
in Hoffmann et al. (2004), although with very different results, as probes do addi-
tional inference to distinguish good serializations from bad ones. Landmark goal
orderings are similar to the reasonable goal orderings used by the goal agenda of
IPP and FF (Koehler and Hoffmann, 2000), while consistency tests for subgoals
capture orderings similar to the reasonable and obedient-reasonable ones (Hoff-
mann et al., 2004). The notion of consistency is used in two ways: to distinguish
good from bad subgoals in probes, and to distinguish good from bad actions in
C3.

The motivation for PROBE and C3 is related to the motivation behind other
recent planners such as eCPT (Vidal and Geffner, 2005) that also aim to solve
simple, non-puzzle-like domains, with little or no search at all. This requires
capturing the right domain independent inferences that render the search su-
perfluous in such domains. This task is non-trivial, but as shown in PROBE, it
can pay off even in planners that do search.

In this sense, probes can be understood as a lookahead mechanism. The use
of lookahead in search and planning is very old in AI, and appears more recently
in the YAHSP planner, that makes an attempt to lookahead by using sequences
of actions extracted from the relaxed plan (Vidal, 2004). While PROBE also looks
ahead by using sequences of actions, the design and use of these sequences is
completely different in the two planners. In particular, while in YAHSP, the action
sequences are executable prefixes of the relaxed plan, in PROBE, they are com-
puted from scratch to achieve each one of the remaining subgoals in sequence.
The range of domains that are solved by just throwing a single probe from the
initial state is then much larger.

The idea of searching with probes has been considered before in Langley
(1992) where random probes are used. Limited discrepancy search can be thought
of as a systematic method for searching with probes (Harvey and Ginsberg, 1995),
while Monte Carlo planning, as a non-systematic method that uses multiple ran-
dom probes (Nakhost and Müller, 2009). In contrast, we propose the use of single
carefully designed probes.

The ideas of goal serialization and problem decomposition have received a lot
of attention in search, and in the early days of planning (Korf, 1987). We re-
visited these ideas equipped with the techniques that have been developed more
recently in planning research to explicitly recognize and exploit the structure of
problems that are nearly-decomposable, even if they are not perfectly decompos-
able. Indeed, planning used to be defined originally as being concerned mainly
with these problems (Newell and Simon, 1963) and even with non-decomposable
ones, where techniques such as macro-operators were successfully used to seri-
alize non-serializable problems like Rubik’s cube (Korf, 1985).

10.2.2 Structure

In Part III of this thesis, we introduced a new type of width parameter that bounds
the complexity of a planning domain. Other approaches have also been proposed
for explaining the gap between the complexity of planning (Bylander, 1994), and
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the ability of current planners to solve most existing benchmarks in a few seconds
(Hoffmann and Nebel, 2001; Richter and Westphal, 2010). Tractable planning has
been devoted to the identification of planning fragments that, due to syntactic or
structural restrictions, can be solved in polynomial time; fragments that include,
for example, problems with single atom preconditions and goals, among others
(Bylander, 1994; Bäckström, 1996). Factored planning has appealed instead to
mappings of planning problems into Constraint Satisfaction Problems, and the
notion of width over CSPs (Amir and Engelhardt, 2003; Brafman and Domshlak,
2006). The width of a CSP measures the number of variables that have to be
collapsed in order to ensure that the graph underlying the CSP becomes a tree
(Freuder, 1982; Dechter, 2003). The complexity of a CSP is exponential in the
problem width. A notion of width for classical planning using a form of Hamming
distance was introduced in (Chen and Giménez, 2007), where the distance is set
to the number of problem variables whose value needs to be changed in order to
increase the number of achieved goals.

A related thread of research has aimed at understanding the performance of
modern heuristic search planners by analyzing the characteristics of the optimal
delete-relaxation heuristic h+ that planners approximate for guiding the search
for plans (Hoffmann, 2005, 2011). For instance, the lack of local minima for h+

implies that the search for plans (and hence the global minimum of h+) can be
achieved by local search, and this local search is tractable when the distance to
the states that decrement h+ is bounded by a constant. This type of analysis
has shed light on the characteristics of existing domains where heuristic search
planning is easy, although it does not address explicitly the conditions under
which the heuristic h+ can be computed efficiently, nor whether or not it is the
use of this heuristic that makes these domains easy to solve.

