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Abstract

High Performance Computing (HPC) systems are designed to execute large-scale com-

putational workloads by leveraging parallel processing across multiple compute nodes.

These systems support a wide range of applications, including scientific simulations, engi-

neering design, and artificial intelligence, where tasks usually require substantial computa-

tional power and execution time. Efficient job scheduling in HPC environments is essential

to ensure timely job completion and effective resource utilization. In HPC scheduling, two

important components are the job queue and the computing cluster. The job queue holds

jobs submitted by users, each describing the resources it needs — such as CPU cores,

GPUs, memory, and expected runtime — before it can run. The computing cluster is the

pool of available hardware resources that can be assigned to these jobs. Since resources

are limited and jobs arrive over time with varying demands, the scheduler must contin-

uously decide which jobs to run and how to allocate resources to them. This process,

known as job scheduling, involves both selecting jobs from the queue and assigning suit-

able resources across the cluster. These decisions must respect system constraints, such

as resource availability and job placement requirements, and aim to utilize resources well

while maintaining job waiting time as low as possible.

Traditional HPC schedulers often rely on simple heuristics like First-Come-First-Served

(FCFS) or Shortest Job First (SJF), which are easy to implement but can lead to poor

resource utilization and job starvation under dynamic workloads. Meta-heuristic algo-

rithms have been used to improve decision quality by exploring a broader solution space,

but they are computationally costly and require careful tuning. Supervised machine learn-

ing methods have also been applied to predict job priorities, offering better scheduling

decisions than fixed heuristics. However, they depend on labeled datasets and struggle

to adapt to real-time system changes. In contrast, Deep Reinforcement Learning (DRL)

enables a scheduler to learn scheduling policies through interaction with the system, using

performance feedback to improve decisions over time. It does not rely on labeled data

or predefined heuristics, and instead learns to optimize long-term scheduling outcomes

by exploring and evaluating different actions in varied system states. This makes DRL

well-suited for handling dynamic workloads, complex resource constraints, and changing

system conditions in HPC environments. However, applying DRL to HPC scheduling
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introduces several key challenges. First, designing an effective job selector is difficult due

to the unbounded and dynamic nature of the job queue. As jobs continuously arrive and

depart, the number of scheduling actions and the information required to represent each

job can vary significantly over time. This makes it challenging to define a consistent and

scalable state representation and to construct a manageable action space for the agent.

Second, job selection and resource allocation are often handled separately, which can re-

sult in poor coordination and inefficient scheduling. Addressing this requires a unified

DRL framework that jointly considers both decisions. Third, scheduling objectives —

such as minimizing job waiting time and maximizing resource utilization — can conflict

and shift depending on workload intensity and system state, requiring the scheduler to dy-

namically adjust its priorities. Fourth, as HPC systems are upgraded, modified, or newly

developed, changes in hardware architecture can alter the structure and semantics of the

system state used by DRL-based schedulers. These changes affect how job and resource

features are represented and interpreted, making it difficult to directly reuse DRL models

trained in previous environments without adaptation.

In particular, this thesis makes the following contributions to DRL-based HPC schedul-

ing:

• Develops a DRL-based job selector designed to handle unbounded job queues and

support efficient backfilling.

• Presents a hierarchical DRL scheduler that jointly manages job selection and re-

source allocation in HPC environments.

• Introduces a dynamic controller that adjusts scheduling objectives based on real-

time system conditions.

• Proposes a transfer learning framework that enables DRL schedulers to adapt effi-

ciently to evolving HPC architectures.
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Chapter 1

Introduction

High Performance Computing (HPC) refers to the use of large-scale, parallel computing

systems to solve complex computational problems that exceed the capabilities of tradi-

tional computing architectures. These systems consist of a large number of interconnected

compute nodes that collectively execute parallel workloads, significantly reducing execu-

tion time for tasks in domains such as scientific simulations, engineering design, financial

modeling, and artificial intelligence. The demand for HPC has grown rapidly due to

increasing computational complexity and the explosion of data generated by modern ap-

plications [2]. HPC systems represent a significant financial investment, with top-tier

systems such as Frontier requiring extensive funding for development and deployment [3].

Beyond hardware expenses, operational costs — including system upgrades, software de-

velopment, and maintenance — add to the financial obligations of the HPC providers. Effi-

cient resource management is, therefore, critical to maximizing computational throughput

and ensuring cost-effectiveness.

HPC job scheduling is a dynamic and complex decision-making process that aims to

efficiently manage computational resources while ensuring the timely execution of diverse

workloads. It can be fundamentally modeled as a long-running, multi-level, multi-resource

scheduling problem, where jobs dynamically arrive and request multiple types of resources,

including nodes, CPU cores, memory, GPUs, and network bandwidth. At the node level,

a job must be assigned to one or more nodes, and each node must accommodate the

job’s specific resource demands. Since multiple jobs can run on the same node simulta-

neously, the scheduler must ensure that the total allocated resources do not exceed the

1
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node’s available capacity. This creates a multi-resource scheduling problem at the node

level, where jobs must be packed efficiently without causing fragmentation or leaving idle

resources. At the cluster level, jobs may request multiple nodes to execute in parallel.

The scheduler must determine which set of nodes should be allocated to each job, taking

into account resource availability, inter-node communication overhead, and system-wide

efficiency. Poor job placement decisions at this level can lead to an unbalanced resource

distribution across the cluster, reducing overall utilization. This creates a multi-level

scheduling problem, where cluster-level decisions influence node-level resource packing,

and efficient node utilization is necessary for maintaining system-wide performance. The

complexity of HPC scheduling requires novel scheduling strategies to optimize resource

usage while ensuring timely job execution.

HPC scheduling is a multi-stage process, as illustrated in Fig. 1.1. The workflow

begins with users submitting jobs to a job queue, where they await scheduling decisions.

A scheduler, composed of a job selector and a resource allocator, manages the scheduling

process. The job selector determines which job to execute based on system policies. Once a

job is selected, the resource allocator assigns available compute resources — such as nodes,

CPU cores, GPUs, memory, and network bandwidth — ensuring that multi-resource

constraints are met. After allocation, the compute cluster executes the scheduled jobs,

and their performance is continuously monitored. The results contribute to performance

evaluation, providing feedback on system efficiency, job completion times, and resource

utilization. This feedback loop informs future scheduling decisions. This dynamic, multi-

resource allocation problem is inherently NP-hard [4], requiring advanced approaches to

enhance overall performance.

Figure 1.1: HPC scheduling process.
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Traditional HPC scheduling relies on rule-based and heuristic-based approaches to

determine job selection and resource allocation. Rule-based job selection methods, such

as First-Come-First-Serve (FCFS) and Shortest Job First (SJF), follow predefined policies

aimed at simplicity and predictability but often lead to inefficiencies such as job starvation,

resource fragmentation, and reduced overall throughput. Heuristic-based job selection [5–

8] enhances rule-based methods by incorporating domain knowledge into predefined job

priority rules. These heuristics assign job priorities using static scoring functions that

typically include job attributes such as estimated runtime, requested resources, queue

waiting time, or current system load. Other techniques like backfilling allow smaller jobs

to be scheduled earlier if they do not delay larger jobs, improving system throughput.

Once a job is selected, the resource allocator determines how available compute resources

are assigned. For example, First-Available allocation prioritizes decision-making speed by

assigning jobs to the first set of free nodes that meet resource requirements but may cause

resource fragmentation. Best-Fit allocation minimizes resource waste by selecting nodes

with the least available resources that can still satisfy the job’s requirements, though

it increases scheduling overhead. Topology-Aware allocation optimizes performance by

considering interconnect topology and reducing communication overhead. These heuristic-

based methods can perform effectively under stable or predictable workloads. However,

they rely on fixed policies that do not adapt to workload fluctuations, evolving hardware

configurations, or changing system constraints.

To improve heuristic-based scheduling, meta-heuristic algorithms — such as Genetic

Algorithms (GA) [9], Simulated Annealing (SA) [10], and Ant Colony Optimization

(ACO) [11] — have been explored in HPC scheduling [12–15]. These approaches offer

greater flexibility than heuristics by searching a broader solution space and iteratively

improving scheduling decisions according to defined performance metrics or optimization

objectives. Despite their improved scheduling decisions, meta-heuristic methods can be

computationally expensive and require careful tuning which may be impractical. Beyond

meta-heuristic methods, machine learning-based approaches [16–19] have been explored

to improve job selection by learning patterns from historical scheduling data. While ma-

chine learning offers adaptability beyond static heuristics, these approaches often rely

on extensive labeled datasets, struggle to generalize across different workloads, and can-

not respond to real-time system variations dynamically. Additionally, traditional machine

learning-based schedulers require frequent retraining to adapt to evolving HPC conditions,
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limiting their practicality in highly dynamic environments.

Reinforcement learning (RL) has emerged as a promising approach for HPC job schedul-

ing, offering adaptability beyond traditional heuristics and other machine learning-based

methods. Unlike supervised learning, which relies on labeled datasets, RL enables a

scheduler to learn job scheduling strategies through interaction with the environment.

RL-based schedulers formulate scheduling as a sequential decision-making problem, where

an agent receives state observations — such as queue length, resource availability, and

job characteristics — and selects scheduling actions to maximize a long-term reward. By

continuously refining its policy through trial and error, an RL-based scheduler can dy-

namically adjust to changes in workload characteristics and system conditions. Recent

studies [20–29] have integrated Deep Reinforcement Learning (DRL) to enhance scalabil-

ity and decision-making, allowing schedulers to handle large-scale HPC workloads more

effectively. However, applying RL to HPC scheduling presents challenges that necessitate

further research in order to design practical RL-based scheduling frameworks that balance

learning efficiency and scheduling performance.

This research focuses on leveraging DRL to develop effective solutions for HPC schedul-

ing problems. Although, DRL enables adaptive decision-making that dynamically re-

sponds to workload fluctuations and system constraints, applying DRL to HPC scheduling

introduces several challenges. The unbounded state space resulting from the ever-changing

job queue and system status complicates learning stability and convergence. Delayed

and sparse rewards make it difficult for RL agents to associate scheduling actions with

long-term performance outcomes. Additionally, balancing user-centric and system-centric

objectives — such as minimizing job waiting time while maximizing resource utilization

— requires designing effective reward functions that reflect scheduling trade-offs. Beyond

these fundamental challenges, DRL-based scheduling must also coordinate job selection

and resource allocation efficiently. Poor coordination can lead to suboptimal scheduling

decisions, where jobs are selected without considering resource availability, or resources

are allocated inefficiently, leading to fragmentation and reduced utilization. Furthermore,

adapting DRL-based schedulers to evolving HPC architectures remains a significant chal-

lenge. The ability to generalize across diverse environments and quickly adapt to hardware

changes is essential for ensuring long-term applicability. This research systematically in-

vestigates these challenges and proposes scalable DRL-based scheduling frameworks to

enhance adaptability, efficiency, and performance in HPC environments.
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1.1 Challenges in RL-based HPC Scheduling

Job Selector Design. One of the fundamental challenges in developing an RL-based

job selector for HPC scheduling is handling the unbounded nature of the job queue. In

RL, the agent makes decisions by observing the system state and selecting an action

from a defined set. In HPC scheduling, the state typically includes features such as the

current job queue, the availability of compute resources, and the status of running jobs,

while the action corresponds to selecting a job from the queue for scheduling. In many RL

applications, both the state and action spaces are fixed in size. However, in HPC systems,

the job queue is dynamic and unbounded — new jobs can arrive at any time, and there is

no fixed upper limit on the number of pending jobs. This makes it challenging to construct

a stable and compact representation of the state, since the scheduler must encode an

arbitrary number of jobs, each with multiple attributes. Likewise, the action space grows

with the queue length, as each additional job becomes a new decision candidate. This

variability introduces significant complexity into the learning process and requires special

design choices to ensure the RL agent can operate effectively.

To manage this complexity, existing RL-based job schedulers typically address the

unbounded job queue challenge by considering only a fixed window of jobs at the front

of the queue [20, 24–26, 28]. However, since jobs outside the window are not visible

to the scheduler, a separate backfilling process is often needed for them to fill resource

gaps and improve utilization, ensuring that small, runnable jobs are not unnecessarily

delayed. This approach, while simplifying the state and action space, introduces severe

limitations in decision-making. By restricting visibility to only a subset of jobs at the

head of the queue, the scheduler operates under partial observability, limiting the RL

agent’s ability to make fully informed decisions. Over time, this may lead to large or

more resource-intensive jobs accumulating at the front of the queue, as they are repeatedly

postponed while smaller jobs that fit available resources are prioritized. Consequently, job

starvation occurs as large jobs experience excessive delays and are unable to be scheduled

until a rare opportunity arises when sufficient resources become available simultaneously.

Additionally, inefficient resource utilization emerges because resources are allocated in a

fragmented manner, favoring short jobs instead of making strategic scheduling decisions

that optimize long-term system efficiency.
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Resource Allocation Design. Designing an effective resource allocator for HPC

scheduling presents significant challenges due to the complex, multi-resource nature of

compute nodes and the dynamic variability of job demands. Also, job selection and

resource allocation must work in coordination to achieve efficient scheduling decisions.

Traditional approaches, as well as some recent RL-based works [20, 24–26, 28], often

handle these two components separately where the job selector determines which job(s)

to schedule next, and then the resource allocator assigns available nodes to those jobs

based on predefined allocation strategies. However, this separation can lead to suboptimal

scheduling decisions, as the job selector may not be fully aware of resource availability

constraints, and the allocator may not account for the long-term impact of job selection

choices. The challenge lies in ensuring that job selection and resource allocation are jointly

optimized rather than conflicting in their objectives. For example, consider a scenario

where the job selector prioritizes minimizing average waiting time by selecting short jobs

first. Meanwhile, the resource allocator aims to minimize the number of idle nodes by

distributing jobs across the cluster to balance resource usage. While each component

operates with a reasonable objective, their decisions can conflict. Selecting short jobs

may be effective for reducing queue delays, but if these small jobs are spread across

multiple nodes to balance the load, it can lead to inefficient packing. This fragmentation

leaves insufficient contiguous resources for larger jobs, increasing their waiting time and

reducing overall system throughput. Such conflicts highlight the need for coordinated

scheduling decisions. A joint optimization approach considers both job characteristics and

resource availability, allowing small jobs to be compactly scheduled onto fewer nodes while

preserving space for larger, resource-intensive jobs. By aligning job selection with resource

allocation, the scheduler can respond more effectively to dynamic workload conditions and

achieve better overall performance.

Scheduling Objectives Shifting. In HPC scheduling, some system-centric objec-

tives include maximizing CPU and memory utilization, increasing system throughput,

and reducing resource fragmentation. These objectives ensure that HPC resources are ef-

ficiently utilized to maximize computational output. User-centric objectives, on the other

hand, emphasize minimizing job waiting time and job turnaround time, ensuring that

users receive timely access to compute resources. However, these two types of objectives

are inherently conflicting, and balancing them effectively across diverse workload scenarios

and system states remains a central challenge in HPC scheduling. One major challenge is
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that fixed-objective schedulers cannot adjust their optimization focus in response to di-

verse workload scenarios, where the primary scheduling objective may shift. For instance,

during periods of high system load, when many jobs are competing for limited resources,

the scheduler should prioritize maximizing resource utilization to ensure that available

CPUs and memory are used as efficiently as possible. In contrast, during low system

load, when resources are abundant and jobs arrive infrequently, utilization is no longer a

concern; instead, minimizing job waiting time becomes more important to provide users

with a better experience. Since high-load and low-load conditions fluctuate frequently

in HPC systems [30, 31], fixed-objective schedulers, with static weights assigned to each

objective, lack the flexibility to adapt their priorities accordingly.

A fundamental need to dynamically balance these objectives is that the scheduler must

determine when to prioritize utilization over waiting time and vice versa. This requires

capturing real-time system conditions, such as job queue characteristics, resource avail-

ability, and workload distribution. Learning a dynamic policy that can adjust scheduling

decision goals based on system states remains an open research problem. Addressing this

challenge requires developing adaptive scheduling strategies that shift priorities based on

workload patterns, ensuring that HPC systems remain both efficient and responsive to

user demands.

Adaptation to Evolving HPC Architectures. HPC architectures are continuously

evolving, driven by advances in processor technologies, interconnects, memory hierarchies,

accelerators, and increasing computational demands. These architectural changes have

a direct impact on job scheduling, as resource availability, performance characteristics,

and workload behavior shift over time. RL-based schedulers, which rely on historical

training data to optimize scheduling decisions, face significant challenges when deployed in

a modified or entirely new cluster environment. One of the biggest challenges in adapting

RL-based schedulers to evolving HPC architectures is that architectural changes lead to

shifts in the state and action spaces. When hardware configurations are modified, such as

the addition of new processor types, and variations in memory capacity and bandwidth,

the features that define the system state and the available scheduling actions may no

longer align with those in the original training environment. This disrupts the learned

policies of the RL agent, as the previously optimized mappings between states and actions

may no longer be valid. Consequently, an RL scheduler trained on an older system may

struggle to generalize to the new architecture. Developing methods to efficiently adapt RL
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models to these evolving state and action spaces while preserving transferable knowledge

remains a key research challenge in HPC scheduling.

1.2 Research Questions

Building upon the challenges identified in the previous section 1.1, this thesis addresses

four key research questions. The detailed research questions are:

Q1: How can a reinforcement learning-based job selection strategy be de-

veloped to optimize scheduling in HPC environments, addressing the challenge

of representing an unbounded and dynamic job queue, integrating backfilling

techniques, and ensuring stable and efficient model training?

(Addressing Challenge: Job Selector Design)

Q2: How can a reinforcement learning framework be designed to jointly

optimize job selection and resource allocation, and how does this integration

impact overall scheduling performance across different HPC systems?

(Addressing Challenge: Resource Allocation Design)

Q3: How can a deep reinforcement learning agent dynamically adjust

scheduling decisions to balance user-centric and system-centric objectives in

HPC environments, based on real-time system state and workload character-

istics?

(Addressing Challenge: Scheduling Objectives Shifting)

Q4: How can reinforcement learning-based HPC schedulers be adapted to

evolving cluster architectures using transfer learning, by addressing changes

in system state representation, identifying transferable components, and en-

suring efficient adaptation in terms of scheduling performance and model con-

vergence?

(Addressing Challenge: Adaptation to Evolving HPC Architectures)
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1.3 Research Contributions

This thesis addresses critical gaps in the current literature on reinforcement learning-based

HPC scheduling. The major contributions of this research are summarized as follows:

• Introduces innovative strategies to enhance reinforcement learning-based job selec-

tion in HPC environments, focusing on overcoming the challenges posed by un-

bounded job queues and improving scheduling efficiency.

– Proposes a Split Window Technique to handle the unbounded job queue prob-

lem.

– Develops Schedule Cycling to structure scheduling decisions and training cycles

based on workload events.

– Integrates job selection and backfilling into a unified RL framework, eliminating

the need for separate heuristic-based backfilling mechanisms.

• Develops HeraSched, a novel hierarchical reinforcement learning (HRL)-based sched-

uler for intelligent job selection and resource allocation in heterogeneous HPC envi-

ronments.

– Introduces the HRL-based approach for joint job selection and node-level allo-

cation.

– Implements a heterogeneous-aware resource allocation mechanism.

– Designs distinct reward mechanisms for job selection and resource allocation.

– Evaluate HeraSched with different HPC systems with both CPU and GPU

clusters, confirming its adaptability in various HPC environments.

• Proposes MetaPilot, a DRL-based controller that dynamically selects scheduling

objectives based on real-time system conditions, rather than relying on fixed or

mixed-objective heuristics.

– Introduces a scheduling framework that selects between utilization-based and

waiting-time-based objectives in response to real-time system conditions.

– Designs a state representation that captures key workload and resource status

features.
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– Implements a reward function that adapts to varying system states, enabling

MetaPilot to make objective-aware scheduling decisions.

– Shows that MetaPilot achieves better waiting time and resource utilization

compared to fixed-objective baselines in the evaluated scenarios.

• Develops a transfer learning-based adaptation framework for RL-based HPC sched-

ulers, enabling efficient migration to evolving cluster architectures.

– Introduces Separate Feature Extraction to isolate state changes in job and

cluster dynamics, preventing unnecessary retraining of unaffected model com-

ponents.

– Proposes Selective Transfer Learning to retrain only the most impacted model

parts, reducing adaptation overhead while maintaining scheduling performance.

– Evaluations demonstrate significantly reduced retraining time and improved

adaptability compared to schedulers trained from scratch.

• Comprehensive Empirical Evaluation on Real HPC Workloads. Existing research on

RL-based HPC scheduling often lacks evaluation on modern HPC clusters, particu-

larly those with diverse CPU and GPU architectures using recent trace data. Many

studies still rely on outdated traces from the Parallel Workloads Archive [30], such as

the SDSC-SP2 (1998), HPC2N (2002) and PIK-IPLEX (2009), which do not reflect

the complexity of current HPC environments. To address this gap, we conducted

extensive experiments using real-world HPC configurations and job traces collected

from operating HPC in recent years. Our evaluation spans multiple HPC partitions,

including both CPU- and GPU-based clusters, ensuring that the proposed methods

are rigorously tested under realistic and diverse workload conditions. This empir-

ical validation demonstrates the effectiveness and adaptability of our approach in

practical HPC scheduling scenarios.

Limitations. This thesis presents a set of RL-based scheduling techniques evaluated

using real-world trace data and system configurations from operational HPC systems.

However, all experiments were conducted in simulation rather than directly on live pro-

duction clusters. This choice was necessary due to the high cost and potential disruption

associated with running large-scale scheduling experiments on operational HPC systems.
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While the simulation environment was carefully designed to reflect real system behav-

ior — including accurate job submissions, resource availability, and scheduler constraints

— it cannot fully capture real-world variability such as hardware faults, user interac-

tion patterns, or system-level contention. As a result, although the findings demonstrate

promising adaptability, efficiency, and performance improvements, the real-world effec-

tiveness of the proposed methods remains to be validated through deployment in real

production environments.

1.4 Thesis Organization

Figure 1.2: Organization of the Thesis.

This thesis explores the application of DRL in HPC scheduling, addressing challenges

and research questions summarized in previous sections. The research is structured into

seven chapters, as illustrated in Fig. 1.2.

• Chapter 2: Background and Literature Review. This chapter reviews ex-

isting HPC scheduling approaches, including rule-based, heuristic, meta-heuristic,

and machine learning-based techniques. It also discusses existing applications of

reinforcement learning in scheduling and identifies key gaps in the literature.

• Chapter 3: Advancements in RL-Based Job Selection in HPC. This chap-

ter presents an RL-based job selector and introduces the Split Window Technique

to address the unbounded state space issue, schedule cycling to enhance training
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efficiency, and an integrated backfilling mechanism within the RL framework. The

chapter is derived from the following publications:

– Lingfei Wang, Aaron Harwood, and Maria A. Rodriguez. A Deep Reinforce-

ment Learning Scheduler with Back-filling for High Performance Computing.

In Proceedings of 2021 IEEE Asia-Pacific Conference on Computer Science

and Data Engineering (CSDE), pp. 1-6. IEEE, 2021.

– Lingfei Wang, Aaron Harwood, and Maria A. Rodriguez. Deep Back-Filling:

a Split Window Technique for Deep Online Cluster Job Scheduling. In Proceed-

ings of 2023 IEEE International Conference on High Performance Computing

& Communications, pp. 772-779. IEEE, 2023.

• Chapter 4: Hierarchical Reinforcement Learning-Based Job Scheduler in

HPC. This chapter presents HeraSched, an HRL-based scheduling framework that

integrates job selection and resource allocation into a unified decision-making pro-

cess. Designed for heterogeneous HPC clusters, HeraSched accounts for variations

in memory on different nodes, improving scheduling efficiency for diverse workloads.

The chapter is derived from the following paper:

– Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. Optimizing HPC

Scheduling: A Hierarchical Reinforcement Learning Approach for Intelligent

Job Selection and Allocation. The Journal of Supercomputing 81, no. 8 (2025):

918.

• Chapter 5: MetaPilot – A DRL-Based Controller for Balancing User-

Centric and System-Centric Objectives in HPC Scheduling. This chapter

introduces MetaPilot, a high-level scheduling controller that dynamically selects

between user-centric and system-centric objectives based on real-time system con-

ditions. MetaPilot continuously learns from system conditions, enabling adaptive

decision-making to optimize HPC performance. The chapter is derived from the

following paper (under review):

– Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. MetaPilot: A DRL-

Based Controller for Balancing User-Centric and System-Centric Objectives in

HPC Scheduling. Submitted to Future Generation Computer Systems.
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• Chapter 6: Accelerating RL-Based Scheduler Adaptation with Transfer

Learning in Evolving HPC. This chapter investigates the challenge of adapting

RL-based schedulers to evolving HPC architectures. A Transfer Learning frame-

work is proposed, incorporating Separate Feature Extraction to handle environment-

specific changes and Selective Transfer Learning to enable efficient adaptation with

minimal retraining. The chapter is derived from the following paper:

– Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. Accelerating RL-

Based Scheduler Adaptation with Transfer Learning in Evolving HPC Archi-

tectures. In Proceedings of 2025 IEEE 18th International Conference on Cloud

Computing (CLOUD), pp. 1-11. IEEE, 2025.

• Chapter 7: Conclusions and Future Directions. This chapter summarizes the

key findings of the thesis, discusses the broader impact of DRL-based scheduling in

HPC, and outlines potential future research directions.



Chapter 2

Background and Literature

Review

Reinforcement learning (RL) has gained traction in High Performance Computing (HPC)

job scheduling, offering adaptive decision-making in dynamic environments. This section

reviews fundamental RL concepts, deep RL, hierarchical RL, and transfer learning, em-

phasizing their relevance to HPC scheduling. Traditional heuristic-based schedulers, such

as First-Come-First-Serve (FCFS) and backfilling, remain widely used but face limitations

in fairness and efficiency. Meta-heuristic and machine learning-augmented schedulers im-

prove optimization but struggle with real-time adaptability. Reinforcement learning-based

approaches offer a promising alternative, dynamically selecting jobs and allocating re-

sources. The review also explores resource allocation strategies, including first-fit, best-fit,

and topology-aware methods, highlighting their role in modern heterogeneous HPC sys-

tems. This study consolidates recent advances and challenges, providing a foundation for

intelligent job scheduling research.

2.1 Introduction

HPC scheduling is a critical component in ensuring efficient resource utilization and timely

job execution in large-scale computing clusters. The complexity of modern HPC sys-

tems, characterized by heterogeneous resources, dynamic workloads, and diverse user re-

quirements, necessitates advanced scheduling strategies that go beyond traditional static

14
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heuristic-based approaches. This chapter provides a structured overview of HPC job

scheduling, establishing the necessary background, defining key problems, and reviewing

existing methodologies.

This chapter begins with a problem definition, outlining the core objectives of HPC

scheduling, including job selection and resource allocation. Next, it introduces the evalua-

tion metrics commonly used to assess scheduling performance, such as resource utilization,

job waiting time, turnaround time, and fairness. Following this, the chapter presents a

background on reinforcement learning. It introduces fundamental RL concepts, including

environment, Markov decision processes, value functions, and policy optimization, be-

fore discussing advancements in deep reinforcement learning, hierarchical reinforcement

learning, and transfer learning in the context of reinforcement learning. The final section

offers a comprehensive survey on HPC scheduling, examining the evolution of scheduling

techniques. It covers traditional heuristic-based schedulers, widely adopted real-world

HPC schedulers, and meta-heuristic-based approaches that integrate optimization strate-

gies. Additionally, it explores machine learning-improved schedulers and reinforcement

learning-based schedulers, highlighting their advantages and limitations. Through this

literature review, we identify key gaps in existing work and establish the motivation for

our proposed RL-based HPC scheduling framework.

2.2 HPC Job Scheduling

This section provides an in-depth exploration of the HPC scheduling problem, including

its fundamental challenges, system components, and key considerations in job selection

and resource allocation. It introduces the formal problem definition, discusses the dy-

namic nature of job queues and resource availability, and establishes the notations used

throughout the research.

2.2.1 Problem Definition

HPC job scheduling involves dynamically assigning computing resources to user-submitted

jobs while optimizing the scheduling objectives, such as job waiting time, resource utiliza-

tion, etc. An HPC cluster consists of multiple interconnected compute nodes that execute

user-submitted jobs. Compute nodes are connected through a set of network switches,
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represented as S = {s1, s2, . . . , sK}, where each switch sk interconnects a subset of nodes.

Each compute node is equipped with a specific set of resources, such as CPUs, memory,

and GPUs. Nodes are connected through a network topology with switches. Each com-

pute node ni is uniquely identified by a system ID nIDi, where i ∈ {1, 2, . . . , N}. Compute

nodes in an HPC cluster are equipped with different resources to accommodate diverse

computational needs. In general, jobs can be categorized based on their primary process-

ing requirements: CPU-intensive jobs primarily rely on CPUs, while GPU-accelerated jobs

leverage GPUs for computations. To support various workloads, compute nodes are pro-

visioned with different hardware configurations, including varying numbers of CPU cores,

memory capacities, and specialized accelerators such as GPUs or other hardware acceler-

ators. While resource configurations can be highly heterogeneous, in practice, clusters are

often organized into partitions to optimize scheduling and resource allocation. The most

common partitions include CPU partitions, which primarily consist of nodes optimized

for multi-threaded CPU workloads, and GPU partitions, which include nodes equipped

with GPUs to handle deep learning, simulations, and other parallelizable tasks. In this

research, we define a compute node ni with the following resources:

• ci - Number of CPU cores available.

• mi - Amount of available memory (in GB).

• gi - Number of GPUs available (if any).

A node can execute multiple jobs simultaneously, subject to resource constraints. The set

of jobs currently running on node ni at time t is denoted as:

Ri(t) = {Jj | Jj is running on ni at time t}. (2.1)

In an HPC system, jobs arrive dynamically as users submit computational tasks to the

cluster. Unlike batch processing systems, where all jobs are predefined before execution

begins, HPC workloads evolve continuously, requiring the scheduler to make real-time

decisions based on the current system state. Each submitted job enters a centralized job

queue Q(t), where it waits for execution according to system policies. The job queue is

dynamic, expanding as new jobs arrive and shrinking as jobs are scheduled and completed.

The number of jobs in the queue at time t is denoted as L(t) = |Q(t)| which fluctuates as

job submissions and completions occur.
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Each job Jj is characterized by a set of attributes that define its resource requirements

and execution constraints. A job is formally represented as:

Jj = ⟨IDj , wj , ej , lj , hj , qj , bj , dj , rj(t), Aj⟩. (2.2)

The system assigns a unique job identifier IDj upon submission, ensuring that each job

can be tracked throughout its lifecycle. The submission time wj records the timestamp

when the job enters the queue, reflecting the dynamic nature of job arrivals. A job j has a

user-provided requested runtime, ej , which denotes an upper bound on the job’s execution

time. The actual runtime of a job may be shorter, depending on system conditions and

job efficiency. Jobs can request multiple compute nodes to enable parallel execution. The

number of compute nodes requested is denoted as lj , ensuring that applications requiring

distributed computation can execute across multiple machines. Each node assigned to a

job must satisfy its resource demands, including the number of CPU cores per node hj ,

the amount of memory per node qj , and the number of GPUs per node bj (bj = 0 for CPU

jobs). These resource specifications vary significantly based on workload characteristics;

for example, CPU-bound tasks primarily demand computing cores, while deep learning

applications require GPUs with high memory. The scheduler guarantees that the job is

allocated exactly lj nodes meeting these requirements before execution begins.

Additionally, the scheduled start time of a job, denoted as dj , defines when the system

assigns resources and begins execution. As the job runs, its current runtime rj(t) tracks

the elapsed execution time at any given moment, ensuring that it does not exceed ej . The

set of allocated nodes Aj represents the physical machines assigned to execute the job.

Additionally, job workloads in HPC clusters exhibit high heterogeneity, where different

jobs have vastly different computational demands [32]. Some jobs are CPU-intensive,

performing complex mathematical computations, while others require GPU acceleration

for high-throughput parallel processing. Memory-intensive jobs, such as large-scale data

analytics, demand significant memory per node. The execution time of a job is also highly

variable, ranging from short-lived tasks to long-running simulations that may persist for

hours or even days.

A key aspect of HPC scheduling is determining whether a job is executable at a given

time. A job is considered feasible at time t if the cluster has sufficient available resources

to satisfy its requirements. This feasibility condition is formally expressed using a binary
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indicator kj(t), where:

kj(t) =


1, if ∃Aj ⊆ N , |Aj | = lj , such that resources satisfy Jj ,

0, otherwise.

(2.3)

The scheduling process in an HPC cluster is event-driven, with scheduling decisions

triggered by two key events: the arrival of a new job and the completion of a running

job. When a new job is submitted, it enters the pending job queue Q(t), updating the

scheduling state. Similarly, when a running job completes, the resources it occupied are

released back into the system, allowing the scheduler to reassign them to pending jobs.

At any scheduling decision point, denoted by time t, the scheduler may schedule multiple

jobs simultaneously, depending on available resources and job feasibility.

The scheduling process consists of two core steps: job selection and resource alloca-

tion. Job selection determines which job(s) from the queue should be scheduled next.

The selected job must satisfy feasibility constraints, ensuring that sufficient resources are

available for execution. Once a job is selected, the scheduler proceeds to resource allo-

cation, where it assigns compute nodes and system resources to the job. This allocation

must satisfy the job’s requested number of nodes lj , as well as its per-node requirements

for CPU cores hj , memory qj , and GPUs bj . If sufficient resources are not available at

time t, the job remains in the queue until a future scheduling opportunity. This pro-

cess continues iteratively as jobs arrive and complete, maintaining a dynamic balance

between job execution and resource availability. Efficient scheduling ensures that HPC

workloads are processed with minimal wait times while optimizing overall system per-

formance. These scheduling objectives, including the evaluation metrics used to assess

scheduling performance, are discussed in detail in Section 2.2.3.

We adopt the general model above: each job specifies a node count and per-node

requirements (cores, memory, and GPUs where applicable), and allocation is subject to

node heterogeneity and network topology. Exception: Chapter 3 intentionally isolates

the job-selection problem under a simplified cluster model to analyze learning dynamics.

In Chapter 3, jobs declare a total CPU-core request (no explicit node counts), nodes are

treated as homogeneous; memory, GPUs, and topology are not modeled in that chapter.

Chapters 4 to 6 reinstate the full heterogeneous model introduced here and evaluate

selection and allocation jointly.
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Table 2.1: Notations for HPC Scheduling

Cluster and Network Notations

N Total number of compute nodes in the cluster

S Total number of network switches

sk Switch indexed by k, where k ∈ {1, . . . , S}
ni Compute node indexed by i, where i ∈ {1, . . . , N}

nIDi System identifier for node ni

F (t) Number of free nodes in the cluster at time t (nodes running no jobs)

Node-Level Resource Notations

ci Total number of CPU cores available on node ni

cocci (t) Number of CPU cores occupied on node ni at time t

mi Total memory available on node ni (e.g., in GB)

mocc
i (t) Amount of memory occupied on node ni at time t

gi Total number of GPUs available on node ni

gocci (t) Number of GPUs occupied on node ni at time t

Ri(t) Set of jobs running on node ni at time t

Job Queue Notations

Q(t) Set of jobs in the pending queue at time t

L(t) Number of jobs in the queue at time t

Job-Level Notations

Jj Job indexed by j, where Jj ∈ Q(t)

IDj Unique job identifier assigned at submission

wj Job submission time (timestamp)

ej Requested runtime of job Jj (upper bound)

lj Number of compute nodes requested by job Jj

hj Number of CPU cores per node requested by job Jj

qj Amount of memory per node requested by job Jj

bj Number of GPUs per node requested by job Jj

dj Scheduled start time of job Jj

rj(t) Current runtime progress of job Jj at time t, where rj(t) ≤ ej

rj Total runtime of job Jj after job Jj completion, where rj ≤ ej

Aj Set of allocated nodes for job Jj

kj(t) Feasibility indicator: kj(t) = 1 if job can run at time t, else 0

2.2.2 Notation and Terminology

All notations used in this research are summarized in Table 2.1, providing a formal defi-

nition of system parameters, job attributes, and scheduling variables.
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2.2.3 Evaluation Metrics

The effectiveness of an HPC job scheduling strategy is determined by how well it

balances competing priorities, such as optimizing resource usage, ensuring timely job

execution, and maintaining fairness among users and workloads. The selection of eval-

uation metrics is crucial, as different metrics emphasize different aspects of scheduling

performance, and optimizing one often comes at the expense of another. For example,

prioritizing short job wait times may lead to inefficiencies in resource utilization, while

maximizing system throughput could result in job starvation.

Scheduling objectives can generally be categorized into system-centric and user-centric

goals. System-centric metrics, such as resource utilization and makespan, focus on maxi-

mizing computational efficiency at the cluster level. User-centric metrics, such as waiting

time and slowdown, aim to improve user experience by minimizing delays and ensuring

fair resource allocation. Additionally, fairness metrics play a crucial role in multi-user en-

vironments, preventing individual users or workloads from monopolizing computational

resources. This section discusses key scheduling objectives, evaluates the advantages and

limitations of commonly used metrics, and presents their formal mathematical definitions.

