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Epistemic planning —– planning that incorporates knowledge and belief (knowledge

that could be false) — is crucial in many multi-agent and human-agent interaction set-

tings. However, existing approaches often struggle with scalability, particularly as the

number of agents or the depth of nested epistemic relations grows. A notable exception

is the state-based methods that use agent’s perspective model, which focuses reason-

ing only on the visible part of states for agents. By delegating epistemic reasoning

to an external function, this method enhances expressiveness and efficiency in solving

complex epistemic planning tasks. Despite these advantages, the PWP approach has

limitations, including an imprecise trade-off between efficiency and completeness and a

lack of systematic modeling for beliefs, especially false beliefs.

In this thesis, we extend agent’s perspective model to develop a more efficient and ef-

fective model for epistemic planning. First, we introduce multiple semantic formats

with agent‘’s perspective model to clarify the balance between efficiency and complete-

ness. Then, with the intuition that people reason unseen by retrieving their memory,

we extend the original model to handle justified beliefs, resulting in the Justified Per-

spective (JP) model. Furthermore, we formalize the encoding, design a planner with

various search algorithms, and conduct comprehensive experiments demonstrating that

our approach is both more efficient and expressive than the current state-of-the-art in

epistemic planning. Finally, the JP model is expanded to represent group beliefs (the

final missing puzzle of the epistemic logic), including distributed beliefs and common

beliefs.

Overall, in this thesis, we provide an efficient and expressive planning framework, includ-

ing an (action) model-free epistemic logic reasoning model, establishing the framework’s

potential for broader applications.
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Chapter 1

Motivation and Introduction

Theory of Mind is fundamental to

human cognition, enabling individuals

to interpret and predict the behaviour

of others by attributing mental states

to them.

— Frith and Frith

It has been more than 70 years since Turing proposed the famous question: “Can ma-

chine think?”, Artificial Intelligence (AI) has become a popular topic with numerous

studies on its applications and theory. As mentioned by Russell and Norvig [10], AI can

help humans manage the complexity of modern life. With the advance of the techniques

in the field of AI, more and more intelligent agents are involved in human life. How

those agents co-exist without any conflict becomes a new challenge to solve, especially

when those agents do not belong to the same system. In addition, as one of the goals

in AI research [11], AI applications are designed to enhance human abilities such as

decision-making and problem-solving. To make intelligent agents work in a multi-agent

environment or in a human-agent interaction environment, as mentioned by Breazeal

[12] integrating social intelligence into AI systems is essential for creating machines that

can collaborate effectively with humans.

1
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Figure 1.1: Illustration of the Sally-Anne task.

1.1 Motivation

As one fundamental concept in social intelligence, Theory of Mind (ToM) attracts the

attention of many researchers. Early foundational work by Premack and Woodruff [13]

framed ToM as a cognitive capacity essential for predicting and interpreting behaviour.

ToM involves not only understanding someone else’s mental state — including their

knowledge, beliefs, and inferences — but also recognizing that they may hold beliefs

different from what we know to be true. The Sally-Anne task, also known as the false-

belief task, was introduced by Baron-Cohen et al. [14] and is widely used to examine

individuals’ ToM abilities.

Example 1.1 (The Sally-Anne Task). As shown in Figure 1.1, the setup is as follows:

two individuals, Sally and Anne, are in a room with a basket and a box, both of which

are covered. The story begins with Sally placing a marble in the basket before leaving

for a walk. While she is away, Anne moves the marble from the basket to the box. The

question is: where will Sally look for her marble when she returns?
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To pass the test, the subject should be able to come up with the conclusions that Sally

will look into the basket for her marble. That is, in Sally’s mindset, she believes she

put the marble into the basket before she left and there is no evidence in her mind to

show the location of the marble has been changed. Passing this task demonstrates the

individual has a basic ability in ToM that can believe someone else holds a false belief.

In the field of AI, this concept was adapted in many different research efforts. At a

high level, those researches can be divided into two categories based on the fundamen-

tal methodology used, which are: the learning-based approach and the model-based

approach.

The first attempt to use a learning-based approach to model ToM is proposed by Rabi-

nowitz et al. [15], in which they use a meta-learning approach to observe another agent’s

behaviour across multiple episodes, gradually inferring that agent’s “policy embedding”.

They call the Theory of Mind neural network they trained as ToMnet. Their results

demonstrate that a trained ToMnet can predict actions based on the agent’s hidden or

incorrect beliefs. Another indirect but relevant field is Opponent Modeling using Deep

Reinforcement Learning [16], in which ToM was not explicitly modeled. In addition,

more recently, with the development of LLMs, some of the LLM models are also capable

of handling ToM tasks [17–19].

However, critics argue that the learning-based AI systems lack genuine ToM, instead rely-

ing on statistical correlations rather than causal understanding [20]. Consequently, these

concerns over black-box reasoning and potential misalignment with human mental-state

semantics have led researchers to consider model-based approaches — where explicit

representations of beliefs, desires, and intentions enhance transparency, interpretability,

and safety.

As one of the model-based approaches, Bayesian methods have emerged as a powerful

framework for modeling ToM. Foundational work is proposed by Baker et al. [21]. In

their framework, observers assume agents act (approximately) rationally to achieve their

goals, and they use Bayesian updates to infer what the agent must believe or desire. In

addition, there is much further research that uses Bayesian models [22–29]. However,

as mentioned by Baker et al. [25], the computational challenge persists in scaling these

models to real-world applications without approximations.
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Another standard model-based approach is Planning, which formulates a sequence of

actions to achieve objectives (goals) of the agents. Generally, planning to solve a problem

has: a model to represent the problem; a language that is used to form a specific

description of the problem; a solver to solve the problem automatically; a controller as

the result for the agent to act. The basic model in planning is the Classical Planning

model, in which the problem is deterministic and fully-observable. Although classical

Planning itself cannot handle ToM, adaptations by adding knowledge or belief logic in

the action started to appear in the late 20th century [30–33]. From this foundation,

a substantial body of research on Epistemic Planning has developed both before and

after the formal introduction of the term by Bolander and Andersen [34], continuing to

expand to the present day.

1.2 Introduction

As for this thesis, the above motivation demonstrates the need for agents to reason

about epistemic logic, which is essential for multi-agent and human-agent interaction

applications. Compared to other methods, planning-based approaches have advantages

in explainability, transparency, safety, and reliability with enough generalization and

flexibility. Thus, this thesis is about epistemic planning. However, all existing ap-

proaches for epistemic planning face some drawbacks (mainly scalability), which limits

the development and its potential for real-world applications (Details in Section 2.3.3).

Thus, the research question that this thesis is answering is:

How can we enable expressive modelling and efficient solving of epistemic

planning problems?

Throughout this thesis, firstly, we provide a comprehensive background and literature

about epistemic planning. This includes the foundation for epistemic planning from

both sides (planning and epistemic logic), as well as the existing research. From the

literature, we pinpoint the constraints (mainly scalability) of existing epistemic planning

methods that hinder the advancement of the research and its potential for application.

In addition, we identify the first attempt to use a fundamentally different method by

Hu [4] to model and solve epistemic planning problems, which is known as the agent’s

perspective model.
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Hu’s intuition is that people know things by observation. Then, they reason about

knowledge by generating agents’ perspectives (observations), which are effectively local

states representing the observable part of the world for each agent. They claim that for

any epistemic domain, the modeler just has to define the domain-dependent perspective

function, which is the seeing rules of this domain, while their semantics do the reasoning

parts about agents’ (nested) knowledge. With this agent’s perspective model, they are

able to reason about nested knowledge and group knowledge by forming corresponding

perspectives using set operations. In addition, they used a non-standard planning lan-

guage to separate the epistemic reasoning from planning. By doing so, they can lazily

evaluate epistemic relations by an external reasoner when solving epistemic planning

problems. Moreover, their framework can work with any planner that supports external

functions.

We found their solution is promising for bridging the gap between epistemic planning

and its real-world application due to the efficiency and expressiveness of their framework.

Therefore, this thesis digs deeper into the agent’s perspective model to investigate the

properties (soundness and completeness) their model traded for efficiency. Then, we

formalize our findings and propose new semantics to balance between efficiency and

these properties.

Then, this thesis goes beyond the agent’s perspective model as it only handles knowl-

edge. Goldman [35] claims that people believe something they have seen, until they

see evidence to suggest otherwise. Following Goldman’s justified belief, instead of only

modeling agents’ perspectives (observations), we propose a new model, namely the Jus-

tified Perspective (JP) Model, that reasons about individual agents’ nested epistemic

logic, including both knowledge and belief. Agents’ justified perspectives are formed

by composing their current observation with their past observations. That is, we rea-

son about agents’ epistemic relations using the sequence of states rather than just the

current state. We show the formalization of the JP model as well as its semantics and

axiomatic system. Moreover, we also provide a problem encoding with a widely used

planning language and adopt some existing algorithms to search the state sequences.

With comprehensive experiments, this thesis shows the JP model is an expressive and

efficient framework to solve single-agent (nested) epistemic planning problems.

Further, this thesis extends the JP model to handle group (nested) beliefs. Differing
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Figure 1.2: Illustration of the example states in the Number In Boxes domain.

from agents’ knowledge, where it cannot be false since it is derived from the global

state (ground truth), agents can hold false beliefs. Thus, agents’ group beliefs cannot

simply be handled by merging their justified perspectives, like in the agent’s perspective

model. In this thesis, we show how we “safely” merge agents’ justified perspectives for

the distributed belief, and how we efficiently handle agents’ common belief by forming

a fix-point set of justified perspectives.

To better illustrate our work, we proposed a complex version of the Sally-Anne Task

that suits in planning as follows.

Example 1.2 (Numbers In Boxes). As shown in Figure 1.2, there are two agents, a

and b, and two numbers, p and q, hidden in separate boxes. The value of each number

ranges from 0 to 99.

The agents do not know the value of the numbers unless they peek into the corresponding

box. Each box can only be peeked at by one agent at a time.

The numbers can be modified (incremented or decremented by 1) by a hidden third agent,

without a or b noticing. Consequently, neither a nor b would know that a number has

been changed unless they are peeking at it or peeking afterwards.

This example domain is the Numbers in Boxes (NIB) domain. The problems in this

domain can be identified by describing the initial situation and desirable goal conditions.

An example problem can be described by assuming the initial value for p and q are
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4 and 6 and no agent is peeking at any box, and the goal conditions could be both

boxes being peeked at by an agent (any of the two example states on the right side

of Figure 1.2) and p × q < 10. The goal conditions determine whether the problem

instance belongs to a classical planning problem or an epistemic planning problem. If

the goal conditions contain epistemic relations (knowledge or beliefs), then the problem

instance needs to be modeled as an epistemic planning problem 1 rather than a classical

planning problem 2. Throughout this thesis, the above example is used to demonstrate

the approaches encountered as background or related work, as well as the approaches

proposed by this thesis.

1The formal definitions of epistemic planning problem is given in Section 2.3.1.1.
2An exception is the methods that model and solve epistemic planning problems by converting it into

a classical planning problem. For those approaches, we still consider them as solving epistemic planning
problem instead of classical planning problem.



Chapter 2

Epistemic Planning

It is this that we omitted in our

investigation of the nature of virtue,

when we said that only knowledge

can lead to correct action, for true

opinion can do so also.

—Plato

In this chapter, we provide the background from both directions of Epistemic Planning,

which are Classical Planning and Epistemic Logic. Then, we review the two traditional

directions in Epistemic Planning. At the end, we raise the research question and outline

of this thesis.

2.1 Automated Planning

Planning is the model-based approach to action selection in artificial intelligence, where

the model is used to reason about which actions an agent should take to achieve some

objective, such as reaching a goal [37]. The concept initially appeared in General Prob-

lem Solver (GPS) [38]. Although their intuition is to design a system that mimics

human problem-solving processes, which is breaking down the complex task into sim-

pler subproblems and addressing them systematically, it is still providing groundwork for

subsequent developments in AI planning. That is, decomposition of goals and strategic

sequencing of actions to achieve those goals. This idea has been further investigated by

8
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Figure 2.1: Illustration of planning process to solve a problem instance.

Fikes and Nilsson [39], who developed a new problem-solving program, namely STRIPS

(STanford Research Institute Problem Solver). They illustrate the “planning” idea from

GPS with the process of: modelling the problem (with STRIPS language), solving the

problem and finding a solution (As shown in Figure 2.1).

There are many types of planning, including but not limited to: classical planning,

conditional planning, temporal planning, generalized planning, hierarchical planning, and

epistemic planning. Despite their differences, all of these follow a similar overall process.

The fundamental distinction between these variations lies in the type of problems that

each model handles. These models differ based on the assumptions made about the

dynamics of the world. For example, classical planning models assume deterministic,

instantaneous effects of actions and complete knowledge of the world, whereas temporal

models account for actions with durations, and partially-observable Markov-decision-

process models represent uncertainty through belief distributions over possible states of

the world.

As noted by Ghallab et al. [40], the conceptual model is not intended to be operational.

Instead, problems that can be represented by these models are concisely described using

declarative languages such as STRIPS [39] and PDDL (Planning Domain Definition

Language) [41]. These languages are sufficiently general to encode a variety of problems

while simultaneously revealing structural information that enables planners to scale to

large and complex problems. Once a problem instance is described, the planner applies

search algorithms to find a solution. The agent then follows this solution to complete

the task. The nature of the solution varies depending on the problem type: for classical

planning, it is typically a plan (a sequence of actions); while for more complex problems,

such as those involving non-deterministic actions, the solution may be a policy, which

maps every possible state to the best action.

2.1.1 Planning Assumptions

When it comes to planning assumptions, classical planning, as the foundational model

of planning, is the paradigm with the most fundamental assumptions that simplify the
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planning problem. The assumptions for classical planning have been outlined and dis-

cussed in various works [10, 37, 39, 40]. The most systematic analysis on planning as-

sumptions is done by Ghallab et al. [40]. These assumptions include, but are not limited

to, the following: the planning domain is finite, discrete (instantaneous), deterministic,

fully observable, static, Markovian, with restricted goals, considered as single-agent, uses

sequential plans, and operates within a closed-world assumption.

Assumption 1 (Finite). The set of all possible states and the set of all possible actions

for a classical planning problem need to be finite. Without this assumption, theo-

retically, any algorithm that is used to solve this problem can neither guarantee the

completeness nor termination of itself [42]. In addition, in its application, even with

the finite assumption, classical planning problems can be computationally challenging

(PSPACE-complete) [43]. Thus, a finite number of possible states and possible actions

is a well-accepted assumption in classical planning.

Assumption 2 (Discrete). Classical Planning models problems where both state and

action are discrete. Discrete state space can be ensured by a finite number of possible

states, while discrete action is not only about the finite number of actions. This also

ensures that the application of the action is instantaneous, which is discussed when

comparing to Temporal Logic in planning [44]. That is, in classical planning, states

transition from one to another instantly by applying an action.

Assumption 3 (Deterministic). All actions in classical planning need to be determinis-

tic. That is, in a given state, the outcome of performing an (available) action is singular

and predictable. This allows the planner to use logical reasoning to determine the out-

comes of action sequences.

Assumption 4 (Fully Observable). The “fully observable” assumption posits that the

agent has complete and accurate knowledge of the current state of the environment at

all times. Similarly, this assumption is originally from STRIPS [39]. It is formed by the

fact that the initial state is fully observable, as well as all actions’ effects, which indicate

that every state in the problem-solving process is fully observable.

Assumption 5 (Static). The “static” assumption refers to the premise that the envi-

ronment remains unchanged except as a direct result of the acting agent’s actions. The

assumption originates from STRIPS [39] in 1971. In STRIPS, a state is modeled as a
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set of propositions, which currently hold, and actions (operators) are used to transi-

tion between states. The framework assumes that no external events or environmental

dynamics modify the state unless explicitly specified by the defined actions.

Assumption 6 (Markovian). The Markovian assumption is an important concept in

planning, stating that the next state resulting from an action depends solely on the

current state and the action executed, not on the sequence of previous states or ac-

tions. While in classical planning this property is often implicit, only a few works have

mentioned it [45]. With the above assumptions (Assumption 1 and Assumption 3), this

assumption is guaranteed. That is, for any non-Markovian problem with a finite number

of possible states and a finite number of possible actions, the number of possible state

sequences without repeats is also finite. Then, we can model the original problem by

modeling each state sequence as a state in the new model, which makes the problem

become Markovian.

Assumption 7 (Restricted Goals). The goal states for the problem need to be specified.

The objective of solving a problem is to select and apply actions to reach one of the states

that are considered as goal states. This assumption explicitly avoids extended goals, such

as states or transition constraints when solving the problem or utility functions.

Assumption 8 (Single-Agent). The “single agent” assumption in classical planning

needs some clarification. It restricts the problem to scenarios where only one decision-

making entity is responsible for finding a sequence of actions to achieve the goal. Orig-

inally, in STRIPS [39], this assumption also requires the acting agent to be the same

entity as the decision-making one. However, this limitation seems unnecessary. When

the problem, which this entity is trying to solve, contains multiple acting agents, who

follow the instructions (plan) generated by that decision-making entity, the plan gen-

erated is still in the single-agent setting. The explicit discussion on this can be found

in the latest edition (Edition 4) of Russell and Norvig’s book [10]. They distinguish

whether an entity should be modeled as an agent by whether its performance measure

(goals) completely or partially conflicts with others. For example, in modeling a multi-

agent pathfinding problem (using the simplest version), in which each agent has a goal

position to visit in a grid and they cannot be at the same location at the same time,

the modeler could consider this problem as single-agent if they consider the whole agent

group as the “single agent”. That is, this “single agent” has to choose one move for each

acting agent without collision as one action in the modeled problem.
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Assumption 9 (Sequential Plan). A solution to the problem should be a plan, which

is a finite linearly ordered sequence of actions. This assumption is consistent with

Assumption 1, Assumption 3 and Assumption 8.

Assumption 10 (Closed World). The ”closed-world” assumption in classical planning

posits that any fact not explicitly stated is considered false. This was first formalised

by Fikes and Nilsson [39]. They defined the state as a set of propositions (they called

well-formed formula) and the initial state is all the propositions that are initially true. In

addition, the state transition is done by operators, which contain a set of preconditions

and effects, where effects contain a list of propositions that become true (need to be

added to the state) and a list of propositions that become false (need to be removed

from the state). Their initial state aligns with the closed world assumption, and their

operator mechanism ensures the assumption holds all the time.

Compared to the list of assumptions in Ghallab et al. [40], we omitted the assumption of

“offline planning”, as all the works covered in this thesis are in the offline setting. While

we cover a few new assumptions, as the main research topic of this thesis, Epistemic

Planning, is: in a multi-agent (or human-agent interaction) environment (Assumption 8);

and, one’s belief depends on what happened in the past (Assumption 6); and, one’s

perspective of the world could follow the closed-world or possible-worlds assumption

(Assumption 10).

2.1.2 Planning Models

The planning model determines the type of problems that could be represented. We

start by explaining the basic planning model, Classical Planning Model, and then briefly

mention other planning models.

2.1.2.1 Classical Planning Model

Classical Planning Model, also known as a state-space model, is the widely accepted

theoretical ground for many different variations of planning. It was originated from

Mathematics (state space) and adapted by researchers studying AI about robotic con-

trol [46]. Then, the model is used by Ghallab et al. [40] as the basic theoretical ground
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Figure 2.2: Example initial state in the NIB domain.

for planning. A formal definition is found in Geffner and Bonet [37]’s work which is

commonly used by the current planning community. Here, we begin with Geffner and

Bonet’s definition, as it is somewhat simpler to comprehend than other definitions.

Definition 2.1 (State-Space Model). Following all assumptions in Section 2.1.1, a clas-

sical planning problem instance P can be defined by a tuple as follows:

P = (S, s0,SG, A, t, c), where:

• S is the set of all possible states.

• s0 is the initial state of the problem instance that s0 ∈ S.

• SG is the set of goal states that SG ⊆ S.

• A is the set of all action, where the applicable action for a given state s is A(s) ⊆ A.

• t : S × A → S is the deterministic transition function that returns the next state

s′ when applying action a in state s

• c : S×A→ R≥0 is the cost function that determines the cost c(s, a) (a real number

that is larger or equal to 0) of applying action a in state s.

In the planning paradigm, a plan (solution) is a sequence of actions a⃗ = [a0, . . . , an]

that could transition the initial state s0 to one of the goal states sg ∈ SG. That is,

t(. . . t(s0, a0) . . . , an) = sg. A plan is optimal if and only if there does not exist another

plan that has less cost (Σi∈{0,...,n}c(si, ai)). The concept of the state space in the above

model might be clear to any AI researchers, but it might be too abstract to the reader

without relative background. Thus, we use the following example to explain how it

works.

Example 2.1 (NIB Example for Classical Planning). Following the same domain as

described in Example 1.2, we specify the initial state and goals. Initially, as depicted in
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Figure 2.2, no agents are peeking into the boxes and the values of the numbers p and q

are 4 and 6, respectively. The goal is to ensure that both numbers, p and q, are being

peeked at, regardless of which agent is looking at which number.

One way to model the above example is:

S =


 pta, ptb,

valuep, valueq

 ∣∣∣∣∣∣ pta, ptb ∈ {0, 1, 2}, pta × ptb /∈ {1, 4},

valuep, valueq ∈ {0, . . . , 99}


Each state in the NIB domain can be represented by 4 elements: pta and ptb are the

postures of the agents, where 0, 1 and 2 are postures that are standing, peeking at the

box containing p and peeking at the box containing q; pta × ptb /∈ {1, 4} ensures both

agents will not peek into the same box; valuep and valueq represent values of p and

q. With the above state space, the initial state is s0 = (0, 0, 4, 6). The goal states are

SG =
{
(1, 2, x, y) | x, y ∈ {0, . . . , 99}

}
∪
{
(2, 1, x, y) | x, y ∈ {0, . . . , 99}

}
, which is a set

union of: all states that a sees p and b sees q; and, all states that a sees q and b sees p.

The returned set of available actions by the action function for any given state is:

A
(
(pta,ptb, valuea, valueb)

)
=



∅ base case

∪{peek(a,p)} if pta = 0, ptb ̸= 1

∪{peek(a,q)} if pta = 0, ptb ̸= 2

∪{peek(b,p)} if pta ̸= 1, ptb = 0

∪{peek(b,q)} if ptb ̸= 2,ptb = 0

∪{return(a,p)} if pta = 1

∪{return(a,q)} if pta = 2

∪{return(b,p)} if ptb = 1

∪{return(b,q)} if ptb = 2

∪{increment(p)} if valuep < 99

∪{decrement(p)} if valuep > 0

∪{increment(q)} if valueq < 99

∪{decrement(q)} if valueq > 0
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At last, the transition function is straightforward in that one value of the state will be

changed by the applied action accordingly. A valid plan is one of [peek(a,p),peek(b,q)],

[peek(a,q),peek(b,p)], [peek(b,p),peek(a,q)] and [peek(b,q),peek(a,p)].

As mentioned by Ghallab et al. [40], the classical planning model is important in planning

as one of the common motivations in most of the scientific research when facing a complex

question is to make restrictive assumptions. With reasonable assumptions, a simplified

problem can be worked out with general models (languages) and approaches.

2.1.2.2 Other Planning Models

As mentioned in its definition (Definition 2.1), the classical planning model follows all

assumptions in Section 2.1.1, as it provides the basics for all planning directions. Those

directions are found by relaxing one or many of those assumptions. In this thesis, we

only introduce the relevant ones.

The deterministic assumption (Assumption 3) receives much attention. In contrast to

deterministic actions, the alternatives are non-deterministic, probabilistic, and stochastic

actions. The classical planning domains with non-deterministic actions are named as

Fully-Observable Non-deterministic Domain (FOND) in Ghallab et al. [40]’s book. The

problem in FOND can be represented by a tuple that P = (S, s0,SG, A, t, c), where the

transition function becomes t : S × A → P(S). That is, one action could have a set of

possible next states. A solution for any problem instances in FOND would be a policy

(a function that inputs a state and returns an action) instead of a plan.

From the domain in FOND, Brafman and Giacomo [47] introduced the Non-Markovian

Fully Observable Non-deterministic Domain (NMFOND) by also relaxing the Markovian

assumption (Assumption 6). A problem instance in NMFOND is often defined by a

tuple P = (S, s0,SG, A, t, c), where the transition function t : S+ ×A→ S and the goal

becomes a set of state sequences SG ⊂ S+.

2.1.3 Planning Language

Planning languages are the bridge between the human modelers and the planning system.

Although the planning model defines the theoretical ground of the planning problems,
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the planning language is required as a practical tool to encode problems within the

corresponding planning model.

2.1.3.1 STRIPS

As the earliest language that can model classical planning problems, STRIPS [39] rep-

resents a classical planning problem as a tuple:

P = ⟨F,O, I,G⟩, where:

• F is the set of all possible facts (positional variables, also named as fluents).

• O is the set of all operators.

• I ⊆ F is a set of all true facts in the initial situation.

• G ⊆ F is a set of facts that need to be true as the goal conditions.

The state representation in STRIPS is a subset of F , where all propositions that hold

true are included in the set, while those that do not hold are excluded, in alignment with

the closed-world assumption. Each operator o in STRIPS consists of three components:

• pre(o): The set of propositions (preconditions) that must be true for the action to

be applicable.

• add(o): The set of propositions that become true as a result of the action.

• del(o): The set of propositions that become false as a result of the action.

State transitions occur by applying an operator, transforming one set of propositions

into another. Since STRIPS does not account for customized operator costs, a plan is

optimal if there is no plan with fewer operators taken.

Using Example 2.1, the set of all facts can be expressed as:

F =

 peeking(x, y), standing(x),

free(y), being peeked(y), val(y, z)

∣∣∣∣∣∣ x ∈ {a, b}, y ∈ {p, q}

z ∈ {0, . . . , 99}


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The propositions peeking(x, y) indicate whether agent x is peeking into the box contain-

ing y. The propositions standing(x) signify that agent x is in a standing position (not

peeking into any box), while the propositions free(y) denote that the box containing

y is available for an agent to peek into. Finally, the propositions val(y, z) are true if

the current value of the number y is z. Overall, any state in the NIB domain can be

represented with a F of size 4 + 2 + 2 + 200 = 208.

The initial state can be represented by:

I = {standing(a), standing(b), free(p), free(q), val(p, 4), val(q, 6)}

The set of goal propositions requires some discussion. Intuitively, “having both boxes

to be being peeked at” means one of the peeking(a, p) and peeking(b, p) is true, and

one of the peeking(a, q) and peeking(b, q) is true. However, the goal conditions in

STRIPS need to be one set of propositions. Thus, “{peeking(a, p),peeking(b, q)} or

{peeking(b, p),peeking(a, q)}” would not be a valid G. On the second thought, free(x)

becomes false when someone is peeking at it, which means {¬free(p),¬free(q)} could

be the goal conditions. However, STRIPS does not allow negation in its goal condi-

tion. Therefore, we need an additional set of propositions to serve as goal propositions,

G = {being peeked(p),being peeked(q)}.

All peek operators Opeek can be represented by:

Opeek =



peek(x, y)

pre: {free(y), standing(x)}

add: {peeking(x, y), being peeked(y)}

del: {free(y), standing(x)}

∣∣∣∣∣∣∣∣∣∣∣∣
x ∈ {a, b}

y ∈ {p, q}


The peek operators Opeek represent actions where an agent x peeks into a box containing

the number y. The preconditions, standing(x) and free(y), ensure that agent x is in a

standing position and that no one is peeking into the box containing y (ensuring the box

can only be peeked at by one agent at a time). Once the operator is performed, agent

x is peeking at y (making peeking(x, y) true), while the agent is no longer in a standing

position and the box is being peeked at. The return operators Oreturn are just the peek

operators swapping the set precondition and delete set to the add set and vice versa.
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All increment operators Oinc can be represented by:

Oinc =



increment(y, z, z′)

pre: {val(y, z)}

add: {val(y, z′)}

del: {val(y, z)}

∣∣∣∣∣∣∣∣∣∣∣∣
y ∈ {p, q}

z, z′ ∈ {0, . . . , 99}

z′ = z − 1


This example action is straightforward. It is worth mentioning that the boundary of y

is controlled by not having operators, such as increment(y, 99, 100), in Oinc.

Overall, O is the union of Opeek (size of 4), Oreturn (size of 4), Oinc (size of 200) and

Odec (size of 200). An example plan for the example goal propositions G would be

[peek(a, p),peek(b, q)].

2.1.3.2 Planning Domain Definition Language (PDDL)

In addition to STRIPS, the Planning Domain Definition Language PDDL [41] is com-

monly used to model planning problems. The original PDDL 1 was proposed by McDer-

mott et al. [48] in 1998, for the first planning competition at the Artificial Intelligence

Planning and Scheduling (AIPS) [49] conference in 2000. The language is originally

designed to model all sorts of planning problems instead of just the classical planning

problems. A trimmed version of PDDL (known as PDDL 1.2) was introduced by Bacchus

[50] at the second AIPS planning competition by pruning unused features and focusing

on the classical planning problems.

