Generalized Planning for the Abstraction and Reasoning Corpus

Chao Lei? Nir Lipovetzky! Krista A. Ehinger?

THE UNIVERSITY OF

MELBOURNE

'The University of Melbourne

User Input
Program Lines: n =5
Pointers: Z ={no,, no,, mo}

Figure 1. Pipeline sketch of Generalized Planning for Abstract Reasoning

Task 7ddcd7ec Novelty Threshold: v = 1 _ (GPAR). a two-stage system that employs GP to solve ARC tasks. The DSL
. | ] . generation stage encompasses a collection of abstractions to generate a
/ DSLGeneration \ / Planning Actions | [rogram Synthesis \ domain file and associated instance files for each ARC task. The program
cCa-spa .~ L =N ExtendNodeDirection| () Solution Found! synthesis stage uses a generalized planning solver PGP(v) to generate a program
Instance 1 — 1 Action Constrainis : that can map the input im to th tput image by executing the plannin
= yRemove Duplicates : . empty | 0. test(node-size(noy, size-1) at Ca ap the Input image to the outpu ge Dy executing P g
------- ! MoveNodeDirection | | - SRRy ' ' ’ program on the corresponding initial state in each training. instance.
(Abstractions B\ S Z| |t.empty | [1.goto(5, 1)
= K PbDL /Instance 1 ﬁle\ \Predicate Constraints' |G0to Instructions| | &5 | 2. empty % tesligelaiive posinon(§ey B0z 0voy)
Instance 2 = [ CC4 } = Argument Constraints' | goto(1, !y,) %" —>13. empty = 3. goto(5, yz)
- ' ' Rl f > 4. empty 4. ExtendNodeDirection(nos, moi)
- Instance 2 file o - :
: [Domain file | goto(5, ly,) % 5. inc(noy)| |S5. inc(noy)
Inst 3 fil — . O : ) :
- [CC4-SpaJ | ns ance 1e _ , Tost Actions ” o 14 hg Scan here to read the full paper
, test(node-size(noq, size-1)) .
Test instance file .

: \ : -
\\ : y \ X ﬁ wt(relative-position( noy, noy, moy)) /

Test Instance Verify the solution

Introduction Method Part 2. Generalized Planning

Domain Knowledge:

« Abstraction and Reasoning Corpus (ARC) is a set of abstract visual reasoning tasks that measure the

gap of abstract reasoning and generalization capacities between humans and All[1]. . Duplicated Abstraction Removal: Abstractions that generate identical instances are avoided.
[ Task 6e82alae - Task ae3edfdc ] | Task 6d58a25d ] I Action Pruning: Actions that result in necessary nodes positions, colors, or sizes updating are
= : considered.

1. Predicate Constraint: A predicate can work as a condition, iff the condition is not always true among all
training and test input images.

V. Argument Constraint: The arguments chosen for predicates describe attributes that exist in all training
and test input images.

V. Structural Restrictions: Part of the planning program that iterates over all possible combinations of
pointer values is automatically generated before the search starts. Other instructions are restricted by
appearance sequences.

Training Instances

GPAR Program Synthesis Process:

« GPAR leverages PGP(v) as a GP solver, taking program lines n, pointers 2, and novelty thresholds v as
input. The solution is a planning program that can map the input image to the output image.

