
Planning with Multi-agent Belief Using Justified Perspectives

Guang Hu, Tim Miller, Nir Lipovetzky
School of Computing and Information Systems The University of Melbourne

Parkville, VIC 3010, AUS
ghu1@student.unimelb.edu.au, tmiller@unimelb.edu.au, nir.lipovetzky@unimelb.edu.au

Abstract

Epistemic planning plays an important role in multi-agent
and human-agent interaction domains. Most existing works
solve multi-agent epistemic planning problems by either pre-
compiling them into classical planning problems; or, using
explicit actions and their effects to encode Kripke-based se-
mantics. A recent approach called Planning with Perspec-
tives (PWP) delegates epistemic reasoning in planning to ex-
ternal functions using F-STRIPS, keeping the search within
the planning algorithm and lazily evaluating epistemic for-
mulae. Although PWP is expressive and efficient, it mod-
els S5 epistemic logic and does not support belief, including
false belief. In this paper, we extend the PWP model to han-
dle multi-agent belief by following the intuition that agents
believe something they have seen until they see otherwise.
We call this justified perspectives. We formalise this notion
of multi-agent belief based on the definition of knowledge
in PWP. Using experiments on existing epistemic and dox-
astic planning benchmarks, we show that our belief planner
can solve benchmarks more efficiently than the state-of-the-
art baseline, and can model some problems that are infeasible
to model using propositional-based approaches.

1 Introduction and Motivation
In epistemic planning problems, agents need to reason about
the ontic world and the epistemic world. There is exten-
sive research on epistemic logic reasoning and epistemic
planning, each with its own strengths and limitations. Most
epistemic planning approaches either explicitly maintain
all epistemic relations, such as Kripke frames (Kominis
and Geffner 2015; Bolander and Andersen 2011; Bolander
2014), or require an expensive pre-compilation step to con-
vert an epistemic planning problem into a classical plan-
ning problem (Muise et al. 2022), which grows exponen-
tially w.r.t. the depth of the epistemic formula used.

Recently, Hu, Miller, and Lipovetzky (2022) proposed a
lazy-evaluation approach to epistemic planning called Plan-
ning with Perspectives (PWP). They use Functional STRIPS
(F-STRIPS) (Geffner 2000) to separate epistemic reason-
ing from planning by modelling an agent’s perspective us-
ing external functions, which can be customised for partic-
ular domains. The agent perspective function defines which

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

variables each agent ‘sees’ in each state, and from this, a
multi-agent epistemic logic is built using the ‘what you get is
what you see’ paradigm (Gasquet, Goranko, and Schwarzen-
truber 2014; Bolander 2014; Cooper et al. 2016; Herzig,
Lorini, and Maffre 2015). By doing so, epistemic reasoning
can be performed without generating and reasoning over all
epistemic relations. They show that they can handle more
expressive problems than standard PDDL-based epistemic
planners, and avoid the costly pre-compilation (Muise et al.
2015, 2022) and maintenance of Kripke models (Bolander
2017; Kominis and Geffner 2015; Le et al. 2018; Fabiano
et al. 2020; Bonet and Geffner 2019). In addition, their
agent’s perspective model only depends on the state vari-
ables valuation, so can be applied to model-free planners as
long as they expose their current state, such as when plan-
ning with simulators (Francès et al. 2017).

The weakness of PWP is that it can plan only with knowl-
edge, but not belief. By following Fagin et al.’s (2003) inter-
pretation of the difference between knowledge and belief, in
knowledge logic such as S5, Kiϕ → ϕ is an axiom, while
in belief logics such as KD45n, it is not. Thus, approaches
such as PWP cannot model problems in which agents can
have incorrect beliefs.

In this paper, we extend the PWP approach to model jus-
tified belief. We call this Planning with Multi-agent Belief
using Justified Perspectives. The intuition is that when peo-
ple reason about something they cannot see, they generate
justified belief by retrieving information from their ‘mem-
ory’ that supports that belief (Goldman 1979). In our model,
this information comes from the states they have observed
in the past. So, an agent believes something if they saw it in
the past, and has no evidence to suggest it no longer holds.
This includes nested beliefs about other agents’ beliefs. We
illustrate this idea with a classical false-belief example.

Example 1.1. There are two agents, a and b, and there is a
coin c ∈ {head, tail} inside a box. The coin can only be
seen by the agents when they are peeking into the box. The
agents can see each other all the time, which means they see
whether others are peeking into the box. The actions that
agents can take are “peek” and “return”, while the coin can
“flip” itself at any point in time. The action and outcome of
the flip is only visible to the agents who are peeking into the
box. Initially, both agent a and b are not peeking, and the
coin is head. The task is to generate a false belief such that:

Figure 1: Plan 1.2 with agent b’s justified beliefs. Bold text indicates the belief that has changed.

1. the coin is tail;
2. agent b believes that the coin is tail;
3. agent a believes that the coin is head; and
4. agent b believes that agent a believes that the coin is
head.

A valid plan would be:

Plan 1.1. peek(a), peek(b), return(a), flip

It is intuitive thatBbBacoin = head holds, because agent
b saw agent a peeked into the box after the action peek(b)
and agent a was not peeking into the box while coin flipped.

A more challenging plan to reason about, shown in Fig-
ure 1), is:

Plan 1.2. peek(a), return(a), peek(b), flip

In this plan, agent a and b no longer peek into the box at
the same time, which means, we do not have KbKacoin =
head in state s2. All criteria are met as in Plan 1.1, except
item 4. For item 4, similarly, agent b recalls that the last time
it saw agent a seeing the coin (Sacoin) was s1. However,
agent b holds no knowledge or belief on the value of the
coin from s1, which means she cannot generate the justified
belief in s1. Fortunately, agent b gains belief of the coin from
s3. So, agent b still can justify its beliefBb Bacoin = head:

1. b recalls that the last time agent a peeked inside of the
box is s1; and

2. after b saw a peek, the next time b saw the value of the
coin = head is at state s3.