Resource utilization measures how effectively computing resources are used over

time. It is often employed as a system-centric metric, helping administrators ensure that

HPC clusters operate efficiently. Utilization is particularly relevant in batch-processing

systems, where high utilization often correlates with improved throughput. A major

advantage of focusing on utilization is that it aligns with system efficiency goals — higher

utilization typically implies better use of available computing power. However, utilization

alone does not necessarily reflect scheduling quality. In cases where job submission rates

are low, even an optimal scheduling policy will result in low utilization, making it an

ineffective discriminator of scheduling performance. Conversely, in high-load scenarios

where many jobs are queued and the system remains consistently busy, different scheduling

policies may still produce similar utilization levels over a long period [33]. Similarly, in

non-steady-state workloads, where job arrivals fluctuate significantly, utilization fails to

capture scheduling effectiveness.
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Another limitation is that utilization is often a system administrator’s priority, rather

than a user-centric metric. A naive way to maximize utilization is to maintain a large

queue of waiting jobs and schedule those that fit best at any given moment. This strategy

frequently favors small jobs, as they can easily fill available resource gaps. However, this

approach can lead to significant delays for larger jobs and even potential job starvation,

neither of which impact the utilization metric directly.

The general formula for resource utilization U can be extended to account for different

resource types:

Ur =

∑
j∈J rj ·

∑
ni∈Aj

Ri

T ·N
(2.4)

where Ri represents the specific resource type (CPU cores, GPUs, memory, or nodes), T

is the observation period, and N is the total number of available resources of that type.

Average Waiting Time and Turnaround Time. Average waiting time measures

how long jobs remain in the queue before execution. It is widely used in user-centric

scheduling policies, where minimizing waiting times improves user experience. Minimiz-

ing waiting time improves system responsiveness, particularly for short jobs. However,

using this objective assigns equal importance to all jobs, regardless of their computa-

tional demands. In practice, this often favors small jobs, which are more numerous but

contribute little to the total workload. As a result, schedules that optimize waiting time

may appear inefficient in terms of overall job packing. Additionally, focusing solely on

waiting time does not guarantee an improvement in overall scheduling quality. Some

studies also examine maximum waiting time, aiming to bound the worst-case delay that

a user may experience.

The average waiting time (AWT) is defined as:

AWT =
1

|J |
∑
j∈J

(dj − wj) (2.5)

And the maximum waiting time (MWT) is defined as:

MWT = max j∈J(dj − wj) (2.6)

where wj is the submission time of job Jj .
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Closely related to waiting time is turnaround time, which includes both the waiting

time and execution time, providing a complete measure of how long a job spends in the

system. The average turnaround time (ATT) includes execution time:

ATT =
1

|J |
∑
j∈J

(dj − wj + rj) (2.7)

Average Bounded Slowdown (ABS). The slowdown of a job quantifies the ratio

of the time it spends in the system relative to its execution time. It is widely used in

scheduling research as an evaluation metric, measuring that all jobs, regardless of length,

experience proportional delays. However, one major issue in HPC workloads is that very

short jobs may experience arbitrarily high slowdowns even with negligible wait times. For

example, a job that executes for one second but waits for ten minutes has a slowdown of

600, despite an insignificant absolute delay. To mitigate this issue, the bounded slowdown

is used instead, introducing a threshold τ to prevent extreme values:

Slowdown =
max(dj − wj , τ)

max(rj , τ)
(2.8)

where τ is a constant to prevent extremely small jobs from skewing the metric. The

average bounded slowdown (ABS) is then computed as:

ABS =
1

|J |
∑
j∈J

Slowdownj (2.9)

In the context of HPC scheduling, ABS incorporates the runtime of a job rather than just

its queue delay. However, while ABS differentiates between short and long jobs based on

their execution times, it does not consider the resource requested for a job. The amount

of the resource a job required is also a key factor in scheduling decisions. Two jobs with

the same runtime but vastly different resource requirements may have significantly differ-

ent impacts on system performance, yet ABS treats them equivalently. This limitation

means that ABS may favor small, resource-light jobs at the expense of large, resource-

heavy jobs, as the latter inherently experience higher slowdowns. While this prioritization

can improve waiting times for small jobs, it may reduce scheduling efficiency by leading

to fragmented resource allocation. Large jobs may be unfairly penalized under a policy

that strictly minimizes ABS. Thus, while ABS serves as an effective fairness measure in
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general computing contexts, its applicability in HPC scheduling is more nuanced, requir-

ing additional considerations such as job resource requests and system-wide scheduling

objectives.

Makespan is a system-wide metric that measures the total time required to complete

a given set of jobs. It is particularly relevant in the bag of task scheduling scenarios, where

all jobs are known in advance. In such contexts, minimizing makespan ensures that the

system completes the workload as quickly as possible, thereby maximizing throughput.

A major advantage of makespan is its direct correlation with system efficiency; a

shorter makespan generally indicates better resource utilization and faster job completion.

However, in real-world HPC workloads, jobs do not arrive as a fixed batch; instead, they

are continuously submitted by users over time. As a result, minimizing makespan for a

given subset of jobs does not necessarily optimize scheduling performance.

Another limitation of makespan is that it focuses only on overall completion time,

without considering individual job performance. In interactive or continuously running

HPC systems, some jobs may experience extreme delays while others complete quickly,

leading to unfair resource allocation. Furthermore, optimizing makespan does not in-

herently improve scheduling fairness, as a scheduler minimizing makespan may prioritize

large parallel jobs at the expense of smaller jobs, potentially leading to job starvation.

In mathematical terms, makespan is defined as:

Makespan = max
j∈J

(dj + rj) (2.10)

where dj is the start time of job Jj and rj is its execution time.

Fairness ensures that no job or user monopolizes system resources at the expense of

others. Unlike the previous metrics, fairness does not have a single standard mathemati-

cal definition. Instead, fairness can be evaluated at multiple levels. Job fairness, ensuring

jobs are scheduled in a way that avoids excessive waiting times. User fairness, balanc-

ing resource allocation among different users. Workload fairness ensuring fair resource

distribution across different workloads.
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Jain’s Fairness Index [34] is a widely used metric for measuring fairness in resource

allocation. Given a set of resource allocations x1, x2, . . . , xn, it is defined as:

J (x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

. (2.11)

This index yields a value in the range [1/n, 1], where 1 indicates perfect fairness, meaning

all users receive equal resource shares, and lower values indicate imbalances. However,

Jain’s Fairness Index is not well-suited for HPC scheduling. HPC scheduling involves

jobs with heterogeneous resource demands, including varying CPU, memory, and GPU

requirements. Jain’s index assumes equal importance across all users, ignoring job-specific

constraints such as job size, execution time, and priority policies. Also, Jain’s index

only considers a single-dimensional fairness measure, failing to capture fairness in multi-

resource environments.

Instead of relying on Jain’s Fairness Index, practical HPC scheduling systems enforce

fairness through policy-based mechanisms. SLURM [35] employs a fair-share scheduling

policy that dynamically adjusts job priorities based on historical resource usage. The fair-

share factor influences job priority by considering the proportion of computing resources

allocated to a user or account and their past resource consumption. This approach ensures

that users who have consumed fewer resources in the past are given higher priority, pro-

moting equitable resource distribution. The Maui Scheduler [36] incorporates a fair-share

mechanism that allows historical resource utilization to influence job scheduling decisions.

Administrators can set system utilization targets for users, groups, accounts, classes, and

quality of service levels. Maui adjusts job priorities to meet these targets, ensuring that

resource distribution aligns with organizational policies and usage goals. Borg [32] is

Google’s cluster management system that handles a vast number of jobs across numerous

clusters. It employs workload-aware scheduling to balance different types of jobs, such as

batch and interactive workloads. This ensures that long-running batch jobs do not mo-

nopolize resources, allowing interactive jobs to access the necessary resources promptly.
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2.3 Reinforcement Learning

This section provides a structured overview of reinforcement learning and its extensions.

It begins with an introduction to Fundamental Reinforcement Learning, covering key con-

cepts such as states, actions, policies, and value functions. Deep Reinforcement Learning

extends traditional reinforcement learning by leveraging deep neural networks to approx-

imate value functions and policies, enabling learning in high-dimensional and continu-

ous action spaces. Hierarchical Reinforcement Learning introduces structured decision-

making by decomposing tasks into multiple levels of abstraction, improving sample ef-

ficiency and long-term planning. Finally, Transfer Learning in Reinforcement Learning

explores methods for leveraging prior knowledge to accelerate learning in new tasks, en-

hancing generalization and reducing sample complexity. Together, these subsections pro-

vide a comprehensive foundation for understanding RL methodologies and their relevance

to real-world applications.

2.3.1 Fundamental Reinforcement Learning

Learning methods, such as those used in supervised and unsupervised learning contexts,

differ in how they process data. Supervised Learning is a method where a model

is trained to map inputs to outputs by using labeled data [37]. The model compares

its predictions to the ground truth provided in the dataset and calculates the predic-

tion error. This error is then used to adjust the model iteratively, aiming to minimize

the error and improve the accuracy of its predictions. In Unsupervised Learning, a

model is trained on unlabeled data to identify underlying patterns or structures within

the dataset [37]. Unlike supervised learning, there are no predefined labels or correct

outputs to guide the process. Instead, the model learns to group similar data points,

reduce dimensionality, or uncover hidden relationships by optimizing a specific objective,

such as minimizing intra-cluster distances in clustering or reconstructing data in dimen-

sionality reduction techniques. Reinforcement Learning (RL) differs fundamentally

from these approaches. It is an adaptive control framework designed to solve problems

where feedback is delayed, partial, or dependent on a sequence of actions. In RL, an agent

learns by interacting with an environment, where each action taken by the agent affects

the future state of the system. The agent receives feedback in the form of rewards, which

guide it toward achieving long-term objectives. This dynamic learning process enables
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RL to address complex decision-making tasks that traditional learning methods cannot

effectively solve [38].

Figure 2.1: Agent-environment interaction loop in reinforcement learning.

Figure 2.1 illustrates the general interaction between an RL agent and its environment

in a high-level overview. At each time step t, the environment provides the agent with a

state st or observation ot, which represents the current situation of the environment. Based

on this information, the RL agent selects and executes an action at to the environment.

The environment responds by transitioning to a new state st+1 and providing the agent

with a reward rt, which indicates the immediate outcome of the agent’s action. This

interaction loop repeats over time, generating episodes or trajectories that vary in length

until a terminal state is encountered. The primary objective of the agent is to determine a

policy that maximizes the cumulative rewards collected throughout these interactions. A

fundamental concept in RL is learning through trial and error. The agent explores its set

of possible actions and observes the resulting outcomes. Larger rewards encourage actions

that lead to higher returns, while lower rewards discourage less favorable choices, guiding

the agent toward optimal behavior. Through repeated interactions, the agent gradually

learns which actions are most effective in specific scenarios.

2.3.1.1 Key Concepts in RL

To formalize and implement RL effectively, several key concepts must be defined and

understood, including states and observations, action spaces, policies, and trajectories.

These concepts provide the foundation for RL algorithms and their applications to solve

complex decision-making tasks.



Background and Literature Review 27

States and Observations. In reinforcement learning, the state represents the current

configuration or condition of the environment, encapsulating all the information necessary

for decision-making. The collection of all possible states is referred to as the state space,

which can be finite or infinite depending on the problem. For example, in a grid-world

environment, the state space consists of all grid positions, while in continuous domains

like robotic control, the state space may include infinitely many configurations. However,

in many real-world scenarios, the agent does not have access to the full state of the en-

vironment. Instead, it receives observations, which are partial or noisy representations

of the true state. This distinction is critical in reinforcement learning: in a fully observ-

able environment, the agent can make decisions based directly on the state (st), while in

partially observable environments, the agent must infer the underlying state from obser-

vations (ot). The ability to interpret states or observations is fundamental for the agent

to make effective decisions.

Action Spaces. The action space defines the set of all possible actions an agent can

take in the environment. Actions can be discrete, such as selecting one of a finite number

of choices (e.g., moving left or right), or continuous, where the action space consists of a

range of values (e.g., controlling the speed of a car). The structure and size of the action

space significantly impact the complexity of the learning process. In high-dimensional or

continuous action spaces, advanced techniques such as policy approximation [38, 39] or

action sampling [40, 41] are often required to efficiently explore and optimize actions.

Policy. A policy is a strategy that defines the agent’s behavior by mapping states (or

observations) to actions. It can be represented as a deterministic function (π(s) = a) or a

probabilistic distribution over actions (π(a|s)). Policies are central to reinforcement learn-

ing, as the agent aims to learn an optimal policy (π∗) that maximizes cumulative rewards.

In practice, policies can be parameterized by models, which are updated iteratively during

the learning process.

Trajectories. A trajectory is a sequence of states, actions, and rewards observed by

the agent during its interaction with the environment. It is commonly represented as

τ = (s0, a0, r0, s1, a1, r1, . . . ), where st is the state at time t, at is the action taken in state

st, and rt is the reward received after taking action at. Trajectories may have varying

lengths depending on the task. For episodic tasks, the trajectory terminates upon reaching

a terminal state, while for continuing tasks, it can extend indefinitely. Trajectories are
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essential in reinforcement learning as they capture the agent’s experience and provide the

data necessary for evaluating and improving its policy.

2.3.1.2 Markov Decision Process

The Markov property is a fundamental concept in reinforcement learning, describing the

memoryless nature of the environment’s dynamics. An environment satisfies the Markov

property if the future state depends only on the current state and action, and not on any

prior states or actions. Formally, this can be expressed as:

P (st+1 | st, at, st−1, at−1, . . . , s0, a0) = P (st+1 | st, at), (2.12)

where st represents the state at time t, at is the action taken at time t, and P (st+1 | st, at) is

the transition probability to the next state. Reinforcement learning problems are typically

modeled as a Markov Decision Process (MDP), which assumes that the Markov property

holds. This simplifies the learning process by reducing the dependency of decisions to

the current state and action, allowing the agent to learn optimal policies based on these

local dynamics. When the environment is partially observable, such that the agent does

not have access to the true state st, a Partially Observable Markov Decision Process

(POMDP) may be used, where the agent must infer the hidden state from observations.

Return and Optimization Problem. The return (Gt) is the cumulative reward

the agent receives over time, starting from a specific time step t. It is defined as:

Gt =
∞∑
k=0

γkrt+k+1 (2.13)

where γ ∈ [0, 1] is the discount factor that balances immediate and future rewards. Dif-

ferent tasks may use variations of the return. For example, in finite-horizon problems,

the return is computed over a fixed number of steps, while in infinite-horizon tasks, it

considers the long-term behavior. Other formulations, such as average reward or episodic

reward, are used depending on the problem setting. The goal in reinforcement learning

is to find an optimal policy π∗ that maximizes the expected return from any given state.

This is formalized as:

π∗ = arg max
π

Eπ [Gt|st] (2.14)
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This optimization problem can be approached using different methods, such as value-

based methods (e.g., Q-learning [42]), policy-based methods (e.g., REINFORCE [43]), or

actor-critic methods [44], which combine the two. These approaches will be introduced

in detail in later sections. The choice of optimization technique depends on the nature of

the environment, the complexity of the action space, and computational constraints.

Value Functions. Value functions measure the expected return for a given state or

state-action pair and are essential for evaluating the quality of decisions in reinforcement

learning. These functions provide the foundation for assessing and improving policies.

The state-value function, denoted as vπ(s), represents the expected return when the agent

starts in state s and follows policy π. It is defined as:

vπ(s) = Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
, (2.15)

where Gt is the return, γ ∈ [0, 1] is the discount factor that controls the weight of future

rewards, and Eπ denotes the expectation assuming the agent follows policy π.

The action-value function, denoted as qπ(s, a), defines the expected return starting in

state s, taking action a, and then continuing to follow policy π. It is expressed as:

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]
. (2.16)

Optimal value functions are derived when using the best possible policy. The optimal

state-value function v∗(s) and the optimal action-value function q∗(s, a) are defined as:

v∗(s) = max
π

vπ(s), q∗(s, a) = max
π

qπ(s, a). (2.17)

These optimal functions determine the maximum achievable return for any state or state-

action pair, serving as a guide for identifying the best possible policy π∗.

Bellman Equations. All four of the above value functions satisfy recursive relation-

ships known as Bellman equations, which express their self-consistent properties. The

Bellman equations define recursive relationships between value functions, capturing how

the value of a state (or state-action pair) depends on future states and rewards. They

serve as the foundation for many reinforcement learning algorithms, as they enable the
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estimation of optimal policies by iteratively updating value functions. The Bellman equa-

tions express the expected return of a state or action in terms of immediate rewards and

the expected return of subsequent states, allowing for systematic policy evaluation and

improvement.

The Bellman equation for the state-value function vπ(s) is:

vπ(s) =
∑
a∈A

π(a | s)
∑
s′∈S

P (s′ | s, a)
[
R(s, a, s′) + γvπ(s′)

]
, (2.18)

where P (s′ | s, a) is the transition probability from state s to s′ given action a, and

R(s, a, s′) is the expected reward. The Bellman equation for the action-value function

qπ(s, a) is:

qπ(s, a) =
∑
s′∈S

P (s′ | s, a)

[
R(s, a, s′) + γ

∑
a′∈A

π(a′ | s′)qπ(s′, a′)

]
. (2.19)

This equation describes the expected return of selecting action a in state s, considering

both immediate rewards and the expected future return from subsequent actions.

For optimal policies, the Bellman optimality equations provide a way to compute the

best possible value functions. The optimal state-value function v∗(s):

v∗(s) = max
a∈A

∑
s′∈S

P (s′ | s, a)
[
R(s, a, s′) + γv∗(s

′)
]
. (2.20)

This equation determines the best possible value for a state by selecting the action that

maximizes the expected return.

Similarly, the optimal action-value function q∗(s, a):

q∗(s, a) =
∑
s′∈S

P (s′ | s, a)

[
R(s, a, s′) + γ max

a′∈A
q∗(s

′, a′)

]
. (2.21)

Here, the agent maximizes over possible actions in future states, allowing for optimal

decision-making.

These equations form the basis for value iteration and policy iteration, key techniques

used in reinforcement learning to compute optimal policies by iteratively updating value

estimates.
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2.3.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) extends traditional reinforcement learning by in-

tegrating deep neural networks as function approximators. This allows DRL to handle

environments with high-dimensional state and action spaces that are computationally in-

feasible for classical RL algorithms. Neural networks approximate key functions in RL,

such as value functions, policies, and transition models, enabling the agent to generalize

effectively across complex state spaces.

The use of neural networks for function approximation is a cornerstone of DRL, ad-

dressing challenges associated with representing and learning from high-dimensional data.

In traditional reinforcement learning, functions such as vπ(s), qπ(s, a), or π(a|s) are often

tabulated or expressed using simple parametric models. However, these approaches be-

come impractical when the state or action space is large or continuous. Neural networks

overcome these limitations by providing scalable representations of complex functions,

capturing nonlinear relationships between inputs and outputs, generalizing to unseen

states through learned data representations, and enabling end-to-end optimization with

gradient-based algorithms, such as stochastic gradient descent.

RL methods, including DRL, are generally categorized into two main types: model-free

and model-based methods. These categories differ based on whether the approach involves

learning a model of the environment’s dynamics or directly interacting with the environ-

ment to optimize behavior. Model-free methods rely solely on direct interactions with

the environment to learn optimal policies or value functions. They do not explicitly con-

struct or utilize a model of the environment’s transition dynamics or reward function.

Model-free methods are particularly effective in environments where the dynamics are

unknown, complex, or computationally expensive to model. Model-based methods

aim to explicitly learn a model of the environment, which typically consists of two key

components: the transition dynamics, which describe the probability of transitioning to

a new state given the current state and action; and the reward function, which predicts

the reward received when taking action in state. These learned models are leveraged for

two primary purposes: planning, where simulated trajectories are used to evaluate and

optimize actions without directly interacting with the environment; and policy learning,

where synthetic data generated from the model augments real-world experiences, improv-

ing sample efficiency.
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While model-based methods are powerful due to their sample efficiency and planning

capabilities, their applicability is often constrained by the need for an accurate environ-

ment model. In HPC scheduling, the system dynamics are complex and influenced by

unpredictable job arrivals, varying resource demands, and heterogeneous hardware con-

figurations, making it difficult to construct a precise and computationally efficient model.

Given these challenges, model-free methods are more suitable, as they do not require ex-

plicit modeling of the environment and can instead learn directly from interactions with

the system. This flexibility allows model-free RL to generalize across different workload

conditions and adapt to dynamic scheduling scenarios. Based on the function approxima-

tion objectives, model-free methods can be categorized into value-based approaches and

policy gradient approaches, which will be discussed in the following sections.

2.3.2.1 Value-based DRL

Value-based DRL focuses on approximating value functions, which estimate the expected

cumulative rewards associated with states or state-action pairs. These value functions

form the foundation for deriving optimal policies, where the agent selects actions that

maximize the value function. To understand how value-based methods operate, it is

important to first examine how value functions are estimated, particularly through Monte

Carlo and Temporal Difference methods.

In reinforcement learning, value functions such as the state-value function vπ(s) and

the action-value function qπ(s, a) are used to estimate the expected return. However,

the challenge lies in how these estimates are computed and updated. Monte Carlo and

Temporal Difference (TD) serve as the foundation for approximating these functions.

Monte Carlo methods estimate the value of states or actions by averaging the

returns observed from complete episodes. For example, the action-value function can be

updated as:

qπ(s, a) ≈ Eπ [Gt | St = s,At = a] , (2.22)

where Gt =
∑∞

k=0 γ
kRt+k+1 is the total return. While Monte Carlo methods are simple

and intuitive, they require the agent to wait until the end of an episode to calculate

returns. This makes them computationally expensive and impractical for environments

with long episodes or where intermediate feedback is essential.
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TD methods, in contrast, update value estimates incrementally using bootstrapping.

Instead of waiting for the entire episode to complete, TD methods use an estimate of the

value of the next state to update the current value. The TD update for the action-value

function is:

qπ(s, a)← qπ(s, a) + α
[
r + γqπ(s′, a′)− qπ(s, a)

]
, (2.23)

where α is the learning rate, r is the immediate reward, and qπ(s′, a′) is the estimated

value of the next state-action pair. This approach is more sample-efficient and updates

values after each step, making it particularly useful in dynamic environments. Value-

based DRL methods adopt the principles of TD learning. By using a neural network to

approximate the Q-function, these methods extend TD ideas to high-dimensional state

and action spaces, enabling the agent to make decisions in more complex environments.

Deep Q-Networks (DQN) [45] are a seminal value-based DRL algorithm that ap-

plies neural networks to approximate the Q-function. In DQN, a neural network parame-

terized by θ predicts the Q-values qπ(s, a), Equation 2.16, for all possible actions in a given

state. The goal is to iteratively improve the neural network’s parameters θ so that the

predicted Q-values closely align with the true Q-values as defined by the Bellman equation

(Equation 2.19). DQN minimizes the loss function based on the temporal difference (TD)

error with the equation:

L(θ) = E(s,a,r,s′)∼D

[
(y −Q(s, a; θ))2

]
, (2.24)

L(θ) = E(s,a,r,s′)∼D

[(
r + γ max

a′
Qtarget(s

′, a′; θ−)−Q(s, a; θ)

)2
]
. (2.25)

Q(s, a; θ) represents the predicted Q-value from the current network. The current network

is the primary network being trained. Qtarget(s
′, a′; θ−) represents the Q-value computed

using a separate target network with parameters θ−. The target network is a separate copy

of the current network that is used to compute the target Q-value during training. The

target network typically copies the parameters of the current network every fixed number

of steps. The use of a target network addresses a key challenge in Q-learning: instability

during training. This instability arises because the target value y = r+γ maxa′ Q(s′, a′; θ)

depends on the predictions of the current network, which are constantly changing as the

network is updated. This creates a moving target problem, where the network is attempt-

ing to predict values based on its own rapidly fluctuating predictions. Such instability can
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lead to divergence or oscillations in the learning process. The target network provides a

stable reference for computing the target value y by keeping its parameters (θ−) fixed for

a certain number of updates. After this period, the parameters of the target network are

updated to match the current network.

DQN demonstrated its effectiveness by achieving human-level performance on a wide

range of Atari games, directly from raw pixel input. This marked a significant milestone in

reinforcement learning, showing that deep neural networks can successfully approximate

value functions in high-dimensional state spaces. DQN’s innovations, such as experience

replay and target networks, became foundational components of many subsequent DRL

algorithms. Despite its success, DQN has several limitations: the use of maxa′ Q(s′, a′) in

the target calculation can lead to overestimation of Q-values; DQN is not well-suited for

environments with continuous action spaces, as it requires discretization.

In addition to foundational value-based approaches like DQN, several advancements

have been proposed to address its limitations and improve performance. Double DQN

[46] mitigates overestimation bias by decoupling action selection and evaluation, while

Dueling DQN [47] separates the estimation of state-value and action-advantage functions

to enhance learning efficiency. Rainbow DQN [48] integrates multiple improvements,

including Double DQN, prioritized experience replay, and distributional RL, into a unified

framework. Average-DQN [49] improves stability and performance by maintaining an

average of past target network parameters instead of a single target network. More recent

works include Never Give Up (NGU) [50], which focuses on directed exploration strategies,

and Agent57 [51], the first agent to surpass human performance on all Atari 57 games by

combining multiple exploration and learning mechanisms. Lastly, Human-level Atari 200x

Faster [52] introduces techniques for dramatically improving the efficiency of DQN-based

approaches, enabling human-level performance in Atari games with significantly fewer

resources.

2.3.2.2 Policy Gradient Methods

Policy gradient methods are a class of reinforcement learning algorithms that directly

optimize the policy, parameterized as πθ(a|s), where θ represents the parameters of the

neural network modeling the policy. Unlike value-based methods, which derive policies
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indirectly by learning value functions, policy gradient methods focus on learning and im-

proving the policy itself. This direct optimization makes policy gradient methods partic-

ularly effective in environments with continuous or high-dimensional action spaces, where

value-based approaches often struggle.

The primary goal of policy gradient methods is to find the optimal policy πθ(a|s) that

maximizes the expected cumulative reward. Formally, the objective is defined as:

J(θ) = Eτ∼πθ

[ ∞∑
t=0

γtr(st, at)

]
, (2.26)

where τ = (s0, a0, r0, s1, . . . ) is a trajectory sampled from the policy πθ; γ ∈ [0, 1] is the

discount factor that balances the importance of immediate and future rewards; r(st, at)

is the reward received after taking action at in state st. The agent learns to adjust the

policy parameters θ to maximize J(θ), which represents the expected cumulative reward

over all possible trajectories.

The key challenge in policy optimization is determining how to adjust θ in a way

that improves J(θ). Policy Gradient Theorem provides a solution by expressing the

gradient of J(θ) as:

∇θJ(θ) = Eτ∼πθ

[ ∞∑
t=0

∇θ log πθ(at|st)Gt

]
, (2.27)

where Gt =
∑∞

k=0 γ
krt+k+1 is the return, representing the cumulative discounted reward

starting from time step t. This equation shows that the gradient of J(θ) depends on two

components. ∇θ log πθ(at|st), this term encourages the policy to increase the probability

of actions that lead to higher rewards. Gt, this term quantifies the total reward received

after taking action at in state st. By iteratively adjusting θ in the direction of ∇θJ(θ),

the policy improves over time.

The REINFORCE algorithm [43] is one of the simplest implementations of policy

gradient methods. It follows the mathematical foundation described above and uses sam-

pled trajectories to estimate the gradient of J(θ). The parameters θ are updated using

stochastic gradient ascent:

θ ← θ + α∇θJ(θ), (2.28)
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where α is the learning rate. The gradient is estimated using the following formula:

∇θJ(θ) ≈ 1

N

N∑
i=1

∞∑
t=0

∇θ log πθ(at|st)Gt, (2.29)

where N is the number of trajectories sampled. Intuitively, this update rule increases the

probability of actions that result in higher returns.

However, REINFORCE suffers from high variance in its gradient estimates, which can

lead to slow and unstable training. Additionally, it does not make use of baseline functions

(such as value functions) to reduce variance, which motivates the development of more

advanced methods like actor-critic.

Actor-critic [53] methods. The actor is responsible for parameterizing and opti-

mizing the policy πθ(a|s), which selects actions based on the current state. The critic,

on the other hand, approximates a value function (e.g., the state-value function V (s) or

the action-value function Q(s, a)) to provide feedback to the actor. This feedback is used

to evaluate the quality of the actor’s decisions and guide policy updates. The reason for

introducing a critic is to reduce the high variance inherent in policy gradient estimates.

In basic policy gradient methods like REINFORCE, the return Gt is used directly to

compute the policy gradient (Gt =
∑∞

k=0 γ
krt+k+1). Since Gt represents the cumulative

reward over a trajectory, it is highly variable, especially in environments with sparse or

delayed rewards. This variability leads to noisy gradient estimates, which result in unsta-

ble and slow convergence. By introducing a critic, the high variance of Gt is mitigated.

The critic approximates a baseline value function V (st) or Q(st, at), which provides a less

noisy estimate of expected returns. This baseline helps isolate the improvement due to a

specific action, making updates more focused and stable.

The critic is used to compute the Advantage Function, which measures how much

better or worse an action at is compared to the expected value at state st. The Advantage

Function is defined as:

A(st, at) = Q(st, at)− V (st), (2.30)

where Q(st, at) represents the expected return for taking action at in state st; V (st)

represents the expected return for being in state st.



Background and Literature Review 37

Using the advantage function, the policy gradient theorem becomes:

∇θJ(θ) = Eτ∼πθ
[∇θ log πθ(at|st)A(st, at)] . (2.31)

In the advantage function, the value function V (st) serves as a baseline, removing the

average expected return from the cumulative reward. This reduces variance because only

the improvement over the baseline (i.e., the advantage) is used for policy updates. For

instance, if an action is no better or worse than expected, its contribution to the gradient

will be zero. Instead of waiting for the complete return Gt to be observed, the critic uses

bootstrapping to estimate the return. For example, Q(st, at) can be computed as:

Q(st, at) ≈ rt + γV (st+1), (2.32)

where V (st+1) is the critic’s estimate of the value of the next state. This allows the

agent to update its policy after every step, rather than waiting for the end of an episode.

By using the advantage function, actor-critic methods reduce variance in policy updates

and improve training stability. To further reduce variance and improve training stability,

Generalized Advantage Estimation (GAE) [54] is often used to compute smoother and

more robust advantage estimates.

However, in basic on-policy actor-critic methods, instability can arise if the actor and

critic update at significantly different rates. For instance, if the policy (actor) changes

much faster than the value function (critic), the critic’s value estimates may no longer align

with the updated policy. This mismatch can result in unstable training, where the policy

oscillates or fails to converge effectively. To address this, Trust Region Policy Optimization

(TRPO) [55] introduces a constraint on the policy updates to prevent the actor’s policy

from changing too much between updates. TRPO ensures that the updated policy πθ

stays close to the old policy πθold by using a constraint based on the Kullback-Leibler (KL)

divergence DKL(πθold ||πθ) ≤ δ, where δ is a small positive hyperparameter. By limiting

how far the policy can move in distribution space, TRPO stabilizes the updates and

ensures monotonic improvement in the policy’s performance. The optimization problem

is formulated as:

maximize Es,a∼πθold

[
πθ(a|s)
πθold(a|s)

Aπθold
(s, a)

]
, subject to DKL(πθold ||πθ) ≤ δ. (2.33)
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πθold is the policy used to collect trajectories; πθ is the updated policy; Aπθold
(s, a) is the

advantage function, indicating how much better an action a is compared to the baseline

value V (s).

While TRPO effectively stabilizes training, it is computationally expensive because it

involves calculating second-order derivatives (via the Fisher Information Matrix) to solve

a constrained optimization problem. This makes TRPO challenging to apply in practice,

especially for large-scale problems. To simplify this process, Proximal Policy Opti-

mization (PPO) [40] introduces a more efficient approach to achieving the same goal.

Instead of explicitly enforcing a trust region constraint using second-order optimization,

PPO uses a clipped surrogate objective function to limit policy updates indirectly. The

PPO objective is defined as:

LCLIP(θ) = Es,a [min (rt(θ)Aπold
(s, a), clip(rt(θ), 1− ϵ, 1 + ϵ)Aπold

(s, a))] , (2.34)

where: rt(θ) = πθ(a|s)
πθold

(a|s) is the probability ratio between the new and old policies; ϵ is a

hyperparameter defining the allowable range of policy updates.

The clipping mechanism ensures that the probability ratio rt(θ) stays within the range

[1 − ϵ, 1 + ϵ], preventing excessively large updates to the policy. This approach avoids

the computational overhead of TRPO while still maintaining stable and efficient training.

By striking a balance between stability and computational efficiency, PPO has become

one of the most widely used reinforcement learning algorithms. It has demonstrated

strong performance across a variety of tasks, including continuous control and complex

environments.

Beyond PPO, several other methods have been developed to address specific chal-

lenges. Soft Actor-Critic (SAC) [41] introduces entropy regularization into policy op-

timization, encouraging the agent to explore more robustly while maintaining sample

efficiency, making it particularly effective in stochastic environments. Deep Deterministic

Policy Gradient (DDPG) [39] extends DPG to high-dimensional continuous action spaces

by combining deterministic policy gradients with experience replay, but suffers from is-

sues like overestimation bias, which are addressed in Twin Delayed Deep Deterministic

Policy Gradient (TD3) [56]. Hindsight Experience Replay (HER) [57] tackles sparse re-

ward settings by allowing agents to relabel failed trajectories as successful by redefining
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the goal, enabling more effective learning. Q-Prop [58] improves the stability and sam-

ple efficiency of policy gradient updates by incorporating value function estimates into

the gradient. Similarly, Normalized Advantage Function (NAF) [59] simplifies continuous

action learning by parameterizing the advantage function quadratically, reducing compu-

tational complexity. Stochastic Value Gradient (SVG) [60] leverages value gradients to

update policies, enabling effective training in environments with complex dynamics.

2.3.3 Hierarchical Reinforcement learning

RL suffers from serious scaling issues when applied to complex, long-horizon tasks. Tra-

ditional RL methods often struggle in environments where decisions need to be made at

multiple levels of abstraction, particularly when solving high-dimensional tasks or when

rewards are sparse and delayed. Standard RL approaches require extensive exploration

of the entire state-action space, making learning prohibitively slow and inefficient for

large-scale problems. Hierarchical Reinforcement Learning (HRL) introduces a structured

approach to decision-making by decomposing tasks into multiple levels of abstraction. In-

stead of directly mapping states to actions, HRL introduces high-level policies that set

abstract goals or subgoals, which are then executed by low-level policies. This decompo-

sition allows for better credit assignment, improved sample efficiency, and faster learning

in complex environments [61].

MDP planning and learning algorithms can be naturally extended to accommodate hi-

erarchical structures. In HRL, the traditional transition probability p(s′|s, a) in standard

MDPs is generalized to a semi-Markov decision process (SMDP), where transitions may

occur over variable time steps τ . The new transition probability in an SMDP is defined

as p(s′, τ |s, a), where τ represents the number of steps taken to transition from state s

to state s′ when executing action a. This formulation allows HRL to operate at different

temporal resolutions, enabling the learning of temporally extended actions or options.

Figure 2.2 illustrates an HRL process, demonstrating how a high-level policy decom-

poses tasks into intermediate subgoals, which are then executed through low-level primi-

tive actions.
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Figure 2.2: The temporal process of Hierarchical Reinforcement Learning.

• High-Level Policy (πm) – Manager: Receives the current state st from the en-

vironment and selects a high-level subgoal at, which remains unchanged for multiple

timesteps.

• Intermediate-Level Policy (πs1) – Subgoal Generator: Receives the subgoal

from πm and generates intermediate subgoals at+1, at+4, . . . that are passed to the

low-level policy.

• Low-Level Policy (πs2) – Action Executor: Executes primitive actions at+2, at+3, . . .

based on the subgoal from πs1, interacting directly with the environment.

• Environment Interaction: The environment receives the executed actions and

returns new states and rewards. Both the high-level and low-level policies receive

feedback in the form of state transitions and rewards, though at different temporal

scales.

• Hierarchical Temporal Structure: As shown in the diagram, the high-level

policy makes decisions less frequently, setting goals for the low-level policies, which

operate at finer time scales to execute the detailed steps required to achieve these

goals.

Consider the following example. In a warehouse automation setting, a robot must

retrieve an item from a shelf and transport it to a designated location, a task effectively

handled using HRL. The high-level policy (πm) acts as the task manager, processing the

environment’s state and generating a broad objective, such as ”Move to the item’s location
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and pick it up.” This goal is then passed to the intermediate-level policy (πs1), which

decomposes it into smaller, sequential subgoals, such as ”Navigate to the correct aisle”

followed by ”Move to the precise pickup position.” Each of these intermediate subgoals

requires multiple fine-grained actions to complete. The low-level policy (πs2) then

executes primitive actions, such as controlling motor movements to adjust position, align

with the target, and grasp the item. Throughout the process, the environment updates

states and provides rewards, allowing each policy to adjust accordingly. Once the object

is secured, πm assigns a new high-level subgoal, such as ”Deliver the item to location

C,” and the cycle repeats, with πs1 and πs2 handling navigation and execution. This

structured decision-making approach enables efficient learning, modular subpolicy reuse,

and scalable control, making HRL well-suited for complex, long-horizon tasks in robotics

and real-world automation.