As mentioned by Haslum et al. [41], although PDDL is intended to be a common mod-

eling language, it is important to recognize that it is not a standard. Thus, there is no

“formal” definition of the PDDL. By “formal”, we mean that there is no complete and

unambiguous formalization of the syntax or semantics for all of PDDL. Practically, to

our knowledge, there does not exist an “uniform” planner that supports all of PDDL.

Besides, different planner implementers have different interpretations of the ambiguous

parts of the PDDL. Therefore, in this thesis, we only provide the preliminary on the

parts that are relevant to what we used.

1McDermott et al. referred the version of PDDL as “PDDL 0.0”, while in most of the work, it has
been referred as “PDDL 1.0”.
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A standard PDDL instance contains two files: a domain file and a problem file, both

using the extension “.pddl”. The domain file specifies the descriptions of propositions

(predicates) and operators (actions). The action description covers the parameters,

preconditions, and effects (add and delete set of propositions, similar to operators in

STRIPS). The problem gives the objects, initial state, and goal conditions. One of the

key advantages of PDDL compared to STRIPS is that the domain file is reusable. Thus,

any problem instances from the same domain share one domain file, while the predicates

and actions are grounded by the objects in each paired problem file. In addition, the

domain file also provides a list of “requirements”, which contains some features that are

supported by some planners but not all of them, such as: :typing, negative-preconditions.

Syntactically, PDDL is not case-sensitive, and all expressions are enclosed in matching

brackets. In 1998, McDermott et al. [48] valid term names “are strings of characters

beginning with a letter and containing letters, digits, hyphens (-) and underscores ( )”.

However, in many planners, hyphens are disallowed in term names, as they are used for

a different feature named “typing”. Most of the key words start with a colon, except

“define”, “domain” and “problem” in the file header.

An example is provided using the same problem instance in Example 2.1. The domain

file is shown in Code Example 2.1 and the problem file2 is shown in Code Example 2.2.

1 (define (domain NIB)
2

3 (: requirements :strips :typing :negative -preconditions)
4

5 (: types
6 agent num value
7 )
8

9 (: predicates
10 (peeking ?a - agent ?n - num)
11 (standing ?a - agent)
12 (free ?n - num)
13 (value ?n - num ?v - value)
14 (increasing ?v1 ?v2 - value)
15 (decreasing ?v1 ?v2 - value)
16 )
17

18 (: action peek
19 :parameters (?a - agent ?n - num)
20 :precondition (and
21 (standing ?a)
22 (free ?n)
23 )
24 :effect (and

2Some lines are omitted for readability. The complete problem file can be found in Appendix B.1.



Epistemic Planning 20

25 (peeking ?a ?n)
26 (not (free ?n))
27 (not (standing ?a))
28 )
29 )
30

31 (: action return
32 :parameters (?a - agent ?n - num)
33 :precondition (and
34 (peeking ?a ?n)
35 )
36 :effect (and
37 (free ?n)
38 (standing ?a)
39 (not (peeking ?a ?n))
40 )
41 )
42

43 (: action increment
44 :parameters (?n - num ?v1 ?v2 - value)
45 :precondition (and
46 (value ?n ?v1)
47 (increasing ?v1 ?v2)
48 )
49 :effect (and
50 (value ?n ?v2)
51 (not (value ?n ?v1))
52 )
53 )
54

55 (: action decrement
56 :parameters (?n - num ?v1 ?v2 - value)
57 :precondition (and
58 (value ?n ?v1)
59 (decreasing ?v1 ?v2)
60 )
61 :effect (and
62 (value ?n ?v2)
63 (not (value ?n ?v1))
64 )
65 )
66 )

Code Example 2.1: PDDL Domain: NIB

1 (define (problem NIB_example)
2 (: domain NIB)
3 (: objects
4 a b - agent
5 p q - num
6 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
7 ... ; Placeholder for skipped object declarations
8 v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 - value
9 )

10

11 (:init
12 (standing a)
13 (standing b)
14

15 (free p)
16 (free q)
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17

18 (value p v4)
19 (value q v6)
20

21 (increasing v0 v1)(decreasing v1 v0)
22 (increasing v1 v2)(decreasing v2 v1)
23 ... ; Placeholder for skipped predicate declarations
24 (increasing v97 v98)(decreasing v98 v97)
25 (increasing v98 v99)(decreasing v99 v98)
26

27

28 )
29

30 (:goal (and
31 (not (free p))
32 (not (free q))
33 )
34 )
35 )

Code Example 2.2: PDDL Problem: NIB

The above PDDL example follows PDDL 1.2 syntax. It modeled the problem instance

from Example 2.1 following a very similar way as in STRIPS language. The state

representation for the PDDL is described by the set of facts (predicates) that are true in

it, which is the same as STRIPS. Everything other predicate that is not in the current

state is assumed to be false, which follows the closed world assumption (Assumption 10).

Specific to the above example, :predicates, :types and :objects form the set of all facts

(same as F is STRIPS). Since all PDDL 1 only models propositions (predicates), the

values of two numbers p and q need to be enumerated as a set of propositions, which

are covered by Line 13 in the domain file and Line 3-9 in the problem file.

PDDL differs mainly from STRIPS in that certain components, specifically the domain

file, of a problem instance in PDDL can be applied to describe other instances within

the same domain. This offers greater generalizability in PDDL compared to STRIPS.

Moreover, as outlined in :requirements, PDDL is versatile enough to accommodate fea-

tures such as “:negative-preconditions”, which broadens the scope of problems it can

model beyond the classical planning problems.

Although there are many modifications of the language, including but not limited to:

PDDL 2.1 [51], PDDL + [52], PDDL 2.2 [53], PDDL 3.0 [54] and PDDL 3.1 [55]. Here,

we only discuss the modifications that are relevant to this thesis, which are PDDL 2.1.
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As depicted in earlier examples, both PDDL 1 and the STRIPS framework represent

problems through facts, which are propositional variables. This implies that any vari-

able’s value in a problem’s state is strictly true or false. Nevertheless, to effectively

model real-world challenges—where constraints and objectives frequently entail numeric

reasoning—numeric variables become essential. Therefore, PDDL 2.1, introduced by

Fox and Long [51], incorporates instances of “functions” 3. An illustration of how the

NIB problem instance (Example 2.1) is modeled in PDDL 2.1 is provided in Code Ex-

ample 2.3 and Code Example 2.4.

1 (define (domain NIB)
2

3 (: requirements :strips :typing :negative -preconditions)
4

5 (: types
6 agent num value
7 )
8

9 (: predicates
10 (peeking ?a - agent ?n - num)
11 (standing ?a - agent)
12 (free ?n - num)
13 )
14

15 (: functions
16 (value ?n - num) - value
17 )
18

19 (: action peek
20 :parameters (?a - agent ?n - num)
21 :precondition (and
22 (standing ?a)
23 (free ?n)
24 )
25 :effect (and
26 (peeking ?a ?n)
27 (not (free ?n))
28 (not (standing ?a))
29 )
30 )
31

32 (: action return
33 :parameters (?a - agent ?n - num)
34 :precondition (and
35 (peeking ?a ?n)
36 )
37 :effect (and
38 (free ?n)
39 (standing ?a)
40 (not (peeking ?a ?n))
41 )
42 )
43

3Here, “functions” diverges from its mathematical definition; it resembles variables acquiring a nu-
meric value.



Epistemic Planning 23

44 (: action increment
45 :parameters (?n - num)
46 :precondition (and
47

48 )
49 :effect (and
50 (assign (value ?n) (+ (value ?n) 1))
51 )
52 )
53

54 (: action decrement
55 :parameters (?n - num)
56 :precondition (and
57

58 )
59 :effect (and
60 (assign (value ?n) (- (value ?n) 1))
61 )
62 )
63 )

Code Example 2.3: PDDL 2.1 Domain: NIB

1 (define (problem NIB_example)
2 (: domain NIB)
3 (: objects
4 a b - agent
5 p q - num
6 )
7

8 (:init
9 (standing a)

10 (standing b)
11

12 (free p)
13 (free q)
14

15 (= (value p) 4)
16 (= (value q) 6)
17

18 )
19

20 (:goal (and
21 (not (free p))
22 (not (free q))
23 )
24 )
25

26 (: bounds
27 (value - int[0..99])
28 )
29 )

Code Example 2.4: PDDL 2.1 Problem: NIB

As shown in the example, PDDL 2.1 keeps the original predicate definition from PDDL,

and the value of the numbers p and q are modeled as functions. In addition, PDDL 2.1
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adapts expressions and conditions over numeric values, including arithmetic and com-

parison operators, such as −, >, etc. Any example action updates numeric value can be

found between Line 44 to 52 in the domain file, where the variable is assigned its origin

value plus one. In contrast to Code Example 2.2, the modeler is not required to specify

the values and their relations by detailing them through propositions.

2.1.3.3 Functional STRIPS (F-STRIPS)

However, declarative languages like STRIPS and PDDL have limited the scope of plan-

ning, as certain environments representing planning models are difficult to encode declar-

atively, but are easily defined through simulators such as the Atari video games [56].

Thus, an extension of STRIPS, Functional STRIPS (F-STRIPS) has been proposed

by Geffner [57] by introducing first-class function symbols to STRIPS, which provides

additional flexibility in modeling planning problems. Although there are some mature

ideas about integrating functions in both STRIPS [58–62] (using constant symbols and

their domains of interpretation) and PDDL [48], F-STRIPS is different from those in two

ways: allowing nesting in functions; and allowing customized representation functions.

Any problem modeled by F-STRIPS can be represented as P = (LF ,OF , IF ,GF ), where

LF is the language, OF is the set of operators, and IF and GF are formulae representing

the initial state and goal conditions. The language LF is defined by declaring the fluents

and their domains, while the operators are defined by using representation functions,

including the standard representation functions, such as “+” , “=”, and “>”, and cus-

tomised representation functions defined by the modeler. The states are represented

by complete assignments, which means each fluent is assigned a value. Moreover, the

operators define the transitions, where the precondition decides their availability, and

the effects indicate the assignments that will be updated.

The potential of customised representation functions of F-STRIPS did not get fully ex-

plored until Francès et al. [63]’s work. Their novel concept involves employing F-STRIPS

model domains that do not use a declarative action representation. This approach is

particularly useful for domains where the relations are too complex to be represented

by declarative planning language or involve even black-box relations (a simulator, such

as Atari video games [56]). They treated those relations as external functions with a

special symbol “@”.
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In their formalization, any classical F-STRIPS problem can be represented by a tuple

(V,D,O, I,G,F), where V and D are variables (named as functions in the language)

and domains, O, I, G are operators, initial state, and goal conditions. The set of

external functions, F, allows the planner to handle problems that contain the above

expressive relations. The external function can be either implemented intuitively in any

programming language, or obtained from the simulation.

2.1.4 Planner

Besides the problem model and representations, a solver, which is also called a plan-

ner, plays another important role in planning by applying algorithms, usually search

algorithms, to generate a solution for the modeled problem.

2.1.4.1 Search Algorithms

The basic search algorithms used are the blind (uninformed) search algorithms, such as

Breadth First Search (BFS), Depth First Search (DFS), Iterative Deepening (ID) and

Uniform-cost Search, etc. Those algorithms have their own advantages and limitations.

The performance measures for those search algorithms include completeness, optimality,

time complexity, and space complexity. BFS ensures completeness, given the state

space of the problem is finite, and also guarantees optimality, given the costs of all

actions are uniform. An extension of BFS is Uniform-cost Search [64] (akin to the

Dijkstra algorithm [65], also known as Best First Search in some work [66]), which is

optimal with any positive action costs. DFS is neither complete nor optimal, but it has

significantly lower space complexity (O(b ∗D)) in comparison with BFS (O(bd)), where

b is the branching factor, d is the optimal depth, and D is the maximum depth. ID is a

combination of BFS and DFS, which also inherits the advantages from both algorithms:

the same completeness and optimality from BFS; and the same space complexity from

DFS.

One of the most successful computational approaches to planning is the heuristic (in-

formed) search [67]. It employs a heuristic function to estimate the cost from the given

state to achieve goals. The standard heuristic search algorithms include A* [68], Greedy

Best-First Search (GBFS) and Weighted A* [69]. The heuristic function distinguishes
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different planners [70]. A few properties are defined to analyse the performance of the

heuristic functions, which are: admissibility, safety, goal-awareness, and consistency. In

addition, to achieve good performance, the heuristic functions should be as informed as

possible. Using the planner LAMA as an example, the heuristic it uses is a landmark-

based heuristic derived from the model [71] along with other delete-relaxation heuris-

tics [72]. This makes LAMA be one of the state-of-the-art planners in the planning

competition (won the international planning competition twice in 2008 and 2011). The

limitation of the heuristic functions is that most efficient heuristics require the model to

be encoded in STRIPS or PDDL (following the classical planning assumptions, such as

Assumption 3 and 6) since those heuristic functions explore action’s determinism and

Markovian from their declarative representations. This restricts the expressiveness of

the models significantly.

2.1.4.2 Variations in Planners

The standard classical planning languages and solvers do not support the use of proce-

dures or external theories. As introduced in Section 2.1.3.3, the first theoretical research

that solves this problem is from Geffner [57]’s F-STRIPS language, where the denota-

tion of (non-fluent) function symbols can be given using external functions. In addition,

Dornhege et al. [73] proposed an extension of the PDDL language (PDDL/M) that uses

a similar idea called semantic attachments. They apply this idea by integrating with

existing heuristic search-based planners. Their approach is widely used for robotic mo-

tion planning [74–77]. Planning Modulo Theories were introduced by Gregory et al., an

idea inspired by SAT Modulo Theories [79], where specialized theories were integrated

too with a heuristic search planner.

The reason why functions are not “first-class citizens” in planning languages is that

there was no clear way to deal with them that is both general and effective. Most

planning approaches ground all functions, which allows them to convert the problem to

a classical propositional planning problem that can be solved using a classical planner,

but recently, a new family of algorithms called BFWS have been proposed as a new

width-based planning [80]. They show their width-based approaches are as efficient as

most of the state-of-the-art heuristic search approaches.
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2.2 Epistemic Logic

At the beginning of this section, we give some necessary logic operators, notations, and

axioms for epistemic logic. Then, we discuss the preliminaries of one part in epistemic

logic, which is “knowledge”. Knowledge requires the system to model and reason about

the actual environment and the agents’ knowledge about this environment, and of agents’

knowledge of others’ knowledge about this environment, and so on. In addition, we give

the preliminaries for the other type of epistemic logic – belief. Similarly, belief can be

nested arbitrarily. Differing from knowledge, belief is less restricted.

For handling both belief and knowledge, we follow the most fundamental and widely

used approach, the one that is using Kripke Structure. Firstly, in this chapter, we show

how the Kripke Structure is used to handle knowledge, group knowledge, as well as

belief and group belief. In addition, we also give background on the difference between

knowledge and belief.

At the end, we show an extended epistemic logic model, namely Dynamic Epistemic

Logic, which is designed to formalize the changing of the state and Kripke structure.

It is worthy to mention to the reader that in this chapter, we used the terms “single

knowledge” (or “individual knowledge”) and “single belief” as the differentiation from

the terms “group knowledge” and “group belief”, while they could contain multiple

agents in the full formula. For example, we consider: “agent a knows agent b knows

φ” is a single-knowledge relation, as in each knowledge nesting level, there is only one

agent; “agent a knows φ and agent b knows φ” is a conjunction of two single-knowledge

relations; “agent a and agent b knows φ” is a group-knowledge relation that a and b as

a group, and each agent in this group uniformly knows φ.

2.2.1 Preliminary for Knowledge in Epistemic Logic

The fundamental models for epistemic logic are based on classical logic. Following clas-

sical logic, the fundamental epistemic logic is also a propositional logic. Thus, given the

set of all propositions Prop = {p1, . . . }, the basic language LK(Prop) used in epistemic

logic can be defined as follows:

φ ::= p | ¬φ | φ ∧ φ | Kφ, where:
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K is a general knowledge operator that is going to be replaced by Ki or KG later (once

single-knowledge or group-knowledge is introduced). The interpretation of Kφ is that

φ is known.

Other logic operators are included, such as ≡, and →. The material implication operator

in this thesis is denoted as →, which is also commonly represented by ⊃ or ⇒ in other

works. The disjunction operator ∨ is omitted as classical epistemic logic follows De

Morgan’s Laws from classical logic (A ∨ B ≡ ¬(¬A ∧ ¬B)). Other logic operators,

such as □, are not relevant in this thesis. Thus, those are omitted.

The semantics for all formulae in language LK(Prop) are the same as in classical logic,

except for the knowledge operator, which is going to be explained later in this section.

The fundamental axioms and rules we listed below are referred from Gochet and Gri-

bomont [81]’s book chapter and Fagin et al. [3]’s book. The combinations of these

axioms or rules provide a family of sound and complete axiomatic systems for different

variations of epistemic logics.

Definition 2.2 (Epistemic Logic Benchmark Statements). Here are listed 7 intuitive

axioms and two inference rules as follows:

P: (Tautology Property) Classical tautologies are valid

K: (Knowledge Property)
(
Kφ ∧K(φ→ ψ)

)
→ Kψ

T: (Distribution Property) Kφ→ φ, φ→ ¬K¬φ

B: (Brouwerian Property) φ→ K¬K¬φ

4: (Positive Introspection Property) Kφ→ KKφ

5: (Negative Introspection Property) ¬Kφ→ K¬Kφ

D: (Consistency Property) ¬K false

MP: (Modus Ponens)
(
φ ∧ (φ→ ψ)

)
→ ψ

KG: (Knowledge Generalization) φ→ Kφ

Both Axiom P and Rule MP are intuitive. Since they hold in classical logic, they must

also hold in epistemic logic as well. Axiom K is the “epistemic version” of Rule MP: if

φ and φ→ ψ are known, then ψ must also be unknown. While Axioms T, B, 4, 5, and

D are valid in some formal systems but not in all.
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The intuition for Axiom T is straightforward: if φ is known, then it must be true;

and, if φ holds, then not φ must not be known. Axioms 4 and 5 indicate known

(4) or not known (5) relations should be known. Combining Axioms T and 5, we have

Axiom B. Axiom D represents that knowledge is consistent, which means a contradiction

or impossible cannot be unknown.

As mentioned by Gochet and Gribomont, some of the above axioms and rules are widely

accepted and intuitively valid. Thus, those must hold in any appropriate formal sys-

tem, while others are more controversial. Some would be relaxed from valid to simply

satisfiable in other systems.

Historically, Axiom P and both inference rules are commonly accepted by most of the

logic systems, including all epistemic logic systems discussed in this subsection. With

this premise, the axiomatic system is named after other significant axioms, excluding

Axiom P, Rule MP, and Rule KG. Here, we listed some common axiomatic systems:

KT4 (also known as S4), KT45 (also known as S5) and KD45. The details are given

in the later parts of this section.

2.2.2 Kripke Structure

The standard and foundational epistemic logic model is defined following the Kripke

structure. We follow the formal definition from Fagin et al. [3]’s book.

Definition 2.3 (Kripke Structure). Let Pro be a finite set of propositions and Agt be

a finite set of agents (k of them), a Kripke structure is a tuple:

M = (W,π,K0, . . . ,Kk), where:

• W is a non-empty set of all possible worlds;

• π is an interpretation function such that π(w) : Prop → {true, false} defines

which propositions are true and false in world w ∈W ;

• K1, . . . ,Kk represents the accessibility relations over worlds for each of the k agents

in Agt.
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Given a world 4 w and a proposition p, the evaluation of p over w is π(w)(p). p is true

in w if and only if π(w)(p) is true. Ki for agent i is a binary relation 5 over worlds. For

any pair of worlds v and w, if (w, v) ∈ Ki, then we say that agent i cannot distinguish

between v and w when in world w. In other words, the world v and w are equivalent

to agent i if and only if (w, v) ∈ Ki. For example, an agent throws a coin and covers it

in his/her hand. Before the coin is revealed, others cannot distinguish between the coin

being head up or tail up.

In addition, they also discussed the five constraints for these accessibility relations as

follows.

Definition 2.4 (Epistemic Logic Benchmark Statements). For any accessibility relation

K in a given Kripke structure M = (W,π,K0, . . . ,Kk), 5 common constraints of K can

be defined as:

Reflexive: ∀w ∈W , we have (w,w) ∈ K

Symmetric: ∀w,w′ ∈W , we have that (w,w′) ∈ K if and only if (w′, w) ∈ K

Transitive: ∀w,w′, w′′ ∈W , we have if (w,w′), (w′, w′′) ∈ K, then (w,w′′) ∈ K

Euclidean: ∀w,w′, w′′ ∈W , we have if (w,w′), (w,w′′) ∈ K, then (w′, w′′) ∈ K

Serial: ∀w ∈W , we have ∃w′ ∈W such that (w,w′) ∈ K

The above five constraints are not independent. As proposed by [3]: if K is reflexive and

Euclidean, then K is symmetric and transitive; if K is symmetric and transitive, then K

is Euclidean. In addition, if K is reflexive, then K is serial.

With the definition of Kripke structures and constraints on the accessibility relations,

the semantics for knowledge and group knowledge can be formed. It is worthy to mention

here, the definition of knowledge and belief by [3] follows the same semantics, while the

difference lies in the properties of the equivalence relations Ki, which will be covered in

the later parts of this section.

4In some of the literature, worlds are used interchangeably with the word “state”, but in this the-
sis, we use “state” with a slightly different meaning from world, which will be explained later (after
Definition 3.2).

5In some work, this binary relation was also refereed to Equivalence relation. However, it can be
called as equivalence relation only if it met some desired constraints (as discussed below).
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2.2.3 Kripke Structure for Knowledge

The Kripke structure that can model agents’ knowledge is the same as in Definition 2.3.

Fagin et al. [3] discussed different combinations of accessibility relation constraints from

Definition 2.4, which form 4 different Kripke structures: M r (reflexive), M rt (reflexive

and transitive), M rst (reflexive, symmetric and transitive) and M elt (Euclidean, serial

and transitive).

They choseM rst as the Kripke structure to reason about the semantics of knowledge. In

other words, any accessibility relation K in M rst is reflexive, symmetric, and transitive.

They also call these relations equivalence relations. In addition, they proved that for

any formulae in the language LK(Prop), S5 (KT45 in Definition 2.2) is a sound and

complete axiomatization.

2.2.3.1 Semantics for Single-Knowledge

Let signature Σ contain a countable set of all primitive propositions Prop = {p1, p2, ...}

and a finite set of agents Agt = {a1, a2, ...}, the syntax for epistemic logic language

LK(Σ) (in the form of BNF) is defined as:

φ ::= p | φ ∧ φ | ¬φ | Kiφ, where:

p ∈ Prop and i ∈ Agt.

Kiφ represents that agent i knows proposition φ, ¬ means negation and ∧ means con-

junction. Other operators such as disjunction and implication can be defined in the

usual way. This definition allows arbitrary nesting on the knowledge operator, such as,

KaKbp representing agent a knows that agent b knows p.

Then, they give the semantics for this knowledge language.

Definition 2.5 (Semantics for Single Knowledge with Kripke Structure). Given a

Kripke structure M = (W,π,K0, . . . ,Kk) and the current world w, the truth value

of any formula in language LK(Σ) can be defined as:

(a) (M,w) ⊨ p iff π(w)(p) = true

(b) (M,w) ⊨ Kiφ iff (M,v) ⊨ φ for all v such that (w, v) ∈ Ki
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The notions (M,w) ⊨ p from item (a) read as “(M,w) satisfies p”. That is, the proposi-

tion p evaluated by π is true given the current world w and the modelM . (M,w) ⊨ Kiφ

is defined by formula φ being true at all worlds v reachable from w via the accessibility

relation Ki. Besides, conjunction and negation are defined by standard propositional

logic rules.

This semantics allows knowledge to be nested as well. For example, KaKbp means p

is true at all worlds reachable by applying the accessibility relation Ka followed by Kb.

To be specific, (M,w) ⊨ KaKbp is true if and only if: (M,v) ⊨ Kbp for all v such that

(w, v) ∈ Ka, which means (M,v′) ⊨ p for all v′ such that (v, v′) ∈ Kb, for all v such that

(w, v) ∈ Ka. This idea generalises to an arbitrary level of nested knowledge.

With the semantics for knowledge, they are able to prove that S5 is a sound and com-

plete axiomatization for the Kripke structure M = (W,π,K0, . . . ,Kk) discussed at the

beginning of this section (Section 2.2.3).

Now, let us elaborate the Kripke structure and its knowledge semantics by using the

following example (from Example 1.2). First, we construct the Kripke structure M =

(W,π,K0, . . . ,Kk). The set of all possible worlds W follows the state-space in the clas-

sical planning model in Example 2.1 (Section 2.1.2.1). To show the accessibility relation

for each agent, we use the following notation to represent some subsets of all possible

worlds:

Wi,j,x,y = {(i, j, x, y) | (i, j, x, y) ∈W}, where:

any i, j, x, y can be replaced by an underscore “ ”, which matches any value in

the possible worlds. For example, W0,0, , represents a set of states in which pta =

ptb = 0. The possible worlds in this example can be divided using Wi,j, , , where

(i, j) ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 2), (2, 1)}. That is, the possible worlds are

divided into 7 sets according to agents’ postures (as shown in Figure 1.2). Then, the

accessibilities in the Kripke structure for knowledge can be constructed as follows:

• For W0, , , , a binary relation for any two possible worlds in W0, , , that contains

the same value of ptb will be added into Ka (That is, every combination of size two

in each set W0,0, , and W0,1, , will be added to Ka); and, respectively the same

for W ,0, , on Kb;
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• ForW1, , , , a binary relation for any two possible worlds inW1, , , that contain the

same ptb and valuep will be added into Ka; and, respectively the same for W ,1, ,

on Kb;

• ForW2, , , , a binary relation for any two possible worlds inW2, , , that contain the

same ptb and valueq will be added into Ka; and, respectively the same for W ,2, ,

on Kb;

From the above construction, the accessibility relations Ka and Kb are trivially reflexive,

symmetric, and transitive. The evaluation function π is just standard, following classical

logics.

Then, using the above Kripke structure, the semantics of knowledge can be discussed.

In order to do so, we need to have a few example epistemic goals in language LK(Σ).

Example 2.2 (NIB Example Knowledge Formulae). Following Example 1.2, the exam-

ple epistemic formulae are listed as follows:

1. Ka(p=4)

2. KaKb(p=4)

3. Ka(p× q=4)

4. Ka(p× q ≤ 992)

5. KaKb(p× q ≤ 992)

For each of the above epistemic formulae, their truth value can be evaluated using the

semantics from Definition 2.5 as follows:

1. (M,w) ⊨ Ka(p=4) holds if and only if w ∈ W1, ,4, . Based on the construction of

the M , all the worlds that agent a considers possible (∀(w, v) ∈ Ka), contain the

same value of valuep as in w. That is, the value of p is 4 in every state that agent a

considered possible. Thus, (M,w) ⊨ Ka(p=4) holds. While, for any w′ /∈ W1, ,4, ,

then it is either a knows p is a different value (w′ ∈ W1, ,x, , where x ̸= 4), or a

does not know the value of p (w′ ∈Wi, , , , where i ̸= 1).
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2. (M,w) ⊨ KaKb(p = 4) will never hold in the given Kripke structure. Following

the above conclusion, (M,w) ⊨ Ka(p=4) holds if and only if w ∈ W1, ,4, . Thus,

(M,w) ⊨ KaKb(p= 4) ≡ ∀w′ ∈ W1, ,4, , (M,w′) ⊨ Kb(p= 4). Since the number

p cannot be peeked by both agent at the same time, which means w′ /∈ W ,1,4, .

Thus, Kb(p=4) does not hold in any w′, which means (M,w) ⊨ KaKb(p=4) will

never hold.

3. (M,w) ⊨ Ka(p× q=4) will also never hold in the given Kripke structure. This is

trivial if w ∈ W0, , , . If w ∈ W1, ,k, , where W1, ,k, ⊂ (W , ,x,y, where x × y=4).

Following the above conclusion, (M,w) ⊨ Ka(p = k) holds if and only if w ∈

W1, ,k, . There exists (w, v) ∈ Ka such that the value of q in v is not equal to

4 ÷ k. Thus, (M,w) ⊨ Ka(p × q=4) does not holds for all w ∈ W1, ,k, . Similar,

(M,w) ⊨ Ka(p× q=4) does not holds for all w ∈W2, , ,k.

4. Both (M,w) ⊨ Ka(p × q ≤ 992) and (M,w) ⊨ KaKb(p × q ≤ 992) holds trivial as

(M,w) ⊨ (p× q ≤ 992) holds for all w ∈W .