In a model-free setting, reasoning about this is particu-
larly challenging. Agents do not have access to the action
model, so they cannot reason about what other agents have
seen. Instead, they can only partially observe states and re-
construct belief by observing states and who else observes
each state.

This paper presents a model for KD45n belief over such
plans, with the ability to solve model-free problems. Instead
of keeping track of all possible beliefs, we instead use a lazy-
evaluation approach that searches through previous states of
the plan to re-construct what has been seen, and by who, to

evaluate nested belief formulae. Our results show that we
can efficiently solve existing benchmarks in epistemic and
doxastic planning, even with a simple prototype planner.

2 Background
2.1 Epistemic and Doxastic Logic
The relation between knowledge and belief is not so clear.
Some authors state that knowledge is truthful belief (van
Ditmarsch et al. 2015; Friedman and Halpern 1994b,a),
while others claim that knowledge is truthful justified be-
lief (Scherl 2022; Artëmov 2008; Fan and Liau 2017; Grossi
and van der Hoek 2014). Bjorndahl and Özgün (2020) define
the topology for knowledge and belief based on the different
types of justification, while Grossi and van der Hoek (2014)
state that belief is generated, endorsed or justified by exter-
nal arguments. However, there are no definitions of nested
belief based on agents’ previous observations.

Others use possible worlds to define both knowledge and
belief (Stalnaker 2006; Fagin et al. 2003). The idea in these
logics is that the agents have a possibility relation Ki that
models whether the agent i can distinguish between two
states. Both the knowledge formula Kiϕ and belief formula
Biϕ are defined as that ϕ holds in all the worlds that agent
i considers possible. The difference is that possibility rela-
tion Ki in modelling knowledge needs to be reflective and
symmetric1, while it is serial in modelling beliefs. Thus,
such approaches have to maintain separate Kripke structures
for handling knowledge and belief, and constraints between
them must hold to ensure that certain properties hold; e.g. if
an agent knows something then it believes it. In this paper,
knowledge is based on what an agent currently ‘sees’, while
belief is based on what it currently sees and has seen in the
past.

The theoretical foundation for knowledge is the S5 ax-
ioms, while for belief are the KD45n axioms (Fagin et al.
2003). The difference between these two sets of axioms is

1Reflective means for all s ∈ S, (s, s) must be in K, while
symmetric means if there is a possibility relation (s, t) inKi, (t, s)
must also be in Ki.

that: S5 includes the axiom Kiϕ → ϕ (Axiom T), which
states that an agent’s knowledge must be the truth (reflexiv-
ity); while KD45n does not have this axiom, so relations
generated between possible worlds are derived from the
agent’s imperfect information of the world (could be false).
Axiom D, replacing T in KD45n, captures¬Kifalse, which
is preserved by the serial possibility relation.

2.2 Epistemic Planning
Dynamic Epistemic Logic (DEL) approaches use event
models to track the agents’ knowledge/belief over possible
worlds. Most DEL approaches do not support false-belief
because they are built on S5 logics. False-belief is challeng-
ing to model in DEL because it removes the ‘correct’ pos-
sibility relation between worlds, which results in the agent’s
belief state becoming isolated (Baral et al. 2022). So, in or-
der to allow agents to recover from false-belief, it requires
special sensing or announcing actions (Le et al. 2018; Baral
et al. 2022; Li and van Eijck 2022). In addition, it is costly
to maintain all agents’ possible worlds. Although Kominis
and Geffner (2015)’s work captures a fragment of DEL by
tracking single agents’ belief under the multi-agent setting
and updating it by actions in order to achieve better compu-
tational performance, it still cannot handle false-belief.

As for the non-DEL-based approach, Muise et al. (2022)
define a proper epistemic knowledge base (PEKB) that con-
tains all epistemic formulae as literals. They convert an epis-
temic planning problem into a classical planning problem
using the precondition and conditional effects in actions to
update and revise the knowledge and belief literals follow-
ing some modal axiom, such as those of KD45n. The ad-
vantage of their approach is that the model can be solved
by any existing classical planner that supports conditional
effects. The limitations are: it cannot handle disjunctive be-
lief; the depth of belief is bounded; and the number of liter-
als grows exponentially on the depth of epistemic formulae,
so the pre-compilation step has exponential time complex-
ity. (Wan, Fang, and Liu 2021) use a similar method that
updates and revises belief knowledge base by implement-
ing their own planner called MEPK, rather than converting
to a classical planning problem. By doing so, they lose the
advantage of using an existing planner but gain flexibility.
However, their approach still cannot handle false-belief.

2.3 Planning with Perspectives Approach
Hu, Miller, and Lipovetzky (2022) propose Planning with
Perspectives (PWP), which delegates epistemic reasoning to
an external solver using F-STRIPS.

Signatures A PWP signature is a tuple Σ =
(Agt, V,Dv1 , . . . Dvn , R), in which Agt is a finite set
of agent identifiers (n of them), V is a finite set of
variables such that Agt ⊆ V (agent identifiers can be
used as variables), Dvi

is a possibly infinite domain of
constant symbols, one for each variable vi ∈ V , and
R is a finite set of predicate symbols. Domains can be
discrete or continuous, and the set of all values is defined as
D =

⋃
v∈V Dv .