2.3.3.1 Foundational Methods in HRL

HRL builds on several foundational methods that introduced key principles such as tem-

poral abstraction, hierarchical credit assignment, structured decision-making, and task

decomposition. These methods include Feudal Learning, the Options Framework, Hierar-

chical Abstract Machines, and MAXQ Decomposition, each offering a unique perspective

on hierarchical decision-making.

Feudal Learning, proposed by Dayan and Hinton [62], introduces a manager-worker

hierarchy, where a high-level manager assigns goals, and a low-level worker learns how to

execute them. Unlike standard reinforcement learning, where actions are selected directly

based on rewards, Feudal Learning disentangles strategic planning from execution, allow-

ing higher-level decisions to remain abstract while lower-level policies handle execution

details.

A key feature of Feudal Learning is its hierarchical credit assignment, where the man-

ager is only rewarded based on long-term goal achievement, while the worker is rewarded

for executing the subgoals set by the manager. This decentralized reward structure enables

better exploration and structured learning, particularly in environments with delayed re-

wards and long-term dependencies. Additionally, by allowing managers to set goals in

latent spaces rather than direct action spaces, Feudal Learning improves scalability in

complex decision-making tasks.



Background and Literature Review 42

Options Framework, introduced by Sutton et al. [63], formalizes the concept of

temporally extended actions by defining options as macro-actions that consist of a policy,

an initiation set, and a termination condition. An option is an abstract decision-making

unit that spans multiple time steps, making it an abstraction over primitive actions. The

initiation set specifies the states where an option can be executed, while the termination

function defines when an option ends.

Unlike Feudal Learning, where hierarchical control emerges from goal setting, the

Options Framework provides a structured way to define and execute sub-policies that

operate at different time scales. By explicitly modeling when and how sub-policies should

be activated, options allow reinforcement learning agents to improve sample efficiency,

exploration, and task reusability. The introduction of options also extends Markov Deci-

sion Processes (MDPs) to Semi-Markov Decision Processes (SMDPs), enabling agents to

handle complex decision-making over varying time horizons.

Hierarchical Abstract Machines (HAM) [64] introduce a structured approach

to policy representation using finite state machines. Unlike Feudal Learning and the

Options Framework, which focus on subgoal discovery and execution, HAM explicitly

structures decision-making into a predefined hierarchy of abstract states, where each state

corresponds to a sub-policy.

HAMs constrain exploration by enforcing hierarchical constraints on policy execution,

allowing for structured decision-making in environments with well-defined substructures.

This makes HAM particularly useful in domains where expert knowledge or domain-

specific rules can inform the design of hierarchical policies. The ability to combine hand-

crafted rules with learned sub-policies makes HAM a flexible framework for structured

RL problems.

MAXQ Decomposition framework, introduced by Dietterich [65], proposes a method

to decompose a complex MDP into a hierarchy of subtasks. Each subtask has its own

value function, which contributes to the overall task, allowing hierarchical policies to be

learned in a structured manner. Unlike the Options Framework and Feudal Learning,

MAXQ explicitly models the value function decomposition, ensuring that each subtask is

optimized independently while still contributing to the overall objective.
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A key benefit of MAXQ is its ability to enable modular learning, where different sub-

tasks can be trained separately and later combined to solve complex problems. This

decomposition leads to faster convergence and improved generalization, as subtasks can

be reused across different problems. Unlike HAM, which imposes predefined policy struc-

tures, MAXQ provides a flexible framework that allows the learning-based decomposition

of tasks without requiring prior domain knowledge.

2.3.3.2 Recent Advances in HRL

Beyond the foundational HRL methods, recent research has introduced new frameworks

to improve sample efficiency, goal abstraction, temporal coherence, and hierarchical credit

assignment. This section highlights several key advancements in HRL.

FeUdal Networks (FuN) [66] build upon Feudal RL by introducing a latent state

space for goal representation. Instead of setting subgoals in raw state space, FuN encodes

goals in a latent space, allowing hierarchical policies to learn abstract and transferable

representations. The manager selects a direction in this latent space, while the worker

learns to achieve that direction through primitive actions. FuN enhances long-term credit

assignment by decoupling high-level strategic planning from low-level execution and allows

agents to develop meaningful behavioral primitives that generalize across tasks.

HIRO [67] improves sample efficiency in HRL by introducing hindsight goal relabel-

ing and eliminating the need for goal representation learning. Unlike previous approaches

that define abstract goal spaces, HIRO uses the raw state observations as goals, simpli-

fying the training process and improving stability. The hierarchical policy consists of a

high-level goal generator and a low-level policy that learns to achieve goals within the en-

vironment. HIRO’s off-policy correction mechanism ensures that past experience remains

useful, making it particularly effective in long-horizon continuous control tasks.

Hierarchical Actor-Critic (HAC) [68] extends the hierarchical structure of HIRO

by employing an actor-critic mechanism at multiple levels. HAC is specifically designed

to handle sparse reward environments by using hindsight experience replay (HER) across

different hierarchy levels. Unlike HIRO, which does not explicitly incorporate hindsight

in multi-level learning, HAC allows each level to independently relabel subgoal failures
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as successful learning opportunities. This enhances sample efficiency and accelerates the

training of hierarchical policies.

Hierarchical Deep Q-Networks (h-DQN) [69] introduce a two-level Q-learning

framework that integrates hierarchical goal selection with reinforcement learning. The

higher-level policy learns over intrinsic goals, guiding the lower-level policy, which exe-

cutes primitive actions to achieve them. This architecture improves exploration in sparse

reward environments by allowing the agent to autonomously define subgoals. h-DQN has

been particularly effective in discrete-action domains like Montezuma’s Revenge, where

hierarchical goal-setting improves sample efficiency.

Meta Learning Shared Hierarchies (MLSH) [70] introduces a meta-learning frame-

work for training hierarchical policies that generalize across multiple tasks. The agent al-

ternates between meta-learning a high-level controller and training reusable sub-policies.

By leveraging shared representations, MLSH enables faster adaptation to new environ-

ments without requiring manual task decomposition. Unlike traditional HRL methods

that rely on predefined hierarchies, MLSH allows agents to dynamically discover useful

sub-policies during training.

Strategic Attentive Writer STRAW [71] introduces a deep recurrent neural network

that enables agents to commit to sequences of actions over extended time horizons. The

key innovation is the ability to partition an internal representation into contiguous sub-

sequences, allowing the agent to follow a plan until re-planning is necessary. STRAW

facilitates structured exploration and long-term planning, leading to strong improvements

in ATARI games like Ms. Pacman and Frostbite by learning temporally extended macro-

actions.

Hierarchical Deep Reinforcement Learning with Network Distillation (H-

DRLN) [72] proposes a lifelong learning framework that enables agents to retain and

transfer knowledge across multiple tasks. The architecture incorporates a Deep Skill

Network, where learned skills are distilled into a reusable knowledge base. This allows

hierarchical agents to efficiently build upon previous experience rather than learning from

scratch. Applied in Minecraft, H-DRLN demonstrated the ability to learn and reuse

sub-policies effectively, highlighting its potential for long-term reinforcement learning.
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Abstract Markov Decision Processes (AMDP) [73] introduces a hierarchical ap-

proach to decision-making by defining abstract MDPs, where states represent high-level

subproblems rather than raw environmental observations. Unlike MAXQ, which propa-

gates values bottom-up from primitive actions, AMDP models each subtask’s transition

and reward functions locally, allowing for top-down planning. This significantly improves

the efficiency of multi-level reasoning by reducing unnecessary backup operations across

hierarchy levels.

Iterative Hierarchical Optimization for Misspecified Problems (IMHOP) [74]

is designed to address policy representation challenges in high-dimensional MDPs, partic-

ularly in cases where function approximation cannot express an optimal policy. IMHOP

operates as a meta-algorithm that iteratively refines hierarchical policies, forcing different

components of the hierarchy to specialize in different regions of the state space. This

structure improves robustness in environments where standard HRL approaches struggle

with inaccurate representations.

Learning Goal Embeddings via Self-Play for Hierarchical Reinforcement

Learning (HSP) [75] introduces asymmetric self-play as a pre-training phase for hier-

archical agents. During self-play, an agent sets its own tasks via goal embeddings and

attempts to solve them before full hierarchical training. This method improves explo-

ration in environments with sparse rewards by ensuring the hierarchical policy is trained

on meaningful subgoals. In AntGather, HSP demonstrated improved performance by

learning to generate goal-directed behaviors without explicit supervision.

Learning Representations in Model-Free Hierarchical Reinforcement Learn-

ing [76] explores the role of representation learning in hierarchical RL by focusing on how

different hierarchical levels extract useful subtask features. Instead of relying on prede-

fined state features, the approach learns hierarchical feature representations that gener-

alize across tasks. By structuring the learning process hierarchically, agents can develop

robust sub-policies that improve long-term adaptation.

In summary, recent advancements in HRL have introduced more efficient goal ab-

straction, improved sample efficiency, and structured hierarchical learning. Methods like

FuN, HIRO, HAC, h-DQN, and MLSH focus on learning hierarchical subgoals, while
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techniques like STRAW, MPH, and AMDP emphasize macro-action planning and struc-

tured representations. These advancements continue to push HRL towards more scalable,

generalizable, and data-efficient solutions for complex decision-making tasks.

2.3.4 Transfer Learning in Reinforcement Learning

RL algorithms typically require substantial interactions with the environment to learn op-

timal policies, making them computationally expensive and sample inefficient. Transfer

Learning (TL) aims to alleviate these challenges by leveraging prior knowledge from

one task to accelerate learning in new, related tasks. TL in RL can be categorized based

on what type of knowledge is transferred from a source task to a target task. The pri-

mary types include instance-based transfer, feature-based transfer, policy transfer, value

function transfer, model transfer, and reward shaping. Each type has distinct advantages

and limitations, making them suitable for different problem settings [77–79].

Instance-based Transfer focuses on reusing experience data collected from a previ-

ously learned task to improve learning efficiency in a new task. In reinforcement learning,

past experience is typically stored in replay buffers and used for training, even in tasks

where direct policy transfer is not feasible. This approach is particularly effective in

off-policy [38] learning methods such as Q-learning and actor-critic methods [45].

A common implementation of instance-based transfer is experience replay, which en-

ables agents to store and sample past transitions to stabilize learning [80]. By replaying

stored experiences, the agent reduces the risk of catastrophic forgetting and improves

sample efficiency. Prioritized experience replay extends this concept by assigning higher

importance to experiences with higher learning potential, ensuring that informative tran-

sitions are replayed more frequently [81]. Another instance-based approach is successor

representation learning, where an agent encodes task-agnostic state representations that

allow knowledge to be efficiently transferred between similar tasks [82]. Successor features

provide a structured way to generalize learned representations across different reward

functions, improving the adaptability of value-based methods. The primary challenge in

instance-based transfer is dataset bias. Stored experiences may not align well with the

new task, leading to inefficient learning. Additionally, excessive reliance on replay buffers

may slow down adaptation to novel scenarios, especially in dynamic environments.
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Feature-based Transfer aims to learn shared representations that capture common

structures across different tasks. Instead of transferring raw data or policies, the focus is

on extracting meaningful state features that remain useful in a variety of environments.

This method is particularly valuable when tasks share underlying dynamics but differ in

state distributions or reward functions [83].

One approach to feature-based transfer is unsupervised pre-train, where a neural net-

work is initially trained on an auxiliary task before being fine-tuned for the target task [79].

Techniques such as autoencoders and self-supervised learning are commonly used to ex-

tract informative state representations that can later be applied to reinforcement learning

[84]. Multi-task learning is another approach where an agent jointly trains across multiple

tasks, allowing it to develop representations that generalize well to unseen environments

[85].

Reward shaping is a specific form of transfer learning where prior knowledge is

encoded into the reward function to guide the learning process [86]. This is particularly

useful in sparse-reward environments, where an additional shaping function F (s, a, s′)

modifies the original reward:

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) (2.35)

For example, in intrinsic motivation-based reinforcement learning, shaping rewards can

be derived from curiosity-driven exploration [87] or predictive models of environmental

dynamics [88]. The main drawback of reward shaping is the risk of reward exploitation,

where agents optimize for the auxiliary reward rather than solving the intended task.

Policy Transfer involves reusing a previously trained policy to accelerate learning in

a new environment. This approach is particularly effective when tasks share similar state-

action spaces and reward structures, allowing the agent to adapt its behavior without

relearning from scratch. Policy transfer can be implemented through imitation learning,

behavioral cloning, or direct fine-tuning of a pre-trained policy [77].

One method of policy transfer is teacher-student learning, where a new policy is trained

using demonstrations from an existing policy [89]. This can be achieved using super-

vised learning techniques such as policy distillation, where the student network learns to

mimic the teacher’s actions while optimizing for the target task [90]. Another strategy
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is zero-shot transfer, where an agent directly applies its pre-trained policy in an unseen

environment without additional training [91]. Despite its advantages, policy transfer is

sensitive to task mismatch. Differences in task dynamics or action spaces can cause the

transferred policy to perform poorly, requiring additional adaptation mechanisms such as

reward shaping or fine-tuning [92].

Value Function Transfer leverages previously learned value approximations to boot-

strap training in a new task. Instead of transferring entire policies, this method focuses on

reusing value estimates to guide learning in the target environment. A key technique in

value function transfer is successor features, where an agent learns value representations

that generalize across multiple reward functions. This enables faster adaptation when

transitioning to a new environment with a different reward structure [82]. By decou-

pling state representations from task-specific rewards, successor features improve transfer

efficiency in reinforcement learning.

A major limitation of value function transfer is its dependency on reward distribu-

tions. Since value estimates are directly influenced by the rewards observed in the source

task, transferring them to an environment with significantly different rewards may require

additional adjustments [45].

Model Transfer focuses on reusing learned environment dynamics to improve sample

efficiency in a new task. This approach is particularly beneficial in model-based reinforce-

ment learning, where agents develop predictive models of state transitions and reward

functions.

One example of model transfer is learning reusable world models, where the agent

constructs a transition model that can be applied across multiple tasks. This is commonly

used in robotics, where a model trained in simulation is later transferred to a real-world

robot with minimal fine-tuning [93]. Another strategy is domain adaptation, where the

agent adjusts its learned dynamics model to account for differences between the source

and target environments [94]. A significant challenge in model transfer is ensuring that

the learned dynamics remain valid in the target task. Even small discrepancies between

source and target environments can lead to model inaccuracies, reducing the effectiveness

of transfer.
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To conclude, the different types of transfer learning in reinforcement learning each

address specific challenges in generalization and sample efficiency. Instance-based trans-

fer reuses past experiences, feature-based transfer extracts shared representations, policy

transfer adapts pre-trained policies, value function transfer leverages learned Q-values,

model transfer applies predictive models, and reward shaping modifies incentives for learn-

ing. Selecting the appropriate transfer method should depend on the nature of the tasks,

the availability of prior knowledge, and the degree of similarity between source and target

environments [79].

2.4 Survey on HPC Scheduling

This section provides a comprehensive survey of HPC scheduling approaches, categoriz-

ing existing methodologies based on their design principles and optimization strategies.

Heuristic-Based Schedulers rely on predefined rules to select jobs, prioritizing simplicity

and low computational overhead. Real-World HPC Schedulers examine widely deployed

systems such as SLURM, Maui, and Moab, analyzing how they implement job prioritiza-

tion policies. Meta-Heuristic-Based Schedulers introduce optimization techniques such as

genetic algorithms and simulated annealing to explore improved scheduling solutions be-

yond traditional heuristics. Machine Learning-Improved Schedulers enhance job selection

by leveraging models trained on historical workload data. Reinforcement Learning-Based

Schedulers further refine this approach by dynamically learning optimal scheduling poli-

cies through continuous interaction with the system. Finally, Resource Allocation in HPC

Scheduling discusses techniques for effectively distributing computational resources across

jobs, considering workload heterogeneity and system constraints.

2.4.1 Heuristic-Based Schedulers

Heuristic algorithms have been widely used to deal with scheduling problems [95]. Heuristic-

based scheduling algorithms prioritize jobs based on predefined rules, making them com-

putationally efficient and easy to implement. These algorithms assign each job a ranking

score based on attributes such as submission time, execution time, or priority weights.

The scheduler selects the job with the highest priority score at each decision step. While

heuristic methods do not guarantee globally optimal solutions, they are widely used in
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HPC environments due to their simplicity and effectiveness. This section introduces com-

mon heuristic scheduling policies, highlighting their ranking functions and implications.

First-Come, First-Served (FCFS) schedules jobs in the order they arrive, ensuring

that the oldest job in the queue is always executed next. The ranking function for FCFS

is given by:

Priority(Jj) = −wj , (2.36)

where wj is the job submission time. The negative sign ensures that earlier-submitted

jobs (lower wj) receive higher priority. While FCFS is fair in the sense that jobs are

scheduled in order of arrival, it suffers from the convoy effect, where short jobs can be

delayed significantly behind long-running jobs.

Last-Come, First-Served (LCFS) prioritizes the most recently submitted job, op-

posite to FCFS. The ranking function is:

Priority(Jj) = wj . (2.37)

This scheduling policy is advantageous in scenarios where newly arrived jobs need im-

mediate execution, but it can lead to starvation of older jobs if new jobs keep arriving

continuously.

Shortest Job First (SJF) prioritizes jobs based on their estimated execution time,

aiming to minimize overall waiting time. The ranking function is:

Priority(Jj) = −ej , (2.38)

where ej is the estimated runtime of job Jj . By selecting the job with the smallest

execution time, SJF reduces the average waiting time. However, it can lead to starvation

of long jobs, as shorter jobs will always be preferred.

In contrast to SJF, Longest Job First (LJF) prioritizes jobs with the longest exe-

cution time:

Priority(Jj) = ej . (2.39)

LJF is rarely used in practice but can be beneficial in batch processing scenarios where

large computational tasks need to be prioritized.
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Highest Response Ratio Next (HRRN) is a dynamic scheduling heuristic that

balances fairness between short and long jobs by considering both waiting time and exe-

cution time. The ranking function is:

Priority(Jj) =
wj + ej

ej
. (2.40)

This equation ensures that as a job waits longer in the queue, its priority increases,

eventually overtaking shorter jobs. HRRN mitigates starvation issues found in SJF while

still favoring shorter jobs under normal conditions.

Weighted Fair Queuing (WFQ) is a priority-based scheduling mechanism that

assigns each job a weight ωj , typically based on factors such as user-defined priorities,

historical resource usage, or job type. The scheduling priority is computed as:

Priority(Jj) =
ωj∑n
k=1 ωk

. (2.41)

This approach ensures that jobs receive a fair share of system resources proportional to

their assigned weight. WFQ dynamically adjusts job priorities based on these weight

assignments, allowing for flexible and controlled resource distribution. However, the ef-

fectiveness of WFQ depends on the accuracy of weight assignments. Improperly assigned

weights can lead to resource monopolization by certain jobs or users, reducing overall

system fairness. Additionally, in HPC environments where jobs request heterogeneous

resources such as CPUs, memory, and GPUs, assigning a single weight value may not

adequately capture the complexity of resource demands.

In practice, HPC scheduling systems often combine these heuristics with additional

optimizations, such as backfilling [96], to achieve better performance across diverse work-

loads. Backfilling is an optimization technique designed to improve the utilization of

computational resources by allowing smaller jobs to execute ahead of larger, higher-

priority jobs, as long as they do not interfere with the expected start time of high-priority

jobs. The fundamental condition for backfilling is that the next job in the queue cannot

be started immediately due to insufficient resources. Backfilling aims to reduce the overall

waiting time and improve system throughput without compromising the priority order of

jobs. It was introduced to address the limitations of simple heuristic-based scheduling
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algorithms like FCFS, which can lead to inefficient resource usage and increased waiting

times for small jobs.

EASY Backfilling, the most commonly used backfilling approach, works by allowing

smaller jobs to execute in idle slots, as long as they do not delay the start of higher-

priority jobs. If a job with higher priority (i.e., the job with the earliest expected start

time) is scheduled, a smaller job can run if it fits in the time window without delaying

the larger job’s execution. The general approach for EASY backfilling can be described

as three steps. Firstly, identify the next job to be scheduled, denoted as Jnext, from

the queue based on priority. Then, if Jnext cannot start immediately due to insufficient

resources, search for smaller jobs Jj that fit within the idle resources. Next, schedule Jj

only if it does not delay Jnext’s expected start time. Conservative Backfilling follows

the same principle as EASY backfilling but enforces a stricter constraint: no job in the

queue should be delayed by backfilling. Unlike EASY backfilling, which may allow smaller

jobs to run ahead of larger jobs, Conservative backfilling ensures that jobs only run if

they do not delay others. This approach prioritizes fairness and prevents job starvation,

but it may result in lower overall utilization. The following pseudocode illustrates the

decision-making process of backfilling.
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Algorithm 1 Backfilling Decision Process

Input: Job queue Q(t), system resources

Output: Scheduled job or deferred job

Identify the next job Jnext in the queue if Jnext can start immediately then

Schedule Jnext

end

else

foreach job Jj in Q(t) do

if Jj fits in the available resources and does not delay Jnext then

Schedule Jj

end

else if Using Conservative Backfilling then

if Jj does not delay any job in Q(t) then

Schedule Jj

end

end

end

end

Researchers have also focused on enhancing heuristic-based schedulers by addressing

various critical aspects beyond simple job prioritization. Tang et al. [5] proposed a series

of heuristic-based scheduling algorithms called WFP and UNICEF. These algorithms

are seen as effective heuristic-based schedulers and are often used in the literature as

benchmarks [16, 24, 27]. The scheduling process follows two parts, Utility-based Job

Selection, and Fault-Aware Job Allocation. Utility-based Job Selection presents a series

of utility functions to rank jobs’ priorities, such as WFPs and UNICEF, based on the

calculations of job waiting time, requested number of nodes, and requested time. The

Fault-Aware Job Allocation calculates the allocation costs for the eligible jobs based on

partition failure probability, the location of the partition, and the current allocation status

of the machine. Its experiments validate the different utility functions with simulated

Cobalt environment on Blue Gene/P trace data. While these heuristic-based schedulers

are relatively simple to implement and understand, they may not always provide the most

efficient solutions, particularly when dealing with complex and dynamic workloads.
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Ghodsi et al. [6] introduce Dominant Resource Fairness (DRF), a multi-resource

fair allocation mechanism designed to ensure fairness in environments where jobs request

different types of resources (e.g., CPU, memory, GPUs). Traditional fair-sharing ap-

proaches, such as max-min fairness, focus on equalizing a single resource type but fail

to account for jobs with varying multi-resource demands. DRF extends the max-min

fairness principle by allocating resources based on a job’s dominant resource, which is

the resource that accounts for the highest fraction of its requested allocation. This en-

sures that jobs with high demands for a particular resource do not starve others that

require different resource combinations. Experimental evaluations demonstrate that DRF

significantly improves multi-resource fairness while maintaining high cluster utilization.

Bridi et al. [7] present a constraint programming (CP)-based scheduling approach for

heterogeneous HPC systems, addressing the challenges of efficiently managing diverse

computing resources. Traditional heuristic-based schedulers often struggle with resource

heterogeneity, leading to suboptimal job placements and resource underutilization. To

overcome these limitations, the authors propose a CP-based scheduler that formulates

job scheduling as a constraint satisfaction problem (CSP). Their method explicitly models

hardware constraints, job dependencies, and execution requirements, allowing the sched-

uler to find globally optimized schedules that balance makespan, resource utilization, and

energy efficiency.

Rodrigo et al. [8] propose a workflow-aware heuristic scheduling framework that op-

timizes HPC job execution with interdependencies. Their approach accounts for task

dependencies and resource availability, using priority-based heuristics to schedule depen-

dent tasks more efficiently. This results in improved makespan and system throughput.

Chadha et al. [97] extend SLURM with an adaptive scheduling mechanism that dynam-

ically modifies scheduling decisions based on real-time system conditions. By monitoring

resource availability, job priorities, and system workload levels, the scheduler adapts its

heuristic-based policies, reducing job wait times and improving scheduling efficiency.

Carretero et al. [98] propose an I/O-aware job scheduling approach that integrates

backfilling with priority-based heuristics to reduce I/O contention in HPC systems. Tra-

ditional backfilling focuses on CPU and memory constraints but ignores I/O bottlenecks,

leading to performance degradation. Their scheduler dynamically considers I/O band-

width utilization, ensuring efficient scheduling of I/O-intensive jobs.
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Byun et al. [99] propose a node-based scheduling approach to optimize short-running

jobs. Traditional per-task scheduling incurs high scheduling overhead for workloads with

short execution times. Their approach allocates entire nodes to groups of short jobs,

reducing scheduling latency and improving system throughput.

Nichols et al. [100] present a heuristic-based job scheduling algorithm that incorporates

real-time resource utilization metrics to mitigate performance variability. Traditional

schedulers often overlook resource contention, leading to degraded job performance. Their

method proactively schedules jobs based on real-time CPU, memory, and I/O usage,

ensuring minimal resource interference and improved runtime predictability.

2.4.2 Real-World HPC Schedulers

While heuristic-based scheduling policies provide simple and effective job selection strate-

gies, real-world HPC workload managers integrate multiple scheduling techniques, in-

cluding priority-based heuristics, backfilling, and fair-share scheduling, to improve sys-

tem efficiency and fairness. We introduce commonly used workload managers and their

scheduling algorithms, highlighting their implementation of scheduling heuristics in large-

scale computing environments.

SLURM [35] is one of the most widely used HPC workload managers, known for its

multi-priority scheduling combined with backfilling. Jobs are assigned a priority score,

and the scheduler selects the highest-priority job that can be executed given the available

resources. The priority function in SLURM is determined by a weighted combination of

factors, expressed as:

Priority(Jj) = Age(Jj) + Job Size(Jj) + Fair-Share(Jj) + QoS(Jj). (2.42)

The job age factor ensures that older jobs receive higher priority, while job size can be

weighted to either favor large or small jobs based on system configuration. The fair-

share component dynamically adjusts priorities based on previous resource consumption,

ensuring equitable access across users. The quality-of-service setting allows administrators

to assign priority levels based on job criticality. SLURM also implements backfilling using

the EASY Backfilling approach, where smaller jobs are scheduled ahead of waiting jobs

as long as they do not delay the highest-priority job.
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PBS (Portable Batch System) and its derivative Torque [101] primarily use an

FCFS queue for job scheduling, where jobs are selected based on their submission time. To

improve resource utilization, PBS supports EASY Backfilling. Additionally, PBS allows

priority-based scheduling, where job selection is determined by a configurable priority

function incorporating factors such as job size, user-defined weights, and fair-share poli-

cies. While PBS/Torque is widely used for its simplicity and extensibility, its default

FCFS-based scheduling is limited in efficiently handling diverse workloads and optimizing

resource utilization. As a result, many deployments customize the scheduling policy by

integrating priority-based ranking or external schedulers such as Maui [36] or Moab [102]

to enhance fairness and efficiency.

Maui [36] Scheduler is an open-source, advanced job scheduler designed to enhance

the capabilities of resource managers like PBS/Torque. It offers a comprehensive suite

of features aimed at optimizing resource utilization and ensuring fair access across users.

One of its key functionalities is fair-share scheduling, where job priorities are dynamically

adjusted based on historical resource usage, preventing any single user or group from

monopolizing resources. Additionally, Maui employs a sophisticated job prioritization

mechanism that considers various factors such as job size, user-defined weights, and system

objectives, allowing for a flexible prioritization strategy tailored to specific organizational

needs. To improve system utilization, Maui implements both EASY and conservative

backfilling strategies. Furthermore, the scheduler supports advanced preemption policies,

enabling higher-priority jobs to interrupt lower-priority ones, ensuring that critical tasks

receive the necessary resources promptly.

Building upon the foundation laid by Maui, Moab [102, 103] Scheduler offers en-

hanced features suitable for large-scale, complex computing environments. While retain-

ing all functionalities of Maui, Moab introduces high availability through synchronized

head nodes for immediate failover, ensuring continuous operation and minimizing down-

time in case of failures. It integrates with provisioning managers to dynamically allocate

and configure resources, adapting to changing workload demands and optimizing resource

utilization. Furthermore, Moab supports workload management across multiple clusters,

enabling unified policy enforcement and resource sharing in distributed computing envi-

ronments.
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Google’s Borg [31, 32] is a large-scale cluster management system designed to op-

timize resource allocation across thousands of machines, handling both batch jobs and

long-running services. Operating in highly dynamic environments, Borg employs job pri-

ority scheduling, resource overcommitment, and process-level isolation to efficiently man-

age workloads. Jobs are scheduled based on multiple factors, including workload type,

resource requirements, and predefined priority levels, with higher-priority jobs capable of

preempting lower-priority ones to ensure critical services maintain performance. The sys-

tem follows a multi-resource optimization approach, aiming to maximize system efficiency

while balancing job placement constraints, which can be expressed as:

max
∑
Jj

Utility(Jj ,Allocated Resources), (2.43)

where the utility function accounts for job importance, resource efficiency, and system

constraints. To enhance resource utilization, Borg employs bin-packing heuristics that

efficiently pack jobs while ensuring process isolation. Although Borg does not explicitly

implement traditional backfilling heuristics, it leverages task evictions and preemptions to

optimize scheduling decisions. Additionally, workload-aware scheduling ensures a balance

between batch processing and interactive services, preventing long-running batch jobs

from monopolizing system resources. By integrating these techniques into a multi-layered

scheduling framework, Borg achieves high cluster utilization, low job latency, and scalable

performance, making it a foundational system for large-scale distributed computing at

Google.

2.4.3 Meta-Heuristic-Based Schedulers

Meta-heuristic-based schedulers leverage optimization techniques inspired by natural and

evolutionary processes to improve scheduling efficiency in HPC environments. Unlike

traditional heuristic-based methods, which rely on predefined rules, meta-heuristic ap-

proaches explore a broader solution space through stochastic search, enabling more effec-

tive handling of complex scheduling problems with multiple constraints and objectives.

Vasile et al. [12] introduce a hybrid scheduling algorithm that combines priority-based
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heuristics with genetic algorithms (GA). Their method dynamically assigns jobs to re-

sources based on real-time system constraints, improving task execution efficiency and sys-

tem throughput. Results show that combining heuristics with evolutionary optimization

significantly enhances job scheduling performance in heterogeneous HPC environments.

Rekha and Dakshayini [13] adopted a GA to optimize the task allocation over cloud re-

sources and achieved better makespan compared to a greedy algorithm and simple task

placement strategy. The results demonstrated that the GA-based task allocation approach

outperformed the other algorithms in terms of makespan, throughput, and resource uti-

lization. The study concluded that the proposed method provides an efficient and effective

way to allocate tasks in cloud computing environments, ultimately leading to improved

overall system performance. Zhao [14] proposed an approach based on Particle Swarm

Optimization (PSO) to maximize resource utilization and reduce the completion time of

the jobs. The performance of the proposed cost-aware PSO-based scheduling algorithm is

compared to other well-known scheduling methods, such as Min-Min and Max-Min algo-

rithms, through simulation experiments. The results of the experiments demonstrate that

the proposed cost-aware PSO-based scheduling algorithm outperforms other algorithms

in terms of cost minimization while maintaining acceptable execution times and resource

utilization levels. Li and Wu [15] proposed a modified algorithm based on Ant Colony

Optimization (ACO) by adding a cost-aware fitness function to minimize the turnaround

time and maximize resource utilization. The experiments show that their approach out-

performed the standard ACO, and PSO algorithms. Meta-heuristic-based schedulers offer

more flexibility than heuristic-based schedulers, as they can explore a wider range of solu-

tions and adapt to complex problem domains. However, meta-heuristic-based schedulers

tend to require more computational resources due to their iterative nature and the need

to search for optimal solutions over a larger solution space. This increased complexity can

also make them more challenging to implement and tune effectively, as they often involve

multiple parameters and settings that must be adjusted to achieve the best performance.

Meta-heuristic-based schedulers utilize optimization algorithms such as GA, PSO, and

ACO to explore large search spaces and improve scheduling efficiency. These methods

are particularly effective for bag-of-tasks workloads, where all jobs are known in advance,

allowing the scheduler to optimize resource allocation globally. By iterating through mul-

tiple candidate schedules and refining solutions over time, meta-heuristic approaches can

often achieve near-optimal scheduling decisions. However, their applicability in highly
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dynamic HPC environments is significantly limited due to inherent computational over-

head and response time constraints. One of the primary drawbacks of meta-heuristic

scheduling is its long optimization time. Unlike heuristic-based schedulers, which can

make near-instantaneous scheduling decisions, meta-heuristic approaches require multi-

ple iterations to converge to a good solution, making them impractical for real-time job

scheduling. Additionally, these methods demand extensive parameter tuning, where hy-

perparameters such as mutation rates or cooling schedules must be carefully adjusted for

optimal performance. In dynamic HPC systems, where job arrivals, execution times, and

resource availability fluctuate continuously, such tuning is not only impractical but also

ineffective in responding to changing conditions. While meta-heuristic methods may still

be valuable for offline scheduling or periodic workload optimization, they are generally

unsuitable for environments that require low-latency and adaptive scheduling strategies.

2.4.4 Machine Learning-Improved Schedulers

Machine learning-improved heuristic schedulers are scheduling approaches that combine

traditional heuristic algorithms with machine learning techniques to optimize job schedul-

ing in HPC systems. These schedulers leverage historical data and machine learning mod-

els to enhance the performance of heuristic-based algorithms, making better-informed

decisions about job scheduling and resource allocation. One such example is the F1-4,

proposed by Carastan et al. [16]. This work obtains 4 job priority functions used to rank

the jobs’ urgency which are calculated by adding the requested number of processors,

the job’s submission time, and the requested execution time with different weights. The

weights are obtained by training nonlinear regression models to minimize the average

bounded job slowdown. Then, they use both simulated and real workloads to evaluate

the functions compared with commonly used heuristics in a homogeneous system.

Tanash et al. [17] explore the use of supervised machine learning techniques to pre-

dict job resource requirements in HPC systems. The primary goal is to improve resource

utilization by making better-informed scheduling decisions. By training these models on

historical data, they can accurately predict job resource requirements, such as CPU usage,

memory usage, and I/O requirements, for incoming jobs. The results of the experiments

demonstrate that the machine learning-based prediction method outperforms traditional



Background and Literature Review 60

heuristics and other state-of-the-art techniques in terms of prediction accuracy. Further-

more, the study shows that incorporating these predictions into the scheduling process

leads to improved system performance, better resource utilization, and reduced job wait-

ing times.

Nemirovsky et al. [18] investigate the application of machine learning techniques to

predict application performance and improve scheduling decisions on heterogeneous CPU

architectures. Using predictions, the authors develop a scheduling algorithm that assigns

applications to the most suitable processor in a heterogeneous computing environment.

The scheduling algorithm aims to minimize the overall execution time of the applica-

tions while considering the predicted performance on different processors and the current

workload of the system. The results of the experiments demonstrate that the machine

learning-based approach achieves higher prediction accuracy and better scheduling deci-

sions compared to traditional heuristics and other techniques.

Gaussier et al. [19] improve back-filling by using machine learning to predict running

times. The authors propose a machine learning-based method to estimate job running

times using historical job data and job characteristics. They incorporate these predictions

into the back-filling scheduling algorithm, which aims to minimize job waiting times while

considering the predicted running times. Comparing the performance of the machine

learning-improved back-filling against traditional heuristics, the results show that the

machine learning-based method leads to reduced job waiting times, and more efficient re-

source utilization. Machine learning-improved heuristic schedulers have some drawbacks,

including limited adaptability due to reliance on historical data, inability to learn entirely

new or optimal scheduling policies, potential overfitting to training data, and the need

for manual feature engineering. These limitations can restrict their overall effectiveness

in dynamic HPC environments and complicate the process of finding optimal scheduling

solutions.

Despite their advantages, machine learning-improved schedulers face several limita-

tions. First, they heavily depend on the quality and availability of historical data. In

HPC environments with highly dynamic workloads, training data may become outdated

quickly, leading to inaccurate predictions that degrade scheduling performance. Addi-

tionally, these methods require manual feature selection and model tuning, making them

sensitive to workload variations and difficult to generalize across different HPC clusters.
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Moreover, the computational overhead associated with training and updating machine

learning models can be significant, particularly in large-scale systems with real-time

scheduling constraints. Due to these challenges, learning-based scheduling approaches

have increasingly shifted toward RL methods, which offer greater adaptability and au-

tonomous policy learning.