In the above example, it seems less intuitive that agent a cannot have the knowledge

that p×q is 4 even if p×q actually is 4. This happens because the above Kripke structure

is constructed only based on the current state without any other implicit information

nor the state transitions that update the knowledge. How the knowledge evolves will be

covered in the later part of this section as well as in this thesis.

2.2.3.2 Semantics for Group-Knowledge

Following the same intuition, the concept of group-knowledge can be defined. For this,

with the same signature Σ above, the grammar of the language (LGK(Σ)) is extended

to:

φ ::= p | φ ∧ φ | ¬φ | Kiφ | EGφ | DGφ | CGφ, where:

p ∈ Prop, i ∈ Agt, and G are a non-empty set of agents such that G ⊆ Agt.

EGφ represents that everyone in the group G knows φ and CGφ represents that it is

commonly known in the group G that φ is true, which means that everyone knows φ,

and everyone knows that everyone knows φ, ad infinitum. DGφ represents distributed



Epistemic Planning 35

knowledge, which means if all agents in G pooled their knowledge together, they would

know φ, even though it may be that no individual in the group knows φ.

Following the similar semantics as the single knowledge, they give the semantics for the

group knowledge operators as follows.

Definition 2.6 (Semantics for Group Knowledge with Kripke Structure). Given a

Kripke structure M = (W,π,K0, . . . ,Kk) and the current world w, the truth value

of any formula in language LGK(Σ) can be defined as:

(M,w) ⊨ EGφ iff (M,w) ⊨ Kiφ for all i ∈ G

(M,w) ⊨ CGφ iff (M,v) ⊨ φ for all v that are G−reachable

(M,w) ⊨ DGφ iff (M,v) ⊨ φ for all v such that (w, v) ∈
⋂

i∈GKi

By definition, (M,w) ⊨ EGφ holds if and only if φ is known by all agents (uniformly) in

G. This can also be rewritten in a form that is similar to DGφ, which is: (M,w) ⊨ EGφ

holds if and only if (M,v) ⊨ φ for all v such that (w, v) ∈
⋃

i∈GKi.

World v is G−reachable from w if w can reach v within k steps of accessible relations,

or for some k where k ≥ 1. Common knowledge (M,w) ⊨ CGφ holds if and only if in

all worlds v that are G−reachable by following the accessibility relations of all agents

in G, φ is true.

For distributed knowledge, (M,w) ⊨ DGφ holds if and only if in all worlds that all

agents from G agree are possible, φ is true. It might be easier to think in the reverse

direction: we say DGφ is true in (M,w) if and only if we eliminate worlds that any

agent in G knows to be impossible, and φ is true in all the remaining possible worlds.

That is, when “pulling” all agents’ knowledge together, there might be some accessibility

relations from Ki that are disapproved by another agent j. This might be less intuitive

when one considers that pulling knowledge together would gain more knowledge for the

group. This is because the more binary relations in the evaluation, the more uncertainty

of the knowledge. If any agent i knows everything about the given world w, then, the

w in Ki would only connect to itself ((w,w) ∈ Ki).

Now, let us elaborate on the group knowledge semantics with the same Kripke structure

constructed in Section 2.2.3.1. Some group knowledge formulae are given in the following

example.
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Example 2.3 (NIB Example Group Knowledge Formulae). Following Example 1.2, the

example group knowledge formulae are listed as follows, where group G contains both

agent a and b:

1. EG(p=4)

2. DG(p× q=4)

3. CG(pta=1)

For each of the above epistemic formulae, their truth value can be evaluated using the

semantics from Definition 2.6 as follows:

• (M,w) ⊨ EG(p=4) will never hold in the given Kripke structure. (M,w) ⊨ Ka(p=

4) will not hold for any w ∈ Wi, , , where i is not 1, and (M,w) ⊨ Kb(p=4) will

not hold for any w ∈ W ,j, , where j is not 1. The union of the above two sets

forms all possible worlds W . Thus, (M,w) ⊨ EG(p= 4) will never hold for any

w ∈W .

• (M,w) ⊨ DG(p = 4) holds if and only if w ∈ W1,2,x,y ∪W2,1,x,y, where x × y =

4. Using w′ ∈ W1,2,1,4 as example, based on current world w′, the accessibility

relations in Ka is the set Ka(w
′) = {(w′, v) | v ∈ W1,2,1, }, while the accessibility

relations in Kb is the set Kb(w
′) = {(w′, v) | v ∈ W1,2, ,4}. Based on group

semantics, (M,w) ⊨ DG(p=4) is equivalent to (M,v) ⊨ (p=4) for all v such that

(w, v) ∈
⋂

i∈GKi. The intersection Ka(w
′) ∩ Kb(w

′) is {(w′, w′) | w′ = (1, 2, 1, 4)}.

Thus, we have (M,v) ⊨ (p = 4). Following the same process for all the other

combinations of x and y, we have (M,w) ⊨ DG(p = 4) holds if and only if w ∈

W1,2,x,y ∪W2,1,x,y, where x× y=4.

• (M,w) ⊨ CG(pta =1) if and only if w ∈ W1, , , . We consider this by all posture

of agent b. If b is not peeking, given an example state w′ = (1, 0, x, y) ∈ W1,0, , ,

the reachable possible worlds by b’s accessibility relations is Kb(w
′) =W1,0, , . The

reachable possible worlds for a based on the possibles worlds from b (Kb(w
′)) is

also W1,0, , . The above process has converged on the set W1,0, , . It ends in the

same converged set if agent a’s accessibility relations is evaluated first. Thus, the

set of all G−reachable possible worlds isW1,0, , , and pta is 1 in all of them, which

means (M,w) ⊨ CG(pta=1) holds.
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2.2.4 Preliminary for Belief in Epistemic Logic

The relation between knowledge and belief has been discussed by both philosophers

and logicians. The first intuition is from Meno by Plato [36]. As the epigraph aptly

quotes, Plato claimed knowledge is true opinion (belief). Later on, in Theaetetus [82],

he disproved the above idea by extending it to that knowledge is true opinion combined

with a definition or a rational explanation. That is, one knows that a proposition p holds

if and only if: 1), p is true; 2), one believes p holds; and, 3), one is justified in believing

p. His idea is further explained by defining the necessary and sufficient conditions for

knowledge by Ayer [83] and Chisholm [84].

However, in 1963, Gettier [85] proposed a counter-example to their definition of the

knowledge, which shows that even with necessary and sufficient conditions, the justified

true belief is still not enough to generate knowledge. This is caused by a person can

justifiably believe a proposition for the wrong reason. In order to avoid this issue, one

could add one condition to the above Plato’s definition: the reason for the third condition

(one is justified in believing p) holds should be the same as the reason the first condition

holds. However, this results in those two conditions (first and third) no longer being

independent, which indicates the connections between knowledge and belief are difficult

to analyse. Thus, we define the belief operator here first.

Using a similar format from the grammar of the knowledge operator in Language

LK(Prop), the grammar for the language (LB(Prop)) that contains the belief operator

for a set of propositions Prop can be defined as:

φ ::= p | ¬φ | φ ∧ φ | Bφ, where:

p ∈ Prop. This language is simply replacing the knowledge operator K with the belief

operator B.

In general, the key distinction between knowledge and belief lies in that knowledge must

reflect the actual world, whereas belief does not have this requirement. As shown in

the following definition (Definition 2.2a), the axiomatic system defined for knowledge

(Definition 2.2) can be used for belief by replacing K with B, and removing Distribution

Property Axiom T as well as Brouwerian Property Axiom B.
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Definition 2.2a (Epistemic Logic Benchmark Statements for Belief)

Here are listed 5 intuitive axioms as follows:

P: (Tautology Property) Classical tautologies are valid

K: (Knowledge Property)
(
Bφ ∧B(φ→ ψ)

)
→ Bψ

4: (Positive Introspection Property) Bφ→ BBφ

5: (Negative Introspection Property) ¬Bφ→ B¬Bφ

D: (Consistency Property) ¬B false

The removal of Axiom T stems from the fact that agents may hold beliefs that are not

necessarily true, while Axiom B is omitted because agents may also believe in their own

beliefs, regardless of their veracity. Axiom D serves as the axiom ensuring consistency,

which prevents agents from believing in impossibilities, such as contradictions. In certain

studies [86–88], an alternative version of the Consistency Property Axiom D is used:

Bφ → ¬B¬φ, emphasizing that an individual’s beliefs should remain consistent rather

than merely possible.

2.2.5 Kripke Structure for Belief

With the axiomatic system (in Definition 2.2a) for language LB(Prop), we can now give

the classical definition for belief by using Kripke structures.

The signature of the model is the same as in Section 2.2.3, while the grammar of the

language is also the same, except the language LK(Σ) and LGK(Σ) were replaced by

language LB(Σ) – which is LK(Σ) by replacing the knowledge operator K with belief

operator B– and LGB(Σ), where E, D and C become EB, DB and CB respectively. The

representation of the Kripke structure stays the same (Definition 2.3). The difference

lies in the requirements for the accessibility relation.

As mentioned in Fagin et al. [3]’s book, the Kripke structure that models belief is

M elt, which means the accessibility relations in M elt must be Euclidean, serial, and

transitive (from Definition 2.4), rather than equivalent relations (reflexive, symmetric,

and transitive) for knowledge. Then, the semantics for single belief and group belief are

the same as in Definition 2.5 and Definition 2.6 respectively. They also provide a proof

that KD45 is a sound and complete axiomatization for M elt.
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2.2.6 Knowledge Versus Belief

Gochet and Gribomont [81] points out that analysing concepts of knowledge and be-

lief in isolation is not very promising. The relation between knowledge and belief is

complicated, as briefly mentioned when we introduced belief earlier. There are many

research [89–91] analyses on the connection and difference between knowledge and belief.

Here, we only show the relevant works to this thesis.

Although the Kripke structure can be used to model knowledge and belief, it is trickier

when both knowledge and belief are evaluated in the same model. Thus, Kraus and

Lehmann [92] use two types of accessibility relation ≡i and ≈i to represent indistin-

guishability for agent i on knowledge and belief respectively. Similarly, as introduced

earlier, they required ≡i to be an equivalence relation (reflexive, symmetric, and transi-

tive), while ≈i should be Euclidean and serial, but it is not necessarily symmetric and

reflexive. Then, following the intuition that “It is easier to believe something than to

know it.”, they proposed that for any two possible worlds w and w′, w ≈i w
′ → w ≡i w

′.

That is, Kiφ → Biφ (Axiom KB1), which is proved by Gochet and Gribomont [81].

Then, Gochet and Gribomont also proposed another intuitive “bridge axiom” named

Axiom KB2, which is Biφ → KiBiφ. To sum up, they proposed an axiomatic system

as evaluation for systems that handle both knowledge and belief as follows.

Definition 2.7 (Axioms for KB). Presented are 10 axioms:

K: (Knowledge)
(
Kiφ ∧Ki(φ→ ψ)

)
→ Kiψ

T: (Knowledge) Kiφ→ φ, φ→ ¬Ki¬φ

4: (Knowledge) Kiφ→ KiKiφ

5: (Knowledge) ¬Kiφ→ Ki¬Kiφ

K: (Belief)
(
Biφ ∧Bi(φ→ ψ)

)
→ Biψ

D: (Belief) ¬Bi false

4: (Belief) Biφ→ BiBiφ

5: (Belief) ¬Biφ→ Bi¬Biφ

KB1: Kiφ→ Biφ

KB2: Biφ→ KiBiφ

In addition, Voorbraak [93] raised a theorem as shown in Theorem 2.8, which claimed

agents believe they know φ do know it.
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Theorem 2.8 (The unwanted axiom). BiKiφ→ Ki

The above axiom might be intuitive in the agents’ local view, but globally it is counter-

intuitive. One should have the ability to believe to know a false proposition.

However, as proven by Gochet and Gribomont [81], the above theorem holds for the

axiomatic system provided in Definition 2.7. Since the proof is based on three axioms:

KB1, D and 5, they claimed that one of these three axioms must be removed to avoid

having Theorem 2.8 hold in a logic system. For instance, some researchers [93, 94] chose

to drop Axiom KB1 forming “Objective Knowledge”, while others [95, 96] removed

Axiom D which causes an agent’s beliefs to be inconsistent (Biφ ∧ Biψ ̸→ Bi(φ ∧ ψ)).

In addition, Axiom 5 was questioned by Lenzen [97]. As an agent’s knowledge is always

consistent with the true world, they claim that one cannot – by mere introspection

– ascertain whether they know something. Furthermore, Williamson [98] proved that

with an additional Axiom KB3 (Biφ→ BiKiφ), the axiomatic system in Definition 2.7

results in another unwanted axiom, Axiom Ω, where Biφ→ φ. This issue was fixed by

Halpern [99], in which they limited Axiom KB1 to be objective (non-modal formulae).

They proved with this restriction, the axiomatic system mentioned above is sound and

complete.

Overall, it is common for a logic system to follow S5 for knowledge (as described in

Section 2.2.3) and KD45 for belief, as well as using Axiom KB1 and Axiom KB2 as

the bridge between knowledge and belief.

2.2.7 Knowledge & Belief Updates

While Kripke structures can effectively model knowledge and belief, they follow a “fixed”

methodology. This means that the assessment of epistemic relations relies on the speci-

fied (input) world (state), like a “snapshot” of the dynamic reality. This can be elabo-

rated further with the well-known Muddy Children [3, 100] example.

Example 2.4. There are n children, and m of them with mud on their forehead. They

can all see each other’s foreheads, but not their own. They will announce immediately

when they know whether they are muddy or not. To help them find out whether they

themselves are muddy or not to get themselves cleaned, their teacher can help. Firstly,

the teacher told them: “At least one of you has mud on your forehead.” (m > 0). Then,



Epistemic Planning 41

the teacher will repeatedly ask one question to them all: do you know whether you are

muddy or not? The process stops when everyone knows whether they have mud on their

forehead.

This has been proven that the teacher has to ask for m−1 times for the muddy children

to announce they know that they are muddy, thereby allowing the clean children to

recognize that they are clean. For example, whenm is 1, it is trivial that the only muddy

child will notice no one else has mud on their forehead after the teacher’s statement,

which means himself/herself is muddy since there is at least one child who is muddy

(m > 0). So that, the muddy child will announce immediately, while the clean children

stay quiet. Right after this announcement, others will know their forehead is clean by

induction.

When there are two children who are muddy (m = 2), both muddy children see there is

one child who is muddy and they cannot see their own forehead. In the meantime, the

clean children see two muddy children and are also unsure about their own cleanness.

The teacher is able to help them by asking the question once. Then, both muddy children

will know immediately they are muddy, because if they are not, the other muddy child

would make the announcement before the teacher asking the question. Since the other

muddy child did not announce, which means that child sees another muddy child, and

everyone else is clean, the conclusion is straightforward that both muddy children will

know they are muddy. Once they made the announcement, the remaining clean children

will know the identity of the two muddy children (if there were 3, then both of them

would remain silent), which indicates they are clean.

The above induction is captured by Kripke structures in Fagin et al. [3]’s book. They

used an example with 3 children (n = 3), namely a, b, and c, and used a tuple (pa, pb, pc)

to represent the state, where pa, pb, pc are propositional variables with a value of 0 or

1, representing whether each child is muddy or not. That is, a tuple (0, 0, 0) means all

three children are clean, while a tuple (0, 1, 1) represents that child a is clean and both

b and c are muddy.

The visualization can be found in Figure 2.3. Each node represents a state, and each

edge represents an accessibility relation Ki with agent index i as it label.
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a: Scenario 1
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a
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c b a

b: Scenario 2

Figure 2.3: Examples for Muddy Children using Kripke Structure [3], where the self-
loops are omitted.

Initially (as shown in Figure 2.3a), children are able to observe others except them-

selves, signifying their inability to distinguish between possible worlds, where the only

distinction is the variable representing their own cleanliness. Then, once the teacher

made the statement (m > 0), all the children would consider the world (0, 0, 0) as not

possible. Therefore, the world and its related accessibility relations have been removed

and formed a new Kripke structure as shown in Figure 2.3b. Although the Kripke struc-

ture can capture the epistemic relations in the above example, it evaluates epistemic

formulae with the input of a static world. In other words, it cannot handle the changes

in between. Despite numerous studies [101–104] in Epistemic Logic that address the up-

dates of knowledge and belief, this thesis highlights only the most pertinent one, namely

Dynamic Epistemic Logic.

2.2.7.1 Public Announcement in Dynamic Epistemic Logic (DEL)

As discussed in Ditmarsch et al. [105], Dynamic Epistemic Logic (DEL) refers to a col-

lection of extensions of epistemic logic that incorporate dynamic operators for reasoning

about information dynamics. Since utilizing DEL is not the central focus of this thesis,

we will limit our discussion to the most renowned and frequently cited version of DEL,

as presented by Ditmarsch et al. [105], which is a version that mainly covers the changes

of knowledge. As DEL is widely used in Epistemic Planning, which is the most relevant

concept that is going to be introduced in the forthcoming section (Section 2.3), here,

we only show the intuitive idea about updating the epistemic model with a formula φ

rather than delving into the planning-centric notion of epistemic actions, which is also
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the reason we chose to present Ditmarsch et al.’s work. In addition, we make some

adjustments to the notion to make it consistent with other parts of this section.

DEL keeps the Kripke structure as introduced in Section 2.2.2 and follows the same

semantics (including language LK(Prop)) in Section 2.2.3.1. Moreover, it incorporates

the language and semantics for the common knowledge operator “C” described in Sec-

tion 2.2.3.2. Given the signature of their model Σ = (Prop,Agt), the formalization of

the language LKC[](Σ) is presented by the BNF as follows:

φ ::= p | φ ∧ φ | ¬φ | Kiφ | CGφ | [φ]φ, where:

p ∈ Prop, i ∈ Agt and G ⊆ Agt. To capture the changes between two epistemic

states (instances of Kripke structure), they proposed formula [φ]ψ to represent after the

state updated with φ, formula ψ holds, as shown in Figure 2.3. Then, they added the

semantics for the newly proposed update operator [] as:

(M,w) ⊨ [φ]ψ iff (M,w) ⊨ φ implies M | φ,w ⊨ ψ, where:

M | φ represents the model M = (W,π,K0, . . . ,Kk) is updated by φ into M ′ =

(W ′, π,K′
0, . . . ,K′

k), where:

W ′ = {w | (M,w) ⊨ φ} (2.1)

K′
i = Ki ∩ (W ′ ×W ) (2.2)

With their definition, the changes in between Kripke structureM1 (Figure 2.3a) andM2

(Figure 2.3b) from Example 2.4 can be formally represented, which isM1 | m > 0 =M2.

That is, the initial Kripke structure, including the accessibility relation for every child,

has been updated by their teacher’s first statement m > 0. Since
(
M, (0, 0, 0)

)
̸⊨ m > 0,

the world space in the updated Kripke structure does not contain world (0, 0, 0). In

addition, all the accessibility relations that contain (0, 0, 0) are removed in the updated

Kripke structure as well.

Ditmarsch et al. [105] named this φ as the effect of a public announcement action, which

is aligned with the teacher’s statement and questions in the muddy children example.
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In addition, they also provided other types of epistemic actions, which are going to be

mentioned in Section 2.3.1.

2.3 Reasoning with Epistemic Logic in Planning

Epistemic Planning is a combination of Automated Planning, Epistemic Logic, and

Knowledge Representation and Reasoning. Its distinction from classical planning pri-

marily involves the representation of the agents’ epistemic logic and integrated epistemic

logic reasoning into the planning. As mentioned by Bolander [106], Belle et al. [107], ex-

isting research in epistemic planning is divided into syntactic and semantic approaches.

2.3.1 Semantic Approaches

Semantic approaches, which are also termed as model-theoretical approaches, necessitate

the usage of a theoretical epistemic logic model as their foundation, generally the Kripke

model (introduced in Section 2.2.2) and evaluate agents’ epistemic formulae according

to this model. Although the Kripke structure can model agents’ knowledge or belief in a

static world, as noted in Section 2.2.7, it is complemented by event-based models [3] like

DEL (detailed in Section 2.2.7.1) for dynamic updates. The DEL is designed to handle

the changes between Kripke structures, which are often caused by the actions done by

the agents, which is aligned with automated planning. Thus, the concept of epistemic

planning is formalised in DEL by Bolander and Andersen [34], Bolander [106].

2.3.1.1 The DEL Approach

In their work, Bolander and Andersen [34] are the first to give a definition of the Epis-

temic Planning Problem. Their definition is extended from Ghallab et al. [40]’s definition

of the classical planning problem, which is very similar to Geffner and Bonet [37]’s def-

inition (Definition 2.1). Bolander and Andersen and Ghallab et al. differ from Geffner

and Bonet’s definition by separating the planning task into a planning domain and a

problem instance.

In their work, a signature Σ is defined as Σ = (Prop,Agt), where Prop is a collection

of propositions and Agt a collection of agents. The language LKC(Σ) in their model
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is an expansion of LKC[](Σ) achieved by omitting the update operator “[]”. That is,

a standard modal logic language with knowledge operator K and common knowledge

operator C. Then, they used the same Kripke structure (in Definition 2.3), denoting it

as M , and semantics (in Definition 2.5 and C in Definition 2.6). Then, they gave the

definition of the epistemic planning domain and epistemic planning problem instances

as follows.

Definition 2.9 (Epistemic Planning Domain). Given a signature Σ = (Prop,Agt)

and its language LKC(Σ), an epistemic planning domain is a restricted state-transition

system D = (S,A, γ), where:

• S is a finite state space of LKC(Σ)

• A is a finite set of actions of LKC(Σ)

• γ is defined by: γ(s, a) =


s⊗ a if a is applicable in s

undefined otherwise

They claim if all states and actions are from LK(Σ) (without common knowledge oper-

ator), then the domain is called an epistemic planning domain without common knowl-

edge. If |Agt| = 1, then it is called a single-agent 6 epistemic planning domain.

Definition 2.10 (Epistemic Planning Problem). Given an epistemic planning domain

D = (S,A, γ) (including its signature Σ = (Prop,Agt) and language LKC(Σ)) and the

Kripke structure that models this domain asM , an epistemic planning problem instance

in this domain can be defined as a tuple P = (D, s0,Φg), where:

• s0 is the initial state, a member of S

• Φg is a set of formula in LKC(Σ), called goal formulae. The set of goal states SG

is SG = {s | s ∈ S ∧ ∀M, s ⊨ ϕ}

Different from Ditmarsch et al. [105]’s work, Bolander and Andersen differentiated the

global (epistemic) state and local (epistemic) state, and performed event updates on all

of them. They used the notion (M,Wd) to represent an epistemic state inM = (W,π,K),

6Note: their usage of the term is different from ours as discussed and in Assumption 8 from Sec-
tion 2.1.1. In addition, it is also different from our interpretation of “single-knowledge” or “single-belief”
at the beginning of Section 2.2.
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where Wd ⊆ W and K are functions that map Agt to its accessibility relations set. A

singletonWd represents the global epistemic state, while given any global epistemic state

(M, {w}), an agent i’s local epistemic state would be (M, {w′ | (w,w′) ∈ K(i)}).

Then, they took the concept of the event model and the event executions [104] to for-

malize their own event model, which is also known as update model or action model, as

follows.

Definition 2.11 (Event Model). An event model for language LKC(Σ) is a tuple E =

(E,KE , pre, post), where:

• E is a finite (non-empty) set of events

• KE : Agt → P(E × E) is a function that assigns accessibility relation to each

agent.

• pre : E → LKC(Σ) is a function that assigns a precondition to each event.

• post : E → LKC(Σ): assign each event a postcondition.

This event model is very similar to the actions in classical planning, except the indis-

tinguishable relation function KE . For any agent i ∈ Agt, KE(i) returns a set of binary

relations. Each of these relations (e1, e2) ∈ KE(i) represents that the agent i cannot

tell the difference between action e1 and action e2 that has taken place. Similarly, they

differentiated local and global epistemic actions as a pair of (E , Ed), where Ed ⊆ E.

The global epistemic action is a singleton Ed, while given any global epistemic action

(E , {e}), an agent i’s local epistemic action would be (E , {e′ | (e, e′) ∈ KE(i)}).

The core idea of the DEL framework is the product update, which keeps both possible

worlds and possible actions.

Definition 2.12 (Product Update). Given an epistemic state (M,Wd) and an epistemic

action (E , Ed), where M = (W,π,K) and E = (E,KE , pre, post), the product update is

defined as the epistemic state (M,Wd)⊗ (E , Ed) = ((W ′, π,K′),W ′
d), where:

• W ′ = {(w, e) ∈W × E |M,w ⊨ pre(e)}

• K′(i) = {
(
(w, e), (w′, e′)

)
∈W ′ ×W ′ | (w,w′) ∈ K(i), (e, e′) ∈ KE(i)}
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• W ′
d = {(w, e) ∈W ′ | w ∈Wd, e ∈ Ed}

When evaluating the semantics on (w, e), they apply the action e on the world w to

generate a new world, and apply the evaluation function π in the newly generated world.

In addition, they allow nesting on the events. For example, from a world w applying

action a1 and a2 would be ((w, a1), a2). They also provide a few common properties of

the actions, including epistemic or ontic, public or private. For example, the teacher’s

statement in the muddy children example (Example 2.4) is a public announcement.

At the end, as one of their contributions, they showed that based on their formaliza-

tion, single-agent (|Agt| = 1) epistemic planning is decidable, whereas multi-agent epis-

temic planning is undecidable (even without common knowledge) due to the exponential

growth on the KE related to the depth of epistemic formulae, the number of agents, and

the number of events. This conclusion shows how complex the problem of multi-agent

epistemic planning is, as well as the limitations of the DEL-based approaches.

2.3.1.2 Planning Aspects on the DEL-Based Approaches

The DEL-based formalism has been used to explore the theoretical properties of epis-

temic planning in many research works [1, 108–115]. From the planning perspectives, the

DEL-based approach can be implemented by either developing a customised planning

language and planner for the DEL-based formalism and solving the problems directly or

encoding the problems into classical planning problems and solving them by a normal

classical planning planner. In addition, as complexity results shown by Bolander and

Andersen [34], efficiency becomes one of the main issues that are targeted by a lot of

work to improve the practicability of the DEL-based formalism.

The former implementation is straightforward. Baral et al. [116] (originally Baral et al.

[117]) defined an action language mA∗ that represents and reasons about the effects

of actions for epistemic planning. Similar to others, they divide actions in epistemic

planning into different types based on the effects of the action, including world-altering

actions (also known as ontic actions in some works [118]), sensing actions, and announce-

ment actions. The semantics of mA∗ follows the one in Kripke structure, and they use

pointed Kripke structures to represent the states of the actual worlds and the states
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of agents’ knowledge and beliefs. Furthermore, other languages are proposed based on

mA∗, including mAp by Fabiano et al. [119] and E-PDDL by Fabiano et al. [120].

Le et al. utilize mA∗ to develop two epistemic forward planners, EFP and PG-EFP.

They defined their planning problem as a tuple (Agt,F , A,O), where Agt is the set of

agent identifiers and F is the set of fluents. The actions and effects in their model are

determined by the set of all actions A and the observability statement set O. They

specify preconditions and three possible effects for the actions, which are ontic, sensing,

and announcement. Ontic actions change the state (actual world), while sensing actions

reveal the truth value of some fluent f . Announcement actions announce the truth

value of some fluent f , which affects the set O. In the set O, they propose two kinds of

observations: fully observable actions by observes; and partially observable by aware of .

Their semantics are defined by transition functions, which can handle three types of

agents’ awareness of the execution of one action: fully, partially, and oblivious. They

implement their model on two planners, EFP and PG-EFP, with breadth-first search

and heuristic search respectively. They propose the definition of an epistemic planning

graph, and use it as their main data structure in the search. As for PG-EFP, they

derive heuristic values directly from the structure of the epistemic planning graph. They

compared their planners against Muise et al. [87]’s and Huang et al. [7]’s solutions on

Corridor, Collaboration-and-communication [115], and Assembly Line [7]. From their

comparison, we find EFP does not suffer from the exponential blow-up on the depth of

the epistemic relations, but it is affected by the length of the plan. As for PG-EFP,

it does perform better than EFP on several problems, but the expressiveness is not as

good as EFP.