Language The PWP language L(Σ) is defined by the
grammar:

ϕ ::= r(~t) | ¬ϕ | ϕ ∧ ϕ | Siv | Siϕ | Kiϕ,

in which r ∈ R, vectors of terms ~t ∈ V ∪D∪Agt, i ∈ Agt,
and v ∈ V . A relation r is a k-ary propositional relation;
Siϕ is a visibility formula that means agent i ‘sees’ the truth
value of formula ϕ, Siv is a visibility formula that means
that agent i ‘sees’ the value of the variable v, and Kiϕ is a
knowledge formula. ‘Seeing’ a formula is similar to ‘know-
ing whether‘ a formula is true or not (Fan, Wang, and van
Ditmarsch 2015; Miller et al. 2016). ‘Seeing’ should not be
treated literally: an agent may ‘see’ the value of a variable by
hearing it through a communication channel, for example.

Model A model M is defined M =
(Agt, V,Dv1 , . . . , Dvk , π, f1, . . . , fn), in which Agt,
V , Dvi are as in a signature. A state s : V → D is a
mapping from variables to values. A global state is a total
function (a complete assignment for all variables in V),
while a local state is a partial function (some variables may
not be assigned). The expression s(v) denotes the value of
variable v in state s. The set of all local and global states
is denoted S, while the set of all global states is SG (S.
The set of all models is denoted M. π is an interpretation
function π : S × R → {true, false} that determines
whether the atomic term r(~t) is true in s. r is undefined
if any of its arguments ti is a variable v ∈ V that is not
assigned a value in a local state s, i.e. v 6∈ dom(s).

Perspective Function The key idea in the PWP model is
the perspective function. A perspective function for agent i,
fi : S → S is a function that takes a state and returns a
subset of that state, which represents the part of that state
that is visible to agent i. The following properties must hold
on a perspective function, fi for all i ∈ Agt and s ∈ S:

(1) fi(s) ⊆ s
(2) fi(s) = fi(fi(s))

(3) If s ⊆ s′, then fi(s) ⊆ fi(s
′)

Hu, Miller, and Lipovetzky define general perspective
functions, but note that perspective functions can be cus-
tomised for domains. This provides a level of expressiveness
not possible in declarative languages such as PDDL.

Complete Semantics Hu, Miller, and Lipovetzky (2022)
propose a sound and complete semantics for PWP2.
Definition 2.1. Given a model M and state s, the truth of a
PWP formula is defined as:

(a) M, s � r(~t) iff π(s, r(~t)) = true

(b) M, s � φ ∧ ψ iff M, s � φ and M, s � ψ

(c) M, s � ¬ϕ iff M, s 6� ϕ
(d) M, s � Siv iff v ∈ dom(fi(s))

(e) M, s � Siϕ iff ∀g ∈ SG, M, g[fi(s)] � ϕ or
∀g ∈ SG, M, g[fi(s)] � ¬ϕ

2They call these semantics the ‘non-naı̈ve’ semantics, but we
use the term ‘complete’ in this paper as we do not have present a
‘naı̈ve’ semantics as Hu, Miller, and Lipovetzky (2022) do.

where: ~t is the terms in the relation r, and where g[s] is

defined as an override function, where g[s](v) = s(v) if
v ∈ dom(s), and g(v) otherwise. So, the truth value of Siϕ
is such that ϕ is true in every possible state based on the
partial view of agent i, or false in every possible state based
on the partial view of agent i.

From this, echoing Cooper et al. (2016), the knowledge
operation is defined as: Kiϕ ↔ Siϕ ∧ ϕ. That is, agent i
knows ϕ iff ϕ is true and agent i can see whether ϕ is true.

Ternary Semantics Hu, Miller, and Lipovetzky (2022)
show that the complete PWP semantics has exponential time
complexity—in the Siϕ definition, we must iterate over all
global states SG. To counter this, they propose a polyno-
mial time ternary semantics (Levesque 1998), which con-
tains truth values 0 (false), 1 (true), and 1

2 (not known). They
define a function T , which evaluates the value of the for-
mula, defined as follows (omitting M for readability):

(a) T [s, r(~t)] = 1 if π(sn, r(~t)) = true;
0 if π(sn, r(~t)) = false;
1
2 otherwise

(b) T [s, φ ∧ ψ] = min(T [sn, φ], T [sn, ψ])

(c) T [s,¬ϕ] = 1− T [sn, ϕ]

(d) T [s, Siv] = 1
2 if i /∈ dom(sn) or v /∈ dom(sn);
0 if v /∈ dom(fi(sn));
1 otherwise

(e) T [s, Siϕ] = 1
2 if T [sn, ϕ] = 1

2 or i /∈ dom(s)
0 if T [fi(sn), ϕ] = 1

2
1 otherwise

They prove that this semantics is sound on all formulae,
and is also complete for a fragment of the language known
as NF . This fragment NF captures formulae such as those
that do not contain tautologies or contradictions. Given per-
spective functions for each agent, knowledge formulae in
preconditions and effects are evaluated by an F-STRIPS ex-
ternal function that implements the ternary semantics. This
approach is considerably more efficient that the PDKB base-
line Muise et al. (2022), while offering more expressiveness.

3 Justified Perspective Model
In this section, we add a belief operator, Bi, to the PWP
model (Hu, Miller, and Lipovetzky 2022). This belief oper-
ator captures the intuition that we believe something if we
have seen it before, and we have seen no contradicting evi-
dence since.

3.1 Language and Model
Definition 3.1 (Syntax). The language L(Σ) is defined by
the grammar:

α ::= r(t1, . . . , tk) | ¬α | α ∧ α | Siv | Siα | Kiα
ϕ ::= α | Biϕ

Biϕ is a belief formula meaning that agent i believes that
proposition ϕ is true. This grammar prohibits formulae such

as SiBjϕ or KiBjϕ because seeing or knowing belief are
not semantically meaningful in the PWP model—if belief is
known then it is knowledge.