2.4.5 Reinforcement Learning-Based Schedulers

RL-based schedulers represent a paradigm shift in HPC scheduling by formulating the

scheduling problem as a sequential decision-making process. Unlike heuristic-based or

supervised learning-improved approaches that rely on static rules or historical data, RL-

based schedulers continuously learn from interactions with the system, adapting to chang-

ing workloads, resource availability, and scheduling constraints. By leveraging reward-

driven optimization, these schedulers dynamically refine scheduling policies to improve

overall system performance. Mao et al. [20] present the first HPC Resource Manager with

DRL named DeepRM. The state of DeepRM is distinct images with the x-axis as the

requested number of CPU and the requested memory, and the y-axis as the requested

time for each resource. The actions are selecting a job for each step from the first M jobs

in the backlog. The objective of DeepRM is to minimize the average slowdown of jobs.

They use randomly generated jobs and action space as 10 to evaluate the scheduling on a

small-scale cluster. The study highlights the potential of DRL-based methods to improve

resource management in HPC.

Qin et al. [21] propose a region-based reinforcement learning (RRL) approach for

machine learning model serving scheduling. Unlike traditional scheduling, their method

partitions the scheduling space into regions and applies reinforcement learning within

each region, enabling more efficient decision-making. By dynamically adjusting schedul-

ing policies based on workload patterns, RRL improves resource utilization and reduces

serving latency. Experiments demonstrate that the approach outperforms conventional

heuristic-based scheduling, making it a promising solution for large-scale model serving

in HPC environments.

CuSH is proposed by Domeniconi et al. [22], which is the first DRL-based approach

that has the action to choose one of two job allocation policies. CuSH has two DRL-

based agents. One is a job selector which can select one job from the five first jobs in
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the queue. The other is a policy selector that selects an allocation policy for the selected

job (depth-first or breadth-first). The reward function counts the current average waiting

time at each step and the average normalized turnaround time at the terminal state. The

experiments are conducted on a simulated 128-node cluster with each node containing 2

CPUs and 4 GPUs.

Mao et al. [23] present Decima, a DRL-based scheduler that can schedule interdepen-

dent jobs. The goal of Decima is to minimize the average completion time of interdepen-

dent jobs. The dependencies of jobs are formulated as Directed Acyclic Graphs (DAGs).

The state is the combination of the DAGs (the number of tasks remaining in the stage),

the average task duration, the number of executors currently working on the node, the

number of available executors, and whether available executors are local to the job. The

actions are picking a stage of the jobs and then calculating how many executors can be

allocated to the stage of the job.

RLScheduler, proposed by Zhang et al. [24], utilizes PPO [40] to build a batch job

scheduler for HPC systems. The results demonstrate that the DRL-based scheduler out-

performs heuristic-based schedulers for some workloads when considering performance in

terms of job slowdown or job waiting time. However, it only shows a limited improvement

compared to the best-performing heuristic. RLScheduler doesn’t support back-filling ac-

tions; it relies on a simple back-filling heuristic to fill the system’s holes with possible

jobs. Also, the Agent optimizes a single scheduling objective, either average job slow-

down or average waiting time. Based on PPO, Wang et al. [25] designed a job scheduler

named RLSchert. The key improvement of RLSchert is that it enables a prediction

model to estimate the remaining runtime of jobs by feeding a recurrent neural network-

based model with the features derived from HPC jobs. The experimental results showed

that their scheduler outperformed DeepRM [20] and commonly used heuristics in terms

of average slowdown and resource utilization. However, inaccurate runtime predictions

can lead to jobs being killed by the scheduler, resulting in resource wastage and reduced

user satisfaction.

DRAS, proposed by Fan et al. [26], uses two DRL agents, one to perform job selection

and another one to make back-filling decisions. The two agents observe the job queue

with a window size of 50. The authors evaluated DRAS with two reinforcement learning

algorithms, DQN and PG. The results suggested that DRAS with PG achieves an overall
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best performance when compared to DRAS with DQN, Decima [23], and other heuristics,

such as FCFS, and BinPacking. For DRAS, more than 83% of the jobs are back-filled,

which means the back-filling agent is used more frequently. During the training process,

DRAS used the same workload in every episode, which can lead to overfitting the scheduler

to the training workload.

Zhang et al. [27] present SchedInspector that builds an inspector based on rein-

forcement learning. The inspector takes into consideration the cluster’s and queue’s state

to determine whether to execute or ignore the scheduling decision made by a heuristic

algorithm. A scheduling decision may be ignored with the aim of making better schedul-

ing decisions in the future, which can improve the scheduling objective. However, the

performance of this method largely depends on the base heuristic. Further, it relies on a

separate heuristic-based back-filling algorithm.

Li et al. [28] propose a Multi-Resource Scheduling for HPC called MRSch. The imple-

mentation is similar to DRAS but it considers burst buffers as a resource for HPC systems.

However, the burst buffers are not a critical resource of the HPC system. They have to

randomly generate burst buffer usage in the simulation to evaluate the performance.

Narantuya et al. [104] build their scheduler based on DQN in the GIST AI-X system.

However, the title of the paper mentioned Multi-Agent. However, it means training

different scheduler agents for different partitions of clusters. As partitions do not share

jobs and resources, and agents do not communicate with others, ”Multi-Agent” becomes

multiple independent agents.

Li et al. [105] develop GARLSched which is an HPC job scheduler trained by Gener-

ative adversarial deep reinforcement learning. It introduces a Generative adversarial deep

reinforcement learning to task scheduling in HPC. The model consists of three parts,

which are expert pooling, discriminator, and DRL scheduler. The main idea is to use

experts’ prior knowledge to guide the learning of the scheduler agent. The discriminator

is used to classify the given actions made by experts or agents and accelerate the learning

of the agent toward the experts. However, the expert pooling is using scheduling heuris-

tics which have been outperformed by a number of recent works. The results show that

GARLSched cannot largely outperform the best heuristics.
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De et al. [106] introduce semi-MDP in DRL-based HPC job scheduling. The state

space consists of the number of processors allocated, the number of processors free up to

a time horizon size of H, a window of size W from the job queue, and statistics of the

cluster. The action is to select a job from the window of size W . They describe their

MDP as semi-MDP because the scheduler only makes the scheduling decision when job

arrivals or completion as they claim that time-based MDP is MDP and the event-based

MDP is semi-MDP. In fact, there is no difference in their DRL algorithm.

Kolker-Hicks et al. [29] propose an RL-based backfilling strategy for HPC batch job

scheduling, named RLBackfilling. Traditional backfilling heuristics improve utilization

but lack adaptability. Their approach models backfilling as a sequential decision-making

problem, where an RL agent dynamically selects jobs to backfill based on queue states and

available resources. Using deep reinforcement learning, the model optimizes job selection

over time. Experiments show that the RL-based strategy reduces job waiting times and

improves system throughput compared to traditional backfilling methods.

Upon reviewing existing works for DRL-based HPC schedulers, we identify two main

challenges that remain unsolved. The first challenge is that existing DRL-based HPC

schedulers face significant limitations in their evaluation methodologies, hindering their

applicability to modern HPC environments. Firstly, many studies rely on fully simulated

settings where job arrivals, resource availability, and system behaviors are artificially

generated, providing a controlled yet oversimplified environment that fails to capture

real-world complexities [20–23, 25, 28, 104]. Second, while some research attempts to

bridge this gap by using historical job traces from real HPC systems, such as SWF [30],

these traces often come from older systems with homogeneous architectures, lacking rep-

resentation of modern HPC clusters that incorporate heterogeneous computing resources,

including GPUs [24, 27, 96, 105, 106]. This reliance on outdated traces limits the gener-

alizability of DRL-based schedulers to current and future HPC systems. Third, existing

approaches predominantly focus on CPU-based scheduling, overlooking the challenges

posed by other resources, such as memory, GPUs [26]. Scheduling policies optimized

for homogeneous CPU clusters may not effectively scale to modern HPC workloads that

demand intelligent resource allocation across diverse hardware components. These limi-

tations highlight the need for more comprehensive evaluations that account for real-time

system interactions, up-to-date workload characteristics, and the heterogeneous nature of

modern HPC clusters.
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The second challenge focuses on modifying and improving DRL algorithms and archi-

tectures to better suit the HPC scheduling domain. This may involve developing new

DRL algorithms, incorporating domain-specific knowledge into the learning process, and

designing novel neural network architectures to capture the unique characteristics of HPC

systems. For example, theoretically, the job queue length is unbounded for the HPC sys-

tem which means the system can receive arbitrary numbers of jobs. However, the input of

a DRL-based scheduler is pre-defined as the number of neurons is fixed. Adjusting DRL

algorithms and architectures may also include addressing scalability issues to accommo-

date large-scale HPC systems, ensuring robustness to dynamic workloads, and improving

convergence and stability during training.

2.4.6 Resource Allocation in HPC Scheduling

In traditional HPC scheduling research, the focus has been on job selection, as efficient

job ordering was seen as the primary lever for optimizing system performance. Many

early scheduling policies aimed to prioritize jobs based on fairness, responsiveness, or

system utilization, assuming that a fixed resource allocation strategy would be sufficient

to achieve overall efficiency. However, as HPC systems become increasingly heterogeneous,

with a mix of CPUs, GPUs, FPGAs, and high-bandwidth memory architectures, resource

allocation of jobs has emerged as a critical factor affecting performance. In this section, we

introduce some commonly used resource allocation heuristics, including first-fit, best-fit,

and topology-aware allocation. Additionally, we summarize recent research efforts that

explore resource-aware scheduling, highlighting key advancements and limitations in the

field.

First-fit allocation is a simple and widely used heuristic where jobs are assigned to

the first available set of resources that meet their requirements. Given a sorted list of

nodes, the scheduler iterates through the list and assigns the job to the first node (or set

of nodes) that can accommodate it. This approach is fast and computationally efficient,

making it suitable for large-scale HPC clusters. However, first-fit allocation can lead to

resource fragmentation, where smaller jobs fill up available nodes inefficiently, leaving

scattered unused resources that cannot accommodate larger jobs. Despite its simplicity,

first-fit remains a baseline allocation strategy in many practical HPC workload managers

due to its low scheduling overhead.
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Best-fit allocation improves upon first-fit by selecting the most tightly packed set of

resources that can accommodate a job. Instead of simply choosing the first available nodes,

best-fit searches for nodes that minimize resource wastage by filling the remaining capacity

as efficiently as possible. This heuristic reduces fragmentation and improves resource

utilization but comes with higher computational overhead, as the scheduler must evaluate

multiple placement options before making a decision. Best-fit allocation is particularly

useful in environments where minimizing idle resources is a priority, though it may lead

to increased scheduling delays when job arrival rates are high.

Topology-aware allocation is a strategy in HPC that aims to optimize job placement

by considering the network topology of the system. A common approach involves minimiz-

ing the number of switches utilized during job execution to reduce communication latency

and contention. This is typically achieved by assigning jobs to nodes connected under the

same lowest-level switch in the network hierarchy, thereby enhancing data locality. The

Slurm workload manager, for instance, implements such topology-aware placement al-

gorithms. It identifies the lowest-level switch capable of accommodating a job’s resource

requirements and allocates nodes under that switch using a best-fit strategy. This method

not only reduces communication overhead but also improves overall system performance

by leveraging network proximity.

In the realm of topology-aware scheduling, several studies have focused on optimiz-

ing task placement to minimize communication overhead in HPC systems. Agarwal et

al. [107] introduced a topology-aware task mapping algorithm designed to reduce com-

munication contention on large parallel machines by considering the network topology

during task assignment. Similarly, Georgiou et al. [108] developed a method that accounts

for both the machine’s topology and the application’s communication characteristics to

determine optimal node allocation, integrating this approach into the Slurm resource

and job management system. Amaral et al. [109] extended topology-aware scheduling to

GPU workloads in cloud environments, optimizing GPU placement based on interconnect

bandwidth, NVLink topology, and PCIe locality. Their proposed approach significantly

enhances deep-learning training performance by reducing inter-GPU communication de-

lays. Mishra et al. [110] proposed communication-aware job scheduling algorithms within

SLURM, aiming to allocate nodes in a manner that reduces network contention, thereby

improving the performance of communication-intensive applications. Lan et al. [111] in-

troduced Neural Simulated Annealing (NSA) for topology-aware job allocation. Their
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method optimizes job placement dynamically, learning network congestion patterns to

minimize inter-node communication overhead in HPC clusters.

Beyond network topology considerations, system performance optimization in HPC

scheduling focuses on efficient task placement and resource utilization. Several studies

have explored heuristic and metaheuristic approaches to improve scheduling efficiency.

Augonnet et al. [112] introduced StarPU, a unified task scheduling framework for het-

erogeneous architectures. StarPU dynamically assigns workloads across CPUs and GPUs

using heuristic and performance-aware strategies, optimizing resource usage in multicore

systems. Li and Peng [113] introduced an improved genetic algorithm for cloud-based

task scheduling, enhancing adaptability to dynamic workload changes and optimizing

scheduling decisions for better efficiency. Gupta et al. [114] proposed an HPC-aware vir-

tual machine (VM) placement strategy that accounts for inter-VM communication and

workload co-location. Their heuristic-based approach minimizes network bottlenecks and

improves execution efficiency for parallel HPC workloads in cloud environments. Grandl et

al. [115] proposed Tetris, a multi-resource packing scheduler that optimizes job allocation

by balancing CPU, memory, and I/O demands. Their approach addresses inefficiencies in

traditional cluster schedulers, reducing fragmentation and improving resource utilization.

Rekha and Dakshayini [13] explored a genetic algorithm-based task allocation strategy

that improves load balancing in cloud environments. Their method optimizes resource

utilization while reducing job execution time.

Researchers also focus on improving HPC scheduling by leveraging runtime estima-

tion techniques to enhance resource allocation efficiency. Kumar et al. [116] propose a

runtime-elastic scheduling approach that dynamically adjusts resource allocation based

on job execution progress and system load. By enabling jobs to scale resource usage

adaptively, their method optimizes system throughput and reduces job waiting times

compared to static allocation policies. Similarly, Villapando and Rubio [117] address the

issue of runtime estimation inaccuracies in traditional HPC schedulers by introducing

a data-driven correction mechanism that refines job runtime predictions using historical

execution data. This improves scheduling accuracy and resource allocation efficiency, min-

imizing job delays and system underutilization. Both studies highlight the significance of

adaptive scheduling strategies that incorporate real-time job execution characteristics to

enhance overall system performance.
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Energy efficiency is an increasing concern in HPC scheduling, as power consumption

significantly impacts operational costs. Recent studies have focused on workload-aware

scheduling techniques that balance performance and energy efficiency. Viswanathan et

al. [118] introduced an energy-aware VM allocation strategy that minimizes power con-

sumption while maintaining workload performance. Their approach considers CPU uti-

lization and energy constraints when scheduling jobs. Quang-Hung et al. [119] developed

heuristic-based energy-aware VM allocation strategies tailored for HPC clouds. Their

method dynamically adjusts VM placement to balance power efficiency and performance.

Arabas and Niewiadomska-Szynkiewicz [120] proposed an energy-efficient workload allo-

cation technique that optimizes power usage in distributed HPC environments. Their

approach leverages heuristic scheduling to minimize energy consumption without degrad-

ing system throughput. Arabas [121] further extended energy-aware scheduling models

by developing hierarchical task allocation strategies for HPC clouds, integrating energy

constraints into workload distribution decisions.

Given the summary of resource allocation techniques, we identify a key challenge in

resource allocation is that existing HPC scheduling approaches often treat job selection

and resource allocation as independent processes, leading to inefficiencies in overall system

performance optimization. This decoupled approach fails to account for the intricate

dependencies between job selection and resource allocation, particularly in heterogeneous

HPC environments where diverse resources such as CPUs, GPUs, and memory must be

optimally matched to varying job requirements. As HPC systems continue to evolve

with increasingly complex architectures and workload demands, an integrated scheduling

approach that jointly optimizes both job selection and resource allocation is essential to

improving resource utilization, minimizing fragmentation, and enhancing overall system

efficiency.



Chapter 3

Advancements in RL-Based Job

Selection in HPC

Job selection is a central challenge in HPC scheduling, particularly under dynamic work-

loads and complex resource requirements. Traditional heuristics such as First-Come-First-

Served (FCFS) and Smallest-Job-First (SJF) often struggle to adapt to varying system

situations and rely on static rules that fail to fully exploit scheduling opportunities. Re-

cent advances in deep reinforcement learning (DRL) have shown promise in improving

job selection strategies. However, existing RL-based schedulers face critical limitations,

including reliance on fixed observation windows and separate backfilling processes. This

chapter introduces Deep Backfilling (DBF), a unified DRL-based job selection framework

that addresses these limitations through two key innovations. First, the Split Window

Technique enables the agent to observe jobs from both the head and tail of the queue,

enhancing visibility and allowing backfilling opportunities to be captured without external

heuristics. Second, the Schedule Cycling mechanism redefines the scheduling trigger and

reward assignment process, enabling the agent to learn effective placement decisions over

multiple scheduling steps while maintaining training stability. DBF integrates job selection

and backfilling into a single agent, eliminating the need for separate decision components

and ensuring coherent scheduling policies. Experimental results demonstrate that DBF

improves scheduling efficiency, reduces job waiting time and queue length compared to a

range of HPC job selectors.

This chapter is derived from the following publication:

69
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3.1 Introduction

In HPC scheduling, job selection is a critical step that determines which jobs from the

queue will be dispatched for execution. Online job selection must operate in a dynamic

environment where job arrivals are unpredictable, resource availability fluctuates, and

scheduling decisions must be made in a timely manner. Traditional job selection policies

rely on fixed heuristics to determine scheduling order. First-Come-First-Served (FCFS)

enforces strict queue order, ensuring fairness but often leading to poor resource utilization

where large jobs delay smaller ones that could otherwise run. Smallest-Job-First (SJF)

prioritizes smaller jobs to improve throughput but risks job starvation, where large jobs

experience prolonged delays. To mitigate inefficiencies, backfilling is commonly used,

allowing smaller jobs to execute ahead of larger ones if they do not delay the first job in

the queue. However, backfilling operates under predefined rules and does not dynamically

adapt to system conditions.

Recently, HPC researchers have turned their attention to DRL for job selection, where

a DRL agent learns a scheduling policy rather than relying on predefined heuristics. The

advantage of RL-based job selection lies in its ability to adapt dynamically to workload

variations, capturing complex patterns in job arrivals, resource contention, and execution

times. Unlike traditional heuristics, which follow rigid rules, a well-trained RL agent

can generalize across different scheduling scenarios and optimize decisions in ways that

conventional methods cannot. Existing research demonstrates that RL-based job selection

can outperform heuristic approaches [24, 26], and they share the following basic approach:

an Agent observes a fixed window of jobs at the head of the queue, e.g., the first 128 jobs,

and sequentially selects individual jobs from the window to be scheduled. When the queue

length exceeds the observation window, the RL agent operates under partial observability,

failing to consider jobs deeper in the queue. This limitation can lead to starvation of larger

jobs, inefficient resource utilization, and scheduling bottlenecks.

• Lingfei Wang, Aaron Harwood, and Maria A. Rodriguez. A Deep Reinforcement Learning Sched-
uler with Back-filling for High Performance Computing. In Proceedings of 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering (CSDE), pp. 1-6. IEEE, 2021.

• Lingfei Wang, Aaron Harwood, and Maria A. Rodriguez. Deep Back-Filling: a Split Window
Technique for Deep Online Cluster Job Scheduling. In Proceedings of 2023 IEEE International
Conference on High Performance Computing & Communications, pp. 772-779. IEEE, 2023.
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Moreover, traditional backfilling heuristics allow schedulers to scan the entire queue

and opportunistically schedule smaller jobs that fit within available resource gaps. Some

RL-based approaches incorporate backfilling by switching from the RL agent to a back-

filling heuristic when the selected job cannot be scheduled [24]. While this method main-

tains high resource utilization, it breaks the end-to-end learning process, limiting the RL

agent’s ability to develop a fully optimized scheduling policy. More recent approaches

replace heuristic-based backfilling with a separate RL-based backfilling agent, trained in-

dependently to identify jobs suitable for backfilling [26]. However, this multi-agent setup

introduces coordination challenges, as each agent must implicitly account for the other’s

decision-making process to achieve an optimal policy. Since both agents operate on par-

tially observed job queues, misalignment between job selection and backfilling decisions

can lead to inefficient scheduling, suboptimal resource utilization, and increased waiting

times. Addressing these limitations requires a unified RL-based approach that integrates

job selection and backfilling within a single agent, ensuring seamless decision-making while

maintaining scheduling efficiency.

To address these challenges, we propose a novel reinforcement learning-based job selec-

tion approach that integrates backfilling without relying on external heuristics or separate

agents. Our method introduces a Split Window Technique, which enables the RL agent

to observe jobs not only at the head of the queue but also at the tail, ensuring that

backfilling opportunities are considered throughout the scheduling process. By main-

taining a single-agent framework, this approach eliminates coordination issues inherent

in multi-agent systems while retaining the benefits of reinforcement learning-based opti-

mization. Additionally, we introduce Schedule Cycling, a mechanism designed to improve

both scheduling decision-making and training stability. Instead of treating RL training

as a step-by-step process, Schedule Cycling enables the agent to learn job selection pat-

terns across multiple job selection steps, providing a more comprehensive understanding

of system dynamics. The key contributions of this chapter are as follows:

• We introduce a novel Split Window Technique to address the challenge of unbounded

state space in job selection. By allowing the RL agent to observe both the head and

tail of the queue, this method ensures that backfilling opportunities are effectively

utilized while maintaining a fully RL-driven approach.
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• We develop a Schedule Cycling mechanism that improves RL model convergence

and enhances long-term scheduling efficiency by enabling the agent to learn across

multiple scheduling steps.

• Unlike existing approaches that rely on heuristics or separate agents for backfilling,

our method trains a single RL agent to handle both job selection and backfilling.

This unification removes coordination challenges between independent agents and

enables a fully data-driven scheduling strategy that dynamically adapts to workload

variations.

3.2 Related Work

Recent RL-based job selection approaches have demonstrated improvements over heuris-

tics but face several key challenges. RLScheduler [24] applies PPO for batch job schedul-

ing, but its improvements over heuristics remain limited due to reliance on a separate

backfilling heuristic and a fixed single-objective optimization. SchedInspector [27] in-

troduces an RL-based inspector that overrides heuristic decisions, yet its performance

remains tied to the base heuristic and still requires heuristic-based backfilling. DRAS [26]

improves flexibility by employing two separate RL agents for job selection and backfill-

ing, but this introduces coordination challenges, as each agent must implicitly learn the

other’s decisions. Furthermore, its reliance on fixed workload patterns during training

increases the risk of overfitting. RLSchert [25] incorporates runtime prediction to refine

scheduling but is highly sensitive to misestimation, which can result in inefficient schedul-

ing and resource wastage. Lastly, Orhean et al. [122] explored Q-Learning and SARSA for

job scheduling in heterogeneous environments, but their approach failed to scale beyond

small-scale systems.

Overall, while these works demonstrate that RL-based job selection can outperform tra-

ditional heuristics, they share common limitations, including reliance on separate heuris-

tics for backfilling, lack of coordination between selection and allocation, and challenges

in generalization due to static training methodologies. These gaps motivate the need for a

more integrated, adaptable RL-based job selection approach capable of handling dynamic

HPC workloads effectively.
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3.3 Method

3.3.1 Split Window Technique

The agent’s observation window defines the subset of jobs in the queue that the RL agent

can consider for scheduling at any decision step. Given the unbounded nature of the

HPC job queue, observing all jobs simultaneously in all conditions is infeasible. Existing

approaches typically use a fixed-length window covering only the head of the queue,

limiting visibility to the first M jobs. A major drawback of a head-only observation

window is the potential accumulation of unschedulable jobs at the front of the queue.

When this occurs, the agent may enter a “wait” state, where no jobs in its window can

be scheduled, forcing it to passively wait for cluster resources to free up. This not only

reduces scheduling efficiency but also prevents the agent from learning effective backfilling

strategies. The backfilling opportunities are missed, as the agent lacks visibility into jobs

that could efficiently fill resource gaps.

To mitigate these issues, we introduce a split-window strategy, allowing the agent to

observe jobs from both the head and tail of the queue. Formally, the observation window

consists of:

• Mh jobs from the head of the queue: {1, 2, . . . ,Mh}.

• Mt jobs from the tail of the queue: {L(t), L(t)− 1, . . . , L(t)−Mt + 1}.

where Mh + Mt = M and L(t) is the total queue length at time t. This approach

ensures that the agent maintains awareness of newly arrived jobs while also considering

those that have been waiting the longest. By leveraging this expanded view, the agent

can make more informed scheduling decisions without requiring a separate backfilling

heuristic. By incorporating jobs from the tail of the queue, the split-window approach

eliminates this issue. The agent maintains visibility into all newly arriving jobs, ensuring

that it always has viable scheduling candidates. This dynamic perspective allows the agent

to integrate backfilling naturally into its decision-making process, improving scheduling

efficiency while avoiding reliance on external heuristics.
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3.3.2 Deep Backfilling Design

To demonstrate the effectiveness of the split window technique, we developed a job

scheduling simulation environment and framework for agent training, similar to existing

approaches but with the following two significant differences:

• Schedule Cycling – at any given scheduling decision, the agent can choose not to

schedule a job (even if a job could be scheduled) but rather just wait until either a

running job has been completed or a new job has arrived on the queue.

• Split Window – the agent can observe Mh jobs at the head of the queue and Mt

jobs at the tail of the queue at each scheduling decision.

For convenience, we refer to our overall approach as Deep Backfilling or DBF. In this

section, DBF is explained in detail with the RL representations – state, reward, and

action. Next, we present our Schedule Cycling, the training strategy, which defines when

and how the scheduling decision is made, which makes it possible for our agent to learn

higher-level scheduling strategies.

Figure 3.1: The DBF framework.

Fig. 3.1 shows an overview of the DBF framework. In the upper part of the figure,

users submit their jobs to the job queue by specifying the resources needed. The scheduler

makes scheduling decisions based on the cluster’s status and the job queue. The bottom

part shows the RL representations of the scheduling problem.
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DBF receives observations from two primary sources: the cluster state and the job

queue state. The cluster state, σ(t) =
[
σ1(t), σ2(t), · · · , σN (t)

]
, describes the availability

of compute resources, while the job queue state provides information about pending jobs

in the queue. The cluster state at a given time consists of an array representing the status

of each CPU core in the system. Each core is assigned a numerical value indicating its

current availability. If a core is free, it is marked as 0, σ1(t) = 0. If a core is occupied

by a running job, the value represents the remaining time until that job completes and

the core is released. This representation allows the scheduler to track resource availability

dynamically. An example of this state encoding is illustrated in Fig. 3.1.

The job queue state is captured through a window-based observation strategy, where

a subset of jobs from the queue is selected as input to the scheduler. Each job within

this observation window is characterized by three terms which are the number of cores it

requests, its requested runtime, and its waiting time in the queue. By combining these

two states, the RL scheduler obtains a real-time snapshot of the system, enabling it to

make informed job selection decisions based on available resources and job characteristics.

We also explored a binary state design for a separate RL backfilling agent; this variant

is documented in Appendix A for completeness but is not used in the results reported in

this chapter.

The set of actions, {1, 2, . . . ,M} ∪ {Fwd}, includes selecting one job from M jobs in

the window, and Fwd which represents a “forward” action where the agent can wait for

either a job on the cluster to complete running or another job to arrive before selection a

job from the window, as described further in Section 3.3.3.

The reward function is designed to balance multiple scheduling objectives, including

resource utilization, queue length, and total waiting time. Instead of optimizing a sin-

gle metric, our approach simultaneously considers several objectives to maximize overall

system performance. At time t, the reward function is defined as:

R(t) = −α1 (1− η(t))− α2
L(t)

Lmax(t)
− α3

W (t)

Wmax(t)
(3.1)

where:
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W (t) =
∑

Jj∈Q(t)

(t− wj)

Lmax(t) = max
τ∈[0,t]

{
L(τ)

}
Wmax(t) = max

τ∈[0,t]

{
W (τ)

}

Here:

• η(t) represents the instantaneous cluster utilization at time t.

• L(t) is the number of jobs in the job queue at time t.

• W (t) is the total waiting time of jobs in the queue, computed as the sum of the

waiting times (t− wj) for all queued jobs Jj .

• Lmax(t) and Wmax(t) track the maximum queue length and waiting time observed

up to time t, respectively.

• α1, α2, α3 are scaling factors that balance the contributions of resource utilization,

queue length, and waiting time in the reward function.

This formulation ensures that the agent is incentivized to reduce unused resources,

minimize queue length, and prevent excessive job waiting times, leading to improved

scheduling efficiency. The terms L(t) (jobs) and W (t) (time) live on different scales and

units; dividing by the running maxima Lmax(t) and Wmax(t) makes both signals dimen-

sionless and bounded in [0, 1] (since L(t)≤ Lmax(t) and W (t)≤Wmax(t) by definition).

This prevents either queue length or waiting time from numerically dominating the re-

ward, stabilizes policy updates, and makes the reward comparable across traces and load

levels. Using running maxima adapts the normalization to the observed workload inten-

sity without introducing extra hyperparameters; early spikes are absorbed as the maxima

update, while the coefficients α1, α2, α3 retain clear roles in balancing utilization versus

queueing pressure.
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Figure 3.2: The flowchart of Schedule Cycling.

3.3.3 Schedule Cycling

In general, to train a reinforcement learning agent, the agent either receives the rewards

immediately after the actions or receives a delayed reward when it reaches special states

or rules. The agent can learn quickly for an immediate reward by evaluating its action

step-by-step. However, the training may end up with a suboptimal policy when the agent

tries to maximize the reward for each step and loses the ”global vision” of the problem.

For the delayed rewards, the agent can overview the problem and learn to achieve an

overall better result. But it can fail to learn when the delay is too long.

For the existing works, such as RLScheduler [24], SchedInspector [27], and DRAS [26],

if a job is selected by the agent when the cluster does not have sufficient resource to run

the job, their schedulers will wait for other job completions and apply backfilling until

the job can be run. Pathological cases where the selected job is large can significantly

degrade the agent’s performance since it may have to wait for some time before making

any decisions.

To solve the problem, we designed a new scheduling mechanism – Schedule Cycling,

shown in Fig 3.2. A scheduling cycle is triggered at time t when a new job j arrives

on the queue at time t or a job j completes running on the cluster at the time t. The
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agent receives the observation and selects an action from the action space. The Fwd

action will terminate the current scheduling cycle, receive a negative reward R(t), and

move the system forward in time to the next scheduling cycle (next new job arrival or

running job completion). If the selected action is in {1, 2, . . . ,M}, we check whether it is

valid or not. An invalid selection arises when the scheduler chooses the ith job from the

window and either L(t) < i or the chosen job cannot be run due to insufficient cores. For

invalid selections, the system will be forwarded to the next scheduling cycle and receive

a negative reward R(t). If the selection is valid, then the job is removed from the queue

and allocated to the cluster with a zero reward given to the agent, and the agent needs

to continue making scheduling decisions until the system is forwarded. In this way, the

Schedule Cycling mechanism allows the agent to learn to place jobs to maximize the

reward, and the agent can also learn to achieve better job placement with the Fwd action

when a more suitable job arrives in the near future.

Using Schedule Cycling, our scheduler not only leverages the delayed reward in a

manageable number of transitions so as to take an overview of the problem but also has a

chance to learn whether to wait or not, as only valid selections will be placed. The overall

strategy causes the scheduler to learn to make valid job allocations without an explicit

penalty. Furthermore, including the waiting time in the observation and in the reward

function, R(t), prevents job starvation. Therefore, our DBF framework can learn a more

advanced policy compared to without Schedule Cycling and does not require a separate

backfilling heuristic nor a backfilling agent.

3.4 Experimental Results

3.4.1 Simulation and Agent Implementation

We simulate an HPC cluster that is widely adopted in the existing Deep RL approaches.

An HPC cluster is modeled as a number of cores, N , and a job queue. Each job, j ∈

{1, 2, . . . }, submitted to the cluster has a submission time, a requested number of cores,

and a requested total run-time. The online job scheduling problem requires selecting jobs

from the queue, as or after they arrive, that can be run on the cluster and usually assumes

that the job queue is unbounded in length. Job j can be run at time t if the number of

available cores on the cluster at time t is at least the requested number of cores. Jobs
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and job inter-arrival times are modeled based on commonly used traces, specifically the

Lublin dataset [123]. The Agent’s PPO algorithm is implemented using PyTorch [124]. In

DBF, training occurs in an episodic manner, with an episode ending when 1,000 jobs have

been successfully placed, whether there are remaining jobs in the queue or not. Since the

scheduler can make invalid job selections, the length of each episode is not fixed. After an

episode terminates, an update to the actor and critic networks is performed by stochastic

gradient descent with a mini-batch size of 128. The learning rate is 3 × 10−4, clip ϵ is

0.2 and the discount factor γ is 0.99. The hyperparameters for the reward function are

α1 = α2 = α3 = 1
3 . The hidden layer size for actor and critic networks is [1024, 512, 256].

The listed hyperparameters come from a hyperparameter search.

We normalize the Agent’s observation, σ̄(t) = 1
emaxσ(t)

, where emax = maxj∈J {rj} (the

maximum requested runtime) and J is the set of jobs arriving overall time, as training

with normalized states has been shown to speed up learning in RL problems [125]. In

particular, we use the maximum allowed runtime of the system to normalize the cluster’s

state vector and the maximum number of processors, maximum allowed runtime, and

maximum waiting time of all jobs to normalize the state vectors of queued jobs.

3.4.2 Evaluation Setup

As previously mentioned, we use the Lublin workload model [123] to evaluate our ap-

proach. The reason is twofold: i) it is widely used in the related literature, and ii)

it represents a realistic HPC workload as it is based on execution traces of thousands

of jobs spanning several months. Specifically, the trace data contains all jobs that ar-

rived in 89 days on a 256-core cluster. Each job requests 1 to 256 cores, and 1 sec-

ond to 124707 seconds (34.6 hours) runtime. The average requested core-time per job

(requested number of cores × requested runtime) is 209, 278 seconds, and the average

amount of core-time submitted to the cluster is 271.5 per second. To avoid over-fitting –

which may arise if the same sequence of jobs is used across episodes – we use a sequence

of jobs starting at a random point in the workload for each episode.

We compare the performance of DBF to three heuristics, as they are widely used in

real-world systems, and one RL-based scheduler, the newest work in the related literature:

First-Come-First-Served (FCFS) schedules the jobs in the order of their arriving time.

FCFS with backfilling is the default scheduler for many HPC clusters and works reasonably
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well in practice. Smallest-Job-First (SJF) gives higher priority to smaller jobs and thereby

always places the job with the smallest number of requested cores. Last-Come-First-Serve

(LCFS) schedules jobs with the latest arrival first. LCFS can suffer of starvation since

the probability of scheduling the job at the head of the queue is low.

SchedInspector is an RL-based HPC scheduler [27] proposed by Zhang, Dai, et al.

The main idea behind SchedInspector is to train an RL agent to determine whether to

accept or ignore the job placement choice made by a heuristic-based scheduler. The

authors hypothesize that ignoring certain scheduling actions in some states can lead to

better overall performance. We implemented their approach by using the code released in

their github repository1 with the default objective of minimizing the average bounded job

slowdown (the average fraction of the job waiting time plus job execution time to the job

waiting time) and backfilling enabled. We use both SJF and F1 [16] as the base heuristic

schedulers, as also used by Zhang, Dai, et al.

SchedInspector and DBF use different training methods. SchedInspector trains on a

job sequence of 128, and it stops receiving new jobs when 128 jobs have been submitted to

the system. The episodes end after the 128 jobs have been scheduled, no matter how long

it takes. We call it offline training. However, an online system can always receive new

jobs during operation, and we use this way to train our DBF. To make a fair comparison,

we will present the results of SchedInspector in both online and offline testing methods

in section 3.4.3.

To evaluate job scheduling efficiency, we consider several key performance metrics.

These metrics assess resource utilization, queue dynamics, and job waiting times, provid-

ing insights into scheduling effectiveness.

Utilization measures how effectively computational resources are used in the sys-

tem. It represents the proportion of CPU cores actively running jobs at any given time

compared to the total available cores in the cluster.

Average Queue length refers to the number of jobs waiting in the scheduling queue

at a given time. An efficient scheduler aims to keep the queue length manageable by

balancing job execution and system availability. By averaging this metric over time, we

can assess whether the scheduling policy prevents excessive job accumulation and ensures

a steady flow of executions.

1https://github.com/DIR-LAB/SchedInspector

https://github.com/DIR-LAB/SchedInspector
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Average Waiting time represents the duration a job spends in the queue before

it starts execution. The average waiting time across multiple jobs provides a measure of

overall system responsiveness. A well-optimized scheduler aims to minimize waiting times

while ensuring high resource utilization.

Average Job load refers to the total computational demand imposed by jobs waiting

in the queue. It considers both the number of requested CPU cores and the expected

execution time of jobs. This metric helps understand whether the system is handling a

mix of small and large jobs efficiently.