The latter approach of epistemic planning using DEL-formalism has first been explored

by Kominis and Geffner [115]. Similarly, to improve the planning efficiency, their model

only captures a fragment of the DEL by using the intuition of the belief state from

the partially observable planning. Their approach also maintains the problem’s Kripke

structure. By their definition (adapting STRIPS), an epistemic planning problem P is a

tuple ⟨Agt, F, I, O,N,U,G⟩. In their model, Agt is the set of agent identifiers, I is a set

of possible initial states rather than just one initial state in STRIPS. Then, instead of

tracking the problem by only updating actual states, they combine the Kripke structure

with the state at time step t and possible initial states by using beliefs, B(t). A set

of beliefs B(t) contains a set of B(si, t) for each possible initial state si. And in each
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B(s, t), there are the actual state v(s, t) and indistinguishable relations ri(s, t) between

the current state and possible initial state for each agent i. By doing so, they are able to

construct the Kripke structure from the initial state for each agent. They define three

kinds of action sets, O, N and U to maintain and update the Kripke structure during

the searching process. Set O represents all physical (ontic) actions, which is the same

O as in classical planning. The action set N denotes a set of sense actions, which can

be used to infer knowledge. The sense actions will iterate on each agent and remove

the inconsistent belief relations according to the given formula, which they adapt from

Levesque [121]. The last action set U is used to update beliefs according to the fact φ.

The update will keep the possible previous state that agrees with φ and delete the rest.

They convert epistemic planning problems to classical planning problems using stan-

dard compilation techniques for partially-observable planning. As far as we can tell

from their experiments in this work [115], they keep the depth of the epistemic rela-

tion fixed at one and vary the number of agents or the number of rooms. Their results

show that their model is able to solve all cases presented with different suitable plan-

ners. Furthermore, they extended their work to handle nested belief in a multi-agent

setting [118]. In addition, in this extension, they perform planning from the perspective

of each agent following planning methods in modeling and solving Partial-Observable

Non-Deterministic (POND) problems.

2.3.2 Syntactic Approaches

Another direction of modeling and solving the epistemic planning problems is the syn-

tactic approach. The syntactic approach represents and reasons about agents’ knowl-

edge and beliefs using sets of true epistemic formulae, namely “knowledge-bases”. It

starts with a knowledge-base and updates it according to the action sequence. Some

earliest works in knowledge-base planning are proposed by Petrick and Bacchus [122].

Since there is no commonly used theoretical model for the syntactic approaches, we

only show a few examples in this thesis. Similarly to the semantic approach, research

works that implemented the syntactic approach have two directions: either converting

the epistemic planning problems into classical planning problems [1, 87, 88, 123–127];

or developing their own language and planner to model and solve epistemic planning

problems [7, 122, 128–130].
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Many works with the syntactic approach (knowledge base) focus on converting the epis-

temic planning problems to the classical planning problems. So that, they can incorpo-

rate the state-of-the-art classical planner to achieve efficiency. Muise et al. [88] (originally

Muise et al. [87]) proposed an approach to model and solve multi-agent epistemic plan-

ning problems by generating all effects (belief updates) of the epistemic action in the

pre-compilation phase. This is done by grounding epistemic fluents into propositional

fluents and using additional conditional effects of actions to enforce desirable properties

of beliefs. They define an instance of Multi-agent Epistemic Planning (MEP) problems

as a tuple P = (F,A,Agt, I,G), where, similar to STRIPS (Section 2.1.3.1), F is the

set of propositions (facts), A is the set of actions (operators), I is the initial state, G is

the set of goal conditions, and Agt is the set of agents. The epistemic formulae (literals)

their model handles following this grammar: “ϕ ::= p | Biϕ | ¬ϕ”. The literal “Biϕ”

reads as “agent i believes ϕ”. Their model is restricted to epistemic formulae with a

predefined finite depth of nested beliefs and excludes disjunctions.

They take three processes to convert their model to STRIPS and ensure those processes

keep their solution sound and complete. In the first step, they remove negations and add

logical consequences of all positive effects when applying an action to maintain deduc-

tive closure. Then, the beliefs about the negation of an unobservable effect (including

other beliefs that can deduce this unobservable effect) are removed to handle uncer-

tainty. At last, they handle different level belief updates by using conditional effects to

cover the mutual awareness. They evaluate their approach on benchmarks, including

Corridor [115] domain, Grapevine domain (a combination of Corridor and Gossip [131]),

and Selective Communication [132]. Their results show that their approach is able to

model and solve epistemic planning problems within a typically short time, but the

compilation time to generate fluents and conditional effects (converting the epistemic

planning problem into a classical planning problem) is exponential in both the number

of agents and the maximum depth of epistemic relations.

Rather than using classical planners, Huang et al. [7] built a native multi-agent epistemic

planner and proposed a general representation framework for multi-agent epistemic prob-

lems. They consider the multi-agent epistemic planning problems from a third-person

point of view. They implement a planner, MEPK, to handle their representation fol-

lowing well-established belief revision and update algorithms. Although this approach

is different from Kominis and Geffner [115] and Muise et al. [87] as they have their own
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encoding and an epistemic planner, it still requires a compilation phase before plan-

ning to re-write epistemic formulae into a specific normal form called Alternating Cover

Disjunctive Formulae (ACDF) [133]. The ACDF formula is worst-case exponentially

longer than the original formula. Their result indicates that their approach suffers from

a similar computational burden as either Kominis and Geffner or Muise et al..

2.3.3 Discussion of the Existing Epistemic Planning Works

Epistemic planning plays a pivotal role as a bridge between theoretical advancements in

epistemic logic and their practical applications in real-world scenarios. As briefly men-

tioned in Section 2.3.1 and Section 2.3.2, a significant limitation of existing approaches

in epistemic planning is their lack of practicability, which continues to limit progress in

the field.

Firstly, this limitation is evident even within the context of modeled complex instances in

epistemic planning domains rather than solving them, where the term ”complex” refers

to scenarios involving a large number of agents and highly nested epistemic relations.

While existing approaches are theoretically capable of handling such instances, their

practical applicability is limited.

In particular, constructing and maintaining the Kripke structure for a complex problem

instance with any semantic approach is often infeasible for a modeler. This challenge

is amplified when changes involve deeply nested epistemic relations. Similarly, correctly

generating all epistemic action effects during the pre-compilation phase is also challeng-

ing when involving deeply nested epistemic relations for the syntactic approach. Thus,

scalability is an issue when modeling those complex instances. Besides, even if those

problem instances are properly modelled, the feasibility of solving them is also concern-

ing. The semantic approach must preserve Kripke structures, including accessibility

relations, and update them with event-based models. Intuitively speaking, as agents ob-

serve more (epistemic) actions, the possible worlds they consider should narrow until all

target epistemic formulae are validated by the semantics used. Conversely, the syntac-

tic method uses a knowledge base to represent agents’ knowledge and belief. Intuitively

speaking, as more (epistemic) actions are performed, this knowledge-base should expand

to a big set until all goal epistemic formulae are in it. Both approaches require a costly

data structure at some stage.
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Despite the scalability, the efficiency 7 is another limitation when solving them. It is

inefficient to reason about knowledge over the possible worlds, as it is exponential to

the maximum depth of epistemic relations. Specifically, it is the product of the number

of possible worlds for each agent that appears in the given epistemic relations. In the

syntactic approach, although there is no time taken for evaluating epistemic formulae

when planning, updating the whole knowledge-base is still exponential, as the number

of possible action effects is the number of agents to the power of the maximum depth of

epistemic relations.

In addition, generalizability – the ease with which these approaches can be adapted to

model new epistemic planning domains – remains a significant concern. Whether using

the semantic approach or the syntactic approach, current approaches require modelers

to possess a deep understanding of both epistemic logic and the targeting domain. More

specifically, modelers are required to specify how each action affects an agent’s individual

and nested knowledge or beliefs, often to a highly detailed level. This manual effort

creates a substantial barrier to the adoption of epistemic planning.

Last but not least, expressiveness remains a notable limitation in current epistemic

planning approaches, a challenge inherited from classical planning. Declarative planning

languages are not inherently designed to handle complex functions or dynamics, such

as those governed by physical laws. For instance, consider modeling the concept of a

line of sight. While this is intuitive for humans and straightforward to implement in

imperative programming languages such as Python or C++, representing it in a planning

language is often infeasible and impractical. This lack of expressiveness restricts the

ability of epistemic planning to model and solve problems that require such nuanced

representations, further limiting its applicability to real-world scenarios.

Overall, the current epistemic planning approaches have a significant gap between theo-

retical work and real-world applications because of the limitations: scalability, efficiency,

generalizability, and expressiveness. The first attempt to address the above limitations

on modeling and solving epistemic is done by Hu [4]. They proposed a state-based ap-

proach that is able to reason about epistemic logics with efficiency. In addition, they

decomposed epistemic planning by using an external function (implemented apart from

planning) to handle epistemic logic reasoning. By their approach, they are able to use

7The efficiency we discussed here is only about the efficiency in reasoning about epistemic logic. The
efficiency of the search algorithms when planning is not relevant to content of this thesis.
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any programming language to model epistemic logic rather than using a declarative

planning language. The details can be found in the following section.

2.4 State-based Epistemic Planning

In this section, we introduced the first attempt on a state-based approach that models

and solves epistemic planning problems which is done by Hu [4]. In their work, they

show intuitively how the knowledge can be derived from state by observation (from their

Näıve semantics) and how the epistemic logic reasoning can be done by an external

solver. This approach derives the agent’s knowledge (including group knowledge) from

the state directly without explicitly maintaining the changes in the Kripke structure.

In addition, since this approach reasons on the states only, it is an action-model-free

approach that can work with simulators or even in other techniques beyond planning.

2.4.1 Background

The general background has been introduced in previous sections in this chapter, in-

cluding Planning (Section 2.1), Epistemic Logic (Section 2.2) and Epistemic Planning

(Section 2.3). Some additional background about seeing relation specific to their work [4]

is provided here:

a1
(0.0, 0.0)

a2
(4.2, 0.0)

b1
(−2.1, 0.0)

b2
(2.1, 0.0)

b3
(6.2, 0.0)

b4
(2.1, 1.9)

Figure 2.4: Example for Big Brother Logic.

Quoted text: “ Gasquet et al. [2] noted the relationship between what an agent

sees and what it knows. They define a more specific task of logically model-

ing and reasoning about cooperating tasks of vision-based agents, named Big



Epistemic Planning 54

Brother Logic (BBL). Their framework models multi-agent knowledge in a con-

tinuous environment of vision, which has many potential applications such as

reasoning over camera inputs, autonomous robots, and vehicles. They introduce

the semantics of their model and its extensions on natural geometric models.

In their work, the agents (stationary cameras) are in a Euclidean plane R2, and

they assume that those cameras can see anything in their sight range, and they

do not block others’ sight. They extend Fagin et al. [3]’s logic by noting that,

at any point in time, what an agent knows, including nested knowledge, can be

derived directly from what it can see in the current world. Instead of Kripke

frames, they define a geometric model as (pos, dir, ang), in which:

• pos : Agt→ R2

• dir : Agt→ U

• ang : Agt→ [0, 2π)

where U is the set of unit vectors of R2, the pos function gives the position of

each agent, the dir function gives the direction that each agent is facing, and the

function ang gives the angle of view for each agent. Those functions are defined

for every agent.

A model is defined as (pos, ang,D,R), in which pos and ang are as above, D is

the set of possible dir functions and R is the set of equivalence relations, one for

each agent a, defined as:

Ra = {(dir, dir′) ∈ D2 | for all b ̸= a, dir(b) = dir′(b)}

The definition above shows the equivalence relation for agent a between the

worlds (pos, dir, ang) and (pos, dir′, ang), that if in two direction functions that

all agents except a have the exact same directions, then those two direction

functions are indistinguishable to a.

In this context, standard propositional logic is extended with the binary operator

a ▷ b, which represents that “a sees b”. This is defined as:

(pos, ang,D,R), dir ⊨ a ▷ b iff pos(b) ∈ Cpos(a),dir(a),ang(a)
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in which Cpos(a),dir(a),ang(a) is the field of vision that begins at pos(a) from di-

rection dir(a) and covers ang(a)
2 degrees in both clockwise and counter-clockwise

directions.

Figure 2.4 shows an example with two agents, a1 and a2, and model

((0.0, 0.0), 60◦, D,R) and ((4.2, 0.0), 60◦, D,R) respectively, along with four ob-

jects, b1, b2, b3, and b4. Based on the current world, for agent a1, we have:

• (pos, ang,D,R), dir ⊨ a1 ▷ a2;

• (pos, ang,D,R), dir ⊨ a1 ▷ b2;

• and (pos, ang,D,R), dir ⊨ a1 ▷ b3.

From this, Gasquet et al. show the relationship between seeing and knowing. For

example, Ka(b ▷ c) is defined as a ▷ b ∧ a ▷ c ∧ b ▷ c.

They also define a common knowledge operator, in a similar manner to that of

Fagin et al.’s definition based on G−reachable worlds. In Figure 2.4, the formula

C{a1,a2}a1▷b2 holds by their definition, because a1 and a2 can both see b2, and can

both see each other. From those, we can deduce based on the laws of geometry

that a1 can see “a2 can see b2” as a1 can see both a2 and b2, and a2 can see b2.

Furthermore, from the previous statement, and a2 can see a1, we get that a2 can

see “a1 can see that a2 can see b2”, etc. Thus, some common knowledge has been

established. ”

In addition to Gasquet et al.’s work, another source of inspiration for Hu’s research is

from Cooper et al. [1]. Cooper et al. generalise seeing relations from the visibility in the

actual world to the abstract ideas of seeing propositions.= This means that agents can

see properties about the world, and can see and know whether other agents see these

properties. This is flexible enough to model, for example, whether agents see the same

value of a traffic light or whether agents see that others see the same value of a traffic

light. Thus, Hu [4] includes Cooper et al.’s formulization as follows:

Quoted text: “ Cooper et al. [1] add an extra type of formulae α that describes
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formulae (propositions) that can be seen:

α ::= p | Siα

φ ::= α | φ ∧ φ | ¬φ | Kiφ,

in which p ∈ Prop (the set of propositional variables) and i ∈ Agt. The gram-

mar of α defines visibility relations. Siα reads as “agent i sees α”. Note the

syntactic restriction that agents can only see atomic propositions or nesting of

seeing relationships that see atomic propositions.

From this, they note the equivalences Kip ↔ p ∧ Sip and Ki¬p ↔ ¬p ∧ Sip.

To be specific, they disallow Si¬p. This tight correspondence between knowing

and seeing is intuitive: an agent knows p is true if p is true and the agent can

see the variable p. Such a relationship is the same as the one between knowing

something is true and knowing whether something is true [122, 123, 130]. ”

Comparing these two bodies of work, Gasquet et al. use a geometric model to represent

the environment and derive knowledge from this by checking the agents’ line of sight.

Their idea formalises the notation that “seeing is believing”. However, their logic is

focused only on agents’ visions in physical spaces.While in Cooper et al.’s world, the

seeing operator applies to propositional variables or formulae (even includes epistemic

formulae), and thus visibility is more abstract, such as “seeing” (hearing) a message

over a telephone (instantaneous effects). This connection between seeing and knowing

is similar to the idea of sensing actions in partially-observable planning [6, 73–77, 115,

118, 119, 126], as seeing/sensing generates new knowledge. However, sensing actions are

actions, whereas the idea of ‘seeing’ is a relation over properties of states.

Differing from all the works above, Hu [4] generalises seeing relations by defining the

perspective functions, which are domain-dependent functions defining what agents see

(the seeing rules) in particular worlds. The result is more flexible than seeing relations.

It allows epistemic logic (knowledge), such as BBL, to be defined and reasoned with a

simple perspective function.
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2.4.2 Agent’s Perspective Model

Now, we introduce one of the core ideas in Hu [4]’s work, which is the Agent’s perspective

model. By following F-STRIPS (using functional variables rather than propositions),

their model is able to handle problems with both discrete and continuous domains.

They defined any epistemic planning problem that can be handled by their model as

follows:

Quoted text: “ We defined an epistemic planning problem as a tuple

(Agt, V,D,O, I,G,F), in which Agt is a set of agents, V is a set of variables,

D stands for domains for each variable, in which domains can be discrete or con-

tinuous, I and G are the initial state and goal states set respectively, and both

of them are also bounded by V and D. Specifically, the initial state should be a

complete assignment for all V , while the goal states set is a set of complete states

that satisfy goal conditions (assignments or relations between variables’ values).

O is the set of operators, with arguments in the terms of variables from V . The

F denotes the external functions. ”

2.4.2.1 Language

Then, they defined the language of their model as follows:

Quoted text: “

Definition 2.13. Goals, actions preconditions, and conditions on conditional

effects are epistemic formulae, defined by the following grammar:

φ ::= R(v1, . . . , vk) | ¬φ | φ ∧ φ | Siv | Siφ | Kiφ,

in which: R is k-arity “ontic” relation symbol, which takes k ground values

and returns true or false indicating whether the relation R(v1, . . . , vk) with

v1, . . . , vk ∈ V is true or not in the current state; Siv with v ∈ V and Siφ

are both visibility formulae, and Kiφ is a knowledge formula.
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”

With this definition, they divide all formulae in their model into three categories: ontic

formulae 8, visibility formulae, and knowledge formulae.

Ontic formulae do not only include basic mathematical relations, but also relational

terms defined by the underlying planning language, which means they can have relations

between variables. They gave an example as follows:

Quoted text: “ For example, from Figure 2.4, “pos(a1) = (0, 0)” is a true

formula expressing the position of agent a1, while “pos(a1) = pos(a2)” is

false. Since they used F-STRIPS, which allows more complex customized re-

lations, as long as they are defined in the external functions. For example,

we can define an ontic relation in an external function to compare distance

between objects, called @far away(pos(i), pos(j), pos(k)). This external func-

tion takes three coordinates as input and returns a Boolean value, whether

the distance between i and j is longer than i and k. From the same sce-

nario in Figure 2.4, @far away(pos(a1), pos(b4), pos(b2)) would be true, while

@far away(pos(a1), pos(b1), pos(b2)) would be false, since b1 and b2 are at the

same distance to a1. ”

Their intuition is that this function can be defined and implemented in any programming

language, such as C++, as the external functions, and the planner is unaware of its

semantics.

As for seeing relations, their intuition is from “seeing a proposition” [1]. They gave an

example as follows:

Quoted text: “ Using a proposition p as an example, “agent i knows whether

p” can be represented as “agent i sees p”. The seeing formula represents two

related interpretations: either p is true and i knows that; or, p is false and i

knows that. With higher-order observation added, this intuition provides them

8From their discussion, we believe the naming is not accurate. Thus, we rename it as ontic formulae
onwards.
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a way to reason about others’ epistemic viewpoints about a proposition without

actually knowing whether it is true. Building on this concept, their seeing formula

represents two related interpretations: Siv (seeing a variable) and, Siφ (seeing a

formula). The formula Siv can be understood as variable v has some value, and

no matter what value it has, agent i can see the variable and knows its value. The

formula Svφ can be interpreted as: for formula φ, no matter whether it is true or

false, agent i knows whether it is true or not. To make sure i knows whether φ is

true or not, the evaluation for this seeing formula is simplified by them to that

agent i sees all the variables in φ. For example, in Figure 2.4, Sa1pos(b2) can

be read as “agent a1 sees variable pos(b2)”, and it represents whether agent a1

knows b2’s location, wherever b2 locates. In the case of seeing an ontic formula,

let φ be far away(pos(a1), pos(b4), pos(b2)). Then, Sa1φ can be read as “agent a1

sees the relation far away(pos(a1), pos(b4), pos(b2))”, which is: “agent a1 knows

whether b4 is farther away from a1 than b2”. ”

Following Cooper et al. [1]’s idea on defining knowledge based on visibility, they define

knowledge as: Kiφ ↔ φ ∧ Siφ. That is, for i to know φ is true, it needs to be able to

see φ, and φ needs to be true. In other words, if you can see something and it is true,

then you know it is true.

2.4.2.2 Model

Their model decomposes the planning model from the epistemic logic reasoning model.

As discussed later in their implementation, their planner reasons about epistemic logic by

external functions. Therefore, we introduce their model and semantics of their external

epistemic logic (knowledge) reasoning solver. The novel part of this model is the use of

perspective functions, which are functions that define the seeing rules of the epistemic

planning domain, instead of using full Kripke structures. From this, a rich knowledge

model can be built up independent of the planning process.

Quoted text: “

Definition 2.14 (Quoted from Hu [4]). A model M is defined as M =

(V,D, π, f1, . . . , fn), in which symbols are explained as follows:
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V is a finite set of variables and D is a function that maps each variable to its

(non-empty) domain. One example is D(v1) = {e1, . . . , en} for variable v1. From

V and D, we define a state s ∈ S as a set of variable assignments, denoted as

{v1=e1, . . . , vk=ek}. We use s(vi) to represent the value of vi in state s. There

are two kinds of states, namely global state and local state. A global state is

a complete assignment for all variables in V . Whereas, a local state, which

represents an individual agent’s perspective of the global state, can be either

a partial or a complete assignment. If vi is not in a local state, s(vi) = null.

The set of all states (local and global) is denoted as S. π is a set of evaluation

functions, such that for πk ∈ π, πk : R → S → {true | false}, where Rk is a set

of atomic relational symbols of the form R(v1, . . . , vn). If πk is applied to a local

state in which a variable vi occurs in R(v1, . . . , vn) but is not in the local state,

then πk must be evaluated to false.

Finally, f1, . . . , fn : S → S are the agents’ perspective functions that given a state

s, will return the local state from agents’ perspectives. A perspective function,

fi : S → S is a function that takes a state and returns a subset of that state,

which represents the part of that state that is visible to agent i. These functions

can be nested, such that fj(fi(s)) represents agent i’s perspective of agent j’s

perspective, which can be just a subset of agent j’s actual perspective. The

following properties must hold on f1, . . . , fn for all i ∈ Agt and s ∈ S:

1. fi(s) ⊆ s

2. fi(s) = fi(fi(s))

3. If s ⊆ s′, then fi(s) ⊆ fi(s
′)

”

The model they defined follows the F-STRIPS language, which is also very similar to

first-order Kripke structure for knowledge in Fagin et al. [3]’s book. The difference lies in

the perspective function f0, . . . , fk. First-order Kripke structures still keep the possible

worlds and their accessibility relation Ki, while Hu uses perspective function to define

the semantics of the epistemic relations in their language as below. Then, they gave

their semantics with an explanation as follows:
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Quoted text: “

Definition 2.15 (Semantics for Single Knowledge with Perspective Function [4]).

Given an agent’s justified perspective modelM = (V,D, π, f1, . . . , fk), the seman-

tics of their language is defined as:

(a) (M, s) ⊨ R(v1, . . . , vk) iff π(R, s(v1), . . . , s(vk))=true

(b) (M, s) ⊨ Si v iff ∃ x ∈ D(v), such that, (v=x) ∈ fi(s)

(c) (M, s) ⊨ Si R(v1, . . . , vk) iff ∀v ∈ {v1, . . . , vk}, (M, s) ⊨ Siv

(d) (M, s) ⊨ Si¬φ iff (M, s) ⊨ Si φ

(e) (M, s) ⊨ Si (φ ∧ ψ) iff (M, s) ⊨ Si φ and (M, s) ⊨ Si ψ

(f) (M, s) ⊨ Si Sj φ iff (M, fi(s)) ⊨ Sj φ

(g) (M, s) ⊨ Si Si φ is always true

(h) (M, s) ⊨ Si Kj φ iff (M, fi(s)) ⊨ Kj φ

(i) (M, s) ⊨ Ki φ iff (M, s) ⊨ φ and (M, s) ⊨ Siφ

Relations are handled by the evaluation function π(s). The relation R is evalu-

ated by getting the value for each variable in s, and checking whether R holds

or not. Other propositional operators are defined in the standard way.

In (b), Siv, read “Agent i sees variable v”, is true if and only if v is visible in

the state fi(s). That is, an agent sees a variable if and only if that variable is in

its perspective of the state. Similarly in (c), an agent knows whether a domain-

dependent formula is true or false if and only if it can see every variable of that

formula. For example, in Figure 2.4, Sa1b1 is false and Sa1b2 is true, which is

because b2 is in a1’s perspective (blue area), while b1 is not. The remainder of

the definitions simply deal with logical operations in our language. It is worth

noticing that in (d) Si ¬φ is in fact equivalent to Siφ, because both φ and ¬φ

contain exactly the same variables. Besides, the semantics of Si ¬φ is “i knows

whether ¬φ is true or not”, which is the same as the semantics of Siφ: “i knows

whether φ is true or not”. This effectively just defines that “seeing” a formula

means seeing its variables. Furthermore, seeing a conjunction Si(φ ∧ ψ) in our

model is equivalent to (Siφ∧Siψ) in (e). We can simply prove this by constructing
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a (m+ n)-ary relation θ for any m-ary relation ψ and n-ary relation φ following

the truth value of φ∧ψ. Disjunction works the same due to “ψ∨φ ≡ ¬(¬ψ∧¬φ)”.

The above items (f) and (g) are both about nested seeing relations. In the case

of (f), whether SiSjφ (i ̸= j) is true is equivalent to whether Sjφ holds in agent

i’s perspective of the world s. However in the case of SiSiφ, as noted by Cooper

et al. [1], an agent always sees what it sees, to SiSiφ is a validity.

The definition as shown in (i) follows the idea in Cooper et al. [1]’s paper on the

relation between knowledge and seeing: agent i knows φ if and only if the formula

is true at (M, s) and agent i sees it. Using the same example as previously,

Ka1@far away(pos(a1), pos(b2), pos(b3)) is false, even if a1 does see b2 and b3,

b2 is not farther than b3 to a1. While, Ka1@far away(pos(a1), pos(b3), pos(b2))

is true. In addition, combining negation semantics from the seeing relation, we

have Kiφ∨Ki¬φ↔ (φ∧Siφ)∨ (¬φ∧Si¬φ) ↔ Siφ, which is also similar as the

idea of “knowing whether” Kw in Miller et al. [123]’s paper. ”

2.4.2.3 Validation

They also validated their single knowledge semantics. Firstly, they discuss some basic

properties of their logic. Then, they prove the soundness of their model, followed by

showing the completeness of their model for logically separable formulae. In the following

parts of this section, they use the following example: a state s contains one variable x,

and the domain for x is {1, 2, 3}. Therefore, all global states in this example for our

model contain s1 = {x=1}, s2 = {x=2}, s3 = {x=3}. The state space is formed as

S = Sc ∪ {sempty}, where sempty = {}. This example is visualized in Figure 2.5, where

k1 and k2 represent two Kripke structures: agent i does not know the value of x in any

world; and agent i knows the value of x in all three worlds, respectively.

They claim their semantics follows S5 axioms and proves it as follows:

Quoted text: “

Theorem 2.16 (Quoted from Hu [4]). The S5 axioms of epistemic logic are

valid in this logic. That is, the following axioms hold:
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Figure 2.5: Two Examples of Kripke Structure [4]

(K) Ki(φ→ ψ) → Kiφ→ Kiψ

(T) Kiφ → φ

(4) Kiφ → KiKiφ

(5) ¬Kiφ → Ki¬Kiφ

”

They proved the above theorem as follows:

Quoted text: “

Proof. We first consider axiom (T). By our semantics, (M, s) ⊨ Ki φ is true, if

and only if, both (M, s) ⊨ φ and (M, s) ⊨ Siφ are true. Therefore, it is trivial

that axiom (T) holds.

For (K), based on our definition of knowledge, we have (M, s) ⊨ Ki(φ → ψ)

is equivalent to (M, s) ⊨ Si(φ → ψ) and (M, s) ⊨ (φ → ψ). Then, by our

semantics, we have that (M, s) ⊨ Si(φ → ψ) is equivalent to (M, s) ⊨ Si¬φ

or (M, s) ⊨ Siψ. From propositional logic, φ→ ψ is equivalent to ¬φ ∨ ψ. We

combine (M, s) ⊨ ¬φ with (M, s) ⊨ Siφ to get (M, s) ⊨ ¬Kiφ and similarly

for ψ to get (M, s) ⊨ Kiψ, which is equivalent to (M, s) ⊨ Kiφ → Kiψ from

propositional logic.

To prove (4) and (5), we use the properties of the perspective function fi. The

second property shows, a perspective function for agent i on state s converges
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after the first nested iteration, which means (M, fi(s)) ≡ (M, fi(fi(s))). Therefore,

whenever (M, fi(s)) ⊨ φ, then φ also holds in (M, fi(fi(s))), implying that Kiφ

holds too (4). According to (i) in our semantics, we have Ki¬Kiφ↔ Ki(¬Siφ∨

¬φ) ↔ (Si¬Siφ ∧ ¬Siφ) ∨ (Si¬φ ∧ ¬φ). In combining our semantics on seeing

relation (g) and (d), we have (M, s) ⊨ Ki¬Kiφ ≡ (M, s) ⊨ (true∧¬Siφ)∨ (Siφ∧

¬φ), which is in fact equivalent to (M, s) ⊨ ¬Siφ ∨ ¬φ and thus matches the

premise “¬Kiφ↔ ¬Siφ ∨ ¬φ”. Hence, (5) holds.

”

Then, they proved the soundness and completeness of their semantics by constructing

a corresponding Kripke structure. They proposed a theorem (Theorem 2.17) to prove

that for every instance in their modelM , there is a corresponding Kripke structureMK .