Since the notion of width was introduced and used explicitly in graphical mod-
els to bound the complexity of a CSP problem, much work has been done to define
a useful width-like notion of a range of problems related to automated planning.
A recent successful approach to solving conformant planning problems, is to
translate them into classical planning problems. The translation depends on a
parameter i that determines its size. When i is bigger or equal to the conformant-
width of the problem, it can be shown that the translation is sound and complete,
i.e. it captures all and only the solutions of the original conformant problem.
Moreover, the complexity of the complete translation is exponential in the confor-
mant width of the problem (Palacios and Geffner, 2007), which for most of the
problems is bounded by a constant of 1. Roughly, the conformant width of a
problem is the number of variables relevant to a precondition or a goal in the
initial state whose values are not known, and need to be tracked in the classical
problem in order to get a valid solution.

Analogously, a successful approach to solving contingent problems (problems
with uncertainty and sensing), consists of a translation to non-deterministic but
fully observable planning problems, which under certain conditions it is sound
and complete. The complexity of the translation is exponential in the contin-
gent width of the problem (Albore et al., 2009), which for most problems is also
bounded by a constant of 1. The intuition behind contingent width is the same
as that behind conformant width, capturing the complexity of keeping track of
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Figure 10.1: Tuple Graph G1 of problem Π where I = {r}, goal G = {z}, and
actions a : r → p,¬r, b : r → q,¬r, c : r → x, d : x→ p, q, y, and e : p, q → z. Labels on
top of the rrows are the actions that extend the optimal plans of the tuples.

the uncertainty in the translations, but here extended to capture the availability
of sensing, and the information that can be inferred from it.

Tracking the unknown values of fluents is called belief tracking. While a bound
on the complexity of belief tracking on deterministic conformant and contingent
planning exists, it is also possible to bound the belief tracking of non-deterministic
conformant and contingent planning problems. The complexity bound is similar
to the one obtained for the deterministic versions, but defined over multivalued
variables instead of propositional variables (Bonet and Geffner, 2012).

Recall that the notion of width, introduced in Chapter 6, is defined over graphs
Gm whose vertices are tuples of at most m atoms. This suggests a relation between
the width of a problem and the family of admissible hm heuristics, which are also
defined over tuples of at most m atoms (Haslum and Geffner, 2000). A conjecture
that we considered is that a width of w(Π) = m implies that hm is equal to the
optimal heuristic h∗. The conjecture however is false.

The counterexample is due to Blai Bonet. Consider a problem Π = 〈F, I,O,G〉
where:

• I = {r}

• F = {r, p, q, x, y, z}

• G = {z}

• O = 〈

– a : r → p,¬r

– b : r → q,¬r

– c : r → x

– d : x→ p, q, y

– e : p, q → z

〉
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It can be shown that the problem Π has width w(Π) = 1, as tuple graph G1 in
Figure 10.1 contains the tuple z that optimally implies goal G. Tuple z is in G1
as all optimal plans for y can be extended with a single action, i.e. action e, into
optimal plans for z. It is important to notice that y is a surrogate of (p, q), as no
action in problem Π has y in its preconditions. Notice that if fluent y is removed1

from problem Π then w(Π) = 2. There is no other tuple with arity 1 such that all
of its optimal plans can be extended with a single action into optimal plans for z,
thus z 6∈ G1 and there would not be any other tuple t ∈ G1 that optimally implies
goal G. Tuple z would make it into G2 through tuple (p, q).

Yet, h∗(Π) = 3 with optimal plan π = 〈c, d, e〉, while the heuristic hm for m = 1,
is hmax, which for this problem is 2. Thus, w(Π) = m and yet h∗(Π) 6= hm(Π).

It turns out that for this correspondence to be true, an additional clause is
needed in the definition of the heuristic hm; namely, for tuples t of any size,
hm(t) should not be lower than hm(t′) when t′ is a tuple of at most m atoms that
optimally implies t. Yet, checking this implication in general is as hard as optimal
planning, and thus intractable.

10.3 Future Work

In this section we describe some future research directions for extending the work
developed in this thesis.

10.3.1 Causal Chains

In Chapter 3 we introduced the notion of causal chains (paths), sequences of
causal links from a given state that start with an applicable action and finish in
the goal. By enforcing their semantics we show that some of these chains are
not possible in any valid plan. The consistent causal chains are those chains
that can be mapped into a valid plan from a given state, although determining
whether or not there is a consistent chain from a state is NP-complete. As a
result, we have restricted our attention to the set of minimal causal chains only.
Determining whether or not there is a consistent minimal chain is in the worst
case intractable too, but generally it can be computed sufficiently fast. We then
exploit consistent minimal chains: pruning applicable actions, decomposing the
problem into subproblems, and introducing a path-based heuristic that takes
deletes into account. Most of the benchmark domains that are solved easily
by these techniques, correspond to serializable problems with non or few dead-
ends. In order to tackle non-serializable problems, such as 15-puzzle, we need
to consider chains that are not minimal, that is, where the actions in the chains
are not restricted to being the best supporters in a given chain. The challenging
aspect is how to get outside of the minimal chains without having to consider the
whole set of possible chains in a state.

