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Figure 1. Pipeline sketch of Generalized Planning for Abstract Reasoning
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Introduction Method Part 2. Generalized Planning

Domain Knowledge:

« Abstraction and Reasoning Corpus (ARC) is a set of abstract visual reasoning tasks that measure the

gap of abstract reasoning and generalization capacities between humans and All[1]. . Duplicated Abstraction Removal: Abstractions that generate identical instances are avoided.
[ Task 6e82alae - Task ae3edfdc ] | Task 6d58a25d ] I Action Pruning: Actions that result in necessary nodes positions, colors, or sizes updating are
= : considered.

1. Predicate Constraint: A predicate can work as a condition, iff the condition is not always true among all
training and test input images.

V. Argument Constraint: The arguments chosen for predicates describe attributes that exist in all training
and test input images.

V. Structural Restrictions: Part of the planning program that iterates over all possible combinations of
pointer values is automatically generated before the search starts. Other instructions are restricted by
appearance sequences.

Training Instances

GPAR Program Synthesis Process:

« GPAR leverages PGP(v) as a GP solver, taking program lines n, pointers 2, and novelty thresholds v as
input. The solution is a planning program that can map the input image to the output image.
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Figure 2. Three example tasks from the ARC. For a given task, each row contains an input-output image pair as a |3‘ mp | . /|3. empty 3. goto(5, ¥>)
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« Multiple abstraction considerations in GPAR can compensate for the limitations of a certain =
- Figure 1. An illustration of the planning process with the application section and the looping section. Lines 0 and 1
apstraction.
Task aedd82e4 . ensure that no, indexes the square node, and lines 2 and 3 constrain the no, to point to the single-pixel node, while
" Sg(li““"“t;‘:"lgr mo_1 indexes the correct spatial relation between no, and no..
updates base
. on size. Results
] Model Task Type Training Accuracy Testing Accuracy
T movement 18/31 (58.06%) 17/31 (54.84%)
| | recolor 25/62 40.32% 23/62 37.10%
. JARG‘A . ¢ ' ¢ 0O — s IS 1l O
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Figure 3. A 4- vs. 8-connected abstractions example. movement 2 1/31 (67' 74( /0) 15/31 (‘18-39(/0)
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PDDL Representation: Kaggle recolor | 25/()2 (3 (.10 /0) 28/()2 (‘1\)‘1()/()
First Place  augmentation  35/67 (52.24%)  21/67 (31.34%)
» PDDL describes each ARC task through a single domain file and a finite set of instance files, one for all 79/160 (49.38%) 64 /160 (40.00%)
each input-output image pair, movement 20/31 (64.52%) 19/31 (61.30%)
(define (domain ARC-9565186b) recolor 41/62 (66.13%) 39/62 (62.90%)
- ixel si - obj GPAR . oF /o iy .
Task 9565186p  ° pes node pixel size color - object) augmentation  25/67 (37.31%) 23/67 (34.33%)
(:predicates (node-color 7no - node ?co - color) o o ' p
Instance 1 (node_size Mo - node 791 - SiZC) 8.11 86/1()() (53- 75 A)) 81/1()() (50-63 /O)

(contain-pixel 7no - node 7pi - pixel)
(pixel-color ?p1 - pixel ?co -color))
(:action UpdateColor
(”no - node, 7col - color ?co2 - color)

Table 1. Performance of Abstract Reasoning with Graph Abstractions (ARGA)[2], Kaggle First Place and GPAR over 160
object-centric ARC tasks. Training accuracy is the number of tasks whose solutions solve all the training instances.

Testing accuracy is the number of tasks whose solutions also generate the correct output images for all test
instances.

(define (problem 9565186b-1) on (node-color 7no 7col) : .
(:domain ARC-9565186b) @pPixelColorUpdate(no, 7c02))) Contributions

(:objects pixel-0-0 pixel-0-1 pixel-0-2 pixel-1-0 pixel-1-1 pixel-1-2

=S

pixel-2-0 pixel-2-1 pixel-2-2 - pixel « GPAR achieves state-of-the-art performance over the ARC benchmark.
node-1 node-2 node-3 - node
size-1 size-3 size-4 size-5 - size  File for Instance 1 + A novel method to solve abstract reasoning tasks based on generalized planning.
red blue grey cyan - color)
(:INIT (node-size node-1 size-5) (node-color node-1 red) « A domain-specific language encoding based on PDDL.
(node-size node-2 size-1) (node-color nod-2 blue)
(node-size node-3 size-3) (node-color nod-3 cyan) « The usage of novel ARC domain knowledge to reduce the size of the solution space.
(pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 cyan)
(contain-pixel node-1 pixel-0-0),...,(contain-pixel node-3 pixel-2-2) References
(:Goal(AND (pixel-color pixel-0-0 red),...,(pixel-color pixel-2-2 grey)))) [1] Chollet, F. 2019. On the Measure of Intelligence. arXiv preprint arXiv.1911.01547.
Figure 4. A PDDL example for a fragment of an ARC task. Parameters of action schemes and predicates are [2] Xu, Y., Khalil, E. B, and Sanner, S. 2023. Graphs, Constraints, and Search for the Abstraction and
preceded by the 7" symbol, and external functions are preceded by the -@" symbol Reasoning Corpus. In Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAA, 4115-4122.
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