Their theorem and proofs are provided here:

Quoted text: “

Theorem 2.17 (Quoted from Hu [4]). Let M be any instance of the agent’s

perspective model; there exists at least one corresponding Kripke structure MK .

Proof. We can prove this theorem by constructing one corresponding Kripke

structure MK for any M .

Let any instance from our model be M = (V,D, π, f1, . . . , fn) and its correspond-

ing Kripke structure MK = (SK , πK ,K1, . . . ,Kn). As S in Kripke structure

syntax is a set of all possible worlds (states), we create a set of propositions for

all the variables v ∈ V by taking the Cartesian product V × D(v), and then

assigning true/false value to each proposition in that product. Therefore, any

global (complete) state s from M can find an identical s′ in MK by assigning

false value to all the propositions except those indicating assignments (v = e) in

s. It is trivial that the evaluation function π is identical to πK . So, we only have

to define the accessibility relations in the Kripke structures, K1, . . . ,Kn, to rep-

resent perspective functions. Since Ki contains all the accessibility relations for

agent i, and each relation is a pair of possible worlds (states), we now construct

K1, . . . ,Kn by following steps:
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• For each agent i, Ki is:

◦ For each possible state s in MK :

1. Find i’s perspective of world s by fi(s);

2. For each possible world s′ in MK where fi(s) = fi(s
′), add the pair

of accessibility relation (s, s′) in Ki

For each state s, we create accessibility relations (s, s′) into Ki by pairing s with

all possible worlds s′ that agree on all of the “visible” variables for agent i. In

other words, agent i considers s′ is possible given the current world s, as i is

unsure about value of those variables i cannot “see”.

”

As they mentioned, although the above theorem holds, the corresponding Kripke struc-

ture does contain more information that their semantics deliberately choose to ignore.

Their construction above is only a full structure without any imperfect information (in-

formation that implies a constraint on the variable value without identifying the value).

Using example from Figure 2.5, k1 is a full structure without any imperfect information.

If agent i knows whether the value of x is not 1, then we remove the bidirectional edges

between s1 and s2 and between s1 and s3. Thus, in the Kripke structure, we can have

something such as Kix > 1 while it cannot be directly modeled by their model.

Then, since “seeing operator” (from their model) is not defined in Kripke structure, they

need to define it first before reasoning about its soundness and completeness of their

semantics. Their definition is presented as follows.

Quoted text: “

Definition 2.18 (Quoted from Hu [4]). (Seeing formula in Kripke structure).

Let any Kripke structure beMK , any agent be i and any formula in our grammar

be φ:

• (MK , s) ⊨ Si v iff ∃v=e ∈ s, such that, ∀(s, t) ∈ Ki, (M
K , s) ⊨ v=e ⇔

(MK , t) ⊨ v=e.
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• (MK , s) ⊨ Si φ iff ∀(s, t) ∈ Ki, (M
K , s) ⊨ φ⇔ (MK , t) ⊨ φ.

”

Their definition of seeing operator in Kripke semantics for Siv and Siφ was derived from

Wan et al. [129]’s definition of “knowing whether”. Their explanation about the above

definition is given as:

Quoted text: “ An agent i sees variable v in (MK , s), if and only if, there exists

a value e such that, v= e is agreed to be true (v= e ∈ s) by all the worlds that

i considers possible given the current world is s. In other words, i sees v, if and

only if, in all the possible worlds, v has a constant value e. The definition for

Siφ is more intuitive: Siφ holds if and only if all of i’s possible worlds from s

agree on the truth value of φ. ”

With the definition of the seeing operator in Kripke structure, then, they can reason

about soundness and completeness of their semantics. But first, they proved item (g),

which is the special case in semantics, holds in the model also holds in the constructing

Kripke structure (as proposed in the following theorem).

Theorem 2.19. (MK , s) ⊨ SiSiφ is always true.

The proof is given as follows:

Quoted text: “

Proof. We prove this by contradiction. Assume SiSiφ is false for some (MK , s),

and denote all worlds agent i consider possible at state s as Ki(s). Then, by

Definition 2.18, we have:

• (MK , s) ⊨ ¬SiSiφ ≡ ∃t1, t2 such that (s, t1), (s, t2) ∈ Ki, (M
K , t1) ⊨ Siφ ∧

(MK , t2) ⊨ ¬Siφ

which means there exist worlds t1, t2 from Ki(s) such that Siφ is true in t1 and

false in t2. Separately, we have:
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• (MK , t1) ⊨ Siφ ≡ ∀t′1 such that (t1, t′1) ∈ Ki, (M
K , t1) ⊨ φ⇔ (MK , t′1) ⊨

φ and

• (MK , t2) ⊨ Siφ ≡ ∃t′2, t′′2 such that (t2, t′2), (t2, t′′2) ∈ Ki, (MK , t′2) ⊨ φ ∧

(MK , t′′2) ⊨ ¬φ

This means that for all worlds in Ki(t1) agree on the value of φ, and for all worlds

in Ki(t2), there exist t′2, t
′′
2, such that φ is true in t′2 and false in t′′2. Since Ki is

symmetric and transitive, we have (s, t1) ↔ (t1, s) and (t1, s) ∧ (s, t2) → (t1, t2).

Therefore, all of (s, t1), (s, t2) and (t1, t2) are inKi, which meansKi(s) ≡ Ki(t1) ≡

Ki(t2). Then, we have that ∀t1 ∈ Ki(t1), (M
K , t1) ⊨ φ⇔ (MK , t′1) ⊨ φ, which

contradicts our earlier assertion that ∃t′2, t′′2 ∈ Ki(t2), (M
K , t′2) ⊨ φ∧(MK , t′′2) ⊨

¬φ.

Therefore, there does not exist a model (MK , s) that makes ¬SiSiφ satisfiable,

meaning that SiSiφ is always true.

”

Then, they proposed a theorem for the soundness in general cases in their semantics as

follows:

Quoted text: “

Theorem 2.20 (Quoted from Hu [4]). (Soundness). Let s be the current state,

M be our model, and MK be the corresponding Kripke structure defined using

the approach in the proof of Theorem 2.17. The following hold:

(1) If (M, s) ⊨ Si v, then (MK , s) ⊨ Si v

(2) If (M, s) ⊨ Si R(v1, . . . , vk), then (MK , s) ⊨ Si R(v1, . . . , vk)

(3) If (M, s) ⊨ Si¬φ, then (MK , s) ⊨ Si¬φ

(4) If (M, s) ⊨ Si (φ ∧ ψ), then (MK , s) ⊨ Si (φ ∧ ψ)

(5) If (M, s) ⊨ Si Sj φ, then (MK , s) ⊨ Si Sj φ

(6) Both (M, s) ⊨ Si Si φ and (MK , s) ⊨ Si Si φ are always true.
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(7) If (M, s) ⊨ Si Kj φ, then (MK , s) ⊨ Si Kj φ

(8) If (M, s) ⊨ Ki φ, then (MK , s) ⊨ Ki φ

”

They prove the above theorem as follows:

Quoted text: “

Proof. The proof for (1) is based on our semantics for visibility of a variable v:

agent i sees v in (M, s), if and only if, there exists some value e that (v=e) ∈ fi(s).

The existing value e means (M, s) ⊨ Siv is consistent in all states that i considers

possible from Ki. By the definition of Siv in Kripke semantics, for all the possible

worlds, the value of v agrees on e if and only if (MK , s) ⊨ Si v holds. Therefore,

our semantics for Siv in (M, s) holds for (MK , s) as well.

For example in Figure 2.5: for any state s in S, if (M, s) ⊨ Si v holds (k2 in

the figure), which means fi(s) is equal to s in any of s1, s2, s3, (M
K , s) ⊨ Si v

will hold, as there is only one accessible relation in Ki for each state s which

is one of (s, s1), (s, s2), (s, s3), respectively, and value of v is agreed as 1, 2, 3,

respectively. If (M, s) ⊨ Si v is false (k1 in the figure), which means agent i

cannot see variable v and fi(s) is s0, then, (M
K , s) ⊨ Si v will not hold, as

Ki would be {(s1, s1), (s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2),

(s3, s3)}, and variable v does not be agreed on one value in all states.

The remaining proofs are straightforward. Since the evaluation function π is

almost identical for both M and MK , and each value in R(v1, . . . , vk) is the

same due to (1), the result for R(v1, . . . , vk) is the same in both M and MK .

Therefore, (2) in this theorem holds. Then, all remaining in M holds in MK

because (1) and (2) hold, except (6) holds as Theorem 2.19 and item (g) in

Definition 2.15.

”
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Then, they proposed a theorem for the completeness of their semantics and showed the

proof as follows.

Quoted text: “

Theorem 2.21 (Quoted from Hu [4]). (Completeness). Let s be the current

state, M be any instance in our model, and MK be its corresponding Kripke

structure constructed following the steps in the proof for Theorem 2.17. All the

following hold for any formula in our language excluding tautology and contra-

diction:

(1) If (MK , s) ⊨ Si v, then (M, s) ⊨ Si v, except when |D(v)| = 1 and i

cannot see v.

(2) If (MK , s) ⊨ Si R(v1, . . . , vk), then (M, s) ⊨ Si R(v1, . . . , vk), except

when R(v1, . . . , vk) ⊢ ⊥ ∨ ⊤, and ∃vt ∈ {v1, . . . , vt}, (M, s) ⊨ ¬Sivt.

(3) If (MK , s) ⊨ Si¬φ, then (M, s) ⊨ Si¬φ, except when φ ⊢ ⊥ ∨ ⊤, and

(M, s) ⊨ ¬Siφ.

(4) If (MK , s) ⊨ Si (φ∧ψ), then (M, s) ⊨ Si (φ∧ψ), except when (φ∧ψ) ⊢ ⊥,

and (M, s) ⊨ ¬Si (φ ∧ ψ).

(5) If (MK , s) ⊨ Si Sj φ, then (M, s) ⊨ Si Sj φ, except when Sj φ ⊢ ⊤, and

(M, s) ⊨ ¬Si Sj φ.

(6) Both (MK , s) ⊨ Si Si φ and (M, s) ⊨ Si Si φ are always true.

(7) If (MK , s) ⊨ Si Kj φ, then (M, s) ⊨ Si Kj φ, except when Kj φ ⊢ ⊤,

and (M, s) ⊨ ¬Si Kj φ.

(8) If (MK , s) ⊨ Ki φ, then (M, s) ⊨ Ki φ, except when φ ⊢ ⊤ ∨ ⊥, and

(M, s) ⊨ ¬Ki φ.

”

They prove the above theorem as follows:

Quoted text: “
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Proof. Following the definition of seeing formula in Kripke structure given above,

(MK , s) ⊨ Si v means for all worlds that i considers possible given the current

world s, the value of v is the same. According to the steps to build corresponding

MK from M , all of the unseen variables will result in accessible worlds with all

possible values. Therefore, if v is agreed on some value for all i’s possible worlds

given s, v must be seen by i in s, unless the domain for v contains only one value,

which means in all accessible worlds v would be agreed on that one value. For

example: let v be a variable with domain {e}, which means “v = e” is a validity.

Even if agent i cannot see v, but in all possible worlds, the value of v agree on

e. Therefore, (MK , s) ⊨ Siv holds, while (M, s) ⊨ Siv does not. However,

if the domain of v becomes {e, e′}, then, all possible worlds that accessible for i

will not agree on v, because in half of the worlds v is e, while in other half, v is

e′. Therefore, v=e will be in fi(s) if (MK , s) ⊨ Si v holds and the size of v’s

domain is larger than 1. Then, following the definition of (M, s) ⊨ Si v, v=e

exists in fi(s), then (1) holds.

For example in Figure 2.5: if theKi contains only (s, s1), (s, s2) and (s, s3) inM
K ,

then there exists an assignment as v=1, v=2, v=3, respectively in fi(s) according

to s, which makes (M, s) ⊨ Si v hold (K2 in the figure). If the Ki contains

other accessible relations, such as, shown in k1 from the figure, {(s1, s1), (s1, s2),

(s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}. Then, (MK , s) ⊨

Si v does not hold as the value of v can be any of 1 or 2 or 3, as well as

(M, s) ⊨ Si v.

Because (1) holds and π(s) are almost identical in both MK and M , then (2)

holds. Item (7) is proved in the same way as in Theorem 2.20. The proof for (3),

(5) and (8) are straightforward by using (1) and (2), given (4) holds. Therefore,

we prove (4) first.

We show (4) by following the definition of the seeing operator in Kripke semantics:

if (MK , s) ⊨ Si (φ ∧ ψ) holds, which means all worlds that i consider possible

in (MK , s) agree on the truth value of φ ∧ ψ. There are only two scenarios such

agreement can be achieved: either, (MK , s) ⊨ Si φ and (MK , s) ⊨ Si ψ hold;

or, φ ∧ ψ is false (φ ∧ ψ is a contradiction). If both φ and ψ can be seen by i in

(MK , s), following (2), both (M, s) ⊨ Si φ and (M, s) ⊨ Si ψ will hold, which
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means Si(φ ∧ ψ) holds. However, if φ ∧ ψ is a contradiction, then φ ∧ ψ is false.

Following Definition 2.5, (MK , s) ⊨ Si (φ∧ψ) holds. However, if agent i cannot

see all variables in φ and ψ, then one of (M, s) ⊨ Si φ and (M, s) ⊨ Si ψ will

not hold, which means (M, s) ⊨ Si (φ ∧ ψ) will not hold. Therefore, (4) holds

if (φ ∧ ψ) is not a contradiction.

Item (3) holds as Si¬φ ≡ Siφ, and Siφ holds by induction. Items (5), (7)

and (8) are straightforward by induction. Item (6) holds as Theorem 2.19 and

item (g) in Definition 2.15. Therefore, our model is complete for all situations

except in which formulae inside seeing operators that contain non-seen variables

are validities.

”

They explained the reason that Kripke semantics can handle tautologies and contradic-

tions is that the semantics checks whether all possible worlds agree on the truth value

of the formula, while their model reduces reasoning on uncertain (unseen) variables by

ignoring them in the agent’s local perspective. They claimed they could handle tau-

tologies and contradictions by checking formulae using resolution. But it is an NP-hard

problem to solve, and they believe it would be unnecessary for most problems.

2.4.2.4 Agent’s Perspective Model for Group Knowledge

Based on the foundation and similar intuition of their single-agent’s knowledge seman-

tics, they defined language and semantics for group operators, including distributed and

common visibility or knowledge.

They extend the syntax of their language with group operators:

φ ::= ψ | ¬φ | φ ∧ φ | ESGα | EKGφ | DSGα | DKGφ | CSGα | CKGφ,

in which G is a set (group) of agents, ψ is any formula in our language for a single agent

defined in this, and α is a variable v or formula φ. In addition, this explained their

language by:
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Quoted text: “ Group formula ESGα is read as: everyone in group G sees a

variable or a formula α, and EKGφ represents that everyone in group G knows

φ. DKG is the distributed knowledge operator, while DSG is its visibility coun-

terpart: someone in group G sees. Finally, CKG is common knowledge and CSG

common visibility: “it is commonly seen”. ”

They defined their group semantics as follows:

Quoted text: “

Definition 2.22 (Quoted from Hu [4]). Let G be the set of agents, φ a formula,

and α either a formula or a variable, the semantics of these group formulae can

be defined as follows:

• (M, s) ⊨ ESG α iff ∀i ∈ G, (M, s) ⊨ Si α

• (M, s) ⊨ EKG φ iff (M, s) ⊨ φ and (M, s) ⊨ ESG φ

• (M, s) ⊨ DSG α iff (M, s′) ⊨ α, where s′ =
⋃
i∈G

fi(s)

• (M, s) ⊨ DKG φ iff (M, s) ⊨ φ and (M, s) ⊨ DSG φ

• (M, s) ⊨ CSG α iff (M, s′) ⊨ α, where s′ = cf (G, s)

• (M, s) ⊨ CKG φ iff (M, s) ⊨ φ and (M, s) ⊨ CSG φ,

in which cf (G, s) is the state reached by applying the composite function
⋂
i∈G

fi

until it reaches its fixed point. That is, the fixed point s′ such that cf (G, s′) =

cf (G,
⋂
i∈G

fi(s
′)).

”

They explained their group seeing and knowledge semantics and proposed a theorem

to show their fix-point state can be found in polynomial time (specifically in at most s

steps).
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Quoted text: “ Reasoning about common knowledge and common visibility is

more complex than other modalities. Common knowledge among a group is not

only that everyone in the group shares this knowledge, but also that everyone

knows others know this knowledge, and so on, ad infinitum. The infinite nature

of this definition leads to definitions that are intractable in some models.

However, due to our restriction on the definition of states as variable assignments

and our use of perspective functions, common knowledge is much simpler. This

is based on the fact that each time we apply the composite perspective function⋂
i∈G

fi(s), the resulting state is either a proper subset of s (smaller) or is s. By

this intuition, we can limit common formula in finite steps.

For each of the iterations, there are |G| local states in group G that need to be

applied in the generalised intersection calculation, which can be done in polyno-

mial time, and there are at most |s| steps. So, a poly-time algorithm for function

cf exists.

”

2.4.2.5 A Brief Note on Expressiveness

At the end of their model section, they discussed the difference and links between their

model and the models that use Kripke structure. Firstly, they explained their intuition

and the connection and difference between their model and first-order Kripke struc-

ture [3]. Then, they showed their model has the capability to model any problem that is

modeled by Kripke structure. That is, reducing from first-order logic into propositional

logic.

As they discussed, although this could model disjunction (same as Kominis and Geffner

[115]), this could easily result in an exponentially large model and would not add the

expressiveness required for most of the epistemic planning problems. They also sum-

marised the expressiveness of their approach with others in Table 2.1.
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Continuous Disjunctive

Depth CK DK Domains Knowledge

Perspective Model Unlimited Y Y Y Possible

PDKB [88] Bounded N N N N

K & G [115] Bounded N N N Y

MEPK [7] Bounded I N N N

EFP & PG-EFP [6] Bounded I N N N

Table 2.1: Expressiveness Comparison over Epistemic Planning Approaches [4].

They summarise the differences between their approach and others as the following four

major points:

Quoted text: “ (1) Our model can handle domains in which the depth of epis-

temic relations is unbounded. Each level of nesting is handled by a set operation

from the perspective function iteratively when checking desired epistemic rela-

tions; while in other approaches, the nested epistemic relations are changed due

to actions, which means they need to specify the effects on all epistemic relations

in operators. However, since Le et al. [6], Kominis and Geffner [115] keeps the

Kripke structure in their approach, we are unsure about whether their approaches

are practically capable of modeling unbounded domains or not. In Muise et al.

[88]’s work, the depth also needs to be defined first as they need to generate all

possible epistemic relations as atoms.

(2) Reasoning about group knowledge is handled by our model using a union

operation on the agent’s perspective of state for distributed knowledge; and the

fixed point of intersections on nested agents’ perspectives for Common Knowl-

edge. Therefore, distributed and common knowledge result naturally from the

visibility of variables.

(3) Our model has the potential to handle continuous domains in both logic

reasoning and problem describing. While the functional STRIPS planner we use

for experiments allows only discrete variables, the external functions reason about
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continuous properties in the Big Brother domain. Further, our approach would

work on function STRIPS planners that support continuous variables [134].

(4) Our model does not handle disjunctive knowledge, but could do so by mod-

eling pairs of each variable and all its possible values as propositions, such as

“x=5∨x=4”. However, by doing so, we would lose the efficiency and some other

expressiveness, such as continuous variables.

One possible objection is that it may be difficult to model perspective functions,

because one must understand epistemic effects. However, it is important to note

that in existing approaches, the modeller either needs to model epistemic effects

as part of action effects, or must understand and be restricted to the assumptions

in the underlying epistemic planning language; or both. Either way, the details

of how actions affect knowledge must be modeled somewhere. In our case, we

delegate these to perspective functions, which are more flexible than propositional

approaches, because at the base case, one can implement a perspective function

that has the same assumptions as any existing propositional approach. This can

then be used for many domains. ”

2.4.3 Implementation & Experiments

To validate their model and test its capabilities, they encoded it within a planner and

solved some well-known epistemic planning benchmarks. They used BFWS(f5) [63] as

the planner and used F-STRIPS with external functions, which allow them to decompose

the planning task from the epistemic logic reasoning.

In this section, they explained the F-STRIPS encoding for their model and the imple-

mentation of the agent’s perspective function.

2.4.3.1 F-STRIPS Encoding

They explained their intuition that, with the perspective model, they only need a plan-

ning language to describe the ontic states and how it changes. Then, for every epistemic

relation reasoning, they used the external functions from F-STRIPS. That is, the epis-

temic logic reasoning task is moved from the planner to the external functions.
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They show how they model the problem with F-STRIPS as follows:

Quoted text: “ Our reasoning is conducted in the model M =

(V,D, π, f1, . . . , fn). In order to combine F-STRIPS with our model, we now

give a proper definition of all the epistemic planning problems that can be han-

dled as a tuple (Agt, V,D,O, I,G,F) in our approach, where: Agt is a set of

agent identifiers; V is a set of variables that covers the physical and the epis-

temic state; O, I and G differ from their counterparts in F-STRIPS only by

adding epistemic formulae in preconditions and goals; the external functions F

contain all the epistemic logic reasoning parts (our model). ”

Then, they showed how the epistemic formulae can be integrated into the planning

language: by in planning action’s precondition; or, by in goal conditions (in the format

of external function calls). They explained this by using the example in Figure 2.4 as

follows:

Quoted text: “ Defining G with desirable epistemic formulae is straightforward.

For example, in Figure 2.4, if we want “agent a1 knows a2 sees b1” to be true, we

could simply set the goal to beKa1Sa2b1. However, there are some other scenarios

that cannot be simply modeled by epistemic goals: temporal constraints, such

as, “agent a1 sees b2 all the time”, or, “target b4 needs to secretly move to the

other side without being seen by any other agent”; and, epistemic formulae that

cannot be achieved by one state, such as, “agent a1 needs to know values for

both b1 and b2 (under the assumption a1 is stationary)”.

Both above scenarios can be modeled by adding epistemic formulae to O. Tem-

poral constraints can be inserted in the precondition of the operators directly.

For example, in Figure 2.4, if the scenario is continued surveillance on b2 over

the entire plan, then the operator turn(a1, d) could have that either “Sa1b2 after

a1 turns d degree” or “Sa2b2 after a1 turns d degree” as one of the preconditions.

As for the latter, we simply use a boolean query variable to indicate whether

each desired epistemic relation is achieved or not, and update the truth value of

all query variables as conditional effects in O. ”
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2.4.3.2 Agent’s Perspective Function

As they mentioned in their model definition (Definition 2.14), the perspective function,

fi : S → S, is a function that takes a state and returns the local state as the perspective

of agent i. Compared to the intuition of Kripke structures, their intuition is to only

define which variables an agent sees. Individual and group knowledge all derive from

agents’ perspectives.

They have developed a library of external functions that implement the semantics of Si,

Ki, DSG, DKG, CSG, and CKG, using the underlying domain-specific perspective func-

tions. In addition, with the planner from Francès et al. [63], they provide an epistemic

planning framework that the model simply needs to provide the perspective function for

their domain (if a suitable one is not already present in their library).

They show two examples based on BBL to demonstrate their implementation. The

first one follows the example in Figure 2.4, where the blue area, yellow area and their

intersection represent agent a1’s, agent a2’s and their common local perspectives of the

global world. The implementation of the perspective function in this example follows

Euclidean geometric calculation. Given the current state is s, the agent is i and target

is j, whether i sees j is the evaluation of the following equation:

∣∣∣∣arctan( |s(yi)− s(yj)|
s(xi)− s(xj)

)
−s(diri)

∣∣∣∣ ≤
s(angi)

2

⊕ ∣∣∣∣arctan( |s(yi)− s(yj)|
s(xi)− s(xj)

)
−s(diri)

∣∣∣∣ ≥
360◦ − s(angi)

2
(2.3)

Following the above seeing relation evaluation, their perspective function for this exam-

ple takes the current state (including all agents’ locations, directions, and vision angles,

along with all other variables’ locations; and it could be a local state when the epistemic

relation evaluating has nesting) as input, and returns all the variables belonging to those

agents and variables that fall inside these regions.

Their second example is a complicated version of the first one, in which they take

obstacles into consideration. They show two scenarios with different sizes of the wall as

shown in Figure 2.6. They explained this example as:
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Quoted text: “ In Figure 2.6a, since the wall blocks the vision between agent

a1 and a2, in standard BBL, we would have fa1(s) = {a1, b1, w} and fa2(s) =

{a2, b1, w}. But we must also check whether there is an obstacle-free line of

sight. Since the wall blocks line of sight between a1 and a2, then a2 must be

removed from fa1(s). So, in agent a1’s perspective, agent a2’s view of the world

is fa2(fa1(s)) = ∅, as agent a1 cannot see a2.

A slightly more complex example would be in the Figure 2.6b. This is the same

as the previous scenario, except that the wall is resized so that agents a1 and a2

can see each other. In the figure, the perspective of agent a1 is blue. However,

the wall prevents a1 from seeing line of sight between a2 and b. We do not have

b1 ∈ fa2(fa1(s)) if our perspective function is modelled so that when we apply fa2

on b1 in the local state fa1(s), the line of site (a2, b1) is not fully in the blue area

(a1’s perspective of the world s), which means agent a1 cannot see if agent a2

sees b1. ”

a1
(−2.6, −1.5)

a2
(2.6, −1.5)

b1
(0.0, 0.0)

w1

(0.0, −0.8)

w2

(0.0, −2.2)

a: Scenario 1

a1
(−2.6, −1.5)

a2
(2.6, −1.5)

b1
(0.0, 0.0)

w1 (0.0, −0.8)

w2

(0.0, −1.3)

b: Scenario 2

Figure 2.6: Examples for Big Brother Logic with Obstacle [4].

To sum up, those examples show that they can expand to new logics by providing

different implementations of fi. From this, the logic of knowledge is provided using their

implementation of the semantics in Definition 2.15. That is, the modeller only needs to

provide: a classical planning model that uses epistemic formulae, and implementation

for f1, . . . , fk for each agent to specify how the seeing rule works in the modeled domain.

Their library is able to use those perspective functions to evaluate the truth value of the

epistemic formulae when solving the modeled epistemic planning problem.
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2.4.3.3 Experiments

At last, authors demonstrated their approach by modeling and conducting experi-

ments on various example domains, including benchmark domains such as Corridor

and Grapevine, as well as challenging domains like BBL, Social Media Networks, and

Gossip.

Their results show that the agent’s perspective model approach outperforms the state-

of-the-art PDKB approach [87] on the benchmark domains. Additionally, they show-

cased the expressiveness of their method by successfully modeling and solving problem

instances in the challenging domains.

2.5 Research Questions and Thesis Outline

2.5.1 Research Questions

Recall that, in Chapter 1, we proposed our research question:

How can we enable expressive modelling and efficient solving of epistemic

planning problems?

As discussed in Section 2.3.3, the current approaches in epistemic planning face limita-

tions on their scalability, efficiency, generalizability, and expressiveness. Although Hu

[4]’s approach is an initial effort to address these limitations, it presents some problems:

1) their semantics are neither sound nor complete; and, 2) their model only models

knowledge (both individual nesting knowledge and group nested knowledge).

Thus, the main research question of this thesis can be broken down into a few less-general

research questions as follows:

RQ1 : How can we use the perspective model to define a fragment of sound and complete

epistemic planning model? Is this model more efficient than existing epistemic

planning tools?

RQ2 : How do we extend this into a single coherent model that allows mixing of belief

and knowledge?
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RQ3 : How do we extend this into a group coherent model that allows mixing of group

belief and group knowledge?

The details about how each research question is addressed in this thesis can be found in

the outline of this thesis (in the following section).

2.5.2 Thesis Outline

The starting point and intuition of this work is from the master thesis by Hu [4] (Sec-

tion 2.4), in which they proposed a novel state-based approach to model and solve

epistemic planning problems with efficiency and expressiveness. We revise their work by

proposing a formal definition with a clarification of their model and näıve semantics. In

addition, we propose two forms of definition on its semantics and show their soundness

and completeness. Then, we extend their model to handle agent’s beliefs as well as group

beliefs, including common and distributed beliefs. In addition, we also formalised the

planning model, planning language and viable search algorithms. Furthermore, we did

large-scale experiments on one distinct domain to show the performance of the search

algorithms as well as how the epistemic planning problem instances change through al-

tering features of those instances. The detailed content breakdown of this thesis is given

as follows.

To address research question RQ1, in Chapter 3, we revise how the knowledge (group

knowledge) is modeled by the agent’s justified perspective model with premature se-

mantics (based on Hu [4]’s work). The issue of Hu’s model, mainly from its premature

semantics, is that it is neither sound nor complete. Thus, we propose two new forms

of semantics and show their soundness and completeness along with the proofs. At the

end, we clarify the implementation of this approach, show the experiments and results,

and conclude this approach with some discussions.