Both signature and model are defined as in Section 2.3,
except that in this paper we rename their perspective func-
tion fi(s)

3 to be an observation function Oi(s), which mod-
els what an agent can observe in state s.

3.2 Observation and Justified Perspectives
Now, we define a retrieval function R to retrieve a variable’s
value from the latest timestamp that the agent had an ‘eye’
on this variable. From this, we will define the perspective
function fi to construct the agent’s justified perspective, and
reason about the agent’s justified belief following the intu-
ition discussed in Section 1.

A sequence of states is denoted as ~s, the set of all possible
states sequences is denoted as ~S, a timestamp is denoted as
ts, and the states in a sequence ~s are denoted as s0, . . . , sn.
Here, the sequence of states in the states that are part of the
state-action pairs in a potential plan. A specific state in agent
i’s perspective fi(~s) at timestamp n is referred as fi(~s)[n].

An observation function is defined the same as the per-
spective function in Section 2.3, except the notation be-
comes O instead of f .
Then, we can construct a retrieval function, R.
Definition 3.2 (Retrieval function). Given a sequence of
states ~s, a timestamp ts and a variable v, the retrieval func-
tion, R : ~s×N× V → D, is defined as:

R(~s, ts, v) =

sts(v) if v ∈ sts
smax(lts)(v) if lts 6= {}
smin(rts)(v) if rts 6= {}
None otherwise

where:

lts = {j | v ∈ sj ∧ j < ts}
rts = {j | v ∈ sj ∧ 0 ≤ ts < j ≤ |~s|}

Here, ~s represents the sequence of states of a plan from a
particular perspective, which could be an agent’s perspective
or the global perspective. The sets lts and rts specify the set
of states before and after timestamp ts respectively in which
v is seen.

The function R plays a crucial role. If we see an agent i
seeing variable v, we know that agent i learns the value of v.
However, what value should we believe that i believes? The
function R determines this. If the value of variable v exists
at time ts, then this is in ‘our’ perspective, ~s, and we see the
variable at the same time as i, so R returns the value of v in
state sts. This is the straightforward case.

However, if we do not see variable v at time ts, what value
should we assign to agent i’s belief? R searches the times-
tamps before ts to find the most recent reference to v. Intu-
itively, if we see that agent i sees v at ts, but we do not see
the value of v itself at time ts, then we believe that agent i
believes the value is the same as the last time we saw v. For

3We give a new definition of the perspective function fi in Def-
inition 3.3

example, if we peek at the coin in the box and see it is a tail,
and then we observe agent i peeking at the coin, it implies
Bacoin = tail should hold, because tail is the most recent
observation of the coin.

If there is no value of v before ts, the function R retrieves
the value by searching forward (the timestamps after ts).
Intuitively, if we believe that agent i sees v at ts, but we
have not seen variable v previously, then we assign i’s belief
about v the next time we see v after ts.

This is what we see in Plan 1.2 – agent b forms a belief
about agent a based on agent b’s observation after agent a’s
observation. If there is no value found about v within ~s, then
R function returns None, as the variable has not been seen
from ~s.

Other design decisions could be made for R: searching
forward first, then backwards; finding the value closest to ts;
or ‘forgetting’ the value of a variable after a certain number
of timestamps. Ultimately, there is no ‘correct’ design here
and no design can handle all possible cases, but we believe
our choice above is intuitive and justified.

We can now give the definition of a perspective function
fi for agent i. Intuitively, a perspective function models an
agent’s perspective over the sequence of states in a plan;
specifically, an agent’s belief about each variable in each
state from a given state sequence, which can either be the
sequence of global states or another agent’s perspectives.

Definition 3.3. A perspective function for agent i, fi : ~S →
~S, is defined as follows:

fi([s0, . . . , sn]) = [s′0, . . . , s
′
n]

where for all t ∈ [0, n] and all v ∈ dom(st):

s′t = {v 7→ e | lt = max(ats(v)) ∧ e 6= None},
ats(v) = {j | v ∈ dom(Oi(sj)) ∧ j ≤ t} ∪ {−1},
e = R([s0, . . . , st], lt, v)

This definition is not so straightforward, so let’s give some
intuition. First, recall that the sequence ~s = [s0, . . . , sn] can
be the perspective of another agent, so it may contain partial
states. The set ats contains all timestamps in which agent
i sees variable v before state st, according to the current
perspective. Then, lt is the most recent timestamp up to st
in which i sees v, which is −1 if agent i has not seen v at
all. This tells us the last time that agent i was seen observing
variable v in the current perspective. This evidence is used
to justify belief (Goldman 1979).

However, if the current perspective represents an agent’s
perspective, agent j, rather than a global perspective, then
agent j may not have seen variable v at time lt—it may have
merely observed agent i seeing v, without seeing v itself;
e.g. the two agents peek at the coin in the box at different
times. We use R([s0, . . . , st], lt, v) (Definition 3.2) to find
what value agent j will believe variable v was in state st.
That is, the most recent value before st or the closest after lt,
as defined by R. Therefore, the value R([s0, . . . , st], lt, v)
is the value of v that agent j ‘believes’ agent i saw; and
the perspective function forms a justified perspective of the
agent i. We can nest perspective functions arbitrarily to form
nested beliefs.

3.3 Semantics
Now, we give two different KD45n semantics: complete se-
mantics and ternary semantics, which extend their respec-
tive S5 semantics from Section 2.3. These have an exponen-
tial worst-case time complexity, while the ternary semantics
have a polynomial time complexity and have the same prop-
erties of incompleteness as their S5 version.

Complete Semantics The complete semantics inherits the
definitions of items (a) - (e) in Definition 2.1, but with three
minor changes: (1) the frame is a pair M,~s instead of M, s,
i.e. it requires a sequence of states instead of a single state
s; (2) the Si operator uses Oi instead of fi (our function
Oi is equivalent to PWP’s fi perspective function, while our
justified perspective function fi generalises for belief); and
(3) the evaluation of atomic propositions is based on the final
state of the sequence ~s.