3.4.3 DBF Performance and Schedule Cycling Evaluation

We first evaluate the effectiveness and efficiency of DBF when learning to schedule jobs

and optimizing the system’s objectives (minimizing queue length and waiting time and

maximizing utilization) in an online environment. We test a range of window size config-

urations. We trained the agent for 100,000 episodes and saved trained models after every

5,000 episodes. Then, we evaluated each of the saved models for 100 episodes without

updating. Fig. 3.3 plots the learning curves of DBF with a window size of 20 without a

split window, M = 20 and Mt = 0; similarly, the results for window sizes of 32, 64, and

128 share the same patterns. The points are the average performance for the objectives

at each checkpoint, and the error bars are the standard deviations. Fig. 3.3 shows that

DBF converges successfully by continuously reducing the average queue length and job

waiting times while increasing the utilization of the cluster. After approximately 5,000

episodes, which we consider a reasonable amount of interactions with the environment,

the average utilization, waiting time, and queue length improve dramatically. Afterward,

the improvements become smaller because the agent cannot observe all jobs in the queue

as the window size is 20, where the average queue length is 31.

Next, we evaluate whether DBF can learn backfilling by comparing its performance to

specific heuristics and RL-based models with backfilling. From Fig. 3.4, we can see the

DBF with window sizes of 32, 64, and 128 can reach better average waiting times and queue

lengths with a relatively good utilization in all compared algorithms. The heuristics can

achieve slightly better average utilization and job load in the queue. The SchedInspector-

based approaches lead to the lowest cluster utilization for both online and offline tests.

The main reason is that SchedInspector skipped most of the scheduling choices made by
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Figure 3.3: The learning curves of DBF with a window size of 20 for three different
objectives.

Figure 3.4: Performance comparison (sorted by average waiting time) on trained DBF
of different window sizes with other schedulers. M10 means the DBF has a window size
of 10. Insp-F1-o means the SchedInspector method has an F1 algorithm as the base
scheduler and the test method is offline. Insp-SJF means testing SchedInspector in an

online method with SJF as the base scheduler.

its base-heuristic algorithms, leaving the cores idle for long periods. Also, SchedInspector

optimizes a single objective, average bounded job slowdown. In terms of average job

slowdown, SchedInspector with SJF (average job slowdown 62.2) can outperform the

SJF (average job slowdown 73.3). But SchedInspector is much worse than SJF when

comparing the direct measurements, such as utilization and average waiting time. In

our experiments, we observed such trade-offs between scheduling objectives, which means

gains in one objective are achieved at the expense of other ones. For this reason, in DBF,

the hyperparameters of each objective are adjustable in the reward function.
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3.4.4 DBF Split Window Evaluation

The pre-defined size of the input limits the performance of the neural network-based

scheduler. If the system received jobs more than the window size, the partially-observed

state could cause the agent to learn a suboptimal policy. A natural method is to increase

the window size. However, continuously increasing the window size can make the training

more challenging and does not guarantee an increase in performance. According to the

previous discussion, the split window technique can be a potential solution for the problem

as it has a chance to observe all newly arrived jobs in the tail of the queue at least once.

The agent gets at least one opportunity to schedule all jobs. In this section, we compare

the performance of DBF with and without the split window technique to evaluate the

method.

Figure 3.5: Performance comparison on different window sizes with various splitting
configurations. The red points represent the average waiting time, and the green crosses

represent the average queue length.
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Fig. 3.5 plots the different splitting configurations with each window size. The titles

of the subplots show the total window size, and the x-axis indicates the tail size. It shows

the performance of each model after training for 100,000 episodes. The left y-axis is the

average waiting time, and the right y-axis is the average queue length. The utilization

is not plotted as all models share a similar utilization. With the window sizes of 8, 10,

16, and 20, we can clearly see that increasing the tail window size helps to improve the

performance. The performance is significantly enhanced when it includes just one job

from the tail with smaller total window sizes. It reveals that the split technique works

extremely well, especially with smaller window sizes. It also suggests that we can achieve

the same level of performance with less information by using the splitting. Moreover,

agents with smaller window sizes are much easier to train, so it also improves sample

efficiency. From the subplots of window sizes 32 and 64, the improvement of splitting is

not as significant as in the smaller window sizes. Because 32 and 64 are larger than the

average queue length. These agents can observe all jobs most of the time, but splitting

windows can also improve performance. Unlike window sizes of 8, 10, and 16, continuing

to increase cannot always have a positive impact on window sizes of 20, 32, and 64 as the

performance gets worse when taking too many jobs from the tail.

Fig. 3.6 provides insights into how the splitting improves the average queue length in

training. The plots on the left show the number of invisible jobs (how much the queue

length exceeds the window size) on average. The plots on the right give information about

the percentage of the partially observed state that the queue length exceeds the window

size. For window sizes of 8 and 10, the splitting window can significantly decrease the

average exceeding length and the ratio. The exceeding length can be largely decreased

for window sizes 16 and 20 while the ratios remain at the same level using the splitting

technique. When the window size is large compared to the average queue length, the

improvement is limited in terms of average exceeding length for window size 32.

Moreover, Fig. 3.7 illustrates how the split technique improves the average waiting

time for each type of job using the window size of 10 as an example. We use the requested

cores and runtime to distinguish job types which are shown on the x-axis and y-axis.

Every circle in the plot represents a type of job, while the average waiting time is shown

in the colors, and the circle size is the number of times that type of job is placed. It is

clearly demonstrated in Fig. 3.7 that even one split window at the tail of the queue can

dramatically decrease the average waiting time for nearly every type of job. However, as
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Figure 3.6: The average number of invisible jobs (cannot be observed by the agent) and
the average ratio that the observation is partially observed in the training. The indicated
window configuration Mh-Mt means the head window size is Mh while the tail window

size is Mt.
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discussed, if the tail window size is closer to the total window size, the risk of big jobs at

the head of the queue being starved is higher. When comparing the sizes of the circles

in the upper area in each subplot, the 0-10 configuration has smaller sizes for big jobs

(the requested number of cores is greater than 128). It suggests that if the agent only

takes information from the tail of the queue, the big jobs at the head of the queue are

invisible to the agent so that the jobs cannot be starved. Although the configuration of

0-10 achieves the best average waiting time, such a window configuration should not be

used in the real system to avoid job starvation.

Figure 3.7: The average waiting time and the number of times being placed for each
job type in 1,000-episode testing. The color indicates the average waiting time, and the
circle size indicates the number of times the type of job is placed (a bigger circle means
the job is placed more frequently). The titles indicate the window configuration Mh-Mt

that means the head window size is Mh while the tail window size is Mt.

In conclusion, the splitting technique can increase performance, especially when the

window size is smaller than the average queue length. Using the splitting window, the

agent can achieve the same level of performance with less information (window size).

However, increasing the splitting does not always have positive impacts. When the window
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size and tail window size are big enough, continuously expanding the tail window size may

cause a performance loss. Although the splitting seems to improve performance, it may

lead to job starvation. Thus, the agent should not take all observations from the tail of

the queue.

3.5 Summary

This chapter presented DBF, a DRL-based job selector designed to address key limita-

tions in existing reinforcement learning selectors for HPC systems. DBF integrates job

selection and backfilling into a single agent, eliminating the need for external heuristics

or separate agents. To address the challenge of unbounded queue space, we proposed the

Split Window Technique, which enables the agent to observe jobs from both the head

and tail of the queue. This improves visibility and allows the agent to naturally learn

backfilling behavior without relying on a separate process. Additionally, we presented

Schedule Cycling, a training mechanism that restructures the timing of agent decisions

and reward feedback, allowing the agent to learn more effective scheduling policies across

multiple steps. Experimental results demonstrate that DBF improves scheduling objec-

tives compared to both heuristic and RL-based baselines. The split window design shows

significant benefit in scenarios with limited observation capacity, and Schedule Cycling

enhances the agent’s ability to learn long-term placement strategies.

While this chapter focuses on improving job selection through a single-agent rein-

forcement learning approach, it assumes a separate, predefined mechanism for resource

allocation. However, job selection and resource allocation are inherently interdependent

and must be coordinated to achieve globally efficient scheduling decisions. The next

chapter addresses this challenge by introducing HeraSched, a hierarchical reinforcement

learning-based scheduler that jointly optimizes job selection and resource allocation.



Chapter 4

HeraSched: Hierarchical

Reinforcement Learning-Based

Job Scheduler in HPC

Job allocation is a critical aspect in contemporary HPC systems, due to compute nodes

possessing an increased capacity in terms of physical resources and having the capability to

execute multiple jobs simultaneously. However, job allocation is often overlooked in exist-

ing RL-based schedulers that mainly focus on selecting suitable jobs from the job queue and

leave allocation to overly simplistic policies, such as First-available allocation. The bin-

packing nature at the node level of modern HPC necessitates more refined and intelligent

allocation strategies. This chapter introduces HeraSched, a novel Hierarchical Reinforce-

ment Learning (HRL)-based scheduler, adept at intelligent job selection with integrated

backfilling and heterogeneity-aware allocation, tailored for modern HPC environments.

It efficiently manages diverse workloads across CPU and GPU cluster partitions. We

evaluate HeraSched using real-world workloads, demonstrating significant improvements

in reducing job waiting times and preventing job starvation compared to 27 scheduling

combinations. In validation, the best maximum waiting time among compared methods

is 78% higher than HeraSched’s result in overloaded CPU partitions. This performance

demonstrates HeraSched’s ability to manage intensely stressed workloads and adapt to pre-

viously unseen, high-demand scenarios, thereby establishing a new standard in HPC job

scheduling.

This chapter is derived from the following publication:

88
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4.1 Introduction

HPC scheduling involves two steps: job selection and job allocation. Job selection refers to

choosing jobs from the waiting job queue, while job allocation involves assigning the nec-

essary resources to the selected jobs for execution. A common solution in HPC scheduling

involves using heuristic-based techniques for both job selection and job allocation, with

each process generally handled independently [126]. For instance, an FCFS job selector

might be paired with a first-available job allocator, assigning the longest-waiting job to

the first available resource that can accommodate it. Recent advances in HPC systems

have introduced new challenges in scheduling. The increasing complexity and diversity of

workloads, which now include a wide range of applications with distinct computational

demands and the integration of new resources like GPUs and accelerators [31], make

heuristic-based scheduling methods increasingly inadequate, as they rely on a fixed set

of predefined rules that fail to capture the complexity, diversity, and dynamic nature of

the underlying environment. Consequently, there is a pressing need for intelligent job

selection and allocation strategies that can effectively manage the workload complexity

and resource diversity in contemporary HPC systems.

RL [38] is a promising method for addressing the challenges of HPC job selection

and allocation. Its ability to learn and adapt in complex environments makes it suitable

for optimizing these processes in dynamic HPC systems. While research on RL-based

approaches for HPC scheduling has intensified in recent years, the majority of existing

RL-based schedulers focus on job selection, often relegating job allocation to simple heuris-

tics [24–28]. By combining RL-based job selectors and heuristic-based allocators, these

schedulers prioritize enhancing job selection techniques to optimize system goals rather

than addressing the complexities of job allocation. Such an approach is well-suited to

HPC environments where the compute resources of nodes are limited and homogeneous

(e.g., single CPU core per node), as variations in job-to-node allocations are likely to have

minimal impact on overall system performance. In fact, the focus of existing RL-based

schedulers on these types of HPC environments is evidenced by their use of workloads

defined by the Standard Workload Format (SWF) [30]. However, the SWF is increas-

ingly falling short of capturing all the necessary aspects of modern HPC structures and

• Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. Optimizing HPC Scheduling: A Hierar-
chical Reinforcement Learning Approach for Intelligent Job Selection and Allocation. The Journal
of Supercomputing 81, no. 8 (2025): 918.
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workloads. A significant limitation of SWF is its inability to account for resources be-

yond processors, such as GPUs and other accelerators. Additionally, it fails to capture

node-level job requirements, such as the ‘Requested Number of Nodes,’ which are crucial

for accurately selecting and allocating resources in contemporary HPC systems. Thus, to

effectively manage modern HPC systems, we need not only a workload model that accu-

rately reflects their complexities but also advanced job selection and resource allocation

strategies, especially as these systems evolve to include complex node configurations and

diverse resources such as GPUs and other accelerators.

Building on the discussion above, Hierarchical Reinforcement Learning (HRL) offers a

powerful framework for addressing the complexities of HPC scheduling. HRL effectively

separates scheduling tasks into distinct selection and allocation layers within a hierarchy,

decomposing the problem into smaller subtasks, which reduces the size of the action

space and simplifies decision-making. At the higher level, an HRL model can strategically

prioritize job selection from the queue, aligning with global objectives like minimizing wait

times or maximizing system throughput. Simultaneously, a lower-level HRL model can

focus on the critical task of resource allocation, precisely assigning jobs to specific nodes

while accounting for the various HPC hardware, including GPUs, CPUs, and memory.

Also, HRL’s capacity to coordinate multiple decision-making processes within a single

framework is crucial for ensuring that job selection and allocation are not treated as

isolated tasks but as components of a cohesive strategy. This approach allows HRL to

optimize the overall performance of the HPC system.

In this chapter, we introduce HeraSched, a novel HRL-based approach tailored for

intelligent job selection and node-level allocation in modern HPC systems. Building on an

HPC simulation that leverages real trace data and system configurations from operating

HPC systems based on Slurm [35], HeraSched is trained under conditions that closely

mimic real-world scenarios, incorporating comprehensive information to reflect the com-

plexities of modern HPC environments. Specifically designed to navigate the complexities

of job scheduling in HPC environments, HeraSched addresses the challenges posed by het-

erogeneous CPU and GPU partitions. Through the application of two real-world HPC

workloads, we show HeraSched’s effectiveness in significantly optimizing average wait-

ing times for jobs while preventing job starvation. Our approach integrates backfilling

in job selection and exhibits an understanding of cluster heterogeneity for efficient job

scheduling. The primary contributions of this chapter are:
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• HeraSched represents an application of HRL in HPC job scheduling. To the best

of our knowledge, it is the first system to employ HRL agents for intelligent job

selection and node-level allocation in a heterogeneous HPC environment.

• We evaluate HeraSched on two distinct workloads from CPU and GPU partitions,

confirming its scheduling ability in various HPC environments. This assessment

highlights its success in integrating backfilling within job selection and its effective-

ness in heterogeneous-aware allocation, demonstrating HeraSched’s robust capabil-

ities in practical HPC job scheduling scenarios.

• We design distinct reward mechanisms for the selector and allocator that are im-

plemented, addressing their unique challenges and optimizing their performance in

the HPC scheduling context.

4.2 Related Work

HPC job scheduling fundamentally comprises two critical components: job selection

and job allocation. Job selection involves choosing appropriate jobs from the queue

for execution. Job allocation deals with assigning the selected jobs to suitable comput-

ing resources. Job selection approaches initially centered around priority-based heuris-

tics [5, 127]. As computational demands and scheduling complexity grew, meta-heuristic

approaches emerged [14, 15], offering more sophisticated strategies for job selection. As

the artificial intelligence developing, the focus has shifted towards scheduling approaches

leveraging machine learning [16–18] and RL [20, 22–28, 104, 105]. However, most existing

RL-based approaches primarily focus on solving the job selection process, overlooking the

crucial aspect of job allocation. For example, DeepRM [20], Decima [23], RLScheduler [24],

RLSchert [25], DRAS [26], and SchedInspector [27] all propose RL-based selectors that are

coupled with heuristic-based allocators. Unlike these approaches, CuSH [22] introduces

an RL agent capable of selecting jobs from the queue while also choosing between two

elementary heuristic-based allocation strategies. While this incorporates allocation into

the RL process, the agent’s control over allocation decisions remains limited, as it can only

make high-level choices between pre-defined strategies. This lack of fine-grained control

restricts the potential for optimizing job allocation, potentially leading to suboptimal re-

source utilization and system inefficiencies in dynamic HPC environments. Additionally,
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as HPC systems evolve to include technologies like GPUs and specialized accelerators,

RL-driven approaches face challenges in effectively integrating with these modern, het-

erogeneous architectures. A key limitation of existing related research is their reliance on

outdated trace data from SWF [30], which may not accurately reflect the complexities

and dynamic nature of current HPC systems.

Research focusing on job allocation has predominantly concentrated on building topology-

aware allocation strategies [107, 108, 110]. These strategies aim to minimize communi-

cation costs between different parts of the HPC system, often employing heuristic meth-

ods to achieve this objective. Some developments in this field target minimizing system

performance [13, 113] like job runtime and makespan, while others target minimizing

energy consumption [118–121]. However, the majority of allocation methods employ

static strategies that do not dynamically adapt to fluctuating workloads and changing

resource availability in real-time HPC environments. This static nature can result in

suboptimal performance under varying operational conditions. Moreover, a notable gap

in these allocation approaches is their frequent discussion as independent methods, of-

ten paired with simplistic selectors, such as FCFS. This disconnect highlights the need for

more integrated approaches that consider both dynamic allocation strategies and dynamic

scheduling methodologies to fully harness the capabilities of modern HPC systems.

4.3 HeraSched Design

In this section, we outline the design of the proposed HRL Scheduler, named HeraSched.

Firstly, how HRL applying to HPC scheduling is presented in Section 4.3.1. Then, Sec-

tion 4.3.2 provides an overview of HeraSched, introducing its role and functionality within

the HPC environment and describing the job scheduling process it orchestrates. Following

this, the specifics of the HRL framework are presented, including HeraSched’s states (Sec-

tion 4.3.3), actions (Section 4.3.4), and the construction of its reward function (Section

4.3.5). Finally, in Section 4.3.6 we discuss the architecture of the HRL agents and the un-

derlying algorithm that governs HeraSched’s operation, thereby offering a comprehensive

view of its design.
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4.3.1 Hierarchical Reinforcement Learning in HPC Scheduling

HRL simplifies complex tasks by breaking them into smaller subtasks using a hierarchy of

learning policies. The highest-level policy selects subtasks from the main task and learns

to sequence them effectively, using the main task’s rewards [128]. Each chosen subtask

forms its reinforcement learning challenge at lower levels. These lower-level policies focus

on accomplishing the subtasks, guided by specific internal rewards [129] and, optionally,

by rewards from the main task. The lowest level in the hierarchy involves policies selecting

basic, or primitive, actions to execute these subtasks.

Figure 4.1: Framework of HRL with an Emphasis on the Integration of Selection and
Allocation Processes

Fig. 4.1 presents a framework of HRL and its application in the HPC job scheduling

process. The HPC job scheduling problem is decomposed into two tasks: job selection and

job allocation. At the higher level, the job selector chooses an appropriate job from the

job queue based on the current state of the HPC system (environment). The selected job

becomes a sub-goal for the allocator, functioning as the low-level agent. The allocator’s

sub-goal is explicitly defined as ‘identifying the most suitable node or nodes for executing

the selected job’. To achieve this, the allocator evaluates the current state of the HPC

system in conjunction with the defined sub-goal and determines the optimal allocation

of the selected job, which constitutes its action. Once this action is implemented within

the HPC system environment, the selector and the allocator, receive feedback (rewards).
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These rewards are contingent on the efficacy of their actions. Following this process, the

agents find themselves in a new state, ready to undertake the next iteration of decision-

making. This cyclical process exemplifies the dynamic and interactive nature of HRL

within the realm of HPC job scheduling.

4.3.2 Overview of HeraSched

Figure 4.2: Overview of HeraSched

Fig. 4.2 illustrates an overview of HeraSched, showcasing its major components along

with the scheduling process. The HPC system serves as the environment for HeraSched.

The scheduling process is initiated either by the submission of a new job or the completion

of a running job. As the process begins, HeraSched receives the current state of the job

queue and the cluster from the environment as its input. The hierarchical structure

of HeraSched dictates that the selector component acts first, making decisions based
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on the state. The selector has two primary choices: it can select a specific job or opt

for a ‘Forward’ action. The ‘Forward’ action is chosen when the agent decides not to

schedule any job in the current scheduling process and moves to the next scheduling

process triggered by the next job arrival or the completion of a running job. When

the selector chooses a job, this selected job becomes a sub-goal for the allocator and

is incorporated into the allocator’s state as input. The allocator’s responsibility is to

sequentially identify appropriate nodes for the selected job, a process that may entail

multiple steps to fully meet the job’s node requirements. Once the allocation for the

chosen job is determined, the job is placed in the cluster for execution. The rewards for

the HeraSched agents, based on the reward functions presented in Section 4.3.5, are issued

after the actions have been executed.

Importantly, the completion of a job allocation does not end the current scheduling cy-

cle. Instead, after allocating the selected job, HeraSched receives an updated system state

and can continue scheduling jobs within the same cycle if resources permit. This means

that a single scheduling process can allocate multiple jobs, depending on the availability

of nodes and the job queue. The process only concludes when HeraSched determines that

no further jobs should be scheduled and selects the ‘Forward’ action, or when no further

jobs can be scheduled in the current state. Noticeably, Backfilling in HPC job scheduling,

developed as a strategy to optimize system performance, involves executing smaller or

shorter jobs that fit into scheduling gaps created by larger jobs awaiting resources. Re-

cent advancements in RL-based schedulers follow this idea to incorporate the concept of

backfilling as a complementary strategy. Alongside the primary RL-based job selection

mechanism, these scheduling systems typically have a separate backfilling scheduler. Their

backfilling schedulers are either based on heuristics [24, 27, 28] or dedicated RL agents

trained specifically for backfilling tasks [26, 29]. However, a separate backfilling mecha-

nism is not needed for intelligent AI-based schedulers. When a scheduler, particularly an

RL scheduler, comprehensively understands the cluster’s state and the awaiting jobs, it

can effectively manage job selection and allocation. This allows the traditional concept of

backfilling as a separate process to become integrated into the selector’s core functionality,

where the selector’s decision-making mechanism inherently incorporates identifying and

exploiting opportunities for optimal scheduling goals. This methodology exemplifies the

concept of Intelligent Integrated Backfilling. We design our HeraSched integrating the
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principles of Intelligent Integrated Backfilling for enhanced system efficiency and effec-

tiveness.

4.3.3 State Design

In HeraSched’s design, the state space plays a key role as it defines the information

accessible to the agents for decision-making. This includes details about the job queue

status, resource availability, and the currently running jobs in the cluster. The state of

the HPC system is divided into two main components: the job queue state and the cluster

state.

4.3.3.1 Job Queue State

In HPC systems, the job queues are characteristically unbounded, allowing for an indefi-

nite number of job submissions. This feature leads to a potentially arbitrary decision space

for job selection, as the queue can continuously expand in both size and diversity of jobs.

A common approach to managing unbounded queues in existing RL-based schedulers is to

use a ‘window’ queue, where the agents only observe a fixed number of jobs at the head of

the queue. However, this method often leads to ‘large’ jobs, which require more resources,

accumulating at the queue’s head. Consequently, newer jobs, especially those requiring

fewer resources, may have to wait a considerable amount of time before being observed

by the agents, decreasing system performance. To overcome this limitation, HeraSched

incorporates a ‘split window’ technique, as previously proposed in 3.3.1. This approach

allows agents to observe jobs from both the head and the tail of the queue, as shown in

Fig. 4.2. By doing so, agents gain visibility of every job as soon as it arrives at the tail of

the queue, ensuring a continuous influx of fresh candidates for selection and backfilling.

This strategy prevents the agents from being constrained by a lack of new job options

and enhances their ability to make more informed and diverse scheduling decisions.

In the job queue state, job Jj is represented as a vector consisting of the attributes,

⟨wj , ej , lj , hj , qj , bj , kj(t)⟩ (notations in Table 2.1). A notable element within this vector

is the parameter kj(t), which serves as a binary indicator of whether the job Jj can be

executed given the current resource of the cluster. This parameter significantly reduces the

learning time for HeraSched. The total number of jobs that HeraSched can observe is the
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‘Window Size’. The ‘Tail Size’ defines how many jobs in the window are gathering from

the tail of the queue. ‘Window Size’ and ‘Tail Size’ are hyperparameters that can be fine-

tuned to optimize HeraSched’s performance in different HPC scheduling environments.

If the job queue contains fewer jobs than the designated Window Size, it is padded with

zero vectors. Then, a number L(t), indicating the current queue length, is incorporated

into the job queue state. This addition provides the agents with a sense of the actual

workload in the queue when some jobs cannot be observed.

4.3.3.2 Cluster State

The cluster state is a comprehensive collection of all nodes’ statuses, providing information

about node identity, resource availability, and the status of running jobs. For each node,

ni, the state is defined as ⟨sk, ci,mi, gi,Ri(t)⟩ (notations in Table 2.1) where sk represents

the switch ID connected to the node, and Ri(t) is a collection of running jobs at time t.

The details of running job Jz withinRi(t) are encapsulated in a vector ⟨ez, hz, qz, bz, rz(t)⟩,

representing requested runtime, number of occupied cores, occupied memory, number of

GPUs occupied, and the current runtime, respectively. One of the key insights gained

from the running job information is the prediction of future resource availability. By

analyzing the runtime of each job and its maximum requested time, the scheduler can

anticipate when resources will be free for use by other jobs.

Designing the cluster state, however, is challenged when the number of running jobs

on a node is dynamic, coupled with the need for a predefined cluster state structure. To

address this, we introduce the concept of ‘Job Placeholders’ in the cluster state. These

placeholders reserve space for potential jobs, ensuring a fixed size for Ri(t) despite the

dynamic job activity. Each Job Placeholder is a zero vector. If a node is idle, the number

of Job Placeholders equals the maximum number of jobs that can run in the node. The

maximum number of running jobs for CPU partition nodes is the number of CPU cores

ci and the maximum number of running jobs for GPU partition nodes is the number of

GPUs gi, as the minimum occupation unit of critical resource is 1 per job. This allows

HeraSched to maintain a consistent state representation while dynamically adapting to

the fluctuating job activities within the cluster.

In HeraSched, the state input for the selector is a combination of the job queue state

and the cluster state. As depicted in Fig. 4.2, when the selector chooses a job for allocation,
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the index of that job within the window is incorporated into the allocator’s state with the

job queue state and the cluster state.

4.3.4 Action Design

The action space for the selector agent in HeraSched is determined by the Window Size,

with an additional ‘Forward’ action. This configuration means the selector has a range of

choices equal to the number of jobs it can observe based on the Window Size. With the

flexibility provided by the Window Size and Tail Size settings, the selector can choose jobs

from both the head and the tail of the job queue. This capability is crucial for optimizing

system performance. The ‘Forward’ action plays a unique role in the scheduling process.

When selected, it instructs HeraSched not to schedule any job and to allow the system

to continue running as is until the next scheduling cycle. Through the ‘Forward’ action,

the selector can bypass immediate scheduling in favor of waiting for potentially more

beneficial conditions or jobs in the near future.

The allocator’s action space in HeraSched consists of all the computing nodes in the

cluster. When allocating resources for a specific job, the allocator selects one node at a

time based on the job’s required resources and the availability of resources within each

node. If a job requires multiple nodes, the allocator will continue selecting one node

per step until the job’s requirements are fully satisfied. This step-by-step approach,

rather than outputting all allocated nodes in a single action, is designed to reduce the

dimensionality of the action space. By abstracting the allocation process to the node level,

HeraSched simplifies the decision-making process, reduces the complexity of its action

space, and remains effective in environments with various resources, all while ensuring

that the jobs’ resource requirements are accurately met.

4.3.5 Reward Mechanisms

In our design, we choose to focus on both average waiting time and maximum wait-

ing time, valuing these two objectives as equally important. While these objectives

can sometimes conflict, our aim is to reduce average waiting time while maintaining a

low maximum waiting time to prevent job starvation. To achieve this balance, we have

designed a reward function that effectively integrates both metrics. In traditional RL
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systems, rewards are typically given on a step-by-step basis. However, such an immedi-

ate reward in HPC systems might inadvertently lead to suboptimal decisions focusing on

reducing waiting times in the immediate term rather than optimizing them over a longer

period. To mitigate this, we have adopted a delayed reward for HeraSched. Under this

approach, rewards are accumulated and then distributed to the agents after a defined

period, taking into account the cumulative impact of all actions made by the agents dur-

ing that interval. This delayed reward mechanism aligns more closely with our long-term

objective. By implementing a delayed reward system, HeraSched’s agents are incentivized

to make decisions that are beneficial not just in the immediate context but also contribute

positively to the overall scheduling performance over time.

The reward for the selector is structured around the number of actions it takes, denoted

as As. The selector is assigned a reward after it has executed a set of As actions. This

reward is calculated as a negative value, reflecting the average waiting time of the jobs

scheduled during these actions, combined with the waiting times of jobs currently in the

queue. The reward function of the selector at system time t is:

Rewards =


−

∑Qs
j (dj−wj)+

∑Q(t)
j (t−wj)∑Qs

j 1+L(t)
After every As selector’s actions

0 Otherwise

(4.1)

Qs represents the collection of jobs that have been scheduled as a result of the selector’s

actions. When As actions have been made, the selector receives a negative reward, and

Qs is reset.

Unlike the selector, the allocator receives a negative reward after allocating Aa jobs

rather than based on a fixed number of actions. The allocation process for a job in an

HPC system can vary significantly, depending on the job’s specific requirements. Some

jobs may require multiple nodes, while others might need only one, leading to a variation

in the number of steps required to allocate each job. As a result, a reward system based

on the number of steps taken would not accurately reflect the efficiency or effectiveness

of its decisions. Utilizing Qa as the collection of jobs allocated by the allocator, the size

of this collection is set to Aa jobs. After the allocator receives a negative reward, Qa is
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reset.

Rewarda =


−

∑Qa
j (dj−wj)+

∑Q(t)
j (t−wj)

Aa+L(t) After every Aa jobs allocated

0 Otherwise

(4.2)

The selector’s rewards are based on the number of steps taken because the selector

has a ‘Forward’ action. If the rewards only count the number of jobs selected, the impact

of choosing ‘Forward’ would be neglected. The overarching aim of both the selector’s

and allocator’s reward systems is to reduce the average waiting time. This common goal

ensures that both components contribute to the overall scheduling efficiency, each from

its unique operational perspective.

4.3.6 Algorithms

A common challenge in RL-based systems is the possibility of agents selecting invalid

actions. In the specific context of HeraSched, these invalid actions might involve choosing

a non-existent job or a job that cannot run due to insufficient resources for the selector.

Similarly, for the allocator, an invalid action might be selecting a node that lacks the

necessary resources for the chosen job. To eliminate the invalid actions, we implement

a technique known as Invalid Action Masking [130]. This approach effectively filters out

these invalid choices, preventing the agents from selecting them. This method enhances

the efficiency of the learning process, as it guides the agents towards valid actions while

reducing the time and computational resources spent on exploring unfeasible options.

HeraSched employs PPO [40] as its underlying Reinforcement Learning algorithm. Al-

gorithm 2 presents the pseudocode of HeraSched. The update mechanism for the selector

and allocator networks in HeraSched is structured around the selector action step count

reaching a predetermined update threshold, denoted as x, rather than waiting for the end

of a trajectory collection. This method allows HeraSched’s agents to update their net-

works continuously as the system operates. This update mechanism is a significant step

towards future implementations of HeraSched in real online scheduling environments.
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Algorithm 2 HeraSched Scheduling Algorithm

Input: HPC job scheduling environment, policy networks for Selector and Allocator

Output: Scheduled jobs and resource allocations

Initialize policy and value networks for Selector and Allocator Set update threshold x

while training not complete do

Reset buffers and selector step count

foreach Scheduling process do

Observe system state

Apply action mask to Selector

Selector chooses an action: select job or Forward

if a job is selected then

while allocation requirements are not met do

Apply action mask to Allocator

Allocator selects a node

end

Allocate job to selected node(s)

end

else

Continue to the next scheduling process

end

Store states, actions, and rewards for Selector and Allocator

Increment selector step count

if selector step count ≥ x then

Update Selector and Allocator networks

Reset selector step count

end

end

Reset environment if necessary

end
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4.4 Evaluation and Results

4.4.1 Evaluation Workloads

We collected data from two partitions of Spartan1. These partitions, referred to as

‘Physical’ and ‘Deeplearn’, represent different computational environments within the

Spartan HPC system. Table 4.1 presents the key characteristics of the Physical and

Deeplearn partitions, highlighting their heterogeneity. The Physical partition comprises

two types of nodes, each equipped with 72 cores but differing in memory capacity: one with

710 GB and the other with 1519 GB, the latter nodes being more suitable for memory-

intensive jobs. The Deeplearn partition features five distinct node types, varying in both

core count and memory capacity. A notable configuration within this partition is the

32-core node with 1000 GB of memory, specifically optimized for memory-intensive tasks.

Additionally, each node in the Deeplearn partition is uniformly equipped with 4 GPUs.

Users have the flexibility to submit jobs to the partitions, depending on their specific

computational requirements. The maximum allowable running time for any submitted

job is capped at 30 days. The full trace dataset used in this study can be found in the

GitLab repository2.

Table 4.1: Workloads: Physical and Deeplearn Characteristics

Name Physical Deeplearn
Partition CPU GPU

Cores/node 72 72 28 24 32
Mem(GB)/node 710 1519 234 174 175 234 1000

Nodes 72 14 4 5 3 6 12
GPUs/node 0 4

Period 2022-9-23 to 2022-9-30 2021-9-20 to 2022-9-30
Max Runtime 30 days

Jobs 84135 68720
Low level Switch 4 4

Total Cores 6192 900
Total GPUs 0 120

Fig. 4.3 offers insightful observations into the job arrival patterns and resource request

characteristics. Subplots 4.3-(A) and 4.3-(B) show the distribution of job arrivals in the

Physical and Deeplearn partitions. The job arrivals are subject to fluctuating peaks, with

periods of high and low job submissions. Notably, the Physical partition consistently

1https://dashboard.hpc.unimelb.edu.au/.
2https://gitlab.unimelb.edu.au/lingfeiw/herasched.git.

https://dashboard.hpc.unimelb.edu.au/
https://gitlab.unimelb.edu.au/lingfeiw/herasched.git
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experiences a higher volume of job submissions compared to the Deeplearn partition.

Subplots 4.3-(C) and 4.3-(D) further demonstrate the resource requests in terms of

nodes, CPUs, and GPUs for jobs in these partitions. It is observed that jobs in the Physical

partition tend to request a greater number of nodes and cores than jobs in the Deeplearn

partition. Some of these jobs even demand more than 15 nodes and hundreds of cores,

indicative of their extensive computational requirements. Additionally, the accompanying

CDF in subplot 4.3-(C) reveals a significant trend: 71.5% of jobs in the Physical partition

request only 1 core. Tirmazi et al. [31] describe this phenomenon in CPU clusters as ‘a

very heavy-tailed distribution of job sizes’ where a small portion of jobs consume most

resources and a big portion of jobs request fewer resources. Conversely, GPU-oriented

jobs in the Deeplearn partition, largely driven by machine learning applications, exhibit a

different pattern. These jobs generally require substantial resources within a single node,

often demanding multiple cores and GPUs. While they are less distributed across nodes,

indicating a tendency to concentrate resources within fewer nodes, they exhibit a broader

distribution across GPUs. This distinct resource allocation trend between CPU and GPU

jobs in the Spartan HPC system presents unique challenges to HeraSched in effectively

scheduling jobs across both CPU and GPU partitions.

The interconnect model used in our experiments. We use the real configuration of

Spartan and emulate its two-tier (leaf–spine / fat-tree-style) switch hierarchy at the rack

level. Nodes are grouped under top-of-rack (leaf) switches, and a topology file specifies

the node–leaf mapping used by topology-aware placement. Spartan operates an Ethernet

fabric with RoCE, with recent upgrades toward 400 Gb/s switching; our evaluation keeps

runtimes fixed from the traces, so the interconnect influences only placement heuristics

rather than per-job runtime.

4.4.2 HPC Simulation

To accurately replicate the dynamics of a real-world HPC system, we have developed

a simulation framework named HPCsim. This simulation emulates the functionalities

of modern workload managers, such as Slurm, by processing real trace and accounting

data. HPCsim includes a Gymnasium [131] interface used in RL training and allows us to

assess the performance of HeraSched under varied conditions and resource requirements.

The simulation comprises six key components: Main Event-based Environment, Cluster
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Figure 4.3: (A) Number of Jobs Received Over Time in the Physical Partition. (B)
Number of Jobs Received Over Time in the Deeplearn Partition. (C) and (D) are Re-
source Request Patterns for jobs in the Physical and Deeplearn Partition respectively.
The CDF line (right y-axis) indicates the cumulative distribution of CPU requests. The
color reflects the number of jobs. The darker the color, the more the jobs. The sizes in

(D) indicate the number of requested GPUs.

Simulator, Queue Simulator, Scheduler, Trace Reader, and Evaluator. The source code

of HPCsim can be found in the GitLab repository2.

The Cluster Simulator utilizes two primary sets of information: network topology,

which defines the interconnects of nodes and switches, and node configuration, which de-

tails all resources such as cores, GPUs, and memory for each node. With this information,

the Cluster Simulator can accurately structure a cluster mirroring a real-world cluster. It

is responsible for allocating jobs to specific nodes and simulating the execution of these

jobs. The Queue Simulator functions as the job queue in the system, where jobs are

submitted and wait until they are scheduled. The Scheduler is divided into two parts:

the selector and the allocator. The selector selects the most suitable jobs based on its

rules, considering the current job queue and cluster state. The allocator, on the other

hand, finds the appropriate nodes for the selected job, ensuring successful job execution.