To address research question RQ2, in Chapter 4, we discuss the motivation for raising

a new model, namely Justified Perspective (JP) model,to handle both knowledge and

beliefs instead of just knowledge. In addition, we provide the background by showing

this difference from an epistemic logic level. Then, we formally give our definition of the

JP model and two forms of semantics, followed by a demonstration of its expressiveness
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and efficiency with some epistemic planning benchmarks and a primitive implementa-

tion. At last, we formalize the planning models for the JP model as well as providing

definitions of two planning languages (a theoretical one and a practical one) for model-

ing corresponding epistemic planning domains. Since the planning models we proposed

do not follow the assumptions of classical planning, especially the Markovian assump-

tion (Assumption 6), some mechanisms of classical search algorithms are not applicable,

such as duplication elimination and most of the heuristic functions. Thus, we designed

our planner with an adapted duplication elimination mechanism and search algorithms

that still work with the Non-Markovian assumption. Finally, we apply the JP model on

benchmarks to show its efficiency and expressiveness and conduct extensive experiments

on the chosen domain with varying instance settings, including the number of agents,

the number of desired epistemic relations, and their depth.

To address research question RQ3, in Chapter 5, we extend the JP model to handle

group beliefs. Compared to the relation between the single-agent’s knowledge and belief,

which effectively is that belief is past or present knowledge, the relation between group

knowledge and belief is trickier. The group belief can be formed even if the group

knowledge has never occurred. Then, we proposed theGroup Justified Perspective (GJP)

Model, which models group beliefs, including distributed beliefs and common beliefs.

Similarly, at last, we show the expressiveness and efficiency of the GJP model through

some epistemic planning domains with primitive implementation.

At the end, in Chapter 6, we summarize our work and discuss its contribution, as well

as potential future directions.



Chapter 3

Planning with Perspectives:

Decomposing epistemic planning

with perspective

All men by nature desire to know. An

indication of this is the delight we

take in our senses, for even apart

from their usefulness they are loved

for themselves; and above all others

the sense of sight.

—Aristotle and Aristotle

In this chapter, we firstly revise the first state-based approach on modeling and solving

the epistemic planning problem. Then, we pointed out critical shortcomings in that

work. Especially, their Näıve semantics is neither sound nor complete. Thus, we propose

two new forms of semantics, Complete Semantics and Ternary Semantics and show the

proofs for the soundness and completeness. At the end, we revise their implementation

with more example domains and performed experiments based on ternary semantics.

82



Planning with Perspectives 83

3.1 A Revision on Planning with Perspective (PWP)

In this section, we revise the syntax and semantics of the agent perspective model

from Section 2.4, including distributed and common knowledge. We named this model

Planning with Perspective (PWP) Model for future referencing.

3.1.1 Signature

First of all, we need to define the signature of the PWP model, which specifies the

“vocabulary” of our logic model.

Definition 3.1 (Signature). A signature Σ is described by the tuple Σ = (Agt, V,D,R),

with Agt being a finite set of agent identifiers (of size k), V as a finite set of variables

(of size m) such that Agt ⊆ V and m ≤ k, implying agent identifiers serve as variables.

Furthermore, D denotes the set of all domains, where each Dvi corresponds to a possibly

infinite domain of constant symbols for each variable vi ∈ V . Lastly, R denotes a finite

collection of predicate symbols. Domains can be discrete or continuous.

To demonstrate the PWP model in the following parts of this thesis, we provide an

example signature using the NIB domain.

Example 3.1. The signature of the given example NIB domain (Example 1.2) can be

represented by ΣNIB = (Agt, V,D,R), where:

• Agt = {a, b}1

• V = {peekingij , j | i ∈ {a, b}, j ∈ {p, q}}

• D = {Dpeekingij , Dj | i ∈ {a, b}, j ∈ {p, q}}:

◦ Dpeekingap =Dpeekingaq =Dpeekingbp =Dpeekingbq = {true, false}

◦ Dp=Dq = {0, . . . , 99}

• R: Includes all logical relation predicate symbols, such as “>” or “≤ 1”.

As previously noted, the PWP model is state-based; herein, we offer the formalization

and associated notations for its states.
1In this example, the agent identifiers can be any of peekingi,p or peekingi,q. For readability, we still

use a and b to represent agent identifiers instead of peekinga,p and peekingb,p



Planning with Perspectives 84

Figure 3.1: State s2 in NIB domain.

Definition 3.2 (State). Given a signature Σ = (Agt, V,D,R), any state s in the PWP

can be represented as a set of variable assignments (V → D), mapping the variables v

to a value in their domains.

The set of all valid states is denoted as the state-space S, while a complete state is a

complete set of assignments for all variables in V (s ∈ S ∧ |s|= |V |), while a local state

is a partial set of assignments (some variables may not be assigned). The set of all

complete states is denoted as Sc. We use s(v) to represent the value of v in s. If variable

v is not in the local state s, then s(v) = null. The set of all models is denoted M.

Following the above signature example (Example 3.1) for the NIB domain, its state

space SNIB and complete state space SNIB
c can be represented as follows:

SNIB = {s | s ⊂ s′, s′ ∈ SNIB
c } , where:

SNIB
c =


peekingap=n1, peekingaq=n2,

peekingbp=n3, peekingbq=n4,

p= i, q=j

∣∣∣∣∣∣∣∣∣
n1, n2, n3, n4 ∈ {true, false},

n1 ↑ n2, n2 ↑ n4, n1 ↑ n3, n2 ↑ n4,

i, j ∈ {0, . . . , 99}


In the above representation, “↑” is used as “NAND” (not both). Those NAND relations

ensure: neither a nor b can peek at both p and q at the same time; and, neither p nor q

can be peeked by both a and b at the same time (as it is outlined in Example 1.2). The

initial state described in Figure 2.2 is the state s0 in the above state space, where:

s0 =

 peekingap=false, peekingbp=false, p=4,

peekingaq=false, peekingbq=false, q=6


From the initial state, after agent a performed action “(peek a p)” and agent b

performed action “(peek b q)” (as shown in Figure 3.1), the new state (denoted as s2)
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can be represented by:

s2 =

 peekingap= true, peekingbp=false, p=4,

peekingaq=false, peekingbq= true, q=6


3.1.2 Language

With the signature in place, we can now define the language permitted in the PWP

model by specifying its grammar. While this definition aligns with Definition 2.13, the

use of the signature clarifies the structure of the language as outlined below.

Definition 3.3 (Language LK(Σ)). Given a signature Σ = (Agt, V,D,R), the language

LK(Σ) is defined by the grammar:

φ ::= r(Vr) | ¬φ | φ ∧ φ | Siv | Siφ | Kiφ,

in which r ∈ R, terms Vr ⊆ V , i ∈ Agt, and v ∈ V .

A n-ary predicate symbol r ∈ R becomes a proposition by taking a set of variable Vr

as input. In addition, intuitively speaking, only the ontic parts of the world should

be modeled by our model as variables in the state. Thus, normally, r(Vr) could be

any propositional ontic relation (exceptions will be discussed in Section 3.3). Siφ is a

visibility formula that means agent i sees the truth value of formula φ, while Siv is a

visibility formula that means agent i sees the value of the variable v. Kiφ is a knowledge

formula that means agent i knows formula φ holds. Operators ¬ and ∧ are defined in

the standard way. We call a formula with no conjunction a modal literal. The function

vars(φ) returns all variables in φ.

The ontic relations that can be modeled by the PWP model have been discussed in

Section 2.4.2.1. Here, we just clarify some intuitions about the relation between seeing

formulae and knowledge formulae. The important concept in this logic, adapted from

Cooper et al. [1] and [2], is “seeing a proposition”. Let φ be a proposition, “agent i

knows whether φ” can be represented as “agent i sees φ”. The interpretation on this

is: either φ is true and i knows that; or, φ is false and i knows that. With higher-order

observations added, it gives agent i the ability to reason about whether other agents
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know whether proposition φ is true, without i knowing whether φ is true itself; e.g.

SiSjφ.

We include Kiφ in the grammar, but in fact, it is simply shorthand and can be defined

as:

Kiφ ↔ φ ∧ Siφ

That is, agent i knows φ if agent i sees φ and also φ is true. Similarly, if agent i knows

φ, then it means that it is true (because it is knowledge, not belief), and that they

must be able to see that it is true. This definition of knowledge is consistent with the

relationship between knowledge and seeing identified by Cooper et al. [1].

Consider the example Big Brother Logic domain in Figure 2.4 and assume value(b1) is

false and all objects’ (b ) positions are commonly known to all agents. The formula

Sa2value(b1) can be read as “agent a2 sees variable value(b1)”, and it means agent a2

knows b1’s value, whatever that value is. The formula Ka2 value(b1)=false can be read

as “agent a2 knows variable value(b1) is false”, which represents a2 knows b1’s value is

false. Further, agent a1 does not know b1’s value, so we can say ¬Ka1Ka2 value(b1)=

false. However, with the seeing relation, the formula Ka1Sa2 value(b1) holds, since both

Sa1Sa2 value(b1) and Sa2 value(b1) hold.

3.1.3 PWP model

Now, we can give a formal definition of the PWP model as follows.

Definition 3.4. Given the signature Σ = (Agt, V,D,R), a model M is defined as

M = (Agt, V,D, π, f1, . . . , fk).

• Agt, V and D are from the given signature Σ;

• π is an interpretation function π : S ×R → {true, false} that determines whether

the predicate r(Vr) is true in s. π is undefined if any of its arguments ti is a

variable in V that is not also in s.

• Finally, f1, . . . , fk are the agents’ perspective functions, one for each agent in Agt.

A perspective function, fi : S → S, is a function that takes a state and returns
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a subset of that state, which represents the part of that state that is visible to

agent i.

The following properties must hold on fi for all i ∈ Agt and s ∈ S:

(1) fi(s) ⊆ s

(2) fi(s) = fi(fi(s))

(3) If s ⊆ s′, then fi(s) ⊆ fi(s
′)

The above definition of the model is almost the same as in Definition 2.14. We added

the domain for each variable v as Dv.

The definition of the perspective function requires some discussion. We can only provide

a high-level definition as the perspective function is domain-specific. Each agent has their

own domain-specific perspective function fi that, for any given state in this domain, the

perspective function returns a subset of the given state containing all the assignments

that are visible to agent i.

For example, given a state s = {v1 = e1, v2 = e2}, then f1(s) = {v2 = e2} specifies that

agent 1 cannot see variable v1 or, by definition, its value, but can see variable v2 and its

value. These functions can be nested, such that f2(f1(s)) represents agent 1’s perspective

from agent 2’s perspective, which can be just a subset of agent 1’s actual perspective.

We provide 3 meaningful properties as constraints for the modeler to develop their own

domain-specific perspective function. Property (1) ensures that each agent can only see

true values of variables. Later, we see that this ensures that knowledge is always true.

Property (2) ensures that an agent sees what it sees. Property (3) is a monotonicity

constraint.

Using the NIB example (Example 1.2), the perspective functions for agent a and agent

b are identical. Given a state s ∈ SNIB, the perspective function for agent i (either a or

b in this example) is:

fNIB
i (s) =



{
peekingx=s(peekingx) | x ∈ {ap, aq, bp, bq}

}
base case

∪{p=s(p)} if peekingip= true

∪{q=s(q)} if peekingiq= true
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That is, agents see whether each other is peeking into the box and they see the value of

the number if they are peeking. Using the example states s0 and s2 (in Section 3.1.1),

we have:

fa(s0) = fb(s0) =

 peekingap=false, peekingbp=false,

peekingaq=false, peekingbq=false



fa(s2)=


peekingap= true, peekingbp=false,

peekingaq=false, peekingbq= true,

p=4

 , fb(s2) = fa(s2) \ {p = 4} ∪ {q = 6}

3.1.4 Näıve Semantics for Individual Knowledge

Given the new definition of the model, we first formalised the following definition of

semantics for language LK(Σ), which we called the Näıve semantics. The intuition of

this semantics is from Definition 2.15.

Definition 3.5 (Näıve Semantics for PWP model on LK(Σ)). Given a PWP model

M = (Agt, V,D, π, f1, . . . , fk), the näıve semantics of the language LK(Σ) is defined as:

(a) (M, s) ⊨ r(Vr) iff π(s, r(Vr)) = true

(b) (M, s) ⊨ ϕ ∧ ψ iff (M, s) ⊨ ϕ and (M, s) ⊨ ψ

(c) (M, s) ⊨ ¬φ iff (M, s) ̸⊨ φ

(d) (M, s) ⊨ Siv iff v ∈ fi(s)

(e) (M, s) ⊨ Siφ iff (M, fi(s)) ⊨ φ or (M, fi(s)) ⊨ ¬φ

(f) (M, s) ⊨ Kiφ iff (M, s) ⊨ φ ∧ Siφ

The semantics for relational terms and propositional operators are straightforward, but

the semantics for seeing is worth discussion. The semantics for Siv, which means agent i

sees variable v, is defined by stating that agent i sees v iff v is in the domain of state

fi(s). The semantics for Siφ is defined as: either φ is true from agent i’s perspective,

or ¬φ is true from agent i’s perspective.

Compared to the original semantics from Hu [4] (Definition 2.15), our new näıve defini-

tion is simpler, clearer, and has less explicit treatments, such as SiSjφ or Si¬φ. With
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the recursive grammar of the language (φ in the above definition could be any formula

in LK(Σ), including a seeing formula or knowledge formula), this new definition can

also be nested arbitrarily. The semantics of: (a), the ontic predicates; (b) seeing a

variable; and, (i) knowing a formula in the original näıve semantics are item (a), (d)

and (f) in this definition respectively. Item (c), and (e)-(h) from Definition 2.15 are

modeled recursively by item (e) in this definition. The remaining item, item (d), from

the original definition is modeled by item (e) in this definition. Intuitively, seeing a

formula means either knowing the formula is true or knowing the formula is false, which

indicates Siφ ≡ Si¬φ.

Let us illustrate the näıve semantics with more details using the following example.

Example 3.2. In accordance with the NIB example, consider the state space SNIB and

perspective functions f NIB
i . Two states, s0 and s2, are used as illustrative examples (see

Section 3.1.1). Epistemic formulae 2 from Example 2.2 serve as the epistemic relation

for evaluation.

The evaluation of those formulae is as follows:

1. Ka(p=4):

• M, s0 ⊨ Ka(p=4) does not hold because of M, s0 ̸⊨ Sa(p=4);

• M, s2 ⊨ Ka(p=4) holds because M, s2 ⊨ Sa(p=4) and M, s2 ⊨ (p=4).

2. KaKb(p=4): Both are false since M, s0 ̸⊨ Kb(p=4) and M, s2 ̸⊨ Kb(p=4).

3. Ka(p × q=4): Both are false since Sa(p × q=4) does not hold in neither states

(a does not see q).

4. Ka(p× q ≤ 992): Both are false for the same reason as Item 3.

5. KaKb(p× q ≤ 992): Same as above.

However, the näıve semantics suffers from two problems (hence the name ‘näıve’), both

related to the problem of having local states. First, the semantics are ill-defined. For

Siφ, fi(s) can be a local state, which is only a partial assignment of variables. If a

2For clarity, throughout this thesis, we display r(Vr) in its typical notation. For instance, (p=4) from
Ka(p=4) denotes the predicate=4([p]); similarly, (p× q=4) corresponds to the predicate ×=4([p, q]).
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variable v is not visible in fi(s), then any proposition that uses v will default to false.

It is reasonable to say that if an agent cannot see a variable in a predicate, then it

cannot see (prove) the truth value of that predicate. However, this causes problems

with formulae such as seeing tautologies (item 4 and item 5 in the above example) or

contradictions. For example, the formula M, s ⊨ Si
(
v = e ∨ ¬(v = e)

)
will evaluate to

false if v is not in fi(s). However, v = e ∨ ¬(v = e) is clearly a tautology, so agent i

should always see that it is true.

Second, the semantics of ¬φ uses a closed-world assumption. However, when s is a local

state (partial), for any formula φ that refers to a variable not in s, we should be unable

to prove φ or ¬φ. Defining ¬φ as the inability to prove φ means that Siφ is a tautology:

either φ or ¬φ will always be true.

3.1.5 Näıve Semantics for Group knowledge

The signature and model for modeling and reasoning group knowledge are the same as

described above. In addition, the grammar of the language is the same as defined in

Section 2.4.2.4. We copy the grammar here for reference.

Definition 3.6 (Language LGK(Σ)). Given a signature Σ = (Agt, V,D,R), the lan-

guage LGK(Σ) is defined by the grammar:

φ ::= ψ | ¬φ | φ ∧ φ | Siα | Kiφ | ESGα | EKGφ | DSGα | DKGφ | CSGα | CKGφ,

in which ψ is r(Vr) and r ∈ R, G is a set (group) of agents (G ⊆ Agt), and α3 is a

variable v or formula φ.

Group formula ESGα is read as: everyone in groupG uniformly sees a variable or formula

α, and EKGφ represents that everyone in group uniformly G knows φ. We named ES

and EK as uniform seeing operator and uniform knowledge operator respectively. DKG

is the distributed knowledge operator, equivalent to DG in Section 2.2.3.2, while DSG

is its visibility counterpart: someone in group G sees, or the group sees by merging the

view of sight from each member. Finally, CKG is common knowledge and CSG common

visibility: “it is commonly known” and “it is commonly seen” respectively.

3We use α for simplicity
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As with the equivalence Kiφ↔ φ ∧ Siφ, we define the following equivalences:

EKGφ ↔ φ ∧ ESGφ ↔
∧

i∈GKiφ,

DKGφ ↔ φ ∧DSGφ,

CKGφ ↔ φ ∧ CSGφ.

The group semantics in Definition 2.22 needs formalization and clarification. In order

to do so, firstly, we need to propose a formal definition for the common perspective

function cf .

Definition 3.7 (Common Perspective Function). Given a group of agents G and the

current state s, the common observation of the group can be defined as:

cf (G, s) =


s if s =

⋂
i∈G f (s)

cf (G,
⋂

i∈G f (s)) otherwise.

This is a recursive function, while the base case is when the input is equal to the

intersection of all agents’ local states. This means the common observation of this

group G has converted into a partial state (could be empty). The variables that are not

visible to any agent in the group G are filtered out until the remaining set becomes a

fixed point set. That is, every variable in the set is commonly seen by the group G.

Then, we give the definition of the Näıve Semantics for Group Knowledge as follows.

Definition 3.8 (Näıve Semantics for PWP model on LGK(Σ)). Given a PWP model

M = (Agt, V,D, π, f1, . . . , fk), the näıve semantics of the language LGK(Σ) is defined as:

(g) (M, s) ⊨ ESGα iff for all i ∈ G, (M, s) ⊨ Siα

(h) (M, s) ⊨ EKGφ iff (M, s) ⊨ (φ ∧ ESGφ)

(i) (M, s) ⊨ DSGv iff v ∈
⋃

i∈G fi(s)

(j) (M, s) ⊨ DSGφ iff (M, s′) ⊨ φ or (M, s′) ⊨ ¬φ, where s′ =
⋃

i∈G fi(s)

(k) (M, s) ⊨ DKGφ iff (M, s) ⊨ (φ ∧DSGφ)

(l) (M, s) ⊨ CSGv iff v ∈ cf (G, s)

(m) (M, s) ⊨ CSGφ iff (M, s′) ⊨ φ or (M, s′) ⊨ ¬φ, where s′ = cf (G, s)

(n) (M, s) ⊨ CKGφ iff (M, s) ⊨ (φ ∧ CSGφ)
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where items (a)-(f) are inherited from Definition 3.5, and α represents a variable v or a

formula φ.

The above definition of the semantics is similar to that defined in Hu [4]. This defini-

tion follows the intuition that knowledge can be derived from an agent’s observation,

while in the case of group knowledge, it becomes group observation. For the uniform

observation of group G, it can be reasoned by either checking each agent’s individual

perspective or obtaining the intersection of all agents’ perspectives (
⋂

i∈G fi(s)). While

for the distributed observation of group G, the set union operator is needed to “pull”

all agents’ observations together. Since all local states are a subset of the global state at

a given timestamp, there is no conflict on those assignments. Here, the conflict means

given an input state s and any two agents i and j, no variable v that is in fi(s) and also

in fj(s) makes fi(s)(v) ̸= fj(s)(v), since fi(s)(v) = s(v) and fj(s)(v) = s(v).

Compared to other modalities, the group’s common observation and knowledge are more

complex to reason about. Common knowledge in a group is not only that everyone in

the group shares this knowledge, but also everyone knows others know this knowledge,

and so on, ad infinitum. The infinite nature of this definition leads to definitions that

are intractable in some models. Therefore, many researchers choose to add a specific

notation and definition for common knowledge that sets apart from their definitions of

agent’s individual (nested) knowledge.

However, in our perspective logic, common knowledge is much simpler. This is based

on the fact that each time we apply the composite perspective function
⋂

i∈G fi(s) (to

get uniform perspective of a group), the resulting state is either a proper subset of s or

s itself. By this intuition, we can evaluate common visibility/knowledge in a bounded

number of steps.

The fixed point is a recursive definition. However, the following theorem shows that this

fixed point always exists, and the number of iterations is bounded by the size of |s|, the

state to which it is applied.

Theorem 3.9. Function cf (G, s) (in Definition 3.7) converges to a fixed point s′ =

cf (G, s′) within |s| iterations.
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Proof. In each iteration of cf , either
⋂

i∈G fi(s) = s or
⋂

i∈G fi(s) ⊊ s because of the

property that fi(s) ⊆ s. If the former, we have reached the fixed point. For the latter,

a maximum of |s| such iterations are possible, by which point the fixed point has been

reached, even if it is empty, in which there is no common knowledge.

For each of the iterations, there are |G| local states in group G that need to be applied

in the generalised intersection calculation, which can be done in polynomial time, and

there are at most |s| steps. So, a poly-time algorithm for function cf exists.

Analogous to the individual näıve semantics, we illustrate the group näıve semantics

with an example.

Example 3.3. In accordance with the NIB example, consider the state space SNIB and

perspective functions f NIB
i . One state s2 (as all formulae do trivially not hold for s0)

is used as an illustrative example (see Section 3.1.1). Group epistemic formulae from

Example 2.3 serve as the epistemic relation for evaluation. We list them here as the

language in that example is different from ours (LGK):

1. EKG(p=4)

2. DKG(p× q=4)

3. CKG(peekingap= true)

Item 1 does not hold due toM, s2 ̸⊨ Kb(p=4). This can be reasoned by evaluating either

∀i ∈ G,M, s2 ⊨ Ki(p=4) or M,
⋂

i∈G fi(s2) ⊨ (p=4). The intersection fa(s2) ∩ fb(s2) is

{peekingap= true, peekingbp=false, peekingaq=false, peekingbq= true}, which means

M,
⋂

i∈G fi(s2) ⊨ (p=4) does not hold.

Item 2 does not hold due to M, s2 ̸⊨ (p× q=4). However, if q = 1, then Item 2 will hold

because of fa(s2) ∪ fb(s2) = s2 and M, s2 ⊨ (p× q=4).

Item 3 holds. As mentioned in reasoning about Item 1, the intersection of fa(s2) and

fb(s2), namely s′, is {peekingap= true, peekingbp=false, peekingaq=false, peekingbq=

true}, which is not the same as input s2. In the next iteration, we have fa(s
′) =

fb(s
′) = fa(s

′) ∩ fb(s
′) = s′. Thus, the common perspective of group G with the given

state s2 has converged on s′. We have M, s′ ⊨ (peekingap = true), indicating M, s2 ⊨

CSG(peekingap= true). With M, s2 ⊨ (peekingap= true), Item 3 holds.
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3.1.6 Discussion

Now, we discuss the contribution and limitations of Hu [4]’s work, in which we can raise

the motivation for proposing new semantics and proofs.

3.1.6.1 Remarks

In their work, they introduced a novel epistemic logic reasoning model in planning called

agent’s perspective model (Section 2.4.2, which we refined in previous parts of this

section) driven from the intuition: “what you know is what you see”. This perspective

model allows them to evaluate epistemic relation formulae (knowledge), including nested,

distributed, and common epistemic relations, based on the simple concept of defining

an agent’s local state. Then, by using F-STRIPS, they separated the planning task

from epistemic relation reasoning (with an external function), which is an expressive

and flexible solution for most of the epistemic planning problems. Compared to the

Kripke structure based approach, their approach does not require specifying explicitly

how epistemic formulae are updated as each action affects, which is done by the external

function automatically with a given perspective function. In addition, compared to the

pre-compilation approach, their approach allows lazy evaluation on epistemic relations

without an expensive pre-compilation step.

Overall, their work is the first to: (1) reason about knowledge only based on the ob-

servable parts of the world; (2) separate epistemic logic reasoning from planning by

delegating epistemic reasoning to an external solver.

3.1.6.2 Limitations

First of all, the semantics defined in Definition 2.15 and Definition 2.22 are neither sound

nor complete. As we mentioned when refining their semantics in Section 3.1.4, this is

caused by the closed world assumption (Assumption 10). The modeled problem follows

this closed world assumption at the level of global perspective (global states), while this

assumption no longer holds in the agent’s local states, as the agent’s local perspectives

could be partial states.
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In addition, the generalisability of their perspective (observation) function is another

controversy that needs to be explained with more examples (Section 3.4). Besides, as

one of their main contributions, their planning process of the problem is novel and valid,

but needs more clarification with detailed examples (Section 3.5 and Section 3.6).

At last, their approach works well when modeling epistemic planning domains that

epistemic relations can be reasoned from all (ontic) variables from the state, while for

domains that contain unbounded epistemic relations in the action precondition, even

with their approach, it still cannot be modeled. One typical example is the Gossip do-

main [136]. This requires some further work to model and solve those domains following

their intuitions (Section 3.6.4).

3.2 Complete Semantics

In this section, we provide a Complete semantics of our model. As the name indicates,

the complete semantics is both sound and complete. Similarly, as in Hu [4]’s work, the

key part of the semantics is the use of states of the form {v1 = e1, . . . , vm = em}, rather

than possible worlds found in Kripke semantics, and the use of perspective functions

rather than Kripke relations. All preliminaries are given in Section 3.1, where a signature

Σ = (Agt, V,D,R) is defined in Definition 3.1 and a model M = (Agt, V,D, π, f1, . . . , fk)

is defined using perspective functions fi.

3.2.1 Complete Semantics for PWP model on Knowledge

First of all, since all states in the PWP model are sets of assignments, we need to define

a state override function ⟨ ⟩ to locate all states that are consistent with the given state.

Definition 3.10 (State Override Function). A state override function s′⟨s⟩ : S×S → S

for a given state s overrides a state s′ is defined as:

s′⟨s⟩ = s ∪ {v=s′(v) | v ∈ s′ ∧ v /∈ s}

Intuitively, overriding a state s′ with state s means that the new state is the same as

s ∪ s′, but if v has a value in both s and s′, the value in s is used. Using this, we can
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extend the näıve semantics in Definition 3.5 into a semantics that is both sound and

complete, but has exponential time complexity.

Definition 3.11 (Complete Semantics for PWP model on Knowledge). Given a PWP

model M = (Agt, V,D, π, f1, . . . , fk), the complete semantics of the language LK(Σ) is

defined as:

(a) (M, s) ⊨ r(Vr) iff π(s, r(Vr)) = true

(b) (M, s) ⊨ ϕ ∧ ψ iff (M, s) ⊨ ϕ and (M, s) ⊨ ψ

(c) (M, s) ⊨ ¬φ iff (M, s) ̸⊨ φ

(d) (M, s) ⊨ Siv iff v ∈ fi(s) or |Dv| = 1

(e) (M, s) ⊨ Siφ iff ∀g ∈ Sc,
(
M, g⟨fi(s)⟩

)
⊨ φ

or, ∀g ∈ Sc,
(
M, g⟨fi(s)⟩

)
⊨ ¬φ

(f) (M, s) ⊨ Kiφ iff (M, s) ⊨ φ ∧ Siφ

The seeing operator S needs some clarification. Based on the truth value of the seeing

formula defined in Definition 2.18, Siv is true if and only if: either, agent i syntactically

sees v, which is v in agent i’s perspective (observation) of the given state; or, agent i

semantically sees v, which follows the closed-world assumption (Assumption 10). The

latter condition triggers when v is not in fi(s). If and only if v is consistent (has the

same value) in all worlds agent i considers possible, which effectively means v only has

1 possible value, we have agent i semantically sees v. As for seeing a formula Siφ, the

effect of evaluating φ (and ¬φ) under g⟨fi(s)⟩ for every g in the complete-state space

means that φ (and ¬φ) is evaluated under fi(s), but quantifying over every possible

value for variables not in fi(s). This complete semantics solves the issues with the näıve

semantics.