Instance 1 Instance 2 Instance 3 Test Instance
0 i ! ;
S R I I :
g App l.ication Candidates -
" Section 0. empty «—| test 0.test(node-size(noy, size-1)) /0.test(node-size(noy, size-1))
2 \ 1‘ empty | ; 1. goto(5, ! Y2) | | 1. goto(5, ! Yz) |
| | . . | 2. empty test 2. empty 2. test(relative-position(noy,noz ,mo1)) |
Figure 2. Three example tasks from the ARC. For a given task, each row contains an input-output image pair as a |3‘ mp | . /|3. empty 3. goto(5, ¥>)
training instance, and the bottom row is the test instance. The goal of the solver is to learn from the training instances 1 :mﬁg | Cantd“iates 4. empty ) 4. ExtendNodeDirection(nos,moy) )
how to generate the output for the test instance. 5. ne(noy) v 5. inc(noy) 5. inc(noy)
. s 1) test 6. goto(0, 'Y>) 6. goto(0, 'Y>)
Method Part 1: Domain-Specific Knowledge oy [ExtendNodeDirection| 7. clear(ro) 7. clear(nox)
| 8. inc(109) : |8 inc(nog) 8. inc(n02)
Abstraction: 9. goto(0, ¥ MoveNodeDirection | 9. goto(0, !Y>) 9. goto(0, '¥>)
- 10. clear(noq) 10. clear(no;) :
10. clear(n01) Solution Found!
« Abstraction enables object awareness in GPAR to allow actions to modify a group of pixels at once 11. clear(noy) = B ?lea(lf(nof) = B 916?;%0)2)
: Co . . . . INC{Mo . 1InC 1
rather than individually, resulting in a smaller search space. g ;act%?l!)yz) 13. goto(O,l!yz) 13. goto(0, 1¥2)
14. end 14. end
. . . . . C L . 14. end '
« Multiple abstraction considerations in GPAR can compensate for the limitations of a certain =
- Figure 1. An illustration of the planning process with the application section and the looping section. Lines 0 and 1
apstraction.
Task aedd82e4 . ensure that no, indexes the square node, and lines 2 and 3 constrain the no, to point to the single-pixel node, while
" Sg(li““"“t;‘:"lgr mo_1 indexes the correct spatial relation between no, and no..
updates base
. on size. Results
] Model Task Type Training Accuracy Testing Accuracy
T movement 18/31 (58.06%) 17/31 (54.84%)
| | recolor 25/62 40.32% 23/62 37.10%
. JARG‘A . ¢ ' ¢ 0O — s IS 1l O
A | Ao Feasible augmentation  20/67 (29.85 é) 17/67 (2@.374:)
(S-connected | Solution. all 63/160  (39.38%)  57/160  (35.62%)
: | ‘ 0 5% 12 200
Figure 3. A 4- vs. 8-connected abstractions example. movement 2 1/31 (67' 74( /0) 15/31 (‘18-39(/0)
annl Ay D ' 27 A ¢ ' A5 1RV
PDDL Representation: Kaggle recolor | 25/()2 (3 (.10 /0) 28/()2 (‘1\)‘1()/()
First Place  augmentation  35/67 (52.24%)  21/67 (31.34%)
» PDDL describes each ARC task through a single domain file and a finite set of instance files, one for all 79/160 (49.38%) 64 /160 (40.00%)
each input-output image pair, movement 20/31 (64.52%) 19/31 (61.30%)
(define (domain ARC-9565186b) recolor 41/62 (66.13%) 39/62 (62.90%)
- ixel si - obj GPAR . oF /o iy .
Task 9565186p  ° pes node pixel size color - object) augmentation  25/67 (37.31%) 23/67 (34.33%)
(:predicates (node-color 7no - node ?co - color) o o ' p
Instance 1 (node_size Mo - node 791 - SiZC) 8.11 86/1()() (53- 75 A)) 81/1()() (50-63 /O)

(contain-pixel 7no - node 7pi - pixel)
(pixel-color ?p1 - pixel ?co -color))
(:action UpdateColor
(”no - node, 7col - color ?co2 - color)

Table 1. Performance of Abstract Reasoning with Graph Abstractions (ARGA)[2], Kaggle First Place and GPAR over 160
object-centric ARC tasks. Training accuracy is the number of tasks whose solutions solve all the training instances.

Testing accuracy is the number of tasks whose solutions also generate the correct output images for all test
instances.

(define (problem 9565186b-1) on (node-color 7no 7col) : .
(:domain ARC-9565186b) @pPixelColorUpdate(no, 7c02))) Contributions

(:objects pixel-0-0 pixel-0-1 pixel-0-2 pixel-1-0 pixel-1-1 pixel-1-2

=S

pixel-2-0 pixel-2-1 pixel-2-2 - pixel « GPAR achieves state-of-the-art performance over the ARC benchmark.
node-1 node-2 node-3 - node
size-1 size-3 size-4 size-5 - size  File for Instance 1 + A novel method to solve abstract reasoning tasks based on generalized planning.
red blue grey cyan - color)
(:INIT (node-size node-1 size-5) (node-color node-1 red) « A domain-specific language encoding based on PDDL.
(node-size node-2 size-1) (node-color nod-2 blue)
(node-size node-3 size-3) (node-color nod-3 cyan) « The usage of novel ARC domain knowledge to reduce the size of the solution space.
(pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 cyan)
(contain-pixel node-1 pixel-0-0),...,(contain-pixel node-3 pixel-2-2) References
(:Goal(AND (pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 grey)))) [1] Chollet, F. 2019. On the Measure of Intelligence. arXiv preprint arXiv.1911.01547.
Figure 4. A PDDL example for a fragment of an ARC task. Parameters of action schemes and predicates are [2] Xu, Y., Khalil, E. B, and Sanner, S. 2023. Graphs, Constraints, and Search for the Abstraction and
preceded by the 7" symbol, and external functions are preceded by the -@" symbol Reasoning Corpus. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAA, 4115-4122.

AAAI 2024 Main Track