2https://gitlab.unimelb.edu.au/lingfeiw/herasched.git.

https://gitlab.unimelb.edu.au/lingfeiw/herasched.git
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The Trace Reader serves as the job pool, capable of reading jobs from real trace data

or generating random jobs when random job generation is enabled. It simulates the job

submission process to the job queue. The Evaluator collects system information, such as

job waiting times and completion times, to compute system metrics.

The Main Event-based Environment, integrated with the Gymnasium interface, acts

as the central controller of the entire simulation. It manages every process and interacts

with all the aforementioned components to simulate real HPC operations. As an event-

based environment, it recognizes two types of events that trigger processes: job arrivals

and job completions. Both events signal the start of scheduling processes. Additionally,

this environment supports HRL agents, including HeraSched’s selector and allocator, by

providing necessary observations for each and processing their actions accordingly.

4.4.3 Baseline Methods

In the HeraSched evaluation, we employ a set of established HPC job scheduling and

allocation policies as baselines for benchmarking its performance. The compared job se-

lectors include traditional algorithms, which are FCFS (First-Come First-Served), LCFS

(Last-Come First-Served), SJF (Shortest Job First), WFP3 [5], and UNICEP [5]. We

incorporate two machine learning-based selectors, F1 [16] and F2 [16], to assess the im-

pact of advanced, data-driven scheduling strategies. We include two RL schedulers as

state-of-the-art, reproducible anchors: RLScheduler and DRAS. Both can be inte-

grated into our simulator without changing their fundamental design. This makes them

suitable RL-to-RL comparators alongside heuristic and ML baselines. RLScheduler [24]

and DRAS [26]. However, as RLScheduler and DRAS are not GPU-aware scheduling, the

two RL-based selectors are only trained and compared in CPU partition jobs. Specifically,

RLScheduler was trained with our CPU jobs for ten million timesteps (stable-baselines3

version), and DRAS was trained for 100 episodes. Both of them were trained using their

best-performing parameter values as presented by the authors in their corresponding pa-

pers. Furthermore, all selection methods are supplemented with a ‘Backfilling’ [96]

strategy, except DRAS which has its own backfiller.

We incorporate three distinct allocation methods with the above job selection strate-

gies to assess the comprehensive performance of HeraSched. First-Available allocates

jobs to the available nodes in the cluster. It is a straightforward strategy that prioritizes
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immediate resource availability. Best-Fit focuses on allocating jobs to nodes that best

meet their specific resource requirements. This method aims to find the nodes with the

smallest available resources that can satisfactorily meet the job requirements to minimize

the amount of unused resources. Topology-Aware [110] is designed to consider the

physical and network layout of the system, focusing on optimizing job placement based

on the connectivity and proximity of nodes. The method identifies the lowest-level net-

work switch capable of handling the job’s node requirements. Then, it applies a best-fit

approach to allocate the available nodes under this switch, optimizing resource use.

4.4.4 HRL Scheduler Training

We developed two implementations of HeraSched for the Physical and Deeplearn parti-

tions, taking into account the fundamental differences in their characteristics. To achieve

HRL training, we designed an HRL-compatible PPO structure based on the stable-

baselines3’s PPO implementation [132]. This approach retains the core learning process

of PPO from stable-baselines3, ensuring that our implementation is both comparable and

reliable. The implementations are trained by the workloads described in 4.4.1 respectively.

Given compute constraints, we adopted a targeted manual tuning protocol. We started

from stable PPO defaults, ran brief pilot runs on a held-out validation slice to screen con-

figurations, and then performed a small hand grid over the most sensitive knobs—learning

rate, rollout length, batch size, policy clipping and entropy regularization, and network

width and depth—while keeping other settings at conservative defaults. The selection

criterion was the primary objective defined in this chapter. Promising settings were con-

firmed with longer runs; where feasible we verified with multiple seeds, otherwise a fixed

seed was used for reproducibility. Where applicable, we also adjusted window and seg-

ment lengths to balance feedback timeliness and variance. The final configurations used

in the evaluation are those reported in Table 4.2, with additional implementation details

provided in the appendix/code repository. HeraSched is not supervised on historical al-

locations, and we do not attempt to infer counterfactual placements from logs collected

under a single production policy. Instead, the agent learns by interacting with environ-

ment, which replays observed arrivals, resource requests, and durations while permitting

the allocator to choose any valid node set at each decision point. The simulator determin-

istically advances the queue and cluster state under these counterfactual choices, revealing

long-horizon consequences (e.g., future feasibility and backfilling opportunities) that are
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Table 4.2: HeraSched Implementation

Partition Physical Deeplearn
Window size 512 100

Tail size 64 10
As 512 512
Aa 100 100

Update per Selector Steps 2048 2048
Hidden Layers [4096, 2048, 1024] [2048, 1024]

Discount Factor 1 1
Activation Function Tanh Tanh

Batch Size 64 64
Selector Allocator Selector Allocator

State Size (Input) 35340 35341 1451 1452
Action Size 513 86 101 30

unobservable in the logs. Following standard trace-driven evaluation, job runtimes are

taken as fixed by the trace, so our objectives emphasize waiting-time metrics (average

and maximum) that remain comparable across alternative allocation policies. The full

implementation of HeraSched can be found in GitLab repository2.

Fig. 4.4 shows the patterns in training HeraSched with full workloads presented in 4.4.1

respectively. In Fig. 4.4, 4.4-(A) and 4.4-(D) are the plots for selectors training indicating

the timesteps the model trained versus the average return per episode in Physical and

Deeplearn partitions respectively; 4.4-(B) and 4.4-(E) demonstrate the average episode

length for selectors in the training. Since the selector has a ‘Forward’ action, the episode

length changes with the agent’s exploration when jobs per episode are fixed; 4.4-(C) and

4.4-(F) are training patterns for allocators with different workloads.

In the selector training for Physical partition jobs, the return experienced fluctuations

in the early stage. The episode length can explain the fluctuations. Higher episode length

means the selector chose more ‘Forward’ actions which can cause resource waste leading

to a performance drop. After 10 million timesteps of training, the episode length became

stable and the best performance of the selector was reached. The patterns for allocator

training in 4.4-(C) shared a similar shape with 4.4-(A) as the rewards for the selector and

allocator are the same system performance. Notably, the timesteps taken by the selector

and allocator are different. Sometimes, the selector takes more steps to finish an episode

when it chooses too many ‘Forward’ actions. Also, the allocator can take more actions

when jobs request more nodes.

2https://gitlab.unimelb.edu.au/lingfeiw/herasched.git.

https://gitlab.unimelb.edu.au/lingfeiw/herasched.git
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Figure 4.4: The training plots of HeraSched in Physical and Deeplearn partitions

For training in Deeplearn partition jobs, the system performance increased quickly in

early training. Then, the performance gradually increased with the agents’ exploration.

The Physical partition job training for HeraSched took more timesteps since the Physical

partition contains more nodes and is busier than the Deeplearn partition.

4.4.5 Performance Comparison

We thoroughly evaluated HeraSched’s performance by comparing it with 9 different se-

lectors, each coupled with a separate Backfilling, and combined with 3 allocators as out-

lined in 4.4.3. This resulted in a total of 27 unique scheduling methods for comparison

(RLScheduler and DRAS only support CPU partition job scheduling). The objective of

these comparisons is to assess the effectiveness of HeraSched in minimizing the average

waiting time for jobs and maintaining a low maximum waiting time to prevent longer,

resource-intensive jobs from experiencing undue delays or starvation.

Fig. 4.5 shows the comparative analysis of HeraSched against 27 other scheduling

methods across two key metrics: average waiting time and maximum waiting time for

jobs. The results are generated by using the corresponding scheduler to schedule entire

workloads described in 4.4.1. The values are expressed as ratios compared to HeraSched.

Specifically, for each selector, the average and maximum waiting times under three allo-

cation methods are divided by the corresponding values for HeraSched. The ratios are
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then adjusted by subtracting 1, so that a value of 0 indicates performance equivalent

to HeraSched. Positive values represent worse performance (i.e., longer waiting times)

relative to HeraSched, while negative values indicate better performance (i.e., shorter

waiting times). The raw values can be found in Appendix B. The results indicate that

HeraSched consistently outperforms all other methods in both metrics across the Physical

and Deeplearn partitions, affirming its efficiency in job scheduling. The results also reveal

variations in performance among the same scheduling methods when paired with different

allocation policies. This variation underscores the significant impact allocation policies

have on scheduling performance.

Figure 4.5: The heatmaps display the performance comparison of combinations of se-
lectors and allocators relative to HeraSched in the Physical and Deeplearn Partitions.
The values are ratios compared to HeraSched, with positive values indicating worse per-
formance and negative values indicating better performance. ((value - HeraSched’s value)

/ HeraSched’s value)

In both the Physical and Deeplearn Partitions, the First-Available method consistently

underperforms, showing higher average and maximum waiting times due to its simplistic,

non-adaptive resource allocation. While Topology-Aware and Best-Fit methods offer some

improvements by considering system layout and optimizing resource allocation, they still

struggle with selectors like FCFS and WFP3. Best-Fit, in particular, improves resource

distribution slightly but falls short in handling the complexity of Deeplearn workloads.

HeraSched outperforms these methods by dynamically adjusting to job demands and

system conditions in real-time. This adaptability allows HeraSched to efficiently handle

diverse requirements, leading to significantly reduced waiting times.

The improvements observed in the Deeplearn partition are less pronounced compared

to those in the Physical partition. This disparity can be attributed to the lighter workload
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in the Deeplearn partition; the volume of jobs it handles in a year is less than what the

Physical partition processes in a week. Most methods can maintain a minimal waiting

time in low job submission periods (the flat area in Fig. 4.3-(B)) in the Deeplearn partition.

The distinctions between these methods become more apparent during peak times. This

indicates that while the performance differences are minimal during less busy periods,

they are more significant in high job submission periods. Consequently, in less busy

environments like the Deeplearn partition, the scope for selectors and allocators to enhance

performance is relatively limited. Following this, we conduct a validation under a high

load in 4.4.7.

4.4.6 HeraSched Feature Analysis

4.4.6.1 Integrated Backfilling Actions

Fig. 4.6 displays histograms detailing the selectors’ actions in the Physical and Deeplearn

partitions. The x-axis shows the actual actions taken by selectors according to their

action spaces. For example, in Fig. 4.6-(A), the first bin indicating ‘0’ demonstrates how

often the selector chooses the first job in the queue for scheduling. The bin indicating

‘447 - 511’ shows the frequency of selecting jobs from the tail of the queue (choosing

newly arrived jobs). A notable observation is the selector’s preference for scheduling

jobs from the front of the queue, a strategy aimed at minimizing job waiting times. The

histograms also reveal instances where the selector opts for jobs from the tail of the queue.

This pattern of job selection is indicative of the concept of Integrated Backfilling, where

HeraSched is capable of autonomously identifying and scheduling the most appropriate

jobs, incorporating actions that are characteristic of traditional backfilling. The situations

when the selector chooses jobs from the middle of the queue are more complex. The

queue is dynamic, meaning its length may change dramatically over time. As a result,

the concept of the ‘middle’ is fluid; what appears to be the middle at one point could

shift to the tail or even the head of the queue as jobs enter and leave. The selector can

adaptively choose jobs from this shifting ‘middle’ based on current queue conditions and

system goals, balancing immediate scheduling efficiency with the anticipation of future

resource availability.
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Figure 4.6: Histogram of Selector Actions

Table 4.3: Summary of Job Allocation in Different Nodes

Physical Deeplearn
Cores/Node 72 28 24 32

Mem/Node (GB) 710 1519 234 174 175 234 1000
Ave. Job Cores 2.6 2.8 4.4 3.9 3.6 3.9 4
Ave. Job Mem 25.8 35.1 44.2 35.4 37.6 36.8 42

4.4.6.2 Heterogeneity-Aware Allocation

There are two types of nodes in the Physical partition and five in the Deeplearn parti-

tion, which presents a complex landscape for job scheduling. Recognizing and leveraging

this heterogeneity is critical to intelligent job allocation. Table 4.3 presents the average

requested cores and memory for jobs allocated to different types of nodes. In the Physical

partition, HeraSched successfully identifies and allocates jobs with higher memory de-

mands to the nodes with larger memory capacities. Similarly, in the Deeplearn partition,

HeraSched allocates jobs with lower core demands to nodes with fewer cores and directs

more memory-intensive jobs to nodes with greater memory capacities. However, due to

the constraint of running a maximum of four jobs per node in the Deeplearn partition, re-

source bottlenecks are more likely to occur with GPUs rather than with core and memory

resources. These results underscore HeraSched’s capability to understand and navigate

the heterogeneity of the cluster environment, efficiently planning and directing jobs to the

most suitable nodes.

4.4.7 Evaluation under High Load Situation

To test HeraSched under high-load conditions, we conducted a stress validation using

two particularly busy workloads from the Physical and Deeplearn partitions which are
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not included in 4.4.1. These validation sets represent a challenging environment for the

scheduler. Specifically, the validation set for the Physical partition comprised an intense

load of 52,985 jobs received in a single day, while the Deeplearn partition’s validation set

contained 1,137 jobs received in a single day. Such volumes provide a robust stress test

for HeraSched.

Figure 4.7: The heatmaps display the performance comparison of combinations of
selectors and allocators relative to HeraSched in high load Validation. The values are
ratios compared to HeraSched, with positive values indicating worse performance and
negative values indicating better performance. ((value - HeraSched’s value) / HeraSched’s

value)

Fig. 4.7 provides a detailed performance comparison of selectors and allocators rel-

ative to HeraSched in Physical Partition and Deeplearn high-load validation sets. In

the Physical Partition validation set, the performance of various selectors and allocation

methods shows distinct patterns. HeraSched consistently performs better in minimizing

maximum waiting times across all allocation methods. FCFS and LCFS perform poorly,

particularly under the First-Available method. SJF, WFP3, and UNICEP perform well

in average waiting times, with SJF achieving an average waiting time 12% lower than

HeraSched. However, they struggle with high maximum waiting times, with the best

among them still showing a 114% higher maximum waiting time than HeraSched. F1 and

F2 show moderate performance across all methods, with higher waiting times compared

to HeraSched, particularly under the First-Available method. Notably, F1 with Best-fit

achieves the best maximum waiting time in compared methods but it is still 78% higher

than HeraSched. In the Deeplearn Partition validation set, HeraSched consistently out-

performs all other methods. LCFS, SJF, and WFP3 show high maximum waiting times

under all methods, highlighting their inefficiency in managing deep learning workloads.
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FCFS, UNICEP, F1, and F2 exhibit slightly worse performance compared to HeraSched

but remain relatively consistent across different allocation methods. The actual waiting

time for schedulers can be found in Appendix B.

Figure 4.8: High Load Test Performance Comparison. Each bar represents the com-
bined effect of both average and maximum waiting times, normalized against HeraSched’s
performance. The horizontal dashed line at 2 marks HeraSched’s baseline performance.
Bars below this line indicate worse performance, while bars at or above this line indicate
equal or better performance. (HeraSched Ave. / Method Ave.) + (HeraSched Max /

Method Max)

To further analyze the performance of HeraSched, we introduce a single metric that

aggregates the key performance objectives: average and maximum waiting times. This

metric treats both objectives as equally important and is calculated using an inverse nor-

malization approach. Specifically, each scheduling algorithm’s performance is normalized

against HeraSched’s performance for both average and maximum waiting times, and the

results are then combined. A value of 2 represents the baseline performance of HeraSched.

Values higher than 2 indicate that the compared method performs better than HeraSched,

while values lower than 2 indicate worse performance. This method allows us to aggregate

and compare the two metrics on a common scale, facilitating a fair and comprehensive

evaluation of each scheduling algorithm. Fig. 4.8 shows the results. The results indi-

cate that HeraSched consistently outperforms other algorithms. Other algorithms, such

as SJF, Topology-Aware, and Best-Fit, show varied performance, but none match the
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efficiency of HeraSched, highlighting its effectiveness in managing waiting times. These

results also demonstrate HeraSched’s advanced capabilities in dealing with high-stress sit-

uations, effectively optimizing scheduling jobs that were not part of its training set. Such

resilience and efficiency in unanticipated, high-demand conditions highlight HeraSched’s

superiority in dynamic HPC environments.

4.4.8 HeraSched Computational Cost

HeraSched uses an HRL architecture consisting of two PPO agents: a job selector and a

resource allocator. Each agent includes an actor and a critic network, totaling four neural

networks in the system. The two-level structure increases model complexity compared

to flat RL schedulers. The computational cost of using HeraSched can be divided into

two parts: the training time involving updating 4 neural networks, and the inference

time, which is the time to make a scheduling decision.

HeraSched’s computational cost in two partitions: Physical and Deeplearn. Table 4.4

summarizes the wall-clock training and inference times, measured on a PC with a Ryzen

7700 CPU, Nvidia 3090 GPU, and 32 GB of memory. The detailed settings for each model

are discussed in Table 4.2.

Table 4.4: HeraSched Complexity and Runtime

Metric Physical Deeplearn

Training Time (1 update) 23.225 s 1.288 s

Decision Time (1 decision) 6 ms 0.67 ms

Training Time (1 update) refers to the time required to complete a single training

update in Algorithm 2, where the selector performs x = 2048 decision steps before trig-

gering an update for both the selector and allocator networks. During this interval, the

allocator may be called multiple times per job, depending on job requirements and node

availability, resulting in a variable number of total environment interactions. The mea-

sured training time is the average wall-clock duration for one update under this setting,

which includes all forward and backward passes required to train the four PPO networks

(actor and critic for both selector and allocator). The total training time for HeraSched

was approximately 37.78 hours for the Physical partition over 12 million selector steps,

and 1.398 hours for the Deeplearn partition over 8 million steps, as shown in Fig. 4.4.
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Decision Time (1 decision) refers to the average time it takes for either the selector

or the allocator to make a single scheduling decision. In HeraSched, scheduling one job

involves one decision by the selector and one or more decisions by the Allocator, depending

on the job’s required number of nodes. As shown in Table 4.4, the average decision time

is 6 ms for the Physical partition and 0.67 ms for Deeplearn, primarily reflecting the

difference in neural network size.

These computational costs are considered acceptable given the scale and complexity

of HPC scheduling. In the Physical partition, HeraSched maintains a fast inference time

of just 6 ms per decision for selection or allocation, enabling responsive scheduling. The

training time per update is also reasonable, making HeraSched practical for both training

and deployment in HPC scenarios.

These times are primarily influenced by a few key factors. Training time per update

depends on the architecture of the neural networks and the number of optimizer steps. The

total training duration is affected by the dimensionality of the state and action spaces,

which grow with HPC system size, workload diversity, and frequency of job arrivals.

Inference time is mainly determined by the size of the job selection choices, the number

of available nodes for allocation, and the forward-pass cost of PPO networks. Notably,

the Physical partition features significantly more nodes and frequent job submissions than

Deeplearn, resulting in a larger observation space and deeper neural networks. Despite

these increases, the additional computational cost remains well within practical bounds.

These results suggest that HeraSched can potentially remain computationally feasible

even as HPC systems grow in scale and architectural complexity.

4.5 Summary

This chapter introduced HeraSched, a hierarchical reinforcement learning scheduler that

integrates job selection and resource allocation. HeraSched applies a two-level HRL frame-

work where a high-level selector chooses jobs based on the status of the job queue and

cluster, and a low-level allocator assigns those jobs to nodes while considering resource

constraints and cluster heterogeneity. The scheduler is guided by a reward mechanism

that promotes long-term performance, with specific emphasis on minimizing both average

and maximum job waiting times. Through experiments in both CPU and GPU partitions
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from real HPC traces, we demonstrated that HeraSched consistently outperforms a broad

set of scheduling baselines across multiple workloads.

Building on HeraSched’s integration of job selection and allocation, the next chapter

addresses another critical challenge in HPC scheduling: managing conflicting schedul-

ing goals and adapting to shifting objectives based on system conditions. It introduces

MetaPilot, a deep reinforcement learning-based controller that enables dynamic priori-

tization between user-centric objectives — such as minimizing job waiting time — and

system-centric goals like maximizing resource utilization.



Chapter 5

MetaPilot: A DRL-Based

Controller for Balancing

User-Centric and System-Centric

Objectives in HPC Scheduling

HPC scheduling faces the challenge of balancing system-centric and user-centric objec-

tives, as optimizing resource utilization often comes at the expense of job responsiveness

and fairness. Traditional schedulers address this trade-off using fixed-weight heuristics or

predefined scoring functions, which assign static importance to different objectives. Simi-

larly, recent reinforcement learning-based schedulers use fixed reward functions that often

combine multiple objectives into a predefined weighted sum. However, both fixed scor-

ing functions and reward formulations lack adaptability, as they apply the same trade-off

across all system states, failing to adjust dynamically to workload fluctuations and sys-

tem demands. In this work, we propose MetaPilot, a deep reinforcement learning-based

scheduling pilot that dynamically selects scheduling objectives in response to system states.

Unlike conventional schedulers, MetaPilot does not directly schedule jobs but instead acts

as an adaptive decision layer, guiding existing schedulers by determining whether to pri-

oritize utilization-based or waiting-time-based objectives based on workload characteristics

and resource availability. This separation of objective selection from scheduling execution

allows MetaPilot to be easily integrated with well-established scheduling systems without

117
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requiring modifications to their core algorithms. We evaluate MetaPilot using real-world

HPC workload traces and demonstrate that it reduces maximum waiting time by 19% while

maintaining competitive average waiting times and achieving higher resource utilization,

particularly under high-load conditions. By enabling schedulers to dynamically adjust to

workload changes, MetaPilot improves both system efficiency and user responsiveness,

ensuring a more flexible and adaptive scheduling process.

5.1 Introduction

The choice of scheduling objectives directly impacts both system performance and user

experience. Existing research has proposed various metrics to guide scheduling poli-

cies [33, 133–138]. However, there is no universally accepted metric that fully captures all

aspects of HPC scheduling. Scheduling objectives in HPC can generally be categorized

into system-centric and user-centric objectives. Some approaches prioritize system-

centric objectives, such as maximizing resource utilization and minimizing job fragmen-

tation, which improves overall computational throughput but focusing on overall metrics

may lead to individual job starvation. Others emphasize user-centric objectives, such as

reducing queueing delays and ensuring fairness, which enhances user experience but may

result in suboptimal system efficiency.

These two sets of objectives are inherently conflicting, making it difficult to achieve

an optimal balance. Traditional approaches tend to favor one-sided objectives — either

maximizing system efficiency by prioritizing large, high-efficiency jobs or improving re-

sponsiveness by giving preference to short jobs. Attempts to balance these trade-offs often

lead to multi-objective scheduling, where different metrics are combined through weighted

scoring functions. Widely-used workload managers such as Slurm [35], PBS [101], and

Borg [31, 32] rely on predefined scoring functions that assign different weights to system

and user-centric objectives, such as different resource requirements of jobs and waiting

time. Recent research has explored RL-based scheduling, where the scheduler learns a pol-

icy through mixed reward functions with different objectives, such as DRAS [26]. However,

This chapter is derived from a paper that is currently under review:

• Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. MetaPilot: A DRL-Based Controller for
Balancing User-Centric and System-Centric Objectives in HPC Scheduling. Submitted to Future
Generation Computer Systems.



MetaPilot: Scheduling Controller for Balancing Objectives 119

the reward functions in RL-based scheduling also typically rely on fixed combinations of

objectives, making them less adaptable to dynamic workload patterns where the impor-

tance of each objective may shift. Moreover, a fixed combination of utilization-based

and waiting-time-based rewards leads to compromised scheduling rather than optimal

decisions. As a result, these fixed-weight approaches inherently fail to achieve optimal

performance in either system-centric or user-centric objectives.

In reality, workload characteristics and system conditions fluctuate over time, requiring

dynamic prioritization mechanisms rather than a fixed combination of objectives. The

optimal scheduling strategy depends on job arrival rates, resource contention, and cluster

utilization. During periods of high system load, prioritizing resource utilization is essential

to prevent underutilization as the resource becomes the system bottleneck. Conversely,

under moderate or low load, prioritizing job waiting time enhances user satisfaction.

The fixed-objective schedulers, whether rule-based or RL-based, fail to dynamically shift

priorities based on these changing conditions.

In this chapter, we propose MetaPilot, an RL-based scheduling pilot that dynamically

selects the most suitable scheduling objective based on real-time system states. At the

core of MetaPilot is a DRL agent that learns a policy to adjust scheduling priorities dy-

namically based on system conditions. The agent continuously monitors system load, job

queue characteristics, resource availability, and historical scheduling outcomes, selecting

an objective function that aligns with current system needs. Unlike traditional schedulers,

which rely on predefined trade-offs, MetaPilot serves as an adaptive decision layer, deter-

mining the optimal scheduling objective at any given moment. In this chapter, ‘optimal’

is defined with respect to an explicit preference between two system-level anchors—user-

centric waiting time and system-centric utilization—selected based on system conditions.

Additionally, MetaPilot does not replace existing schedulers; instead, it guides them by

specifying the most appropriate objective. Once the objective is selected, job scheduling

and resource allocation are handled by well-established schedulers, which then optimize

the selected objective. This separation of objective selection from scheduling execution

allows MetaPilot to be integrated with any existing scheduling system without requiring

modifications to its core algorithms. The primary contributions of this chapter are:

• Develops MetaPilot, a DRL-based controller that dynamically balances user-centric

and system-centric scheduling objectives in HPC environments. The proposed
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framework adapts scheduling priorities between utilization-based and waiting-time-

based objectives in response to real-time system conditions, offering greater flexibil-

ity compared to fixed-objective scheduling.

• Designs an efficient state representation and reward function that captures workload

characteristics, system status, and resource availability to enhance decision-making.

The reward function dynamically adjusts based on real-time workload fluctuations,

enabling MetaPilot to align scheduling objectives with system demands and user

expectations.

• Evaluates MetaPilot on real-world HPC workload traces, demonstrating its ability

to intelligently switch scheduling strategies. Experimental results show that MetaPi-

lot reduces maximum waiting time by 19% while maintaining competitive average

waiting times and achieving higher resource utilization, particularly in high-load

scenarios testing.

5.2 Related Work

The evaluation of HPC scheduling performance has been a long-standing research fo-

cus, with studies exploring different metrics and scheduling approaches. Frachtenberg

and Feitelson [134] analyze utilization as a scheduling metric, noting that high utilization

does not always translate to efficient job placement. Their study discusses how resource

fragmentation can reduce overall system performance despite high utilization rates. Le-

ung, Sabin, and Sadayappan [135] investigate fairness in parallel job scheduling, evaluat-

ing different job prioritization and resource-sharing strategies to prevent job starvation

and improve equitable resource allocation. Verma, Korupolu, and Wilkes [136] exam-

ine job placement techniques in warehouse-scale computing environments, focusing on

job-packing efficiency and its impact on system throughput and resource allocation. Go-

ponenko et al. [138] propose alternative job-packing efficiency metrics to address resource

fragmentation, suggesting that traditional utilization-based metrics may not fully reflect

how effectively resources are allocated. Boëzennec et al. [33, 137] explore alternative opti-

mization metrics in HPC batch scheduling, proposing utilization standard deviation as a

measure of scheduling stability. Their findings indicate that standard deviation can help

differentiate scheduling strategies, particularly in systems where average utilization fails to
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capture workload variations. While some research emphasizes utilization and throughput

as key performance indicators, others prioritize fairness and job waiting times to improve

workload distribution. However, no single metric fully captures all aspects of scheduling

quality, leading to a diverse range of evaluation methods in the literature.

Several studies have explored RL-based HPC scheduling with different optimization

strategies. CuSH [22] introduced a dual-agent DRL approach, where one agent selects jobs

and another chooses an allocation policy (depth-first or breadth-first) to optimize waiting

and turnaround times. Decima [23] schedules interdependent jobs modeled as Directed

Acyclic Graphs, selecting job stages and allocating executors to minimize completion time.

RLScheduler [24] applies PPO for batch job scheduling, outperforming heuristics but lack-

ing built-in back-filling and only optimizing a single objective. RLSchert [25] enhances

PPO-based scheduling with an RNN-based runtime prediction model, improving schedul-

ing efficiency but risking resource wastage due to inaccurate predictions. DRAS [26]

employs two DRL agents for job selection and back-filling, achieving strong performance

but facing overfitting risks due to training on fixed workloads. SchedInspector [27] builds

an inspector based on reinforcement learning. The inspector takes into consideration the

cluster’s and queue’s state to determine whether to execute or ignore the scheduling de-

cision made by a heuristic algorithm. However, the performance of this method largely

depends on the base heuristic. Further, it relies on a separate heuristic-based back-filling

algorithm. Existing RL-based schedulers optimize fixed scheduling objectives but lack the

ability to dynamically adjust priorities based on real-time system conditions.

5.3 Background and Discussion

5.3.1 HPC Scheduling Objectives

HPC job scheduling serves multiple stakeholders, from system administrators aiming to

maximize resource utilization to end-users seeking reduced job waiting times. These com-

peting priorities lead to two primary categories of scheduling objectives: system-centric

and user-centric objectives. System-centric objectives focus on optimizing overall clus-

ter performance, ensuring high throughput, efficient resource utilization, and long-term

scheduling stability. These objectives are crucial for system administrators, as they di-

rectly impact the efficiency of an HPC system. User-centric objectives prioritize the



MetaPilot: Scheduling Controller for Balancing Objectives 122

quality of service from the perspective of individual job owners. These objectives prevent

starvation, reduce waiting times, and provide predictable scheduling behavior. One of the

fundamental system-centric objectives is maximizing resource utilization, ensuring that

CPU cores and memory are used effectively. CPU and memory utilization measures the

fraction of CPU and memory resources actively used over a given time period.

User-centric objectives primarily focus on reducing job delays to improve user experi-

ence. Two widely used metrics are average waiting time and maximum waiting time. The

average waiting time (AWT), Equation 2.5, measures the mean duration that jobs spend

in the queue before execution, and the maximum waiting time (MWT), Equation 2.6,

identifies the longest delay experienced by any job. A lower AWT indicates that jobs

are scheduled promptly, reducing user frustration. MWT ensures that no job experiences

excessive starvation, making it essential in scheduling.

We restrict the objective space to these two anchors because they capture the cen-

tral trade-off in production HPC and can be measured consistently in our trace-driven

setting. Administrators manage capacity through utilization, while users experience ser-

vice quality through waiting time; these are the levers most often negotiated in practice.

Many other goals move with these anchors on fixed workloads: higher utilization typically

accompanies higher throughput and shorter makespan, and average slowdown is largely

determined by waiting time when runtimes are fixed by the trace; tail guarantees can

be expressed using maximum or high-percentile waiting time. Limiting the objective set

also stabilizes learning and avoids mode-switching pathologies, while still spanning the

practical system–user trade-off.

A scheduler that prioritizes maximizing utilization seeks to keep as many resources as

busy as possible, reducing idle periods and improving overall throughput. However, this

approach can inadvertently increase waiting times, as jobs with lower resource demands

or shorter runtimes may be deprioritized in favor of larger jobs that maximize resource

consumption. Conversely, a scheduler that minimizes average waiting time or maximum

waiting time may prioritize short jobs or backfilling strategies, allowing small jobs to

bypass larger ones to improve responsiveness. While this approach benefits users by

reducing queue delays, it can reduce utilization efficiency by introducing fragmentation,

where system resources remain idle because they cannot be perfectly packed with incoming

job requests.
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5.3.2 Insights on Scheduling Objectives

The importance of different scheduling objectives in HPC clusters is highly dynamic and

depends on workload conditions and system status. In practice, system-centric and user-

centric objectives often conflict, requiring careful trade-offs. To illustrate this, consider

a simplified example of an HPC cluster with four compute nodes, each equipped with

a single CPU core and sufficient memory. Five jobs arrive simultaneously, each with

different resource requests and execution times. Job 1, 2, and 4 request one node each

and require one unit of runtime. Job 3 requests two nodes and one unit of runtime.

Job 5, the largest, requests four nodes and two units of runtime. Fig. 5.1 illustrates two

different scheduling strategies: (A) minimizing average waiting time and (B) maximizing

core utilization. In Strategy A, jobs are scheduled to minimize average waiting time,

prioritizing smaller jobs to ensure quick turnaround. In contrast, Strategy B prioritizes

maximizing resource utilization by allocating jobs in a way that keeps the most CPU

cores occupied at all times. The average waiting time for Strategy A is 0.6 units of time,

whereas for Strategy B, it is 0.8 units. Meanwhile, Strategy A leaves one or two nodes

idle before Job 5 runs, resulting in wasted resources, whereas Strategy B achieves full

utilization before Job 4 runs by ensuring all nodes remain occupied at all times.

Figure 5.1: Example of two scheduling strategies: (A) minimizing average waiting time
and (B) maximizing core utilization in a simplified four-node HPC cluster.

Intuitively, Strategy B may be considered better as it fully utilizes the available re-

sources, ensuring that no compute node remains idle. However, this comes at the cost of

delaying small jobs, which may negatively impact user experience. Thus, we cannot simply

conclude which scheduling practice is superior without considering the broader context.

A key factor influencing scheduling decisions is the job arrival pattern. System-centric
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objectives, such as maximizing resource utilization, become more important in high-load

scenarios where job arrivals are frequent, and resource contention is high. In such cases,

prioritizing utilization prevents resource fragmentation and ensures that computational

capacity is fully leveraged, ultimately improving overall system efficiency. On the other

hand, user-centric objectives, such as minimizing average and maximum waiting times,

are more critical in low-load scenarios, where job arrivals are infrequent and users expect

quick turnaround times. In such situations, resource utilization is less of a concern because

there is sufficient available capacity to execute jobs without causing contention. If the

scheduler prioritizes utilization even when resources are abundant, it may unnecessarily

delay short jobs by waiting for larger, high-efficiency jobs to arrive, leading to artificial

queueing and degraded user experience. Under these conditions, the primary scheduling

goal should shift toward reducing waiting times to ensure that jobs are executed as soon

as resources are available, rather than deferring execution in an attempt to maximize effi-

ciency. Given the dynamic nature of HPC workloads, an adaptive scheduling approach is

necessary to balance these objectives based on real-time cluster conditions. Rather than

adhering strictly to a single optimization criterion, schedulers should dynamically adjust

their prioritization of system-centric and user-centric objectives in response to workload

patterns.

5.4 MetaPilot Design

5.4.1 MetaPilot Framework

The MetaPilot framework is designed to dynamically balance system-centric and user-

centric scheduling objectives in an HPC cluster. The workflow of the framework, as

depicted in Fig. 5.2, consists of three primary components: Cluster and Queue Moni-

toring, System Dashboard, and MetaPilot RL agent. The system continuously monitors

cluster resource availability, including CPU core utilization and memory usage. Simulta-

neously, the job queue maintains pending jobs. All monitoring information is summarized

in the System Dashboard. The System Dashboard serves as an intermediary between the

monitored HPC and the MetaPilot decision-making module. The dashboard consolidates

system statistics into a structured representation, providing a real-time snapshot of sys-

tem status, which serves as the state for the DRL-based MetaPilot agent. MetaPilot, a
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DRL-based controller, processes the real-time system status from the System Dashboard

to determine the most suitable scheduling objective at each decision point. The RL agent

takes state information as input and, through a neural network-based policy, selects either

Utilization or Waiting Times as the current scheduling objective. Once the scheduling

objective is selected, the corresponding scheduler executes job selection and resource allo-

cation decisions. This dynamic switching mechanism allows MetaPilot to adapt scheduling

strategies to changing workload patterns and cluster conditions. This provides an adap-

tive, objective-aware scheduling framework, ensuring that HPC workloads are managed

in a balanced and efficient manner.

A plausible alternative is to train a single scheduler under a continuously weighted

objective. We adopt discrete meta-selection instead (choosing between specialized policies

for waiting time or utilization) because the two anchors often induce conflicting short-

horizon gradients; in pilot runs, mixing them in one policy compromised anchor-wise

performance and complicated tuning. The modular design keeps the active preference

explicit and allows reuse and transfer of specialized policies, yet remains compatible with

a future soft-weight variant if desired.

Figure 5.2: Overview of MetaPilot.
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5.4.2 State Representation

As discussed earlier, system status and job arrival patterns are key factors influencing

the importance of different scheduling objectives. The state representation should com-

prehensively reflect the scheduling environment while ensuring that it contains only the

information necessary for MetaPilot to make high-level decisions. To maintain efficiency,

MetaPilot relies on aggregated system statistics rather than fine-grained job details, keep-

ing the framework lightweight while still capturing the key factors that influence schedul-

ing objectives.