The time complexity of the näıve semantics is Θ(n × |φ|), in which n is the maximum

depth of a nested query in φ, and |φ| is the size of the formula. However, for the complete

semantics for Siφ, we need to iterate over all SG global states, meaning the worst-case

complexity is Θ(n× |SG|). Note that for models with infinite domains (e.g. continuous

variables), SG is infinite. Of course, in practice, we need only iterate over any variables

in φ that are not in fi(s), and we can also re-write the formula into CNF and solve for

any unreferenced variables.



Planning with Perspectives 97

As already noted, the näıve semantics is unsound and incomplete; however, the complete

semantics is both sound and complete. Using item 4 (Ka(p × q ≤ 992)) and item 5

(KaKb(p×q ≤ 992)) from Example 3.2 as examples, both do not hold in näıve semantics

due to agent a not seeing q in neither s0 nor s2. However, with the complete semantics,

in all the worlds (∀g ∈ Sc, g⟨fa(s)⟩) agent a considers possible given the current state s

(works for any reachable state, not only s0 and s2), we have M, g ⊨ (p× q ≤ 992). Thus,

M, s ⊨ Sa(p× q ≤ 992) and M, s ⊨ (p× q ≤ 992), which results in item 4 holding. Item 5

also holds and can be proved in the same way.

Both example and theorem above show that, unlike the näıve semantics, the complete

semantics handles epistemic formulae that hold only because of the closed-world assump-

tion. The example above shows that, unlike the näıve semantics, the complete semantics

handles epistemic formulae that hold only because of the closed-world assumption. In

other words, the complete semantics is sound and complete. This is straightforward to

show by simply defining Kripke structures corresponding to our models, which is also

aligned with Theorem 2.17.

For each model M = (Agt, V,D, π, f1, . . . , fk), we can map to a corresponding Kripke

structure M ′ = (W, π,R1, . . . ,Rn). First, we map states to worlds: each global state

g ∈ Sc corresponds to a world in W. Second, perspective functions are mapped to

Kripke relations: given a perspective function fi(s), the corresponding Kripke relation

Ri can be constructed by taking each global state g and its corresponding world w, and

defining (u,w) ∈ Ri for every u ∈ W such that u and w agree on all variables in fi(s).

Effectively, this means that for any variable v ∈ fi(g), all reachable worlds in Ri(w) will

agree on v, and for any variable v /∈ fi(g), there will be at least one reachable world for

every e ∈ Dv. So, an agent can either know the value of a variable, or know nothing

about the value of the variable.

Therefore, the set of reachable worlds Ri(w) corresponds to the set of states {g⟨fi(s)⟩ |

g ∈ SG}, which is precisely the set of states that are evaluated in the semantics of Siφ.

Given that the Kripke-based semantics for Kiφ assesses all reachable worlds in Ri(w),

and given the equivalence Siφ↔ (Kiφ ∨Ki¬φ), our complete semantics are sound and

complete.
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3.2.2 Complete Semantics for PWP model on Group Knowledge

Then, we can extend the complete semantics from LK(Σ) to LGK(Σ).

Definition 3.12 (Complete Semantics for PWP model on Group Knowledge). Given

a PWP model M = (Agt, V,D, π, f1, . . . , fk), the complete semantics of the language

LGK(Σ) is defined as:

(g) (M, s) ⊨ ESGα iff for all i ∈ G, (M, s) ⊨ Siα

(h) (M, s) ⊨ EKGφ iff (M, s) ⊨ (φ ∧ ESGφ)

(i) (M, s) ⊨ DSGv iff v ∈
⋃

i∈G fi(s) or |Dv| = 1

(j) (M, s) ⊨ DSGφ iff Let s′ be
⋃

i∈G fi(s),

∀g ∈ Sc, (M, g⟨s′⟩) ⊨ φ or (M, g⟨s′⟩) ⊨ ¬φ

(k) (M, s) ⊨ DKGφ iff (M, s) ⊨ (φ ∧DSGφ)

(l) (M, s) ⊨ CSGv iff v ∈ cf (G, s) or |Dv| = 1

(m) (M, s) ⊨ CSGφ iff Let s′ be cf (G, s),

∀g ∈ Sc, (M, g⟨s′⟩) ⊨ φ or (M, g⟨s′⟩) ⊨ ¬φ

(n) (M, s) ⊨ CKGφ iff (M, s) ⊨ (φ ∧ CSGφ)

where items (a)-(f) are inherited from Definition 3.11, and α represents a variable v or

a formula φ.

From the complete semantics above, the definition for uniform seeing and knowledge

formulae are the same as in näıve semantics (Definition 3.8). This is because the evalu-

ation of each individual Siα handles possible values (Definition 3.11). For group seeing

a variable in items (i) and (l), similarly as in individual semantics, if the set of all pos-

sible values of v only contains one value, then the group semantically sees v. Items (j)

and (m) consider all possible values for the unobserved variables. And, if formula φ is

consistent in all of them, which means φ holds in all possible worlds, or φ does not hold

in all possible worlds, we have corresponding group seeing relation.
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3.3 Ternary Semantics

In this section, we show how to implement this logic using a ternary logic semantics.

This semantics aims to overcome the weaknesses of the näıve semantics, while providing

a polynomial-time complexity for entailment. All preliminaries are given in Section 3.1,

where a signature Σ = (Agt, V,D,R) is defined in Definition 3.1 and a model M =

(Agt, V,D, π, f1, . . . , fk) is defined using perspective functions fi.

We take the concept from Levesque [137] for reasoning about knowledge bases with

incomplete information, in which they used the Kleene [5]’s three-valued logic. The

truth value in this logic are 1 (true), 0 (false), or 1
2 (unknown), in which 1

2 is interpreted

as: unable to be proved as either true or false. In our semantics, proposition statements

about variables that are not in a local state are given the value 1
2 . Like Levesque, we

prove that the semantics are complete for a wide class of formulae based on logically

separable formula.

Following the notation by Levesque, we define the semantics using a function T ∈

(M × S) × L → {0, 1, 12}, which takes the knowledge base (a model and state pair

(M, s) where s can be local or global) and a formula φ in the given language, and

returns 1 for true, 0 for false, and 1
2 for unknown. In order to systematically handle

unknown seeing relation in a partial state, we request one variable in V acts as the

agent’s identifier, which means agents’ identifiers are parts of the state. For example,

in the BBL domain, this identifier could be the variable representing locations of each

agent or the variables representing agents’ facing directions.

In addition, following Levesque, our semantics also use the three-value truth table as

shown in Table 3.1.

q = 1 q = 1
2 q = 0 ¬p

p = 1 1 1
2 0 0

p = 1
2

1
2

1
2 0 1

2

p = 0 0 0 0 1

Table 3.1: Three-valued truth table for two proposition p and q in Kleene’s logic.
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3.3.1 Ternary Semantics for PWP model on Knowledge

Now, we can define the ternary semantics for individual observation and knowledge

(language LK(Σ)).

Definition 3.13. Given a PWP model M = (Agt, V,D, π, f1, . . . , fk) and the current

state s, Function T for the language LK(Σ) is defined as (omitted M for readability):

(a) T [s, r(Vr)] = 1 if π(s, r(Vr)) = true

0 if π(s, r(Vr)) = false

1
2 otherwise

(b) T [s, ϕ ∧ ψ] = min(T [s, ϕ], T [s, ψ])

(c) T [s,¬φ] = 1− T [s, φ]

(d) T [s, Siv] = 1
2 if i /∈ s or v /∈ s

0 if v /∈ fi(s)

1 otherwise

(e) T [s, Siφ] = 1
2 if T [s, φ] = T [s,¬φ] = 1

2 or i /∈ s

0 if T [fi(s), φ] = T [fi(s),¬φ] = 1
2

1 otherwise

(f) T [s,Kiφ] = T [s, φ ∧ Siφ]

The definitions of (d) and (e) deserve some discussion. For (d), we cannot reason about

whether agent i sees variable v or not if at least one of the following holds: v is not

visible in the current state, or the agent i is not visible in the current state. In both

cases, T [s, Siv] is
1
2 . Otherwise, T [s, Siv] is 1 or 0 depending on whether v is in i’s

perspective fi(s) or not respectively.

As for (e), T [s, Siφ] =
1
2 in a local state s if and only if not both φ’s visibility and agent

i’s observability can be evaluated. In short, we cannot prove that i sees the value of φ

if we cannot prove φ ourselves; or alternatively, we cannot see if i sees φ if the agent

itself cannot reason about i’s visibility. If we reflect on the definition of (M, s) ⊨ Siφ,

we note that any evaluation of Siφ is done in a global state that is ‘anchored’ by the

‘for all g ∈ Sc’ in the complete semantics. This first part of the definition handles this

for local states.
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The second part of the definition says that T [s, Siφ] = 0 when T [fi(s), φ] = T [fi(s),¬φ] =
1
2 . What this means is that Siφ is false when neither φ nor ¬φ can be proved in fi(s),

because one or more variables in φ are not visible. In fact, we need only test one of

these: if φ cannot be proved (T [s, φ] = 1
2), then by definition, T [s,¬φ] = 1−T [s, φ] = 1

2

as well. Note that in both the first and second parts, not all variables in φ need to be

visible for φ or ¬φ to be proved. For example, Si(v = 1 ∨ u = 2) where fi(s) = [u = 2].

Even though v is not visible, the truth value of (v = 1 ∨ u = 2) can be seen because

u = 2 can be proved.

Finally, the third part of the definition says that T [s, Siφ] = 1 if neither of the first two

cases holds. So, if either φ or ¬φ can be proved in state fi(s) (one of them returns 0 or

1), then φ can be seen, as in the complete semantics; otherwise, it cannot be seen.

Definition 3.14. (Soundness and completeness, adapted from Levesque [137]) Consider

a function h : (M×S)× L → {0, 1, 12}. Then:

• h is sound iff for every M ∈ M, s ∈ S, and φ ∈ L, if h[(M, s), φ] = 1 then

(M, s) ⊨ ϕ and if h[(M, s), φ] = 0 then (M, s) ⊨ ¬ϕ;

• h is complete iff for every M ∈ M, s ∈ S, and φ ∈ L, if (M, s) ⊨ ϕ then

h[(M, s), φ] = 1 and if (M, s) ̸⊨ ϕ then h[(M, s), φ] = 0.

Clearly the function T is incomplete compared to the complete semantics, because it

returns 1
2 for some queries. However, in the remainder of this section, we show that this

logic is sound, and we characterise precisely when the logic is complete.

First, we introduce the following lemma.

Lemma 3.15. Given a formula φ ∈ L, then:

• if T [s, φ] = 1
2 , then there exists a global state g ∈ Sc, such that T [g⟨s⟩, φ] ̸= 1

2 ;

• if T [s, φ] = 1, then for all global states g ∈ Sc, T [g⟨s⟩, φ] = 1; and

• if T [s, φ] = 0, then for all global states g ∈ Sc, T [g⟨s⟩, φ] = 0.

Effectively, this lemma means that T returns 0 or 1 for any global state. If T cannot

prove φ is true or false, then it must be due to reference to a variable that is not visible
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in some partial state, as this is the only way that 1
2 is introduced by T . By ‘completing’

the state, we make φ (or ¬φ) provable. The latter two propositions state that, once φ

is proved, even in a partial state, adding more information cannot change the outcome.

Theorem 3.16. (Soundness of T ). Let M ∈ M be a model, s ∈ S be a (local or global)

state, and φ ∈ L a formula. If T [(M, s), φ] = 1 then (M, s) ⊨ φ, and if T [(M, s), φ] = 0

then (M, s) ̸⊨ φ.

Proof. We prove this inductively on the structure of φ.

Case (a): The case of r(t1, . . . , tk) is straightforward as the semantics of T and ⊨ are

both defined using π. The only case where they disagree is then T [s, r(t1, . . . , tk)] =
1
2 ,

which can only happen when s is a local state.

Case (b): Assume T [s, φ ∧ ψ] = 1. Therefore, T [s, φ] = 1 and T [s, ψ] = 1 from the

definition of T . By induction, (M, s) ⊨ φ and (M, s) ⊨ ψ. Therefore, from the definition

of ⊨, we have that (M, s) ⊨ φ ∧ ψ.

Now, assume T [s, φ∧ψ] = 0. Therefore, T [s, φ] = 0 or T [s, ψ] = 0 from the definition of

T . By induction, (M, s) ̸⊨ φ or (M, s) ̸⊨ ψ. Therefore, from the definition of ⊨, we have

that (M, s) ̸⊨ φ ∧ ψ. This holds even if either T [s, φ] = 1
2 or T [s, ψ] = 1

2 , and the other

is 0. That is, provided that one of φ or ψ evaluates to 0, we know that φ ∧ ψ evaluates

to 0 irrelevant of the other.

Case (c): Assume T [s,¬φ] = 1. Therefore, T [s, φ] = 0 from the definition of T . By

induction, (M, s) ̸⊨ φ and therefore from the definition of ⊨ we have that (M, s) ⊨ ¬φ.

The case for T = 0 is just the reverse.

Case (d): The definitions of Siv for T is follows the same definition in ⊨. The only case

they disagree is when T [s, Siv] =
1
2 , which can only happen in a local state.

Case (e): Assume T [s, Siφ] = 1. Therefore, from the definition of T , we have that

T [s, φ] ∈ {0, 1} (recall that T [s,¬φ] = 1− T [s, φ] by definition), and T [fi(s), φ] ∈ {0, 1}

(so T [fi(s),¬φ] = 1 − T [fi(s), φ]). From Lemma 3.15, this implies that for all g ∈ Sc,

T [g⟨fi(s)⟩, φ] ∈ {0, 1} or for all g ∈ Sc, T [g⟨fi(s)⟩,¬φ] ∈ {0, 1}. By induction, this means

that for all g ∈ Sc, either (M, g⟨fi(s)⟩) ⊨ φ or (M, g⟨fi(s)⟩) ⊨ ¬φ. Therefore, from the

definition of ⊨, we have that (M, s) ⊨ Siφ.
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Now, assume T [s, Siφ] = 0. Therefore, from the definition of T , we have that T [fi(s), φ] =

T [fi(s),¬φ] = 1
2 . From Lemma 3.15, it must be that there exists g ∈ Sc, such that

T [g⟨fi(s)⟩, φ] ∈ {0, 1} and there exists g ∈ Sc, such that T [g⟨fi(s)⟩,¬φ] ∈ {0, 1}. By

induction, this means that there exists g ∈ Sc, such that (M, g⟨fi(s)⟩) ⊨ φ and there

exists g ∈ Sc, (M, g⟨fi(s)⟩) ⊨ ¬φ. Therefore, from the definition of ⊨, we have that

(M, s) ̸⊨ Siφ.

Next, we characterise when the logic is complete. To show this, we first introduce the

concept of logical separability.

Definition 3.17. (Logical separability) Adapted from Levesque [137], a set of formulae

Γ is logically separable iff for every satisfiable set of literals L, if L ∪ Γ is unsatisfiable,

then L ∪ {φ} is unsatisfiable for some literal φ ∈ Γ.

This property captures whether there are any joint logical relations hidden in a set of for-

mulae. Intuitively, given a logically-separable set of formulae, we cannot infer anything

new by combining the formula in that set than we can from those items individually.

A contradiction is a simple example of a non-logically-separable formula. For example,

let Γ be {p,¬p}, and L be a singleton set containing any proposition q other than p or

¬p.

Clearly, both {p, q} and {q,¬p} are satisfiable, which means Γ is not logically separable.

Definition 3.18. (Normal form NF , adapted from [138]) We define the normal form

NF ⊆ L as the smallest set of formulae where each formula φ ∈ L adheres to the

following grammar:

φ ::= r(t1, . . . , tk) | ¬φ | φ ∧ φ′ | Siv | Siψ,

ψ ::= r(t1, . . . , tk) | ¬ψ | ψ ∧ ψ′,

where the set {φ,φ′} is logically separable. This represents a normal form in which non-

separable formulae are only permitted outside of Si operators, and Si operators cannot

be nested. For any query, such as Siφ in NF , φ must be non-separable.
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Theorem 3.19. (Completeness of T ). Let M ∈ M be a model, s ∈ S be a (local or

global) state, and φ ∈ NF . Then, if (M, s) ⊨ φ then T [(M, s), φ] = 1, and if (M, s) ̸⊨ φ

then T [(M, s), φ] = 0.

Proof. We prove this inductively on the structure of φ.

Case (a): As with soundness, the case of r(t1, . . . , tk) is straightforward as the semantics

of T and ⊨ are both defined using π, and they disagree only when T [s, r(t1, . . . , tk)] =
1
2 .

Case (b): Assume that (M, s) ⊨ φ∧ψ. From the definition of ⊨, we have that (M, s) ⊨ φ

and (M, s) ⊨ ψ. By induction and that φ ∧ ψ ∈ NF , we have that T [s, φ] = 1 and

T [s, ψ] = 1. Therefore, from the definition of T , we have that T [s, φ ∧ ψ] = 1.

Now, assume that (M, s) ̸⊨ φ ∧ ψ. From the definition of ⊨, we have that (M, s) ̸⊨ φ or

(M, s) ̸⊨ ψ. By induction and that φ∧ψ ∈ NF , we have that T [s, φ] = 0 or T [s, ψ] = 0.

There, from the definition of T , we have that T [s, φ ∧ ψ] = 0.

If φ ∧ ψ /∈ NF , then the completeness does not hold because there are cases when, for

example, (M, s) ̸⊨ φ but T [s, φ] = 1
2 ; for example, if φ ≡ p∧¬p, but p is not visible in s.

Case (c): Assume (M, s) ⊨ ¬φ. From the definition of ⊨, we have that (M, s) ̸⊨ φ. By

induction, this means that T [s, φ] = 0, and therefore from the definition of T , we have

that T [s,¬φ] = 1. The case for (M, s) ̸⊨ ¬φ is just the reverse.

Case (d): Similar to soundness, the definitions of Siv for T is follows the same definition

in ⊨. The only case they disagree is when T [s, Siv] =
1
2 .

Case (e): Assume that (M, s) ⊨ Siφ. Note that φ ∈ NF , therefore it must be that s

is global for the case Si. From the definition of ⊨, we have that either for all g ∈ Sc,

(M, g⟨fi(s)⟩) ⊨ φ or for all g ∈ Sc, (M, g⟨fi(s)⟩) ⊨ ¬φ. By induction and φ ∈ NF , we have

that for all g ∈ Sc, T [g⟨fi(s)⟩, φ] = 1 or for all g ∈ Sc, T [g⟨fi(s)⟩,¬φ] = 1. If one of these

two expressions hold for all g ∈ Sc, then they must also hold for all g⟨s⟩ because fi(s) ⊆ s.

Therefore, either T [s, φ] = T [s,¬φ] = 1
2 , in which case T [s, Siφ] =

1
2 ; or T [s, φ] ∈ {0, 1},

in which case T [s, Siφ] = 1. In this first instance, if T [s, φ] = T [s,¬φ] = 1
2 , then s must

be a partial state, in which case, Siφ must be occurring within another Sj operator, so

Siφ /∈ NF .
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Now, assume that (M, s) ̸⊨ Siφ. From the definition of ⊨, we have that there exists

g ∈ Sc, such that (M, g⟨fi(s)⟩) ⊨ φ and there exists g ∈ Sc, such that (M, g⟨fi(s)⟩) ⊨ ¬φ.

By induction and φ ∈ NF , we have that there exists g ∈ Sc, such that T [g⟨fi(s)⟩, φ] = 1

and there exists g ∈ Sc, such that T [g⟨fi(s)⟩,¬φ] = 1. From Lemma 3.15 and φ ∈ NF ,

it must be that T [fi(s), φ] = T [fi(s),¬φ] = 1
2 . Therefore, from the definition of T , we

have that T [s, Siφ] = 0; therefore case (e) and the theorem hold.

Definition 3.20. (Normal form NF+) We define the normal form NF+ ⊆ L as the

smallest set of formula where each formula φ ∈ L adheres to the following grammar:

φ ::= r(t1, . . . , tk) | ¬φ | φ ∧ φ′ | Siv | Siψ,

ψ ::= r(t1, . . . , tk) | ¬ψ | ψ ∧ ψ′ | Siv | Siψ,

where {ψ,ψ′} is logically separable. This is the same asNF , except that seeing operators

can be nested.

Theorem 3.21. (Soundness and completeness of T in global states). Let M ∈ M

be a model, g ∈ Sc be a global state, and φ ∈ L be a formula in NF+. Then, if

T [(M, g), φ] = 1 then (M, s) ⊨ φ, and if T [(M, g), φ] = 0 then (M, s) ̸⊨ φ; and if

(M, s) ⊨ φ then T [(M, s), φ] = 1, and if (M, s) ̸⊨ φ then T [(M, s), φ] = 0.

Proof. This is a small extension to the proofs of Theorems 3.16 and 3.19, which prove

the case for local and global states in NF . Thus, we just need to prove the case for

nested seeing operators, which is the only difference between NF and NF+. The proof

for Theorem 3.16 already holds for this. However, not in the proof for completeness

where if T [s, φ] = T [s,¬φ] = 1
2 , then T [s, Siφ] =

1
2 , but that this can only occur in a

local state, which implies Siφ must be within another seeing operator. For the global

case, however, we have that T [g, φ] = T [g,¬φ] = 1
2 . From the definition of T , this can

only occur if φ refers to a variable not in g, which is not possible because g is global.

Therefore, the theorem holds.

Finally, we discuss the potential implementation of our ternary semantics. Classical

planning languages do not support ternary propositional logic. However, as proven in

Theorem 3.21, our semantics is complete and sound for global states. Therefore, for

a global state, our semantics always returns true or false; and never returns 1
2 . This
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admits a wide class of formulae suitable for many planning tasks, which are a superset

of admissible formulae in planning languages such as PDDL. That is, epistemic relations

are modelled as propositions in the planning language, and their truth values are rea-

soned externally with our ternary semantics (including value 1
2 when nested relations

are reasoned.) Therefore, the completeness and soundness of solving a planning task is

equivalent with the completeness and soundness of our ternary semantics.

3.3.2 Ternary Semantics for PWP model on Group Knowledge

Then, extending the ternary semantics to handle the group operators (language LGK(Σ)),

we defined T as follows.

Definition 3.22. Given a PWP model M = (Agt, V,D, π, f1, . . . , fk), G be a group of

agents, and the current state s, function T for the language LGK(Σ) is defined:

(g) T [s,ESGα] = min({T [s, Siα] | i ∈ G})

(h) T [s,EKGφ] = T [s, φ ∧ ES iφ]

(i) T [s,DSGv] = 1
2 if v /∈ s or ∀i ∈ G, i /∈ s

0 if v /∈
⋃

i∈GOi(s)

1 otherwise

(j) T [s,DSGφ] = 1
2 if T [s, φ] = T [s,¬φ] = 1

2 or ∀i ∈ G, i /∈ s

0 if T [
⋃

i∈GOi(s), φ] = T [
⋃

i∈GOi(s),¬φ] = 1
2

1 otherwise

(k) T [s,DKGφ] = T [s, φ ∧DSGφ]

(i) T [s,CSGv] = 1
2 if v /∈ s or ∃i ∈ G, i /∈ s

0 if v /∈ cf (G, s)

1 otherwise

(j) T [s,CSGφ] = 1
2 if T [s, φ] = T [s,¬φ] = 1

2 or ∃i ∈ G, i /∈ s

0 if T [cf (G, s), φ] = T [cf (G, s),¬φ] = 1
2

1 otherwise

(k) T [s,CKGφ] = T [s, φ ∧ CSGφ]
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where the model M is omitted in representation for readability; α can be any formula

φ from the language or any variable v ∈ V ; and cf is the common perspective function

defined in Definition 3.7.

The items (a)-(f) are inherited from the ternary semantics in Definition 3.13.

Theorem 3.23. (Soundness and completeness of T for group operators) Let M ∈ M be

a model, g ∈ Sc be global state, and φ ∈ L be a formula in NF+. Then, if T [(M, g), φ] =

1 then (M, s) ⊨ φ, and if T [(M, g), φ] = 0 then (M, s) ̸⊨ φ; and if (M, s) ⊨ φ then

T [(M, s), φ] = 1, and if (M, s) ̸⊨ φ then T [(M, s), φ] = 0.

Proof. We prove this inductively on the structure of φ.

Soundness, case (f): Assume T [s, ESGα] = 1. From the definition of T , the minimum of

all T [s, Siα] for i ∈ G is 1, which means that T [s, Siα] = 1 for all i ∈ G. By induction,

this means that for all i ∈ G, (M, s) ⊨ Siα. Therefore, from the definition ⊨, we have

that (M, s) ⊨ ESGα.

Now, assume T [s, ESGα] = 0. This means that for some i ∈ G, T [s, Siα] = 0. By

induction, we have that (M, s) ̸⊨ Siα for some i ∈ G. Therefore, from the definition of

⊨, we have that (M, s) ̸⊨ ESGα.

Completeness, case (f): Assume (M, s) ⊨ ESGα. From the definition of ⊨, this means

that for all i ∈ G, (M, s) ⊨ Siα. By induction, we have that for all i ∈ G, T [s, Siα] =

1. Clearly, the minimum of T [s, Siα] for any i ∈ G is 1, therefore, we have that

T [s, ESGα] = 1.

Now, assume (M, s) ̸⊨ ESGα. From the definition of ⊨, this means that there exists an

i ∈ G, such that (M, s) ̸⊨ Siα. By induction, this means that there exists an i ∈ G, such

that T [s, Siα] = 0. If T [s, Siα] = 0 for at least one i ∈ G, then the minimum T [s, Siα]

must be 0, therefore, we have that T [s, ESGα] = 0.

Cases (g)-(j) are all straightforward mappings from the proofs of Theorems 3.16, 3.19,

and 3.21. The unknown relation which is caused by agent now becomes none of agent’s

observability (g, h) and all agents’ observability (i, j) respectively. Besides the unknown

relation, the structure of proofs is identical, with just the replacement of fi(s) with⋃
i∈G fi(s) and cf (G, s) respectively.
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3.4 Representing Existing Epistemic Logic Models using

Perspective Function

In this section, we show the expressiveness of our logic by using it to represent several

well-known epistemic logics.

3.4.1 Kripke Semantics

We can simulate Kripke semantics as follows. The set of variables V = W , where W is

the set of worlds in a Kripke model. Therefore, a state s represents the set of possible

worlds. The domain of variables is not relevant. The perspective function fi(s) returns

the set of possible worlds according to agent i, so it is just equivalent to Ki. The

evaluation function π(s)(r(t1, . . . , tk)) is then just defined as being true if and only if

∀w ∈ s, r(t1, . . . , tk)) holds in the world corresponding to w.

The downside of this is that while the complexity is still polynomial in the number

of states, the number of states is exponentially larger than the set of propositions (or

variables) in the underlying problem, which is as difficult to solve as if using Kripke

semantics. Instead, using a domain-specific representation would often be more suitable.

The reader may have noted that if s is a global state, then s only contains one world and

if the perspective function fi(s) returns the set of possible worlds according to agent i,

then the property fi(s) ⊆ s on perspective functions is violated. A trick around this is

to use the set of impossible worlds in the state representation. That is, a global state is

s = {w} ∪ ¬W , where the w represent the one actual world and ¬W represents the set

of all impossible worlds 4.

Using the same example from Figure 2.5, where V = {x} and Dx = {1, 2, 3}. For

simplicity, we use x1 to represent a world that is equivalent to the state {x = 1} in our

original model. The impossible worlds are represented by {¬x1,¬x2,¬x3}. Using x1 as

the initial world as an example, the initial state is s = {x1,¬x1,¬x2,¬x3}. The logic

works as follows:

• If agent a has no knowledge of x: fa(s) = {¬x1,¬x2,¬x3}.
4It is just the possible worlds with an impossible indicator each.
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• If agent a knows exact x: fa(s) = {¬x2,¬x3}, which means the only world a

thinks is possible is x1.

• If agent a knows something about x: using x < 3 as example, fa(s) = {¬x3}.

• If agent a knows x < 3 and b knows x > 1: fa(s) = {¬x3} and fb(s) = {¬x1},

while their distributed knowledge would still be the union {¬x2,¬x3}.

The evaluation function on the impossible worlds (local perspective) is defined as ∀¬w /∈

s, r(Vr) holds in w (note the ∈ replaced by /∈ and the corresponding relation between

¬w and w).

3.4.2 Proper Epistemic Knowledge Bases (PEKBs) and Cooper et al.

[1]’s Seeing Logic

PEKBs [87, 88, 138] and Cooper et al. [1]’s seeing logic are closely related, and our logic

can represent both using the same representation as Cooper et al.’s.