Also, we want to study learning in the context of path-based planning, in the
sense that is used in SAT and CSP: where the causes of failures are identified and
used to prune the rest of the search. The pruning and decomposition schemes

1 The optimal plan for the original problem does not change, as no action requires y.
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with consistent chains use a backtracking algorithm, which in the case of arriving
to a state where there are no possible ways to continue the search, backtracks
to its immediate predecessor, and continues the search systematically. Ideally,
the search should not backtrack to its immediate predecessor, rather it should
backtrack non-chronologically up to the culprit state that introduced the conflict
that caused the backtrack. This technique is known as back-jumping. In order
to back-jump, we have to recognize first which state caused the failure, and
then abstract the reasons of the failure. In addition, this information can be
added to the search in order to avoid making the same mistakes, and potentially
pruning large portions of the search space. This requires first characterizing
which information to learn, how to bound the amount of information gained, and
then how to take advantage from it (Dechter, 1990; Marques-silva and Sakallah,
1999). We think that the focus on causal chains, as opposed to action or state
sequences, may allow for the use of similar techniques.

Another approach to planning, that differs from heuristic search, is to build
a hierarchy of abstracted search spaces. Hierarchical planners solve first one
level of the abstraction, and then refine the solution in the successive and more
detailed levels of the hierarchy (Sacerdoti, 1974). These planners have been used
successfully in many industry applications, although typically they are domain-
dependent solvers, where the hierarchy is designed by hand. Some attempts have
been made to automatically build such abstractions, assuming that successive
refinements do not change the structure of previous abstract solutions. That is,
once a solution is found by one abstract level, subsequent levels will not need
to change, but rather refine previous solutions (Knoblock, 1994). Similarly, C3
finds an abstract solution (a causal chain), and then refines it until the causal
chain becomes a plan. Thus, we want to use paths to get a better understanding
of hierarchical planning and the conditions under which it pays off.

Finally, the path-based heuristic used for state-based planning may sub-
sume the notion of consistency, provided that inconsistent paths result in in-
finite heuristic values. The open question remains: how can we improve the
path-based heuristic where the minimality requirement on causal chains in the
computation of the path heuristic is dropped? This is likely to result in an ad-
ditional overhead, but may serve in difficult serializable domains like Sokoban,
where the restriction to minimal paths renders many problems unsolvable.

10.3.2 Probes

From the success of probes and their computation, in which problems are mapped
into a series of subgoals that are heuristically computed along with the probes,
two conclusions can be drawn. The first is that most of the classical bench-
marks admit good serializations of the landmarks, under which the solution of
the problems becomes simple. The second is that while not every serialization is
good, the mechanisms in a probe and in particular the consistency tests, appear
to find good ones.1

1 Landmarks are used in a subgoaling scheme in Hoffmann et al. (2004), but the results do not
appear to be as good. One possible explanation for this, is that no additional inference is made to
distinguish good serializations from bad ones.
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These observations raise two questions that we would like to address in the
future. The first is: which methods are good for finding good serializations when
they exist?. PROBE implements one such method, but it is not necessarily the
best such method, and moreover, probes are greedy and incomplete. The second
question is: which methods are good for finding and exploiting serializations
in problems that have good but no perfect decompositions?. The 8-puzzle is an
example of this situation: one can place the tile 1 in position 1, the tile 2 in
position 2, but then one needs to undo this last subgoal, in order to have tiles 2
and 3 at their target positions.

When a probe fails, its nodes are placed in a GBFS that chooses the next best
node to launch the next probe. In some ways, GBFS works as a quick method
to repair failures. A more principled behavior would be to recognize the cause of
failure of the probe, and launch the next probe from the culprit state. Further
research needs to be done to characterize the reasons for a probe to fail.

10.3.3 Width

In Part III of this thesis, we introduced a width parameter for planning that
bounds the complexity of a planning domain, based on its goal structure. The
width is defined over a graph Gi encoding the optimal reachability relations be-
tween fluent tuples, whose size is at most i (Definition 6.1). The width w(φ) of a
formula φ over the fluents of a problem Π, is the min i for which Gi contains a
tuple that optimally implies φ. Recall that we say that a tuple optimally implies
the formula φ if all optimal plans for the tuple, are also optimal plans for φ. Note
that the size of the tuple is w, but the size of the formula φ is not bounded by
w. We also mentioned in Section 10.2 that there is a correspondence between
the definition of the hm heuristic and the optimal heuristic h∗, given that an ad-
ditional clause is added to its definition: if the width w(Π) of a problem Π is m,
then hm = h∗. The extra clause has to ensure that if a tuple t′ of size m opti-
mally implies a tuple t of an arbitrary size, then hm(t′) = hm(t). Yet, checking
this implication is NP-hard, as we have to compute every optimal plan for every
tuple of size m. However, certain types of implications may be tractable, and they
could be used to boost hm, while keeping it admissible and polynomial. We then
want to address the question: under which circumstances hw = h∗? Is there any
syntactical restriction under which the above question holds?