Job Queue Features capture essential information about the current job queue state,

providing a snapshot of the pending workload. This includes the number of jobs in the

queue L(t). Additionally, the total requested CPU cores
∑

Jj∈Q(t) hj · lj , and the total

requested memory
∑

Jj∈Q(t) qj · lj are included. To give a clearer view of system load,

these values are recorded not only as raw totals but also as fractions of the total available

resources in the cluster. These features enable MetaPilot to assess how loaded the queue

is and make scheduling decisions accordingly.

Job Requirements Statistics provide an aggregated view of job resource demands,

summarizing the distribution of requested nodes, CPU cores, and memory for all jobs in

the queue. Rather than considering each job individually, statistical measures such as

maximum, minimum, quartiles, median, mode, and average values are used to describe

job characteristics efficiently. This aggregation helps MetaPilot understand workload

heterogeneity while maintaining a compact state representation.

System Time feature encodes temporal information relevant to scheduling. It in-

cludes two fields: the current hour and the day of the week. As shown in Fig. 5.3, job

submissions exhibit strong dependencies on the time of day and the day of the week,

reflecting user activity patterns and workload fluctuations. By incorporating system time

into the state representation, MetaPilot can learn to anticipate peak and low-load pe-

riods, allowing it to adjust scheduling strategies accordingly. This temporal awareness

helps the agent balance system-centric and user-centric objectives dynamically, ensuring

that scheduling decisions align with workload characteristics.

Cluster Features provides a high-level summary of the system’s resource availability.

This includes the number of free nodes, available CPU cores, and memory, capturing
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Figure 5.3: Average job arrival patterns for the Physical partition in Spartan [1] HPC
system from August 20, 2021, to September 30, 2022.

the overall resource state at any given time. Additionally, the utilization ratios for each

resource type are recorded, offering a relative measure of how much of the cluster’s capacity

is currently in use. These features help MetaPilot assess system load.

Each Node Features captures the state of individual compute nodes, detailing the

available CPU cores, and memory for each of the N nodes in the cluster. Specifically,

for each node, the number of free CPU cores, and memory is recorded along with their

respective utilization ratios. Since there are N nodes, these features contribute a total

of 2 × N fields to the state representation. This per-node granularity allows MetaPilot

to distinguish between uniformly loaded clusters and imbalanced ones, where some nodes

remain underutilized while others are fully occupied.

5.4.3 Reward Function

The reward function is designed to guide MetaPilot in selecting the most appropriate

scheduling objective based on real-time system conditions. The reward function must

incorporate both system-centric and user-centric considerations. The implemented reward

function is defined as follows:

reward =


3, if L(t) = 0

max
(

1− W̄
α , 0

)
+
(

1− Cfree
Ctotal

)
+ β

(
1− Mfree

Mtotal

)
, otherwise

(5.1)

where L(t) is the number of jobs in the pending queue. W̄ is the average waiting time

of jobs in the queue. Cfree,Mfree are the available CPU cores, and memory in the clus-

ter, respectively. Ctotal,Mtotal are the total CPU cores and memory in the cluster. α

is a scaling factor for the waiting time penalty, controlling its impact on the reward.
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β is a weighting parameter for memory utilization, allowing adjustments in its relative

importance compared to CPU and GPU utilization.

If the job queue is empty, MetaPilot receives a fixed high reward. This condition

reflects an optimal scheduling scenario where all submitted jobs have been dispatched

and are currently running. By assigning a high reward, MetaPilot is encouraged to favor

scheduling strategies that efficiently clear the queue, reducing job backlogs. When jobs are

pending, the reward is penalized based on the average waiting time. A longer waiting time

reduces the reward, prompting MetaPilot to prefer scheduling strategies that minimize job

delays. Also, higher resource utilization leads to a higher reward, encouraging MetaPilot

to select schedulers that maximize system efficiency.

MetaPilot dynamically adjusts its scheduling strategy based on real-time system condi-

tions. When the job queue length is high but resource utilization remains low, the reward

decreases due to prolonged waiting times and underutilization, prompting MetaPilot to

prioritize rapid job execution. Conversely, when utilization is high but waiting times are

growing, the system initially favors efficiency but eventually shifts toward a user-centric

approach as delays exceed a threshold. In a balanced load scenario with moderate queue

lengths, the reward remains stable, allowing MetaPilot to switch between objectives dy-

namically. In an underloaded system where resources remain idle despite pending jobs,

utilization-based rewards decrease, encouraging more aggressive job dispatching. Unlike

fixed-heuristic or mixed-reward approaches, MetaPilot continuously learns and adjusts to

workload variations, ensuring an adaptive balance between responsiveness and efficiency.

5.4.4 DRL Agent

MetaPilot employs a DRL agent to adjust scheduling objectives based on system con-

ditions dynamically. We implement PPO [40], a policy-gradient-based algorithm that

ensures stable training through policy clipping. The DRL model is structured as a multi-

layer perceptron (MLP) with three hidden layers of sizes 1024, 512, and 64 neurons,

shared between the policy network (actor) and the value network (critic). A Tanh ac-

tivation function is applied throughout the architecture to regulate activation outputs

and improve learning stability. Additionally, Training is performed with a discount fac-

tor (γ = 1), encouraging the agent to make long-term scheduling decisions rather than

focusing solely on immediate gains.
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5.5 Evaluation and Results

5.5.1 Evaluation Setup

To evaluate MetaPilot, we use real job traces and system configurations from Spartan [1],

an operating HPC system. Specifically, we used a dedicated partition named Physical in

Spartan, which consists of 86 compute nodes, each equipped with 72 CPU cores. There

are in total 6,192 CPU cores in the partition These nodes have two different memory

configurations: 72 nodes with 710 GB of memory and 14 nodes with 1510 GB of memory.

The evaluation is based on real job traces collected over a 13-month period from August

20, 2021, to September 30, 2022. The dataset includes 4,608,924 recorded job submissions,

capturing a diverse range of workloads with varying resource requests and execution times.

The maximum recorded job runtime is 30 days.

For scheduling, we use HeraSched described in Chapter 4 as the base scheduling

model. HeraSched is a hierarchical RL-based scheduler that hierarchically handles the

two key subtasks of scheduling: job selection and resource allocation. This hierarchical

structure enables the scheduler to coordinate job dispatching and resource allocation more

effectively, providing a robust foundation for evaluating MetaPilot’s ability to dynamically

adjust scheduling strategies. Since running experiments directly on Spartan is impractical

due to high resource costs and production constraints, we conduct our evaluation in

HeraSched’s simulated environment (described in 4.4.2). By leveraging real trace data

and system configurations, the simulation closely reflects the operational characteristics

of Spartan, ensuring a realistic and reliable assessment of MetaPilot’s performance.

We use HeraSched W, the original HeraSched model that prioritizes minimizing

both average and maximum waiting times, and extend it to HeraSched U, a variant

designed to maximize CPU and memory utilization. Both models are trained following

the methodology from HeraSched’s setting in Table 4.2, using trace data from September

23, 2022, to September 30, 2022, ensuring consistency with prior work. This chapter

focuses on MetaPilot’s scheduling control rather than detailed scheduler performance

comparisons.

1https://gitlab.unimelb.edu.au/lingfeiw/metapilot.git.

https://gitlab.unimelb.edu.au/lingfeiw/metapilot.git
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5.5.2 MetaPilot Implementation

MetaPilot is implemented using Stable-Baselines3 with its PPO algorithm. The key hy-

perparameters used in training include a discount factor (γ) of 1, and a learning rate of

3× 10−4. The agent is trained using mini-batches of size 64, with an update frequency of

2048 steps per optimization cycle. The training for MetaPilot is also based on Physical

partition trace data from September 23, 2022, to September 30, 2022 (a week). Figure 5.4

presents the training progression of MetaPilot over 4 million steps. The episode return

initially fluctuates as the agent explores different scheduling strategies but gradually in-

creases, indicating the learning process stabilizing. Around the later stages, the curve

plateaus, suggesting that the agent has converged.

Figure 5.4: Training progress of MetaPilot.

5.5.3 Evaluation on MetaPilot

MetaPilot’s effectiveness is evaluated by analyzing how it dynamically switches between

system-centric (HeraSched-U) and user-centric (HeraSched-W) scheduling strategies based

on real-time system conditions. MetaPilot should select the most appropriate scheduling

objective depending on resource availability and queue characteristics. A key considera-

tion in scheduling decisions is identifying when each strategy is most suitable. When the

system has many idle resources and the queue remains small, prioritizing HeraSched W

reduces unnecessary delays, improving user experience. Conversely, if the queue grows

significantly and jobs request large amounts of resources, maximizing utilization through

HeraSched U becomes essential for processing workloads efficiently.
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HPC scheduling performance is significantly influenced by factors such as job arrival

patterns, resource demands, and system load fluctuations [33]. We tested MetaPilot

using the full 13-month dataset. However, presenting all results would be redundant and

uninformative, as many periods exhibit similar scheduling behavior. Instead, we selected

a continuous testing period that captures diverse workload conditions, including varying

queue lengths, resource contention levels, and idle phases. The period from January 28,

2022, to February 25, 2022, was chosen for its representative nature, covering different

scheduling challenges. Additional results from other testing periods are available in the

source code repository1.

5.5.3.1 Evaluation on MetaPilot’s Actions.

Fig. 5.5 and Fig. 5.6 illustrate MetaPilot’s decision-making process in dynamically se-

lecting scheduling objectives based on system conditions in the training and testing sets,

respectively. The CPU and memory load ratios, which represent the total requested re-

sources in the queue normalized by the cluster’s capacity, provide insights into workload

variations over time. The shaded regions represent MetaPilot’s chosen scheduling strate-

gies—gray for waiting times optimization and green for utilization maximization. In the

training set (Fig.5.5), the system experiences lower and more sporadic CPU and memory

loads, with brief periods of high demand. The MetaPilot agent predominantly selects

waiting-time optimization during these fluctuations. In contrast, the testing set (Fig.5.6)

captures more diverse workload conditions, including sustained high memory loads, ex-

treme CPU load spikes (e.g., 712.4% of total CPU cores), and periods of low activity. This

mix of conditions allows for a more comprehensive evaluation of MetaPilot’s adaptability,

demonstrating its ability to adjust scheduling objectives based on varying system states.

During periods of low CPU and memory load, MetaPilot predominantly selects the

waiting time minimization strategy (gray regions). This decision aligns with the objective

of improving user experience by reducing queue congestion and preventing job starvation.

As the system experiences an increase in queued job demands, indicated by spikes in CPU

and memory load ratios, MetaPilot transitions to prioritizing utilization (green regions).

In these instances, maximizing resource usage becomes critical to handling the incoming

workload efficiently. By selecting utilization maximization, MetaPilot optimizes available

CPU and memory resources, preventing resource wasting during high-demand periods.
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Figure 5.5: MetaPilot’s action in training set.Requested CPU and Memory Load in
the queue, normalized by the total available resources in the cluster. Shaded regions
represent MetaPilot’s scheduling decisions: gray indicates optimization for waiting time

reduction, while green represents prioritization of resource utilization maximization.

Figure 5.6: MetaPilot’s action in testing set. Requested CPU and Memory Load in
the queue, normalized by the total available resources in the cluster. Shaded regions
represent MetaPilot’s scheduling decisions: gray indicates optimization for waiting time

reduction, while green represents prioritization of resource utilization maximization.



MetaPilot: Scheduling Controller for Balancing Objectives 133

The alternation between these strategies suggests that MetaPilot effectively balances user-

centric and system-centric objectives in response to workload variations.

Interestingly, MetaPilot is more sensitive to memory load than CPU load. Memory

availability often better reflects the system’s actual load since memory is typically more

abundant per node compared to CPU cores. For instance, in the testing set, the CPU load

peaks at 712.4% of total cluster cores, yet the memory load remains low. This indicates

a burst of small, short-lived jobs that consume minimal memory. Since these jobs are

completed quickly, MetaPilot chooses to optimize waiting times instead of prioritizing

utilization, ensuring a better user experience.

5.5.3.2 Evaluation on MetaPilot’s Performance

The bar plots in Fig. 5.7 compare the performance of MetaPilot, HeraSched W, and

HeraSched U in both the training and testing phases, evaluating average waiting time

(orange bars) and maximum waiting time (blue bars). In the training set, MetaPilot

effectively adapts to varying system loads, demonstrating its ability to balance scheduling

objectives. During high-load periods, it efficiently utilizes available resources by dynam-

ically selecting the scheduling objective that optimizes system utilization. This strategy

reduces maximum waiting time compared to HeraSched W, which solely minimizes aver-

age waiting time without addressing extreme job delays, thereby lowering the risk of job

starvation. Since most of the training period has low system demand, MetaPilot’s average

waiting time is slightly higher than that of HeraSched W, which consistently prioritizes

shorter job queues. However, this trade-off allows MetaPilot to respond more effectively

when the system enters a high-load state, preventing excessive queuing and improving

overall system fairness. Meanwhile, HeraSched U strictly maximizes utilization, leading

to significantly higher waiting times, further highlighting MetaPilot’s ability to achieve a

balanced scheduling policy.

In the testing set, the system experiences prolonged high loads, including extreme

peaks that exceed cluster capacity. HeraSched W still outperforms HeraSched U in terms

of waiting times, reducing maximum waiting time by 19% at the cost of an 8% increase

in average waiting time. However, unlike in the training set, this advantage is less pro-

nounced due to the prolonged high-load conditions. Under extreme congestion, mini-

mizing waiting times alone is insufficient, as resource availability becomes the primary
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Figure 5.7: Comparison of maximum and average waiting times for MetaPilot-Control,
HeraSched W, and HeraSched U during training and testing phases. Lower values indi-

cate better scheduling performance.

constraint. In such cases, maximizing utilization becomes a more critical objective, as

efficiently allocating resources helps prevent excessive job backlog and system stagnation.

MetaPilot achieves the best performance in both maximum and average waiting times.

A key reason for its superior performance is its ability to recognize when reducing maxi-

mum waiting time is more beneficial than strictly focusing on utilization. When demand

is extreme, MetaPilot prioritizes efficient resource allocation to prevent resource wastage,

which in turn reduces the likelihood of excessive delays. This is particularly important

in long periods of high load because, under extreme demand, idle resources translate

directly into longer waiting times. During more balanced periods, it shifts towards re-

ducing waiting times to enhance user experience. This flexibility allows MetaPilot to

maintain a significantly lower maximum waiting time while keeping the average waiting

time lowest, demonstrating the advantage of an adaptive scheduling approach over rigid,

single-objective strategies.

The utilization comparison in Fig. 5.8 demonstrates that MetaPilot achieves higher

utilization, especially in memory, than both HeraSched W and HeraSched U during high-

load periods. This improvement stems from its adaptive scheduling strategy, which dy-

namically shifts between objectives based on workload conditions. While the percentage

improvement in utilization may appear modest, its impact is significant in large-scale

HPC environments. Even a small increase in resource utilization translates to a substan-

tial reduction in idle resources, leading to more jobs being processed within the same

time frame. This effect is particularly critical in high-load scenarios, where MetaPilot’s

ability to maintain higher utilization ensures that available resources are not wasted. This

adaptability allows the system to handle surges in workload more effectively while main-

taining stable performance. MetaPilot is a meta-controller over objectives on top of a
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fixed scheduler; to isolate the meta-control effect, we compare against the performance of

HeraSched. Broader RL-to-RL comparisons are established in Chapter 4.

Figure 5.8: Comparison of CPU and Memory Utilization in high-load period for differ-
ent scheduling approaches.

5.6 Summary

This chapter introduced MetaPilot, a deep reinforcement learning-based controller de-

signed to dynamically balance user-centric and system-centric objectives in HPC job

scheduling. By decoupling objective selection from scheduling execution, MetaPilot en-

ables existing schedulers to adapt their behavior based on real-time system conditions

without requiring changes to their core algorithms. Through a tailored state represen-

tation and adaptive reward function, MetaPilot learns when to prioritize job waiting

times versus resource utilization. Evaluations on real-world HPC traces demonstrate that

MetaPilot outperforms fixed-objective schedulers by reducing maximum waiting times

and improving resource utilization, especially under high-load scenarios. These results

highlight the value of adaptive objective selection in improving both user experience and

system performance in complex, fluctuating HPC environments.

While MetaPilot focuses on dynamically balancing competing scheduling objectives

based on real-time system states, it still relies on schedulers that must be trained from

scratch for each new HPC environment. However, as HPC systems evolve — introducing
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new hardware configurations, workload characteristics, and architectural changes — re-

training reinforcement learning-based schedulers from the ground up becomes increasingly

inefficient. The next chapter explores how transfer learning can accelerate the adaptation

of RL-based schedulers in such evolving environments, enabling faster convergence and

reducing the need for extensive retraining when migrating across HPC systems.



Chapter 6

Accelerating RL-Based Scheduler

Adaptation with Transfer

Learning in Evolving HPC

HPC systems frequently undergo architectural changes, such as hardware upgrades or the

deployment of new clusters, to meet evolving computational demands. Traditional static

schedulers and machine-learning-based approaches struggle to adapt efficiently to these

changes, often requiring manual adjustments or extensive retraining. In this chapter,

we propose a novel approach combining Separate Feature Extraction and Selective Trans-

fer Learning to enable rapid adaptation of Reinforcement Learning-based HPC schedulers

to new or modified cluster architectures. We evaluate our approach using three real-

world HPC clusters, including both CPU and GPU architectures. Our experiments sim-

ulate scheduler transitions between these clusters, capturing a wide range of architectural

changes and workload variations found in practice. Applied to a state-of-the-art hierarchi-

cal RL-based scheduler, our method demonstrates rapid adaptation across diverse system

configurations and workloads. Across the six use cases we experimented with, the sched-

ulers enhanced with our approach not only quickly outperformed all 21 baseline heuristic

methods in terms of jobs’ average and maximum waiting time but also achieved perfor-

mance comparable to RL-based schedulers trained from scratch. Notably, even in the

transition case that required the most retraining steps, integrating our approach reduced

the required training timesteps to just 1.76% of the total timesteps needed for training a

137
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scheduler from scratch—representing a 56.8× reduction in training effort. This demon-

strates its ability to efficiently adapt existing schedulers to evolving HPC architectures with

minimal cost, providing a practical solution for real-world HPC operations.

6.1 Introduction

HPC systems require regular upgrades and maintenance adjustments throughout their

operational lifespan to sustain high performance. Advancements in hardware technology,

including multi-core processors, high performance GPUs, and specialized accelerators, are

rapidly reshaping the capabilities of computational systems. These innovations not only

boost processing power but also enhance the efficiency of HPC infrastructures, enabling

them to tackle increasingly complex and resource-intensive applications. To leverage these

advancements, HPC systems often implement upgrades or develop entirely new clusters,

ensuring they remain at the cutting edge of computational capacity. At the same time,

maintenance and ongoing adjustments are essential to fine-tune resources in response to

fluctuating workloads, ensuring that the system remains adaptable to user demands. This

constant reconfiguration and new development present a significant challenge for maintain-

ing efficient job scheduling. Therefore, there is an increasing need for flexible scheduling

approaches that can quickly adapt to evolving system architectures while maintaining

good system performance.

Traditional scheduling methods, such as heuristics, have been widely used for their sim-

plicity and speed but are typically designed for fixed configurations. More recent Machine

Learning-based schedulers [16], particularly those using RL [24, 26], have demonstrated

significant improvements by dynamically optimizing scheduling decisions based on real-

time feedback. Despite their success, these learning-based approaches, including RL-based

schedulers, rely heavily on historical data and static cluster configurations for training. As

a result, they often perform well only within the specific scenarios they were trained on.

When HPC architectures undergo changes, such as hardware upgrades or adjustments

This chapter is derived from the following publication:

• Lingfei Wang, Maria A. Rodriguez, and Nir Lipovetzky. Accelerating RL-Based Scheduler Adap-
tation with Transfer Learning in Evolving HPC Architectures. In Proceedings of 2025 IEEE 18th
International Conference on Cloud Computing (CLOUD), pp. 1-11. IEEE, 2025.
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to resource configurations, the environment and state space in which these schedulers

operate are significantly altered, rendering previously trained models ineffective.

Transfer learning [78] offers a promising solution to address the limitations of RL-

based schedulers in adapting to changing HPC environments. In contrast to training

models from scratch for each new configuration, transfer learning allows a scheduler to

leverage knowledge gained from previously trained models and apply it to new but related

tasks [77]. This reduces the need for large amounts of new training data and minimizes

the computational cost of retraining. By fine-tuning specific parts of the model, such as

adapting the state and action spaces to reflect new hardware or workload characteris-

tics, transfer learning enables schedulers to adjust more efficiently to changes in cluster

configurations. This method supports a faster transition to new environments, such as

hardware upgrades or entirely new clusters, while preserving scheduling performance.

In this study, we propose a solution that leverages Transfer Learning to enable RL-

based schedulers to quickly adapt to evolving HPC architectures. Our approach incorpo-

rates Separate Feature Extraction, which isolates the distinct state changes in the cluster

and job dynamics from the central RL-based scheduler, and Selective Transfer Learning,

which retrains only the parts of the model most affected by the new environment. This

approach minimizes the need for extensive retraining while ensuring that the scheduler

can maintain high performance in newly developed or modified clusters. We validate

our method with three distinct HPC partition cases drawn from real operational envi-

ronments, encompassing both CPU-based and GPU-based clusters. We test scheduler

transitions between each partition across six experiments, capturing a broad spectrum of

HPC transition scenarios.

In these cases, the schedulers enhanced with our approach significantly reduce the

retraining time and data required while achieving performance comparable to RL-based

schedulers trained from scratch. At the same time, they consistently outperform tradi-

tional heuristic-based methods, demonstrating their efficiency and adaptability. We com-

pare against heuristic-based methods because, in newly developed HPC architectures,

there is often insufficient historical data to train machine learning models, making heuris-

tics the default choice for initial deployment. The main contributions of this chapter are

as follows:
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• We propose a combination of Separate Feature Extraction and Selective Transfer

Learning to efficiently adapt RL-based HPC schedulers to new or modified cluster

architectures. To the best of our knowledge, this is the first study that addresses

the adaptation of RL-based schedulers in response to changes in HPC architectures,

providing practical guidance for the operation and maintenance of HPC systems in

real-world environments.

• We conduct three case studies using real-world HPC configurations and workloads

to demonstrate the flexibility of our approach. These cases cover a wide range of

common challenges encountered in real-world HPC environments, showcasing the

method’s capability to handle diverse cluster transitions effectively.

• We use HeraSched described in Chapter 4, a Hierarchical RL (HRL)-based sched-

uler managing both job selection and resource allocation, as the base model for

evaluation. The results show that Separate Feature Extraction and Selective Trans-

fer Learning enable rapid adaptation with fewer updates and shorter training time

compared to training from scratch, highlighting its effectiveness in dynamic HPC

environments.

6.2 Related Work

RL has emerged as a promising approach for tackling the challenges of job scheduling in

HPC systems. RL-based schedulers, such as DeepRM [20] and Decima [23], have demon-

strated the ability to dynamically optimize scheduling decisions based on feedback from

the environment. RLScheduler [24] and DRAS [26] proved that RL-based models can out-

perform traditional heuristics in various scheduling scenarios by learning from historical

data and continuously updating their decision-making policies. Following this develop-

ment, several approaches have proposed their own methods to enhance HPC scheduling.

SchedInspector [27] trained an RL-based inspector to control the job selection choices of

the based heuristics. However, the majority of these approaches primarily focus on job

selection rather than resource allocation.

HRL has also been proposed as an approach to address the complexity of job schedul-

ing by breaking down the problem into sub-tasks. HRL separates job selection and re-

source allocation into distinct layers, making it more suitable for environments where



Scheduler Adaptation in Evolving HPC 141

heterogeneous resources need to be managed simultaneously. While models like CuSH[22]

have made progress in incorporating job allocation into the RL process, they still rely

on elementary strategies for resource allocation, limiting their effectiveness in complex,

heterogeneous clusters. HeraSched designed an HRL-based scheduler to handle both job

selection and resource allocation in heterogeneous HPC environments. By structuring

these tasks in hierarchical layers, HeraSched optimizes global objectives like minimizing

wait times while ensuring efficient resource allocation across CPUs and GPUs.

Despite these advances, most existing methods are designed to optimize performance

for a specific cluster and workload, with limited ability to adapt to changes in cluster

configurations or to new environments. Xie et al. [139] introduced an elite-led transfer

learning approach for constrained workflow scheduling in dynamic cloud environments,

demonstrating how transfer learning can accelerate adaptation to changing resources.

However, applying transfer learning in HPC job scheduling, particularly in scenarios in-

volving heterogeneous resources and large-scale workloads, remains relatively underex-

plored.

6.3 Transfer Learning in HPC Scheduling

Transfer learning is a machine learning technique in which a model developed for a spe-

cific task or environment is adapted to perform well in a new but related setting. Rather

than training a model from scratch for each new environment, transfer learning leverages

knowledge gained from prior tasks, reducing the need for large training datasets and ex-

tensive computational resources in the new domain. In RL, transfer learning is especially

valuable when the system dynamics or the environment undergo significant changes. Gen-

eral RL transfer learning approaches often involve fine-tuning or modular adaptation of

specific model components, such as feature extractors, policy networks, or value functions.

These approaches allow the model to retain generalized knowledge while adapting only

the parts most impacted by environmental changes.

In HPC scheduling, transfer learning can be particularly useful when clusters undergo

hardware upgrades or when new clusters are introduced. However, its application to RL-

based HPC schedulers comes with unique challenges, primarily in identifying which com-

ponents of the model should be preserved from the previous environment and which need
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retraining to adapt to the new environment. Retaining too much information from the

old system could lead to suboptimal performance, as outdated assumptions may conflict

with the new environment’s requirements. Conversely, extensive retraining could negate

the efficiency benefits of transfer learning. Achieving the right balance between knowl-

edge retention and adaptation is, therefore, critical to maintaining effective scheduling in

dynamic and evolving HPC settings.

It is essential to examine the changes and invariants that arise during the transition

to a new HPC cluster in scheduling. By analyzing these changes and invariants, we can

identify the key challenges that need to be addressed in the design and determine which

aspects of the scheduler models should be preserved. This foundational understanding

will guide the subsequent design process, ensuring that the scheduler adapts effectively to

the new environment while maintaining its core functionality.

Changes: When transitioning to a new HPC cluster, several significant changes must

be considered, each impacting the design of the scheduling system. First, the hardware

configuration is likely to differ, with potential changes in CPU/GPU architecture, mem-

ory hierarchy, network topology, and storage systems. These hardware variations can

introduce new constraints and opportunities, prompting adjustments in how resources

are allocated and scheduled. Additionally, the workload characteristics in the new cluster

may vary, with differences in job types, sizes, and arrival patterns. This shift in workload

dynamics requires a corresponding adaptation in the state and action spaces used by the

scheduler, ensuring that the scheduling decisions remain relevant and effective in the new

environment. These changes collectively highlight the need for a flexible and adaptable

design that can respond to the specific requirements of the new cluster.

Invariants: Despite the changes in hardware and workload, several core principles

remain consistent during the transition to a new HPC cluster. The basic principles of

scheduling, such as meeting the requirements of jobs in the cluster remain constant. These

enduring principles provide a stable foundation for the scheduler, allowing it to adapt to

new challenges while staying true to its core objectives. Although the specific represen-

tations of state and action spaces may need to be adjusted for the new environment,

the fundamental knowledge of scheduling embedded in the models is largely preserved,

enabling a quick adaptation to the new cluster.
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6.4 Proposed Approach

6.4.1 Separate Feature Extraction

Given the substantial changes in hardware configurations and workload dynamics during

the transition to a new HPC cluster, developing a scheduling system with enhanced flex-

ibility and adaptability is essential. One of the primary challenges in this transition is

adapting to the differences in cluster and queue states between environments. The cluster

state includes node configurations, resource availability (e.g., CPU, memory, GPUs), and

the running jobs in each node, which vary based on hardware setups and architecture.

The queue state reflects waiting jobs and their characteristics, like resource requirements

and arrival patterns, which can differ by workload type and user demand across clus-

ters. The RL-based schedulers take the information they need from the states, called

an observation. The observation is often well-structured and designed for the specific

scheduler and environment. Then, the scheduler outputs the scheduling decisions. These

variations in states resulting in observation changes pose a substantial challenge for RL-

based schedulers designed and trained in one environment to make effective decisions in

other environments. To address this, we present a separate feature extraction mechanism

tailored specifically to interpret and adapt to these varying states.

Fig. 6.1 shows the overview of the separate feature extraction mechanism. The term

separate has two key implications in this context. First, the feature extractors operate

independently of the original RL-based scheduler. The feature extractors directly process

the observation from the cluster and queue state and produce features that serve as inputs

to the scheduler. This design ensures that the inputs to the RL-based scheduler match the

original input size, regardless of changes in the cluster configuration. It avoids changes in

the environment, such as increases in the number of nodes or CPUs in the cluster, which

would typically require resizing the input layer of the RL-based scheduler, and does not

affect the scheduler itself. Also, the separate feature extractors can process different

forms of observations required by variant RL-based schedulers. This decoupling makes

the approach versatile and compatible with a wide range of existing RL-based schedulers

without requiring modifications to their architectures. Second, separate also refers to

the architecture of the feature extractors, which consists of two distinct components: a

cluster feature extractor and a queue feature extractor. These components independently
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Figure 6.1: Separate Feature Extractor

process cluster state information and queue state information. The extractors ensure that

the information from the two domains does not interfere with or distort each other before

being taken by the RL-based scheduler. It follows the common practice in RL-based

schedulers, where cluster and queue states are treated as distinct inputs, maintaining the

scheduler’s performance by producing an output format consistent with its original input

design. The central RL-based scheduler and its original assumptions determine the exact

details of these representations. Additionally, the separation of cluster and queue feature

extractors also significantly reduces the number of trainable parameters compared to the

combination of them. This reduction in complexity allows for more efficient training and

faster convergence.

6.4.2 Selective Transfer Learning

Selective transfer learning is a method that enables an RL-based scheduler with separate

feature extraction to adapt to a new HPC cluster by fine-tuning only the components

of the model that are affected by changes in the environment. Components that are

unaffected by the transition, and therefore still applicable, are left unaltered. In the
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transition to a new HPC cluster, instead of retraining the entire model, we resize the

first layer of the feature extractor and the output layer of the RL-based scheduler to

accommodate changes in state and action spaces. Fig. 6.1 presents an example of an

Actor-Critic RL-based scheduler coupled with separate feature extraction. When this

scheduling system is transferred to a new cluster, our primary goal is to enable quick

adaptation to the new environment. However, given that the state representation is likely

to change, we reform the first layer of both feature extractors to accommodate the new

input size corresponding to the new environment. Additionally, since the action space

of the RL-based scheduler may also change, such as in the selection and allocation of

jobs, the output layers of the scheduler’s actor and critic must be adjusted accordingly.

Specifically, only the layers highlighted in pink in Fig. 6.1, need to be retrained. By

retraining just the essential components, we ensure that the core knowledge and learned

behaviors of the scheduler are retained, reducing the risk of performance degradation and

transfer learning costs during the transition. The advantage of this approach is that it

allows for rapid adaptation to the new cluster while minimizing the need for extensive

retraining, thereby preserving the efficiency and effectiveness of the original scheduling

system.

6.5 Evaluation

We evaluate our approach through three case studies, based on three specific clusters

and their corresponding workloads. In each case, we conduct two experiments where

schedulers trained on the other two clusters transition to the target cluster. These case

studies collectively cover wide real-world scenarios of cluster transitions, simulating new

deployments, hardware upgrades, and system changes in HPC environments. Through

the cases, we evaluate how quickly the scheduler adapts to the new environments and how

much data is needed for successful transfer learning. Specifically, we investigate:

• Can the RL-based scheduler, with separate feature extraction and selective transfer

learning, quickly adapt to new or modified clusters?

• Is it possible to achieve this adaptation without relying on large historical data from

the new or modified cluster as they are likely unavailable?
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To evaluate the effectiveness of our proposed approach, we selected HeraSched de-

scribed in Chapter 4 as the base model. HeraSched is an HRL-based scheduler designed

for heterogeneous HPC systems, managing both job selection and resource allocation in a

hierarchical structure. This dual capability distinguishes HeraSched from other RL-based

schedulers, which are typically limited to job selection. This comprehensive capability

makes HeraSched an ideal candidate for assessing transfer learning across both schedul-

ing tasks.

6.5.1 Baseline Schedulers

To assess the effectiveness of our proposed approach, we benchmark it against estab-

lished heuristic-based methods in HPC environments. HPC scheduling involves two key

processes: job selection and resource allocation. We selected seven heuristic-based job

selectors for our baseline comparison, each paired with a backfilling mechanism and three

heuristic-based resource allocators. The baseline job selectors include FCFS (First-Come

First-Served), LCFS (Last-Come First-Served), SJF (Shortest Job First), WFP3 [5],

UNICEP [5], F1 [16], and F2 [16], all with backfilling [96] enabled. Among these,

WFP3 (Weighted Fair Priorities 3) adjusts job priority dynamically, favoring jobs with

longer waiting times but normalizing based on resource requests. UNICEP refines WFP3

by incorporating additional system state factors to balance fairness and responsiveness.

F1 and F2 are scheduling heuristics derived through simulation-based supervised learn-

ing, optimizing job prioritization based on historical job execution patterns. The resource

allocators include First-Available, which assigns jobs to the first set of nodes that meet

resource requirements, Best-Fit, which selects nodes to minimize resource fragmentation,

and Topology-Aware [110], which places jobs on nodes that minimize the number of

lowest-level network switches they traverse. Consequently, the baseline methods consist

of 21 schedulers, representing all possible combinations of these job selectors and resource

allocators.

These heuristic-based schedulers are selected as baselines because they represent prac-

tical and easily deployable scheduling strategies in newly developed or modified HPC

clusters. Unlike learning-based approaches, heuristic methods do not require extensive

training, making them immediately applicable in environments where historical job data

may be limited or where rapid deployment is necessary. Additionally, our evaluation
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aims to determine whether HeraSched, enhanced with our approach, can not only quickly

outperform the baseline heuristic methods but also achieve performance comparable to

HeraSched trained from scratch. This chapter studies transfer learning for a fixed sched-

uler (HeraSched) rather than proposing a new scheduler. To isolate adaptation effects,

we compare the transferred model against the same HeraSched architecture trained from

scratch on the target partition and a bunch of baseline methods. We do not repeat broader

RL-to-RL scheduler comparisons here; those are established in Chapter 4.

6.5.2 Cluster Characterisation

The clusters used in our case studies are distinct partitions of a real HPC system called

Spartan [1] and are referred to as Physical, Deeplearn, and Sapphire. Physical is a CPU-

based partition optimized for distributed, CPU-intensive tasks. Deeplearn is GPU-centric

and designed for machine learning workloads with powerful GPUs. Sapphire is a newly

developed CPU partition with significantly more powerful cores than Physical. The tran-

sitions between these partitions cover a wide range of real-world scenarios, from adapting

to CPU resource changes, shifting from CPU-based workloads to GPU-intensive tasks,

and transiting from GPU partitions to CPU partitions.

Table 6.1: Cluster: Physical, Deeplearn, and Sapphire Characteristics

Name Physical Deeplearn Sapphire
Partition CPU GPU CPU

Cores/node 72 72 28 24 32 128
Mem(GB)/node 710 1519 234 174 175 234 1000 977

Total Nodes 72 14 4 5 3 6 12 52
GPUs/node 0 4 0

Period 2022-9-23 to 2022-9-30 2021-9-20 to 2022-9-30 2024-5-1 to 2024-5-7
Jobs 84135 68720 54263

Total Cores 6192 900 6656
Total GPUs 0 120 0

Max Runtime 30 days

Table 6.1 highlights key differences among the three partitions. Physical is a CPU-

based partition with 72 cores per node, while Sapphire, another CPU-based partition,

features more powerful CPUs with 128 cores and 977 GB of memory. Transitioning

between Physical and Sapphire involves adapting to Sapphire’s higher core density, re-

quiring the scheduler to efficiently handle this changing computational capacity to utilize

the nodes. Deeplearn, a GPU-based partition, introduces another layer of complexity. Its
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nodes feature fewer CPU cores (24 to 32 per node) but include 4 GPUs per node and

between 174 and 1000 GB of memory. Transitioning to Deeplearn from either Physical

or Sapphire involves a significant shift from CPU-bound workloads to GPU-accelerated

tasks, requiring the scheduler to manage jobs that rely on both CPUs and GPUs. The

challenge is maximizing GPU utilization while also accommodating Deeplearn’s more lim-

ited CPU capacity. When transitioning from Deeplearn to either Physical or Sapphire,

the scheduler faces the opposite challenge.

Figure 6.2: Comparison of requested resources across three job workloads: Physical,
Deeplearn, and Sapphire. The subplots illustrate the distribution of requested CPU cores
(A), memory (B), nodes (C), and time limit (D) for jobs in each workload. The boxplots
show the spread and central tendency of resource requests, with the mean indicated by
dashed lines and the median indicated by solid lines, highlighting variations in resource

demands across the different workloads.