The major addition is the semantics 4 for the belief oper-
ator:

(g) M,~s � Biϕ iff ∀~g ∈ ~SG, (M,~g[fi(~s)]) � ϕ

where ~SG ∈ ~S is the set of all possible global states se-
quences and ~g[~s] = g1[s1], . . . , gn[sn].

This definition requires some discussion. At a high level,
the definition of Biϕ aims to capture is that agent i believes
ϕ if in its past (including present), it saw ϕ and ϕ is true:
that is, Kiϕ was true. However, this does not capture sit-
uations where ϕ contains references to variables observed
in different states. For example, consider the proposition
Ba(x + y ≥ 0). If agent a observes x = 1 in state s0, then
observes y = 1 in state s1, while not observing x in state s1
at all, then it is not the case that M, s0 � Ka(x + y ≥ 0)
or M, s1 � Ka(x + y ≥ 0) because it does not know the
value of y in state s0 or the value of x in state s1. However,
it seems valid to state that M, s1 � Ba(x+ y ≥ 0) because
it can remember x = 1 from state s0, and has no evidence to
suggest x has changed.

Based on the item (g), fa(~s) is needed to evaluate the
proposition Ba(x+ y ≥ 0).

In the last timestamp (1), the perspective function identi-
fies the most recent timestamps in which x and y are seen by
agent a, which are 0 and 1 respectively. Then, the retrieval
function R retrieves the value of x and y, which are x = 1
and y = 1. So, the last state in agent a’s justified perspec-
tive fa(~s) at s1 is {x → 1, y → 1}. Then, in the previous
timestamp, also the first timestamp (0), the lt for x and y
identified by the perspective function are 0 and −1. So that,
R retrieves x’s value is 1, and a’s justified perspective at
timestamp 0 (fa(~s) at s0) is {x→1}.

Then, assuming Dy = {−1, 1}, by applying the function
override ~g[] on a’s justified perspective fa(~s), we have two
possible sequences: ~s1 = [{x→ 1, y→−1}, {x→ 1, y→
1}] and ~s2 = [{x→1, y→1}, {x→1, y→1}].

Then, we have M,~s � Ba(x + y ≥ 0) ↔ (M,~s1 �
(x + y ≥ 0) ∧M,~s2 � (x + y ≥ 0)). Then, based on item

4The detailed full semantics can be found in our Ap-
pendix: https://github.com/guanghuhappysf128/bpwp/blob/main/
ICAPS-23 Supplementarymaterial final.pdf

(a) in semantics, M,~s � Ba(x+ y ≥ 0) holds.
As noted in Section 2.1, there is no underlying definition

for our justified belief. So, there is no underlying model to
which we can prove soundness or completeness. However,
we show our model is sound with respect to KD45n logic
(see the Appendix, Section 3).

Ternary Semantics Now, we show how to implement our
model using ternary logic semantics, based on the ternary
semantics used by Hu, Miller, and Lipovetzky (2022). This
semantics offers a polynomial time complexity logic, com-
pared to the complete semantics, which is exponential in the
number of states in the problem. It sacrifices completeness
for efficiency. The ternary values for propositions are: 0 de-
notes false, 1 denotes true, and 1

2 means the truth value is
unknown (unable to be proved).

(g) T [~s,Biϕ] = T [fi(~s), ϕ]

So, Biϕ = 1 is ‘true’ (is equal to 1 in the ternary seman-
tics) if and only if ϕ is ‘true’ in agent i’s perspective.

Complexity The time complexity for the complete seman-
tics and the ternary semantics are similar to the PWP ap-
proach. The only difference is the time complexity for the
new justified perspective function.

To evaluate M,~s � ϕ, the worst case scenario is that ϕ
is a belief formula with the depth of d. Then, the justified
perspective function complexity is in Θ(d·|V |2 ·|~s|3), which
is for each variable, getting the ats, getting R(~s, ts, v), for s
in ~s and for each level of nesting from ϕ.

For the complete semantics, in ~s, each state could have
|V | × |D| possibilities. Thus, the number of possible se-
quences is |V × D||~s|. So, the complexity of the query in
the complete semantics is in Θ(d · |V |2 · |~s|3 · |V · D||~s|),
which is exponential on the input size. While, in the ternary
semantics, the complexity of the query is the same as the
justified perspective function, assuming item (a) defined in
Section 2.3 is in Θ(1).

Example 3.1 (Example 1.1 with Plan 1.2). In Figure 1,
agent b cannot at the same time: 1) see agent a peeking
into the box and 2) see what was inside the box at that
time, because a and b are no longer peeking into the box
at the same time, as they were in s2 from Plan 1.1. The lat-
est timestamp lt agent a peeked into the box is 1. We can
retrieve the value of the coin at timestamp 1 from b’s per-
spective using R(~s, 1, coin). In agent b’s perspective, there
is no information about coin until s3, making the return
value of R(~s, 1, coin) to be fb(s)[3](coin) = head. So,
M,~s � BbBacoin = head is equivalent to M, fb(~s) �
Bacoin = head, which is M, fa(fb(~s)) � coin = head.
Therefore, the justified belief of agent b on a false belief
about agent a on ϕ can be generated even if b cannot see
both 1) the truth value of ϕ while 2) seeing agent a seeing ϕ
at the same timestamp (same state).

4 Experiments
We experiment on two benchmark domains (Corridor, and
Grapevine), as well as three other domains (Coin, Big

Brother Logic and Social-media Network) to evaluate the
potential of our model. In this section, we denote d as the
depth of the epistemic formulae, |G| as the number of goal
formulae, |P| as the length of the plan and |calls| as the
number of epistemic formulae reasoning.