The complexity of the algorithm IW(1) is O(|F |), which is the number of fluents
of the problem, as it generates at most |F | states. This complexity is similar
to the complexity of delete-based relaxation heuristics. Therefore, we want to
investigate whether or not IW(1) can be used to boost heuristic estimators, as
the states in IW(1) are not states of the relaxed problem, but are real reachable
states. One way of doing so, is to add the extra clause mentioned before for hm,
where the implications are the ones resulting from IW(1).

We have also shown that most of the standard benchmark domains have low
width provided that their goals are atomic fluents, and that joint goals are easy
to serialize. If we want to generate hard problems, we have to generate non-
serializable problems with high atomic fluent width, where the top-level goals
are non recursively decomposable. For example, in order to generate a fluent p
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with high width, we can add a dummy fluent Goal, added by a single End action
whose preconditions are the original goals G of the problem. The width of the
new Goal atom will be the width of the conjunctive goal formula G of the problem.
In that case, the top-level fluent Goal is decomposable, and if the fluents in G
are decomposable and easy to serialize, the problem does not become harder.
This leads as to the question: how can we generate non-decomposable problems
whose fluents have width w? We hope that by understanding how such problems
can be generated, we can gain a deeper understanding of the structures that lead
to high or low width.

On the other hand, given a problem Π whose width is w(Π), can we lower the
width of the problem so that algorithms such as IW(i) can solve them with smaller
i values? Recall that IW(i) complexity is O(|F |i). In the counterexample which
proves that hm 6= h∗ when w(Π) = m, presented in Section 10.2, the width of the
problem is 1 instead of 2, due to the introduction of the fluent y that acts as a
surrogate of a tuple of size 2. We would like to recognize how to introduce tuples
that are surrogates of other tuples, which as a consequence, lower the width of
the problem.

The size of the state space reachable with IW(i) is |F |i. We have investigated
the extraction of macro operators from the state space reachable by IW(i), to be
used along normal operators. The use of these macros typically would act as
a lookahead defined over the state space induced by IW(i). The open question
is: how can we define the subset of macro operators to be considered in the
branching of the original search space?

Similarly, we have looked into different branching schemes for searching in
the space of possible goal serializations. SIW greedily commits to a single serial-
ization while solving the subproblems, but is not necessarily the best, especially
in the presence of dead-ends, where SIW gets trapped.

We also have looked at how to integrate accumulated costs in the best-first
search that include the novelty term in the evaluation function. Rather than
using the term g(n) that counts all of the actions done on the way to n from the
root node as in A*, we tried to use a local cost term gL(n) that reflects just the
cost of the ‘last subproblem’ induced by the landmark heuristic (Section 9.2). For
this, we count in gL(n) the number of nodes n′ (and hence actions) in the path to
n from the root, such that usg(n) = usg(n′). That is, nodes are regarded as part of
the same ‘subproblem’ when they have the same number of unachieved subgoals
(landmarks), and it is the cost of actions done in the same subproblem that is
added up. Indeed, this improves the quality of solutions returned by BFS(f)
without degrading the coverage, but we believe that a better characterization of
the local accumulated cost is needed.

The width is defined over classical problems, but we are interested in defining
a similar width notion over probabilistic or non-deterministic problems. Still, the
novelty definition in non-classical problems should be defined differently. The
open question remains: can we extend this notion to these models and exploit it
in this context?

Intuitively, the notion of novelty can be seen as a method to diversify the
search in a systematic way. This can be extremely useful when the goal is not
well-defined, and as we show in Table 7.2, IW performs much better than other
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blind search algorithms.
From a different perspective, assume that we are given a plan for a problem Π.

It is possible, with IW(i), to build a plan ‘skeleton’ by dropping actions and assur-
ing that the cost of ‘filling the gaps’ is a low polynomial. Namely, that each action
ai from the plan skeleton assures that the preconditions of ai+1 can be reached
with IW(i) with a low i value. The questions that need to be addressed are: (1.)
how can we minimize skeleton size, while assuring that filling the missing actions
can be solved by IW(1)? (2.) What relationships would the plan skeletons have
with hierarchical abstractions and decomposition? And (3.) can we learn possible
serializations of the problem through the plan skeletons? Note that the actions
of the plan skeletons can be completely different from causal links, and may cap-
ture possible serializations of non-serializable problems such as the 15-puzzle.
Each of these questions pose challenges that we look forward to addressing.
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