Fig. 6.2 illustrates the characteristics of job-requested resources across three workloads

during the collected periods. The subplot for Requested CPU shows that the median for

both Physical and Sapphire clusters is 1, while Deeplearn has a higher median, indicat-

ing that jobs in Deeplearn generally request more CPU cores per job. However, in the

Requested Nodes comparison, while the median for all three workloads is 1, Physical and

Sapphire exhibit slightly higher averages in the requested number of nodes compared to

Deeplearn. Memory requests vary significantly. Deeplearn has a higher average and me-

dian requested memory than others. This can be explained by the nature of jobs in these

clusters. In Deeplearn, which is a GPU partition, jobs tend to request more resources

within a single node to fully leverage the computational power of GPUs. For example,

machine learning tasks often require multiple CPU cores and more memory to support

GPU usage, leading to fewer nodes being requested but more resources being concentrated

in each node. On the other hand, Physical and Sapphire are CPU-based clusters, where

jobs tend to be more distributed across multiple nodes. Some CPU tasks require extensive
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communication between nodes, benefiting from a distributed setup. However, many CPU

tasks fall under the category of embarrassingly parallel problems [140], where jobs run

independently on individual nodes without requiring communication between them. In

such cases, users often submit a large number of jobs that request only one node and a

few cores per job. This behavior leads to a significant gap between the median and av-

erage number of requested CPU cores. While the median remains low, reflecting the fact

that many jobs request minimal resources, the average is higher due to the presence of a

smaller number of jobs that request significantly more cores for more complex, resource-

intensive tasks. This pattern is especially evident in both Physical and Sapphire, where

embarrassingly parallel jobs are common, contributing to the higher average despite the

low median. In summary, the cluster configurations and job workloads across Physical,

Deeplearn, and Sapphire highlight the distinct challenges faced by the RL-based scheduler

in a transfer learning context.

6.5.3 Model Training and Transfer Learning

To experiment with cluster transitions, it is essential to first train the RL-based schedulers

for each cluster individually. In our approach, we used HeraSched as the base RL-based

scheduler by integrating the separate feature extraction mechanism and fully retraining

the HRL models for each specific workload. The training is conducted using a simulation

(described in 4.4.2) rather than directly on large-scale HPC clusters, as real-world training

and testing would be prohibitively expensive. Instead, we leverage real trace data and

actual HPC cluster configurations to build a high-fidelity simulated environment that

closely mimics real scheduling scenarios. Table 6.2 provides an overview of the training

settings, detailing the structure of the separate feature extractors for both cluster and

queue states, as well as the hidden layers used in HeraSched’s actors and critics. The

window size defines the total number of jobs that can be observed by the scheduler. The

tail size specifies how many jobs from the tail of the queue the scheduler can observe. This

configuration allows the scheduler to consider both the current jobs at the front of the

queue and a subset of jobs from the end of the queue, potentially improving scheduling

decisions by incorporating a broader perspective 3.3.1. The sizes of the separate feature

extractors are determined based on their proportional relationship to the original state

size in HeraSched, ensuring alignment with its feature representation. Additionally, the

hidden layer sizes and window settings are adopted from Table 4.2 to maintain consistency
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with its training methodology. The trained models will serve as the base models, reflecting

the realistic conditions encountered when adapting a scheduler to a newly established or

modified cluster.

Table 6.2: Train from Scratch Settings (HeraSched)

Feature Extraction Layers
Cluster Extractor Queue Extractor

[4096, 3072] [2048, 1024]

Extractor Activation Function ReLU

Output from Extractor 4096

Hidden Layers
Actor Critic

[2048, 1024] [2048, 1024]

HeraSched Activation Function Tanh

HeraSched Window Size Window Tail

Physical 600 60

Sapphire 600 60

Deeplearn 100 10

For transfer learning, we aim to adapt the base models with Separate Feature Extrac-

tion to a new or modified environment. Leveraging Selective Transfer Learning allows us

to focus the adaptation process on specific parts of the model by updating the first layer of

each feature extractor to account for changes in the cluster and queue states and adjusting

the output layer of the RL agents to accommodate differences in the action space. The

transfer learning is implemented based on the Maskable PPO from StableBaselines3 [132],

and Table 6.3 details the hyperparameters used. These hyperparameters are derived from

Table 4.2, ensuring consistency with its established training methodology. The number

of steps per update determines how many steps (or experiences) are collected from the

environment before the model updates its policy. The following experiments will highlight

how fewer updates lead to quicker adaptation while still outperforming baseline methods,

showcasing the method’s efficiency in real-world HPC operations.

Table 6.3: Hyperparameters for Transfer Learning

Hyperparameter Value

Learning Rate 3e-4

Number of Steps per Update 2048

Batch Size 64

Number of Epochs per Update 10

Discount Factor (Gamma) 0.99

GAE Lambda 0.95

Clipping Range 0.2
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6.5.4 Case Study 1: Deeplearn Partition Adaptation

In this case study, we evaluate our approach by adapting schedulers to a significantly

different environment. Specifically, we focus on transitioning schedulers trained and used

in CPU-based partitions (Physical and Sapphire) to a GPU-based partition (Deeplearn).

The Physical and Sapphire clusters consist solely of CPU nodes, supporting CPU-bound,

distributed tasks, while the Deeplearn cluster, equipped with GPU-accelerated nodes,

handles memory-intensive machine-learning jobs. This case study investigates whether

our proposed approach can adapt schedulers trained on CPU-focused clusters to a GPU-

intensive environment, enabling efficient GPU allocation and managing significantly dif-

ferent cluster configurations without extensive retraining or large amounts of new data.

Fig. 6.3 shows the heatmaps of average and maximum waiting times for different

baseline heuristic scheduling methods across the three partitions. In subplots (A) and

(B), the Deeplearn partition’s performance is shown. In all baseline methods, FCFS with

backfilling cooperating with Best-Fit yields the lowest maximum waiting time (55885

seconds) and ranks second in average waiting time (1361 seconds), making it the best-

performing combination. In the following comparison, we use FCFS and Best-Fit as the

best heuristics to compare the performance of the proposed methods.

Figure 6.3: Heatmaps illustrating the average waiting times (seconds) and maximum
waiting times (seconds) for the heuristic selectors combined with a backfilling mechanism

across three allocation methods in the Deeplearn, Sapphire, and Physical workloads.

Fig. 6.4 compares the performance of the schedulers transferred from the Physical and

Sapphire partition to Deeplearn partition, a scheduler trained in the Deeplearn partition

from scratch, and the best-performing heuristics in the Deeplearn partition. The values

are normalized by the best-performing heuristics, FCFS with Best-Fit (average waiting

time: 1361 seconds, maximum waiting time: 55885 seconds), where the dashed line at 2

represents the performance of the best heuristics. The normalization combines average
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Figure 6.4: Comparison of transfer learning performance against training from scratch,
showing normalized values of maximum and average waiting times by best performed

Heuristics.Normalized Value =
best heuristicavg

model waiting timeavg
+ best heuristicmax

model waiting timemax
.

and maximum waiting times into a single measurement, making it easier to compare

performance across both metrics. This unified approach provides a clearer and more

concise evaluation of the model’s effectiveness relative to heuristic methods. A value

above 2 indicates better performance than the best heuristics. Transfer learnings from

both partitions demonstrate remarkable efficiency, achieving substantial adaptation with

just a single update at 2048 timesteps, quickly outperforming the baseline of the best

heuristics. This highlights how effectively the proposed methods leverage prior knowledge

to adapt to new job workloads with minimal training effort. In contrast, training from

scratch requires a significantly longer process to reach comparable performance. Even

after 100,000 timesteps, the scratch-trained model only approaches the performance of

the best heuristics, but it is still behind. After 200,000 timesteps, the model trained from

scratch only begins to match the performance of transfer learning’s single update.

For the transfer learning experiment, we utilized a subset of the total job data to

perform one update. Specifically, out of 68,720 jobs in the workload, only about 2,100 jobs

(3%) were used in 2048 timesteps to train the model. The remaining jobs (97%) were kept

as a chronological hold-out test set with no gradient updates or tuning. This represents

just 1% of the training timesteps required by the training-from-scratch approach, which

involved training the model from the beginning using all available job data. Despite being

trained on only 3% of the jobs, the transfer learning approach successfully performed well

on the entire workload, as reflected in the results shown in the plot. Additionally, the

training process was conducted on a PC with a Ryzen 7700 processor and an Nvidia 3090

GPU. The one update took approximately 7 seconds to complete, underscoring the fast

adaptation capabilities of the approach. The combination of rapid training time and the

small amount of data required for the update shows that the proposed method is highly
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efficient, both in terms of computational resources and data utilization. This efficiency

supports the argument that the approach can quickly adapt to new or modified clusters

without needing large historical datasets, making it suitable for environments where data

is scarce or unavailable.

6.5.5 Case Study 2: Sapphire Partition Adaptation

In this case study, we assess the effectiveness of the proposed transfer learning approach

by adapting the models trained and used in Physical and Deeplearn partitions to the

Sapphire HPC cluster. The transition from Physical to Sapphire represents adapting to

an upgraded CPU cluster with higher core density and overall core count. On the other

hand, the transition from Deeplearn to Sapphire involves adapting from a GPU-dominant

environment to a CPU-centric one.

Fig. 6.3 shows the results of using combinations of baseline methods to schedule the en-

tire Sapphire workload in two matrices: average job waiting time and maximum job wait-

ing time. The performance of the allocation methods varies significantly across different

heuristic selectors. Notably, the First-Available method shows consistent performance

improvements for several job selection heuristics. Among these, UNICEP (backfilling

included) achieves the best result in average waiting time (1436 seconds) and good per-

formance in maximum waiting time (20560 seconds), making it the overall best performer

in the baseline methods for the Sapphire partition.

Figure 6.5: Comparison of transfer learning performance against training from scratch,
showing normalized values of maximum and average waiting times by best performed
Heuristics. Transfer learning points are plotted at various stages of the learning pro-
cess, with detailed annotations for each step (A: average, M: maximum, U: update

times).Normalized Value =
best heuristicavg

model waiting timeavg
+ best heuristicmax

model waiting timemax
.
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Fig. 6.5 compares the performance of transfer learning schedulers from the Physical

and Deeplearn partitions and a scheduler trained from scratch in the Sapphire, show-

ing normalized values of maximum and average waiting times, with the best-performing

heuristics (UNICEP with First-Available) used as a baseline. The Deeplearn to Sapphire

transfer learning (in green) achieves adaptation in only one update. This performance

with 2048 timesteps training even outperforms the performance of training from scratch

at 700,000 timesteps. The Physical to Sapphire transfer learning process (in blue) consists

of multiple updates, with each update representing 2048 timesteps. As seen in the plot,

the first update (U:1) already provides a significant performance improvement, showing

that transfer learning quickly adjusts to the new cluster. However, the model’s perfor-

mance fluctuates slightly in the earlier updates, due to exploration, before stabilizing and

improving again. By the fifth update, the model reaches the performance level of the best

heuristics, and then at 12,288 steps, it outperforms the best heuristics. In contrast, the

training from scratch process (in red) improves more slowly. Even after 100,000 timesteps,

the scratch-trained model still struggles to yield relatively good performance, and it only

begins to reach the performance level of the best heuristics after 500,000 timesteps. The

first point where the scratch-trained model outperforms the best heuristics occurs much

later, at around 700,000 timesteps.

Despite the increased complexity compared to both Deeplearn and Physical partitions,

the adaptation remains remarkably efficient, as transfer learning significantly outperforms

the best heuristics with only a small fraction of the training steps needed for training from

scratch. Moreover, to outperform the best heuristics, the Deeplearn to Sapphire transi-

tion required just one update, using around 2,100 jobs out of the total 54,263 jobs, which

represents about 3.8% of the full workload. The remaining jobs were kept as a chronolog-

ical hold-out test set with no gradient updates or tuning. While the Physical-to-Sapphire

transition required more steps (12,288 steps), this was still accomplished using only 1.76%

of the training timesteps needed for training from scratch. The update was completed in

1 minute and 24 seconds using a PC with a Ryzen 7700 processor and an Nvidia 3090

GPU. In comparison, the Deeplearn case required just 7 seconds per update. This in-

creased time is due to the significantly larger cluster state and queue state in Sapphire

compared to Deeplearn. Although the models were larger and the adaptation process

more computationally demanding, it’s still notable that the adaptation was achieved in a

quick and reasonable time frame using a regular PC setup. This highlights the scalability
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and practicality of the transfer learning approach, even when dealing with high-density,

core-intensive clusters like Sapphire.

6.5.6 Case Study 3: Physical Partition Adaptation

In this case study, we assess the ability of the RL-based schedulers to adapt to the Physical

partition. This adaptation involves two transitions: from Sapphire to Physical and from

Deeplearn to Physical. The transition from Sapphire to Physical reflects a shift to a

less powerful CPU environment with fewer cores per node but with more total nodes.

On the other hand, the transition from Deeplearn to Physical illustrates the scheduler’s

adaptation from a GPU-accelerated environment to a purely CPU-based setup, demanding

a significant reconfiguration in job scheduling.

Fig. 6.3 shows the results of using baseline methods to schedule the entire Physical

workload. In this setup, the Best-Fit allocation method yielded competitive performance

across the compared allocation methods. When combined with LCFS and Backfilling, it

achieves the second-best average waiting time (1851 seconds) and the third-best maximum

waiting time (63993 seconds), making it the top-performing baseline heuristic for the

Physical partition overall.

Figure 6.6: Comparison of transfer learning performance against training from scratch,
showing normalized values of maximum and average waiting times by best performed
Heuristics. Transfer learning points are plotted at various stages of the learning pro-
cess, with detailed annotations for each step (A: average, M: maximum, U: update

times).Normalized Value =
best heuristicavg

model waiting timeavg
+ best heuristicmax

model waiting timemax
.

Fig. 6.6 compares the performance of transfer learning methods against a scheduler

trained in Physical from scratch with the best-performing heuristics as the baseline. Both

transitions, from Sapphire and Deeplearn to Physical, demonstrate that transfer learn-

ing achieves efficient adaptation. The Deeplearn to Physical transfer learning (in green)
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adapts in just one update, achieving performance that surpasses the baseline heuris-

tics with only 2048 timesteps. The Sapphire to Physical transfer learning (in purple)

also shows significant improvement after two updates, already outperforming the baseline

heuristics. By the second and third updates of the Deeplearn and Sapphire transitions

respectively, the models achieve further performance gains, significantly surpassing the

best baseline method. Compared to the best heuristics, the performance of the RL-based

scheduler shows significant improvement in this case. One reason for this is that the Phys-

ical partition handles a higher volume of jobs compared to Sapphire and Deeplearn. In a

busier environment, machine learning-based approaches, especially RL, can leverage the

increased job traffic and have more opportunities to optimize job selection and resource

allocation. This allows the scheduler to adapt more efficiently, making more informed

decisions that result in better overall system performance compared to heuristic methods.

In contrast, the training-from-scratch process (in red) struggles significantly compared to

the transfer learning methods. Even after 3.5 million timesteps, the scratch-trained model

still performs worse than the baseline heuristics.

The Deeplearn-to-Physical transition required just one update, using approximately

2,100 jobs out of the total 84,135 jobs (around 2.4% of the workload), and was completed

in about 1 minute and 28 seconds on the same PC as previous experiments. The remaining

jobs were kept as a chronological hold-out test set with no gradient updates or tuning. In

comparison, the Sapphire-to-Physical transition required an additional update but still

achieved remarkable efficiency. Specifically, while training from scratch required 5,500,000

timesteps, the transfer learning approach used only 4,096 timesteps and 6,144 timesteps

across the two updates, representing just 0.2% of the training timesteps needed for training

from scratch.

6.6 Summary

This chapter introduced a novel transfer learning framework to accelerate the adaptation

of reinforcement learning-based schedulers in evolving HPC environments. By combin-

ing Separate Feature Extraction and Selective Transfer Learning, our approach enables

schedulers to efficiently adjust to new or modified cluster architectures with minimal re-

training. Through six transition experiments across three real-world HPC partitions —

Physical, Sapphire, and Deeplearn — we demonstrated that the proposed method not



Scheduler Adaptation in Evolving HPC 157

only rapidly outperforms 21 baseline heuristic schedulers but also matches the perfor-

mance of RL models trained from scratch at a fraction of the training cost. Remarkably,

this level of performance was attained while utilizing only 2–3% of the total workload

jobs. Furthermore, across all experiments, this adaptation required just 0.2–1.76% of the

training timesteps needed for training from scratch — representing up to a 500× reduction

in training effort. These results highlight the strong potential of the proposed method to

support adaptive scheduling in HPC environments with minimal overhead.



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

This thesis investigated key problems in HPC scheduling with deep reinforcement learn-

ing, including designing job selection, integrating resource allocation with job selection,

balancing system-centric and user-centric objectives in changing environments, and adapt-

ing RL-based schedulers to evolving HPC architectures. It identified research gaps within

these areas, formulated targeted research questions, and developed novel RL-based frame-

works and methodologies to address them. The key conclusions from each chapter are

summarized below.

• Chapter 1: Introduction

This chapter introduced the thesis, outlining the fundamental challenges in HPC

scheduling with reinforcement learning. It identified four key challenges. The chap-

ter also highlighted critical research gaps within these areas and formulated the

research questions addressed in this thesis. Finally, it provided an overview of the

thesis structure, linking each chapter to the research objectives and key findings.

• Chapter 2: Background and Literature Review

This chapter provided the necessary background and literature review for this the-

sis. It introduced fundamental concepts of HPC job scheduling and reinforce-

ment learning, establishing the theoretical foundation for the research. Addition-

ally, it surveyed existing HPC scheduling techniques, including heuristic-based,

158
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meta-heuristic-based, machine learning-based, and reinforcement learning-based ap-

proaches. The chapter highlighted key advancements and limitations in the litera-

ture, identifying gaps that motivate the proposed research.

• Chapter 3: Advancements in RL-Based Job Selection in HPC

This chapter introduced an RL-based job selector, DBF, designed to address the

challenge of unbounded state and action spaces in RL-based job selection. It pre-

sented the Split Window Technique, which enables the scheduler to observe both

the head and tail of the job queue, extending the agent’s observation when large

jobs accumulate at the head of the queue. This ensures that newly arrived jobs are

not overlooked while mitigating the limitations of fixed-window approaches. Ad-

ditionally, by allowing job selection from the tail of the queue, the Split Window

Technique provides more opportunities for backfilling, improving overall resource

utilization. Unlike existing RL-based job selectors that rely on separate backfill-

ing processes, DBF integrates a novel Schedule Cycling mechanism, allowing the

RL agent to autonomously learn and apply backfilling strategies without extra pro-

cesses. Experimental results demonstrated that DBF outperforms other job selectors

by significantly reducing job waiting time and queue length, offering a more efficient

and adaptive solution for HPC job selection.

• Chapter 4: HeraSched: HRL-Based Scheduler

In this study, HeraSched, a novel HRL-based HPC job scheduling solution, was intro-

duced to address the growing complexities of resource allocation and dynamic work-

load variations in modern HPC systems. Unlike existing approaches that primar-

ily focus on job selection while relying on simplistic allocation policies, HeraSched

integrates intelligent job selection with heterogeneity-aware node-level allocation,

ensuring efficient job scheduling across CPU and GPU partitions. By incorporating

backfilling directly into job selection and leveraging hierarchical decision-making,

HeraSched enhances scheduling efficiency and minimizes job starvation. Evaluation

results demonstrated significant reductions in job waiting times, particularly under

high system loads, with HeraSched consistently outperforming compared methods,

which are combinations of existing selectors and allocators. Additionally, its ability

to adapt to varying workload demands underscores its robustness in real-world HPC

environments.
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• Chapter 5: MetaPilot: Scheduling Controller for Balancing Objectives

This chapter introduced MetaPilot, a reinforcement learning-based scheduling con-

troller that dynamically balances user-centric and system-centric objectives in HPC

scheduling. Unlike traditional fixed-objective schedulers, MetaPilot adapts its decision-

making to real-time workload characteristics and resource availability, effectively

bridging the gap between maximizing resource utilization and minimizing job wait-

ing times. By acting as an adaptive decision layer rather than replacing existing

schedulers, MetaPilot significantly improves scheduling flexibility, demonstrated by

a 19% reduction in maximum waiting time alongside enhanced resource utilization

under varying workload conditions.

• Chapter 6: Scheduler Adaptation in Evolving HPC

Chapter 6 introduced a novel approach to rapidly adapt RL-based HPC sched-

ulers to evolving or newly configured HPC architectures. It proposed the Separate

Feature Extraction and Selective Transfer Learning techniques, which isolate dis-

tinct changes in cluster configurations and workload dynamics, significantly reduc-

ing the retraining effort required during scheduler transitions to new environments.

Evaluations conducted across three realistic HPC cluster scenarios demonstrated

that schedulers enhanced with these techniques achieved performance comparable

to schedulers trained from scratch, while requiring substantially fewer training steps.

In particular, results indicated a reduction in retraining time and computational ef-

fort by up to 500 times compared to traditional training methods, highlighting the

practical efficacy of this approach in managing dynamic HPC environments.

In conclusion, this thesis has made significant contributions to advancing reinforcement

learning-based HPC scheduling by proposing innovative frameworks and methodologies

that effectively address core challenges and enhance scheduler performance. Through

novel solutions in job selection, hierarchical job scheduler, dynamic balancing of competing

objectives, and rapid adaptation to evolving HPC architectures, the research outcomes

provide robust foundations and open promising avenues for further exploration and real-

world applications in intelligent HPC scheduling.
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7.2 Future Directions

We present several promising research directions that have the potential to enhance sched-

uler adaptability, improve overall system efficiency, and support more practical deploy-

ment in real-world HPC environments.

Handling Resource Oversubscription

In production HPC environments, users frequently overestimate the resources their jobs

require — particularly CPU cores, memory, and runtime. This behavior is often a pre-

caution to avoid job failures due to underestimated needs, especially in systems with

limited user feedback or resource monitoring. While understandable from a user stand-

point, this practice, known as resource oversubscription, leads to substantial inefficiencies

in cluster utilization. Resources that are reserved for a job but not actually used remain

idle and unavailable to other pending jobs, increasing queue times and reducing system

throughput. Effectively handling resource oversubscription requires intelligent, adaptive

scheduling techniques that can dynamically adjust user-submitted resource requests to

better reflect actual usage. This can be achieved through predictive models that learn

from historical job data, user behavior patterns, and real-time monitoring. These models

can estimate more accurate resource requirements at submission time or adjust them just

before scheduling.

Integrating such predictive capabilities into RL-based scheduling frameworks presents

a promising research direction. The RL agent can learn to interpret predictive estimates

and make job placement decisions that increase cluster efficiency while maintaining high

job success rates. However, the risk of under-provisioning must be carefully managed

— allocating fewer resources than a job actually requires can lead to job failures, data

loss, or performance degradation. Therefore, future solutions should include confidence

estimation, safety margins, or dynamic runtime adjustments to ensure reliability while

still improving efficiency. Another promising direction is online feedback loops. Rather

than making static predictions at submission time, the scheduler could continually monitor

resource consumption and adjust allocations at runtime, especially in systems that support

elastic resource management or job migration. This can enable dynamic request scaling,

where jobs are granted additional resources if needed or scaled back when over-provisioned.
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Job Colocation Without Performance Interference

To further enhance resource utilization, colocating multiple jobs on partially used com-

pute nodes — such as assigning a new job to idle CPU cores that are not fully utilized by

an existing job — is a promising strategy. This fine-grained colocation approach aims to

maximize per-node efficiency by filling in underused compute capacity. It is particularly

relevant in modern multi-core and multi-threaded nodes, where a single job may not fully

saturate all cores or memory bandwidth. By strategically placing complementary jobs on

the same node, overall system throughput can be improved without needing additional

hardware. However, naive colocation can lead to severe performance interference, espe-

cially when colocated jobs contend for shared resources such as memory bandwidth, I/O

channels, cache hierarchies, or power budgets. These forms of contention are not always

apparent at scheduling time and may result in significant slowdowns, quality-of-service

violations, or unpredictable job performance. Moreover, interference can vary depending

on workload types, resource usage patterns, and even hardware topology — making it

difficult to generalize or hard-code rules for safe colocation.

Future research should focus on developing interference-aware job placement strategies.

This involves learning interference models from prior job co-executions and incorporat-

ing them into the scheduling decision process. A well-designed scheduler must balance

the benefits of improved utilization with the risk of contention, ideally learning to iden-

tify compatible job pairings and placement patterns that maximize throughput without

sacrificing performance isolation.

Cold Starts in Real HPC Deployment

Most of the existing research on RL-based HPC scheduling is developed and evalu-

ated within controlled simulators, where job characteristics, resource configurations, and

scheduling events are simulated. While simulators are useful for prototyping and initial

exploration, they often fail to capture the full complexity, and unpredictability of real

HPC systems. This disconnect presents a significant challenge when transitioning from

simulation to deployment — a problem often referred to as the cold start in real HPC

environments. In real-world deployment, a new RL-based scheduler typically lacks access

to rich historical data from the target cluster, making offline training less effective or even
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infeasible. Moreover, näıvely applying a freshly trained model from a simulator can result

in poor early performance due to mismatched assumptions or unseen behaviors, leading

to job delays, resource underutilization, or user dissatisfaction.

Future research should investigate strategies for enabling safe and effective cold-start

deployment of learning-based schedulers in real HPC systems. Key directions include

designing bootstrapping techniques that allow the scheduler to operate with minimal

historical data, and developing robust online learning mechanisms that continuously adapt

the policy based on real-time observations. Techniques such as simulation-to-real transfer,

warm-starting with domain-invariant features, or combining RL with conservative fallback

heuristics during early deployment may help bridge the gap between simulated training

and practical use. Ensuring that the scheduler can quickly converge to a performant

policy in real clusters without significant degradation remains an essential step toward

the broader adoption of RL-based scheduling in HPC.

Fairness-Aware Scheduling

Fairness is a longstanding but still unresolved challenge in HPC scheduling. Despite

its importance, there is no universally accepted definition of fairness in this context, as

fairness can depend on a wide range of factors. In shared HPC systems, fairness may

involve distributing compute resources equitably across individual users, research groups,

or organizational units. It can also consider historical usage patterns, such as how much

computing time a user or group has consumed in the past, the types and amounts of

resources requested (e.g., CPU cores, memory, GPUs), and even priority levels or funding

allocations. A fundamental research need is to develop a principled and flexible definition

of fairness that captures the multidimensional nature of HPC resource sharing. This

includes not only who is receiving resources, but how much and what kind of resources

they receive, and over what time horizon fairness should be evaluated (e.g., per job, per

week, or per project).

Moreover, fairness in HPC scheduling is not static. As system usage evolves — with

new users joining, project priorities shifting, or workload characteristics changing — the

scheduler must be able to dynamically adjust fairness policies in real-time. A fairness-

aware RL scheduler should therefore incorporate adaptive mechanisms that respond to
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these changes, balancing short-term scheduling efficiency with long-term fairness objec-

tives.

Future work should focus on designing fairness metrics that are both accurate and

actionable, and integrating them into the RL framework in a way that allows the agent

to learn fairness-aware policies. This may involve reward shaping, constrained RL, or

multi-objective optimization. Importantly, fairness should not be treated in isolation —

it must be balanced with competing goals such as resource utilization, job throughput,

and user responsiveness. Developing RL-based schedulers that can make these trade-offs

transparently and adaptively remains a critical direction for real-world deployment.

Energy-Aware Scheduling

Energy efficiency is an increasingly critical concern in modern HPC systems, driven by

both economic and environmental factors. Large-scale clusters consume vast amounts of

power, contributing to high operational costs and significant carbon footprints. As a re-

sult, minimizing energy consumption while maintaining system performance has become

a key scheduling objective. Scheduling decisions affect energy usage through multiple

pathways. At the node level, energy consumption depends not only on CPU and memory

utilization but also on how jobs are placed across resources — idle but powered-on nodes

still draw significant energy, and frequent power-state transitions (e.g., powering nodes

up/down) introduce overheads. Job placement can also affect cooling efficiency: spread-

ing high-power jobs across different racks may improve thermal balance, while clustering

them in dense areas can create hotspots, increasing cooling demands. Furthermore, some

modern systems include heterogeneous hardware (e.g., CPUs, GPUs, FPGAs), each with

different power-performance, adding another layer of complexity to energy-aware schedul-

ing.

Future work in this area should explore RL-based energy-aware scheduling policies

that make use of fine-grained power monitoring data, thermal profiles, and hardware

capabilities as part of the system state representation. These policies could learn to favor

energy-efficient configurations such as job consolidation (packing jobs tightly to power

down unused nodes), or intelligent load distribution that avoids thermal hotspots and

reduces cooling energy costs. A key research direction is the design of reward functions

that meaningfully incorporate energy-related objectives. These may include penalties
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for excessive power draw, incentives for utilizing energy-efficient nodes, or cost-based

formulations that reflect real-world energy pricing models. In addition, integration with

hardware-level power management features (e.g., Dynamic Voltage and Frequency Scaling,

power capping, or energy-aware BIOS settings) can further enhance the capabilities of

an energy-aware scheduler. Coordination between software-level scheduling policies and

hardware-level energy controls remains a largely unexplored but promising area.
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Binary State Representation

Existing DRL-based scheduling methods in HPC systems often struggle to handle back-

filling effectively. Many approaches either ignore backfilling actions entirely or fail to

capture the idle time gaps between currently running jobs and those reserved for future

execution. As a result, they miss critical opportunities to fill these system “holes” with

short jobs, leading to inefficient resource usage. Explicitly encoding these idle gaps in the

observation space is impractical due to the resulting unbounded and complex state space.
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Figure A.1: Binary State Representation for DRL-based Scheduling. The agent ob-
serves a partial view of the binary core-time matrix and the job queue, allowing it to

identify idle resources and learn effective backfilling strategies.
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To address this, the method illustrated in Fig. A.1 introduces a partially observed

cluster state space, allowing the agent to learn efficient scheduling—including backfill-

ing—without requiring full visibility of the system. As shown in the figure, the envi-

ronment includes two main components: a core-time matrix representing the cluster’s

resource allocation over discrete future time steps, and a job queue containing pending

jobs. Each cell in the matrix indicates whether a specific core is busy or idle at a particular

time using a binary value. The shaded green region highlights the subset of this matrix

that is visible to the agent: a short time window across a limited number of compute

cores. Likewise, only the earliest few jobs in the queue are exposed to the agent.

This design enables the agent to perceive upcoming scheduling opportunities — in-

cluding fragmented idle regions that may be suitable for short jobs — without being

overwhelmed by the full complexity of the system. Importantly, the method uses a binary

representation of job-to-core reservations rather than summarizing availability through

aggregate statistics such as total free cores. This fine-grained encoding makes inefficien-

cies in job placement, such as scattered idle cores between larger jobs, clearly visible to

the agent. As demonstrated in our experiments, this representation significantly enhances

the agent’s ability to learn effective scheduling strategies, particularly in identifying and

exploiting backfilling opportunities.
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HeraSched Results

B.1 HeraSched Evaluation Results

Table B.1 presents a comparative analysis of job scheduling performance in the Phys-

ical Partition, focusing on the average and maximum waiting times for various sched-

ulers, which are combinations of selectors (FCFS, LCFS, SJF, WFP3, UNICEP, F1,

F2, RLScheduler, and DRAS-PG) and allocators (Topology-Aware, Best-Fit, and First-

Available). The Topology-Aware allocator generally performs well, with the LCFS selec-

tor achieving the lowest average waiting time of 1846.93 seconds. The Best-Fit allocator

shows exceptional performance for the WFP3 selector, recording the lowest maximum

waiting time of 44271 seconds in compared methods. Conversely, the First-Available al-

locator exhibits higher variability in maximum waiting times, particularly for the LCFS

and UNICEP selectors. Notably, our method, HeraSched, demonstrates superior effi-

ciency with the lowest average and maximum waiting times (1702.41 and 33381 seconds,

respectively), highlighting its effectiveness in reducing job waiting times and improving

overall scheduling efficiency in the Physical Partition.

Table B.2 details the performance of job scheduling in the Deeplearn Partition. The

Best-Fit allocator excels with the FCFS selector, attaining the lowest average (1361.02

seconds) and maximum (55885 seconds) waiting times in compared methods. While the

First-Available allocator remains competitive, it shows higher maximum waiting times,

especially for the LCFS and WFP3 selectors. HeraSched stands out with the lowest

average and maximum waiting times (1343.30 and 54715 seconds, respectively), indicating
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its proficiency in minimizing job waiting times and enhancing scheduling efficiency in the

Deeplearn Partition, which is crucial for deep learning tasks.

Table B.1: Performance Comparison for Jobs in Physical Partition (seconds)

Workload Topology-Aware Best-Fit First-Available

Scheduler Ave. Max Ave. Max Ave. Max

FCFS 2143.12 106943 2098.10 81105 2590.34 147244

LCFS 1846.93 64279 1851.18 63993 1992.37 492802

SJF 1916.79 155108 1987.63 64182 2091.03 344543

WFP3 2115.51 170378 2123.69 44271 2521.39 364646

UNICEP 2023.23 72268 1955.33 59931 2152.24 496656

F1 2008.29 71359 2052.45 66939 2447.61 299599

F2 2009.63 72293 2038.79 70434 2212.52 200674

RLScheduler 2133.39 108000 2070.87 64279 2232.09 455932

DRAS-PG 1981.84 90337 2059.37 95557 2600.01 145490

Ave. waiting Max waiting

HeraSched 1702.41* 33381*

Table B.2: Performance Comparison for Jobs in Deeplearn Partition (seconds)

Workload Topology-Aware Best-Fit First-Available

Scheduler Ave. Max Ave. Max Ave. Max

FCFS 1386.44 60777 1361.02 55885 1442.71 63554

LCFS 1504.92 75285 1457.97 67055 1597.85 81874

SJF 1397.81 62100 1429.81 63612 1509.45 70390

WFP3 1429.3 65889 1461.31 67040 1516.97 70588

UNICEP 1349.89 56702 1367.84 56404 1443.13 63780

F1 1406.41 64002 1408.23 61410 1448.87 65521

F2 1403.69 63231 1398.25 61171 1444.63 65050

Ave. waiting Max waiting

HeraSched 1343.30* 54715*

B.2 HeraSched High Load Validation Results

Table B.3 compares the average and maximum waiting times for compared job schedulers

in the Physical High Load Validation. The SJF selector with the Topology-Aware allocator

achieves the lowest average waiting time of 1010.89 seconds, while the F1 selector with the

Best-Fit allocator records the lowest maximum waiting time of 56814 seconds. The First-

Available allocator shows higher variability in waiting times, particularly for LCFS and

UNICEP. Although HeraSched’s average waiting time of 1143.87 seconds is slightly higher

than the best-performing SJF selector, it significantly improves the maximum waiting
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time with 31863 seconds. This overall better performance highlights HeraSched’s ability

to prevent job starvation and enhance scheduling efficiency in the Physical Partition.

Table B.4 shows that Topology-Aware allocator combined with the UNICEP selector

shows the best average waiting time of 15894.60 seconds, while the FCFS selector with

the Topology-Aware allocator achieves the lowest maximum waiting time of 38269 sec-

onds. Despite competitive performances, the First-Available allocator generally exhibits

higher maximum waiting times, especially for LCFS and SJF selectors. HeraSched signif-

icantly outperforms other schedulers with the lowest average and maximum waiting times

(14861.04 and 35865 seconds, respectively), indicating its effectiveness in minimizing job

waiting times and improving scheduling efficiency in the Deeplearn Partition.

Table B.3: Performance Comparison for Validation Set in Physical Partition (seconds)

Workload Topology-Aware Best-Fit First-Available

Scheduler Ave. Max Ave. Max Ave. Max

FCFS 1203.06 81690 1237.28 64032 1236.82 70481

LCFS 1400.28 70304 1401.97 89490 1402.69 97756

SJF 1010.89* 87682 1010.97 73824 1085.76 89622

WFP3 1036.23 69130 1049.51 78864 1029.65 86693

UNICEP 1048.75 68221 1047.59 78648 1047.04 84860

F1 1237.17 68221 1251.87 56814 1249.55 73374

F2 1243.69 66572 1233.36 66573 1290.90 78677

RLScheduler 1216.79 81722 1213.79 70683 1341.82 85165

DRAS-PG 1243.70 61807 1244.03 73931 1243.84 73692

Ave. waiting Max waiting

HeraSched 1143.87 31863*

Table B.4: Performance Comparison for Validation Set in Deeplearn Partition (seconds)

Workload Topology-Aware Best-Fit First-Available

Scheduler Ave. Max Ave. Max Ave. Max

FCFS 15948.57 38269 15948.57 38269 15950.20 38269

LCFS 17821.91 43704 17821.91 43704 17820.66 43694

SJF 16715.91 42006 16715.91 42006 16935.81 42199

WFP3 16543.61 42243 16543.61 42243 16561.14 41869

UNICEP 15894.60 38318 15894.60 38318 15894.80 38318

F1 15951.14 38269 15951.14 38269 15950.16 38269

F2 15915.57 38272 15915.57 38272 15915.58 38272

Ave. waiting Max waiting

HeraSched 14861.04* 35865*
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