4.1 Implementation
The source code of the planner, the domain and problem
files, as well as experimental results, can be downloaded
from https://github.com/guanghuhappysf128/bpwp

Planner Implementation We implemented a simple F-
STRIPS planner that supports PDDL and external functions.
Since the objective is to demonstrate our model instead of
the search algorithm, we use Breadth First Search (BFS).
The experiments are run on a windows 10 machine with 12
CPUs (Intel i7-8700K CUP 3.70GHz) with 32GB ram.

PDDL encoding As for the encoding, we use the same ap-
proach in Hu, Miller, and Lipovetzky (2022). The epistemic
formula evaluation only occurs in either the action precon-
dition (Example 4.1) or the goal in PDDL encoding, while
the evaluation process itself is done in the external function,
which we implemented using python.

4.2 Corridor
Corridor is a benchmark problem in epistemic planning
(Muise et al. 2022). Several agents located in different rooms
of a corridor try to learn a secret. One of the agents (a in our
encoding) has the ability to move between rooms, sense the
secret, shout and shout lie. The action shout announces the
true value of the secret as long as agent a knows the se-
cret (by performing sense action before), while the action
shout lie announces the false value of the secret. For both
actions, agents in the same room or adjacent rooms learn the
shouted value of the secret. The objective is to find a plan
for agent a that makes some agents believe the secret while
some other agents believe the secret is false.

Seeing Rule:
sct ∈ dom(Oi(s)) iff |s(loc-secret-shout)− s(loc-i)| ≤ 1

Result Results are shown in Table 1. We use the same
set of problems as Muise et al. (2022), which contain tasks
with false-belief. Since the goals in all of their problems are
the same, the number of node generations and node expan-
sions are constant across all problems, while only the num-
ber of agents and depth of epistemic formulae affect execu-
tion time. We can see that the number of agents and depth
of epistemic formula affect the pre-encoding done by PDKB
Muise et al. (2022), but not PWP’s lazy evaluation.

4.3 Grapevine
Grapevine is another benchmark problem in epistemic plan-
ning (Muise et al. 2022). In two adjacent rooms, agents share
secrets they have heard previously to all agents in the same
room. All agents can move-left and move-right between two
rooms, and share the truth about someone’s secret or lie
about it. Both actions require the agent to believe the secret.
The objective is to make some agents believe others’ secrets
without the secret owner’s awareness.

Parameters PWP PDKB

|Agt| d |G| |P| |Gen| |Exp| |Calls| TIME(s) |Gen| |Exp| TIME(s)
Calls Total Search Total

3 1 2 5 575 154 185 0.2 0.3 34 16 0.1 0.2
5 1 2 5 575 154 185 0.4 0.5 36 16 0.1 0.2
7 1 2 5 575 154 185 0.6 0.7 37 16 0.1 0.2
3 3 2 5 575 154 185 0.3 0.4 34 16 0.1 0.7
5 3 2 5 575 154 185 0.4 0.5 36 16 0.2 3.3
7 3 2 5 575 154 185 0.7 0.8 37 16 0.6 10.8
3 5 2 5 575 154 185 0.3 0.3 34 16 2.4 39.6
5 5 2 5 575 154 185 0.4 0.5 36 16 217.8 1348.8
7 5 2 5 575 154 185 0.7 0.8 − − − −

Table 1: Experimental results for corridor domain

Parameters PWP PDKB

|Agt| d |G| |P| |Gen| |Exp| |Calls| TIME(s) |Gen| |Exp| TIME(s)
Calls Total Search Total

4 1 2 4 364 68 2234 4.9 5.4 79 15 0.3 0.8
4 2 2 5 442 78 2558 6.0 6.6 61 12 1.6 9.6
4 1 4 6 134492 14781 495432 1942.2 2053.3 88 10 0.2 0.7
4 2 4 7 220022 31709 1056453 5477.5 5707.9 130 17 1.5 9.7
8 1 2 4 892 96 12290 90.8 95.4 152 25 0.7 4.2
8 2 2 5 1114 114 14602 108.9 114.4 186 36 340.4 182.4
8 1 4 11 − − − − − 5919 194 1.8 5.5
8 2 4 9 − − − − − 344 29 166.5 329.2

Table 2: Experimental Results for Grapevine Domain

Example 4.1. Agent i shares agent j’s secret j-sct:
action share(i,j-sct)

prec loc-i=x, epis: Bi j-sct
effs forall ?a - agent loc-?a-sct-shared = 0

j-sct=true, loc-j-sct-shared=x
The precondition “epis: Bi j-sct” is evaluated by

the external function (our model). The effect “loc-j-sct-
shared=x” means j-sct has been shared in location x, and
“j-sct=true” (if i performs action lie, it would be false).

Seeing Rule:

j-secret ∈ dom(Oi(s)) iff s(loc-j-secret-shared) = s(loc-i)

Result Results are shown in Table 2. We use the same set
of problems as Muise et al. (2022). Since the epistemic for-
mula is in the precondition of all share actions, the number
of the external function calls is much larger compared to the
corridor domain. In addition, in grapevine, the number of
agents increases the branching factor of the problem. Given
we implemented just a BFS search algorithm, the planner
ran out of time limit (100 minutes) for larger problems.

4.4 Coin
The coin domain is defined in Example 1.1. The objective is
to generate some false beliefs.

Seeing Rule:

coin ∈ dom(Oi(s)) iff s(peeking-i)

Result Since the coin domain is trivial, results are given in
the appendix. A test case with complex goals, BaBbcoin =
tail and BbBacoin = head, is worthy of discussion. That
is, each agent believes the other believes the coin is a differ-
ent value.

The plan returned is: peek(a), peek(b), return(b), flip, re-
turn(a), peek(b). The latest state where b sees that a sees coin
is s4. From s4, the function R returns coin = head from s2
(after the first peek(b) action), which is the latest state where
the coin is in fb(~s) before s4.

4.5 Big Brother Logic (BBL)
BBL (Gasquet, Goranko, and Schwarzentruber 2014) con-
tains stationary cameras that can turn and observe a certain
angular range in a 2-dimension plane. For example, cam-
era a and camera b are located in positions (3, 3) and (2, 2)
respectively, while a target v with value e is located in po-
sition (1, 1). The angular range of each camera is 90◦, de-
fined by the observation function Oi. Both cameras have
two actions: clockwise-turn and anticlockwise-turn. For sim-
plicity, we set the angle of turning to be enumerated from
the set {0◦,±45◦,±90◦,±135◦, 180◦} and the turning an-
gle to 45◦, but as the external functions are implemented in
Python, we can replace this with floating point numbers to
model continuous directions. We use the same problems de-
fined by Hu, Miller, and Lipovetzky (2022), but with modi-
fied goals to support belief instead of knowledge.

Seeing Rule: From Hu, Miller, and Lipovetzky (2022):

Parameters Performance

|Agt| d |G| |P | |Gen| |Exp| |Calls| TIME(s) Goal
calls Total

BBL01 2 1 1 3 336 85 85 0.0 0.0 Kbv = e
BBL02 2 1 1 3 336 85 85 0.1 0.1 Bbv = e
BBL03 2 1 2 3 336 85 170 1.1 1.1 Bbv = e ∧Bav = e
BBL04 2 2 1 5 2728 683 683 90.4 90.6 BbBav = e
BBL05 2 2 2 5 2728 683 693 17.3 17.5 BaBbv = e ∧BbBav = e
BBL06 2 3 1 5 2728 683 683 178.2 178.5 BbBaBbv = e

Table 3: Experimental results for BBL domain

Parameters Performance

|Agt| d |G| |P | |Gen| |Exp| |Calls| TIME(s) Goal
calls Total

SN01 5 1 1 1 64 7 7 0.0 0.0 Bcp = t
SN02 5 2 2 1 86 9 11 0.2 0.2 Bcp = t ∧BbBcp = t
SN03 5 1 2 2 215 20 25 0.4 0.5 Bcp = t¬Bdp = t
SN04 5 1 1 2 1029 96 193 4.4 4.8 Ba,b,c,d,ep = t
SN05 5 1 1 2 430 37 56 1.3 1.4 Ba,b,d,ep = t ∧ ¬Bcp = t
SN06 5 1 1 2 669 62 96 2.1 2.3 Ba,cp = t ∧ ¬Bbp = t ∧ ¬Bdp = t ∧ ¬Bep = t

Table 4: Experimental results for SN domain. Ba,...,eϕ is shorthand for each agent in the set {a, . . . , e} believing ϕ

j ∈ dom(Oi(s)) iff(
| arctan(

|s(yi)−s(yj)|
s(xi)−s(xj)

)− s(diri)| ≤ s(angi)
2

)
∨(

| arctan(
|s(yi)−s(yj)|
s(xi)−s(xj)

)− s(diri)| ≥ 360◦−s(angi)
2

)
(1)

where (xi, yi) is the location of object/agent i.

Result Results are shown in Table 3. Initially, camera b
faces 90◦ in all problems. The optimal solution for camera
b to gain any information on variable v is to turn anticlock-
wise 135◦, which is the case of BBL01-03. However, as for
camera b to acquire any beliefs about camera a, camera b has
to turn clockwise first to see camera a (BBL04-06).

The results show that we can solve multi-agent belief
problems in complex domains such as BBL, which would
be difficult to encode in a propositional language without
external functions.

4.6 Social-media Network
The Social-media Network (SN) domain is an abstract net-
work using bi-directional communication proposed by Hu,
Miller, and Lipovetzky (2022). The agents establish two-
way communication channels by befriending each other and
communicating by posting messages on their homepage or
their friends’ homepages. Each agent can Befriend or Un-
friend another agent. For example, let a, b, c, d and e be 5
agents and p = 1 be the message a wants to share. The se-
cret p can be post or retract on the homepage of agent a or
a’s friends’ homepage. The objective is to form beliefs about
messages. Initially, a is friended with c and d, b is friended
c and e, c is friended with a, b and d, d is friended with a, c
and e, while e is friended with b and d.

Seeing Rule:

p ∈ dom(Oi(s)) iff ∃j ∈ Agt, s(friended-i-j)∧ s(post-p-j)

Results The results are shown in Table 4. For SN01, the
plan is simply “post p on a’s homepage”, while for SN02,
with b involved, the plan becomes “post on c’s homepage”.
For SN05, the object is for everyone but c to gain the same
belief of p, while SN06 is for everyone who does not believe
p except c (a knows p all along, as p is posted by a).

5 Conclusions and Future Work
In this paper, we defined an extension to the PWP S5
logic, to handle belief using perspectives; and embedded this
within a model-free planning tool. Although it is not possi-
ble to prove the soundness and correctness of our justified
belief model, we prove that the new logic satisfies the prin-
ciples of belief described by the axioms of the logic KD45n

Our experiments demonstrate that we can effectively han-
dle problems of planning with belief, and can do so effi-
ciently even with a simple prototype planner implemented
using BFS.

For future work, we will study common belief, which is
a challenge to model using perspectives, because common
belief is the infinite regress of nested belief, so may not ter-
minate. A potential solution is to find a way to merge each
agent’s justified perspectives. In addition, besides retrieving
information from the agent’s memory as justification, other
forms of justification, such as argument would be intriguing
to be integrated into our model (Goldman 1979).

References
Artëmov, S. N. 2008. The Logic of Justification. Rev. Symb.
Log., 1(4): 477–513.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2022. An
action language for multi-agent domains. Artif. Intell., 302:
103601.
Bjorndahl, A.; and Özgün, A. 2020. Logic and Topology
for Knowledge, Knowability, and Belief. Rev. Symb. Log.,
13(4): 748–775.
Bolander, T. 2014. Seeing is Believing: Formalising False-
Belief Tasks in Dynamic Epistemic Logic. In Proceedings
of the ECSI-2014, 87–107.
Bolander, T. 2017. A Gentle Introduction to Epistemic Plan-
ning: The DEL Approach. In Proceedings of the Ninth Work-
shop on M4M@ICLA, 1–22.
Bolander, T.; and Andersen, M. B. 2011. Epistemic planning
for single and multi-agent systems. JANCL, 21(1): 9–34.
Bonet, B.; and Geffner, H. 2019. Causal Belief Decompo-
sition for Planning with Sensing: Completeness Results and
Practical Approximation. CoRR, abs/1909.13778.
Cooper, M. C.; Herzig, A.; Maffre, F.; Maris, F.; and
Régnier, P. 2016. A Simple Account of Multi-Agent Epis-
temic Planning. In ECAI 2016, 193–201.
Fabiano, F.; Burigana, A.; Dovier, A.; and Pontelli, E. 2020.
EFP 2.0: A Multi-Agent Epistemic Solver with Multiple E-
State Representations. In Proceedings of the ICAPS, 101–
109.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y.
2003. Reasoning About Knowledge. MIT Press. ISBN
0262562006.
Fan, J.; Wang, Y.; and van Ditmarsch, H. 2015. Contingency
and Knowing Whether. Rew. Symb. Logic, 8(1): 75–107.
Fan, T.; and Liau, C. 2017. Doxastic Reasoning with Multi-
Source Justifications based on Second Order Propositional
Modal Logic. In Proceedings of the 16th AAMAS, 1529–
1531. ACM.
Francès, G.; Ramı́rez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Descriptions are Overrated:
Classical Planning with Simulators. In Proceedings of the
26th IJCAI, 4294–4301.
Friedman, N.; and Halpern, J. Y. 1994a. A Knowledge-
Based Framework for Belief change, Part I: Foundations. In
Proceedings of the 5th TARK, 44–64.
Friedman, N.; and Halpern, J. Y. 1994b. A Knowledge-
Based Framework for Belief Change, Part II: Revision and
Update. In Proceedings of the 4th KR, 190–201.
Gasquet, O.; Goranko, V.; and Schwarzentruber, F. 2014.
Big brother logic: logical modeling and reasoning about
agents equipped with surveillance cameras in the plane. In
AAMAS ’14, 325–332.
Geffner, H. 2000. Functional STRIPS: a more flexible lan-
guage for planning and problem solving. In Logic-based
artificial intelligence, 187–209.
Goldman, A. I. 1979. What is justified belief? In Justifica-
tion and knowledge, 1–23. Springer.

Grossi, D.; and van der Hoek, W. 2014. Justified Beliefs by
Justified Arguments. In KR 2014.
Herzig, A.; Lorini, E.; and Maffre, F. 2015. A Poor Man’s
Epistemic Logic Based on Propositional Assignment and
Higher-Order Observation. In LORI 2015, volume 9394,
156–168.
Hu, G.; Miller, T.; and Lipovetzky, N. 2022. Planning
with Perspectives – Decomposing Epistemic Planning using
Functional STRIPS. jair, 75: 489–539.
Kominis, F.; and Geffner, H. 2015. Beliefs In Multiagent
Planning: From One Agent to Many. In 25th ICAPS, 147–
155.
Le, T.; Fabiano, F.; Son, T. C.; and Pontelli, E. 2018. EFP
and PG-EFP: Epistemic Forward Search Planners in Multi-
Agent Domains. In Proceedings of the 28th ICAPS, 161–
170.
Levesque, H. J. 1998. A completeness result for reasoning
with incomplete first-order knowledge bases. In KR, 14–23.
Li, K.; and van Eijck, J. 2022. Public Announcements, Pub-
lic Lies and Recoveries. J. Log. Lang. Inf., 31(3): 423–450.
Miller, T.; Felli, P.; Muise, C. J.; Pearce, A. R.; and So-
nenberg, L. 2016. ‘Knowing Whether’ in Proper Epistemic
Knowledge Bases. In Proceedings of the 30th AAAI, 1044–
1050.
Muise, C.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller, T.;
Pearce, A. R.; and Sonenberg, L. 2022. Efficient multi-agent
epistemic planning: Teaching planners about nested belief.
Artif. Intell., 302: 103605.
Muise, C. J.; Belle, V.; Felli, P.; McIlraith, S. A.; Miller,
T.; Pearce, A. R.; and Sonenberg, L. 2015. Planning Over
Multi-Agent Epistemic States: A Classical Planning Ap-
proach. In Proceedings of the 29th AAAI, 3327–3334.
Scherl, R. B. 2022. A Situation-Calculus Model of Knowl-
edge and Belief Based on Thinking About Justifications. In
Proceedings of the 20th NMR, Part of the FLoC 2022, vol-
ume 3197, 104–114.
Stalnaker, R. 2006. On logics of knowledge and belief.
Philosophical Studies, 128(1): 169–199.
van Ditmarsch, H.; Halpern, J. Y.; van der Hoek, W.; and
Kooi, B. P. 2015. An Introduction to Logics of Knowledge
and Belief. CoRR, abs/1503.00806.
Wan, H.; Fang, B.; and Liu, Y. 2021. A general multi-agent
epistemic planner based on higher-order belief change. Artif.
Intell., 301: 103562.