In this representation, V is the set of all modal literals up to a maximum depth of

k. If k = 2, there is just one proposition p, and two agents i and j, then V =

{p, Sip, Sjp, SiSip, SiSjp, SjSip, SjSjp}. A state s represents the set of propositions that

are true. Since the domains of all variables are not relevant (it can be any domain that

contains more than one value), we only use variable names in states in this example for

simplicity. The perspective function fi(s) = {α, Siα | Siα ∈ s}. The reader might find

this is less intuitive and might lead to unwanted common knowledge between agents

in domains like the Byzantine Generals domain. We ensure it is not the case and pro-

vide an example in Appendix A. The evaluation function π(s)(p) is true if and only if

p ∈ dom(s).

For Cooper et al. [127]’s JSα operator, which means that all agents jointly see literal

α (the operator CSG in our logic), we can use the same encoding by adding a variable

JSα for each literal α. We then define fi(s) = {α, Siα | Siα ∈ s} ∪ {α, JSiα | JSα ∈ s}.

A compact way to represent this logic is to have one variable ip for each proposi-

tion p. The domain of each variable is a bit vector that represents each value in

{p, Sip, Sjp, SiSip, SiSjp, SjSip, SjSjp, JSp}. An example can be found in Section 3.6.4.
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In their PEKB-based planner, Muise et al. [87] introduce the concept of ‘always known’

propositions, which are propositions that are common knowledge in a problem. This

reduces the size of the compiled classical planning problem because these propositions

do not have to be expanded.

Common knowledge can be represented in the PWP approach by ensuring that any

commonly-known variable is included in all agents’ perspective functions; or at least,

all agents who are part of the group. For any agent a ∈ G, where G is the group who

commonly know some proposition about variables v1, . . . vn, we can define fa(s) as:

fa(s) = {v | a ▷ v, v ∈ s} ∪ {v1, . . . , vn}, where a ▷ v means a sees v.

Any propositions about the variables v1, . . . vn are commonly known by all agents in

a ∈ G because they are part of the fixed point for cf .

3.4.3 Big Brother Logic (BBL) by Gasquet et al. [2]

In BBL, the set of variables V is xi, yi ∈ R, diri ∈ U and angi ∈ (0, 2π) for each agent i

where U is the set of unit vectors for R2. These variables represent the Cartesian

coordinates, the direction the agent is facing, and its angle of vision, respectively. The

perspective function is defined as:

fi(s) =
{
v=s(v) ∈ s | i ▷ v

}
∪
{
v=s(v) | v ∈ {xj , yj , angj}, j ∈ Agt

}
, where:

i ▷ v is defined as in Section 2.4.1 and e is the value of v in s. i ▷ v can be implemented

using the following, assuming that (xj , yj) represents the location of the target agent j:

(
| arctan( |s(yi)−s(yj)|

s(xi)−s(xj)
)− s(diri)| ≤ s(angi)

2

)
∨(

| arctan( |s(yi)−s(yj)|
s(xi)−s(xj)

)− s(diri)| ≥ 360◦−s(angi)
2

) (3.1)

Therefore, perspective function fi(s) takes all agents’ locations, directions, and vision

angles, and returns all the variables that belong to those agents that fall inside these

regions. The set on the right side of the set union operator in the perspective function

captures that the locations and angles (the angular range) of all agents are common
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knowledge, as in the original Big Brother Logic. Therefore, for all agents j, we have

that xj , yj , angj ∈ fi(s), and therefore xj , yj , angj ∈ fi(s) ⊆ cf(G, s).

As we outline in the following section, in our planning framework, perspective functions

are implemented using external functions in F-STRIPS. In our case, the external func-

tions are implemented in C++. This brings flexibility, such as the ability to implement

the expression in Equation 4.1. If it were possible to encode this function using propo-

sitions in classical planning, we assert that the resulting encoding would be difficult,

error-prone, and hard for a reader to understand. However, implementing the above in

C++ is straightforward for the modeler to implement and straightforward for a reader

to understand.

3.5 Implementation

In this section, we define the problems that can be modelled by our PWP model, provide

an encoding for a working planner, and show some examples. Two key aspects in

planning are the planning language and solver (planner). The encoding we provided is a

combination of F-STRIPS and PDDL (as dicussed in Section 2.1.3.3), and the planner

used is the BFWS planner by Francès et al. [63]. Using this encoding with external

functions allows us to decompose the planning task from the epistemic logic reasoning.

The intuition behind the PWP model is that the action model is specified using a

planning language, and queries specified in epistemic logic are implemented as F-STRIPS

external functions. External functions are functions that can be called from within an

F-STRIPS model, but whose semantics are defined external to the PDDL model and

can be implemented in languages outside of the planning language.

3.5.1 F-STRIPS Encoding

External functions are arbitrary functions that can be written in any language. Thus,

verifying the correctness and termination of the external function is the task of the mod-

eller. In our implementation, external functions are programmed in C++ for scalability

and flexibility.
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To show how to implement F-STRIPS with our model, we now give a proper definition of

all the epistemic planning problems that can be handled as a tuple (Agt, V,D,O, I,G,F)

in our approach, where: Agt is a set of agent identifiers; V is a set of variables that covers

the physical and the epistemic state; D = Dv1 ∪ . . .∪Dvm is the domain of variables; O,

I and G differ from their counterparts in F-STRIPS only by adding epistemic formulae

in preconditions and goals, which will be interpreted in the following part of this section;

and F are the set of external functions.

In the PWP approach, the main external functions are of the form (@check ?v1 . . .?vn ?q),

where q is the epistemic relation and v1, . . . , vn are variables. These evaluate the truth

value for q based on the given current state. For readability, we represent the valida-

tion of the epistemic relation by using (@check ?q) only for the remainder of the thesis,

omitting the variables. In the implementation, the modeller decides which variables are

needed as the input to the external functions.

The core logic implemented in the external function formalizes a PWP model instance

M = (Agt, V,D, π, f1, . . . , fk) (as defined in Definition 3.4). Then, it uses the inputs to

construct the current state s and the formula needed to be evaluated φ. It applies the

ternary semantics (Definition 3.22) based on M , s, and φ, and returns the ternary value

as output.

There are two major ways to embed epistemic formulae in a planning problem: using

the formulae as preconditions and conditions (on conditional effects) in operators O;

or using the formulae as epistemic goals in G. Defining preconditions and goals with

desirable epistemic formulae is straightforward. For example, in Figure 2.4, if we want

“agent a1 knows a2 sees b1” to be true, we could simply set the goal to be Ka1Sa2b1.

An important part of the modelling is to represent the state with a planning language,

and update it accordingly with each action taken. Particularly important is to update

the state with information that is sufficient to determine what each agent sees, such as

the position, direction, and angle in Big Brother Logic. For non-visual domains, using

encodings similar to the PEKB encoding in Section 3.4.2 is possible as this is a general

encoding. In this case, the update will need to ensure that the relevant seeing variables

are updated correctly.
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3.5.2 External Functions

External functions in F-STRIPS take variables as input, and return a result based on

that input. This is the key aspect that allows us to separate epistemic reasoning from

planning.

Recall from Section 3.1 that each agent i has a perspective function, fi : S → S, which

takes a state and returns the local state as agent i’s perspective. In most problems we

have modeled, the perspective function is the same for all agents, but the framework

allows each agent to have its own perspective function implementation.

Given fi for each agent, our library of external functions has implementations for Ki and

Si, their group knowledge counterparts, and propositional logic operators. The modeller

simply needs to provide the perspective functions for their domain, if a suitable one is

not already present in our library.

As an example, consider the Big Brother Logic domain. Here, the state of the world

includes the x-y coordinates of each agent, the direction they are facing, and the angle

they can see. The perspective function in Equation 4.1 is implemented in C++. The

semantics of the epistemic logic are implemented as external functions and remain the

same regardless of the perspective function that is used.

When an epistemic formula needs to be evaluated, the planner calls the epistemic logic

external function. In other words, the epistemic logic reasoning task is moved from the

planner to the external functions. The underlying planner has no concept of epistemic

logic and simply uses its search algorithm to find the goal. In addition, the external

function allows us to deploy lazy evaluation. That is, instead of generating all truth

values for all epistemic queries at the pre-compilation phase or storing entire knowledge

structures, the planner evaluates them only when they appear in the searching process.

Despite having general representations such as PEKBs (in Section 3.4.2), in our experi-

ence, using a domain-specific perspective function results in shorter, more elegant models

that are more straightforward to specify and verify. We give the external function for

the BBL domain here, and several examples in the following section (Section 3.6).

Example 3.4. External function for BBL domain is explained as follows.
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In Figure 2.4, global state s covers the whole flat field. Local state fa1(s) is the blue area,

and fa2(s) is the yellow area, which means in agent a1’s perspective, the “visible” world is

the blue area, and for agent a2, the “visible” world is only the yellow area. Furthermore,

in agent a1’s perspective, what agent a2 sees can be represented by the intersection

between those two coloured areas, which is actually fa2(fa1(s)). The interpretation is

that agent a1 only considers state l = fa1(s) as the “global state”, and inside that state,

agent a2’s perspective is fa2(l).

Specifically, assume the global state s in the BBL example contains all variables for

{a1, a2, b1, b2, b3, b4}5, such as locations, the directions agents are facing, and etc. Based

on the current setup, we can implement fi for any agent i with the Euclidean geometric

calculation given in Equation 4.1. By applying this perspective function on all variables

in the given state (could be a local state when evaluating nested perspective), we can

filter out all unseen variables for the agent and get its perspective based on the given

state.

Then, for any epistemic query φ, such as Sa1b2, the external function (@check ?φ)

takes all variables {a1, a2, b1, b2, b3, b4} and the query φ as input. By applying the

above perspective function fa1 on the given state, we can retrieve agent a1’s perspective

{a1, a2, b2, b3, b4} over the current state. Since b2 is in the perspective, the external

function will return 1, which means (@check ?φ) will be evaluated as 1 (true) by the

F-STRIPS planner. Let another query ψ be Sa1b1. Following the exact same approach,

since b1 is not in agent a1’s perspective, the external function will return 0 (false), so ψ

is false.

3.5.3 Expressiveness

Now, we discuss the expressiveness of our planning framework. The intuitive idea about

the agent’s perspective model is based on what agents can see, as determined by applying

the seeing rules (perspective function f ) on the current state. The relation between

t = fi(s) and s corresponds roughly to Kripke accessibility relations (s, t) ∈ Ri. However,

rather than generating a set of worlds that i considers possible, the perspective function

5a1, a2, b1, b2, b3, b4 here in the set are not variables. They are simplified representations of the group
of variables that belong to that agent or that object, such as a1 represents x a1, y a1, dir a1, ang a1.
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only returns the one partial world that the agent is certain about. This advantage (one

state, rather than multiple states) prevents the explosion in model size.

However, the reduced complexity loses information on “uncertain” variables. That is,

variables that an agent has some information about, but not complete information.

Theoretically, fi(s) is equivalent to
⋂

t∈W,(s,t)∈Ri
t from Kripke semantics. This eliminates

disjunctive knowledge about variables; the only uncertainty being that an agent does

not see a variable. For example, in the Muddy Children problem (Example 2.4), the

knowledge is not only generated by what each child can see by the others’ appearance,

which is modeled straightforwardly using perspective functions, but also can be derived

from the questions made by their teacher and the response by other children. From their

perspective, they would know exactly m children are dirty, which can be handled by our

model, as they are certain about it. While by the k-th time the teacher asked and no

one responds, they can use induction and get the knowledge that at least k children

are dirty. By considering that there are two possible worlds, where the number of dirty

children is m or m+ 1, Kripke structures keep both possible worlds for m+ 1 steps. If

we use a variable to represent the number of possible muddy children, our model cannot

keep these two worlds. Therefore, although our model can handle preconditions and

goals with disjunction, such as Ki [(v = e1)∨ (v = e2)], it cannot store such disjunction

in its “knowledge base”.

Despite this, we can still represent the muddy children problem in our logic. Instead

of m representing the number of dirty children, we can model it as a series of proposi-

tions indicating the number of dirty children, such as m0, . . . ,mn. To model uncertain

information about m, the underlying perspective function could eliminate all the propo-

sitions that the agent is certain to be false. To be specific, if propositions m3 and m4

remain in agent i’s perspective of the world, then, i knows m is either 3 or 4. Therefore,

the children asking their teacher for the kth time will result in the removal of mk from

the state until all the children only have mm in their local state. This is similar to

how Kripke semantics are encoded in Section 3.4.1 but also shows that being able to

customize perspective functions to specific domains can be useful.

A comparison on expressiveness between our model and other approaches is given in

Table 3.2. This table is similar to Table 2.1; the difference is some clarification we

made. The explanation of the detailed differences is the same as in Section 2.4.2.5.
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Nested Depth CK DK Continuous Disjunctive
Domains Knowledge

PWP Model Y U Y Y Y Y/N
Muise et al. [87] Y B N N N N
Kominis and Geffner [115] Y B N N N Y
Huang et al. [7] Y U I N N Y
Le et al. [6] Y U I N N Y

Table 3.2: Expressiveness Comparison over Epistemic Planning Approaches, where
CK and DK represent whether the model supports common and distributed knowledge.
‘I’ means this approach can handle common knowledge indirectly, such as modeling
common knowledge by public announcement [6], or using a group of nested knowledge
to approximate common knowledge [7]. For depth, ‘U’ means no bound on the depth

of queries, while ‘B’ means there is a fixed bound.

3.6 Experiments & Results

Now, we evaluate our approach on several domains: Corridor [115], Grapevine [87],

BBL [2], Social-media Network (SN) and Gossip [136]. Corridor, Grapevine, and Gossip

are well-known epistemic planning problems, which we use to compare the actual perfor-

mance of our PWP model against two state-of-the-art approaches in epistemic planning.

BBL is a model of the Big Brother Logic in a two-dimensional continuous domain, which

we use to demonstrate the expressiveness of PWP. The Social-media Network problem

demonstrates group knowledge operators, modeling information sharing over a digital

social network platform. PWP has an advantage in those epistemic planning problems

where knowledge can be derived from the ontic states. We also evaluate PWP on prob-

lems in which agents can have ‘memory’ about knowledge, such as the canonical ‘Gossip’

domain.

The source code of our implementation, along with all experiments, can be found at

https://github.com/guanghuhappysf128/benchmarks.

3.6.1 Benchmarks

In this section, we briefly describe the corridor and grapevine problems, which are bench-

mark problems that we use to compare against Muise et al. [87]’s epistemic planner,

which is currently the state-of-the-art in epistemic planning.

Corridor domain was originally presented by Kominis and Geffner [115]. It models

selective communication among agents. The setup is several agents (3-7) located in a

https://github.com/guanghuhappysf128/benchmarks
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corridor of rooms, and there is a secret in one of the rooms. Only one agent is able to

move between rooms, sense the secret, and share the secret. The rule of communication

is that when an agent shares the secret, all the agents in the same room or adjacent

rooms then know the secret. The goals in this domain are to have some agents knowing

the secret and other agents not knowing the secret. The perspective function is simply

that a secret variable is ‘visible’ to an agent (which models it hearing the secret) if they

are in the same room or adjacent rooms when the secret is shared.

Grapevine, proposed by Muise et al. [87], is a similar problem to Corridor. With only

two rooms available for agents, the scenario makes sharing secrets while hiding from

others more difficult. In this domain, each agent has their own secret. The agents can

move between two rooms and share their own secret or others’ secrets once they know

them. Since there are only two rooms, the secret is only shared within the room. The

emphasis of this domain is on sharing one’s secret with others without being noticed.

This is the same as in the Corridor domain, except we change the seeing rules so that an

agent sees a variable if and only if they are in the same room when the secret is shared.

3.6.1.1 Encoding

Both the Corridor and Grapevine domains are modeled similarly to standard proposi-

tional planning problems. The only difference is that the locations for movable agents

are modeled by functions (variables in the BWFS planner) rather than propositions,

which increases the readability and flexibility for the external functions. The desired

epistemic formulae are modeled by Boolean query ‘indicators’. Each of the indicators

is a Boolean variable that records the truth value for an epistemic formula which is

in the format of a JSON string. For example, a query entry in the Grapevine domain

‘{"query info":{"id":"p1","query":"ck a,b sct a:value:2"}}’ represents the com-

mon knowledge of agent a and b that the value of a’s secret is 2 (CKa,b scta=2). This

separates the epistemic language from F-STRIPS. The truth values for query indicators

can be modified by conditional effects in actions, such as shout in Corridor and share

in Grapevine. For example, in those actions, all query indicators are evaluated by call-

ing external functions. We only update the corresponding indicators if the epistemic

formulae hold in the current state. An example action shout is listed as below:



Planning with Perspectives 118

action shout(x)

prec sct=1, loc(a)=x

effs (forall (?q - query) (when (= (@check ?q) 1) (assign (fact ?q) 1))

The conditional effects assign the truth value to each query ?q to record its value. That

is, for any positive epistemic relations, its query variable should be 1 when checking

the goal state, while for any negative epistemic relations, its query variable should keep

being 0. While this is somewhat inelegant, it would be straightforward to take any

existing epistemic planning language and compile it into this format.

3.6.1.2 External Functions

The input of the @check function would be the location of each agent and the query

itself. The agent’s perspective function for Corridor and Grapevine is similar. The visi-

bility of secrets for both domains depends on the location of the agent whose perspective

is modeled. Therefore, both rules take the location of the speaking agent and the hearing

agent, and return all variables whose locations are the same location (for the Grapevine

domain); or the locations are the same or in adjacent rooms (for the Corridor domain).

Given the function loc(i) that returns the location of an agent using the rooms as a

sequence of numbers, we can define this formally as follows:

Corridor domain: fi(s) = {v′ | v′ ∈ s ∧ |loc(v′)− loc(i)| ≤ 1}

Grapevine domain: fi(s) = {v′ | v′ ∈ s ∧ loc(v′) = loc(i)}.

3.6.1.3 Results

To evaluate the computational performance of PWP, we compare it to Muise et al.

[87]’s PDKB planner. Their planner has been used to compare on the Corridor and

Grapevine domains against many other solutions [6, 115]. From their results and results

from Huang et al. [7] and Le et al. [6], it is fair to say that PDKB is a state-of-the-

art planner. Although the PDKB approach is for belief, rather than knowledge, it can

still be used as a suitable baseline for problems in which the agent’s belief cannot be

incorrect, and thus can simulate knowledge for these domains. In addition, to test how

the performance is influenced by the problem, we create new problems that varied some
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of the parameters, such as the number of agents, the number of goal conditions, and

also the depth of epistemic relations.

The PDKB planner converts an epistemic planning problem into a classical planning

problem, which generates a significant number of propositions when the depth of epis-

temic relations or the number of agents increases. We tried to submit the converted

classical planning problems to the same planner that is used by our PWP model, the

BFWS(R0) planner, to maintain a fair comparison. However, in this domain, there was

not a significant performance difference with respect to the original planner used by

Muise et al. [87], the FF planner.

We ran the problems with both planners on a Linux machine with 8 CPUs (Intel Core

i7-7700K CPU @ 4.20GHz × 8) and 16 gigabytes of memory. We measured the number

of atoms (fluents) and the number of nodes generated during the search to compare the

size of the same problem modeled by different methods. We also measured the total time

for both planners for solving the problems, and the time they take for reasoning about

the epistemic relations, which corresponds to the time taken to call external functions for

our solution (during planning), and the time it takes to convert the epistemic planning

problems into classical planning problems in the PDKB solution (before planning).

Table 3.3 shows the results for the Corridor and Grapevine problems, in which |Agt|

specifies the number of agents, d the maximum depth of a nested epistemic query, |G|

the number of goals, |Atom| the number of atomic fluents, |Gen| the number of generated

nodes in the search, and |Calls| the number of calls made to external functions. The

symbol “−” represents that there is no result within a 10-minute time limit. In the

Grapevine tests, to eliminate any influence from the different lengths of the plan on the

computation time, we increase the depth of the goal while keeping the solution the same.

Therefore, with the same number of agents and size of the goal condition, the problems

have the same solution. Evidence of this is that the number of search nodes generated

and the number of external function calls remains static across problems.

From the results, it is clear that the complexity of the PDKB approach grows expo-

nentially on both the number of the agents and the depth of epistemic relations (the

planner went over the 10-minute time boundary in the final Grapevine problem). The

complexity of the pre-compilation for the PDKB planner is O(2|Agt|·D), in which |Agt|

is the number of agents and D is the maximum depth of any modal formula in the
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Parameters PWP PDKB

|Agt| d |G| |Atom| |Gen| |Calls| TIME(s) |Atom| |Gen| TIME(s)
Calls Total Compile Total

Corridor

3 1 2 15 8 24 0.001 0.002 54 21 0.148 0.180
7 1 2 15 15 72 0.002 0.004 70 21 0.186 0.195
3 3 2 15 8 24 0.002 0.004 558 21 0.635 0.693
6 3 2 15 15 72 0.006 0.007 3810 21 5.732 6.324
7 3 2 15 15 72 0.007 0.008 5950 21 9.990 11.130
8 3 2 15 15 72 0.008 0.009 8778 21 14.140 15.680
3 4 2 15 8 24 0.003 0.004 3150 21 3.354 3.752
3 5 2 15 8 24 0.002 0.003 18702 21 25.690 29.540

Grapevine

4 1 4 358 23 144 0.003 0.005 96 11 0.428 0.468
4 2 4 358 23 144 0.005 0.007 608 11 2.885 3.178
4 1 8 370 270 2144 0.044 0.048 96 529 0.381 0.455
4 2 8 370 270 2144 0.077 0.079 608 1234 3.450 4.409
4 3 8 370 270 2144 0.136 0.138 4704 14 28.660 30.720
8 1 2 600 18 24 0.001 0.006 312 5 3.025 3.321
8 2 2 600 18 24 0.001 0.007 4408 5 54.350 58.800
8 1 4 606 43 144 0.005 0.011 312 11 2.546 2.840
8 2 4 606 43 144 0.009 0.014 4408 11 55.330 59.780
8 1 8 618 1068 4448 0.158 0.171 312 2002 2.519 3.752
8 2 8 618 1068 4448 0.257 0.269 4408 4371 54.900 228.100
8 3 8 618 1068 4448 0.460 0.466 − − − −

Table 3.3: Results for the Corridor and Grapevine domain.

modal. The search complexity is then the same as classical planning, which we model

as O(|Gen|), in which Gen is the set of states that are generated to solve the problem.

Using PWP, the number of features and depth do not have a large impact. However,

epistemic reasoning in our approach (the number of calls to the external solver) has a

significant influence on the performance. Since the F-STRIPS planner we use checks

each query in goal conditions at the generation of each node in the search (O(|Gen|)),

the time complexity for epistemic logic reasoning is in O(|Gen| · |G| · |Agt| · |V |2), in

which G is the set of goals and V is the size of the state6.

Although the search part of the problem is still NP-hard, the empirical computational

cost of epistemic reasoning is significantly lower than the compilation in the PDKB

approach in most of the test cases. In fact, using our encoding, none of the problems

6In the worst case, we need to check common knowledge on a state, there are at most |V | (maximum
size of the state) iterations, and each iteration contains |Agt| amount of set operations on the global
state or a local state (maximum |V |).
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exceed even half a second, while for the PDKB approach, many do, some running for

close to a minute.

3.6.2 Big Brother Logic

Big Brother Logic (BBL) is a problem first discussed by Gasquet et al. [2]. The basic

environment is in a two-dimensional space called “Flatland” without any obstacles.

There are several stationary and transparent cameras; that is, cameras can only rotate

and do not have volume, so they do not block others’ vision. In our scenario, we allow

cameras to also move in Flatland.

3.6.2.1 Encoding

Figure 3.2 visualizes the problem setup. Let a1 and a2 be two cameras in Flatland.

Camera a1 is located at (5, 5), and camera a2 at (15, 15). Both cameras have a 90◦

range. Camera a1 is facing north-east, while camera a2 is facing south-west. There are

three objects with values o1 = e1, o2 = e2, and o3 = e3, located at (1, 1), (10, 10), and

(19, 19), respectively. For simplicity, we assume only camera a1 can move or turn freely,

and a2, o1, o2, and o3 are fixed. The locations of these stationary objects and agents

are common knowledge.

a1
(5,5)

a2
(15,15)

o2
(10,10)

o1
(1,1)

o3
(19,19)

Figure 3.2: Example for Big Brother Logic setup.
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Let all the desired epistemic relation queries be a set of propositions Q, this problem

can be represented by the tuple (V,D,O, I,G,F), where:

• V = {x, y, dir, q} for i ∈ Agt;

• D : D(x) =D(y) = {−20, . . . , 20}, D(dir) = {−180, . . . , 180}, and D(q) = {0, 1},

where q ∈ Q;

• O : move(dx, dy) and turning(d), where dx, dy ∈ {−2, . . . , 2} and d ∈ {−45, . . . , 45};

• I = [x = 5, y = 5, dir = 45];

• G = {q = 1}; and

• F : (@check q) 7→ {true, false};

in which q is a goal query, which we describe later. Variables x and y represent co-

ordinates of camera a1, and dir determines which way a1 is facing. Since a2 and all

other objects are fixed, we can model them in an external state handled by the external

functions, which lightens the domain and reduces the state space. However, we could

also model the positions of these as part of the planning model if desired.

We need to check the knowledge queries in the actions (precondition) or goals. Both

action move(dx, dy) and action turning(d) can change all of agents’ perspectives, and

therefore, can influence knowledge.

3.6.2.2 External Functions

Inputs to the external functions would be the query (in the format of our language LGKΣ

described in Section 3.6.1.1) and current state (x, y and dir are the only changing

variables in this case). The output is the evaluated truth value of the query. The

perspective function is similar to the one in Equation 4.1, except that because the angle

and position of all agents except a1 are known, it can be simplified to just:

BBL domain: fi(s) =
{
v′=s(v′) | v′ ∈ s ∧ i ▷ v′

}
∪
{
v=s(v) | v ∈ {xb, yb, angb, dirb}

}
Since the BBL domain is in a two-dimensional continuous environment, encoding in other

epistemic planners would not be straightforward. First, a propositional approach could
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not be taken because there are an infinite number of propositions corresponding to the

continuous variables in the domain. Second, the arithmetic operators and trigonometric

functions would need to be encoded propositionally, which we believe would prove tedious

and error-prone.

3.6.2.3 Goal Conditions

As for the goal conditions, some queries q can be achieved for the problem in Figure 3.2

without executing any actions because they hold in the initial state, such as the following,

assuming that o1, o2, and o3 have values e1, e2, and e3 respectively:

1. Single Knowledge query: Ka1o3=e3 ∧ ¬Ka2o3=e3

2. Nested Knowledge query: Sa1Sa2o3 ∧ ¬Ka1Sa2o3

3. Group Knowledge query: EKa1,a2o2=e2 ∧ ¬EKa1,a2o3=e3

4. Distributed Knowledge query: DKa1,a2o1=e1 ∧ ¬DKa1,a2o1=e3

5. Common Knowledge query: CKa1,a2o2=e2 ∧ CKa1,a2Sa1o3

From goal 2, although Sa1Sa2o3 is true because a1 can see a2’s location, range of vision

and direction, so a1 knows whether a2 can see o3, the formula Ka1Sa2o3 is false because

a2 cannot see o3.

For goal 5, CKa1,a2Sa1o3 holds in the initial state because the common local state for

a1 and a2 would be the location of all three values, both a1 and a2 and the value of o2.

Then, Sa1o3 holds based on the common local state.

In addition, there are some queries that can be achieved through valid plans:

1. EKa1,a2o1=e1: move(−2,−2), move(−2,−2)

2. CKa1,a2o1=e1: move(−2,−2), move(−2,−2)

3. Sa1Sa2o1 move(−2, 2), move(−2, 2)

4. Sa1o3 ∧ ¬Sa2Sa1o3: move(−2, 1), move(−2, 2), move(−2, 2), move(−2, 2),

move(−2, 2), move(−2, 2)

5. ¬Ka1Sa2Sa1o3 ∧ Sa1o3: move(−2, 1), move(−2, 2), move(−2, 2), move(−2, 2),

move(−2, 2), move(−2, 2), turning(−45)
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The first plan is clear. There is more than one way to let both of them know value

o1, and the planner returns the optimal solution. The second plan is also intuitive: to

achieve common knowledge in a BBL problem, they need to both see the item and both

see each other. The difference between the next two is not straightforward. To avoid a2

seeing whether a1 can see o1, the cheapest plan returned by the planner was for a1 to

move out of a2’s eye sight. The last one is the most difficult to solve. Not only should

a1 see o3, but also a1 should know that originally a2 cannot see that a1 sees o3. This is

done by decomposing the query into three facts: “a1 sees o3”; “a2 cannot see whether

a1 sees o3”; and, “a1 can see that whether a2 can see whether a1 sees o3”.

3.6.2.4 Results

Table 3.4 shows the results for our problems in the BBL domain, where |Exp| represents

the number of nodes expanded and |p| indicates the length of the plan. The length of

a plan is “∞” means that the problem instance is unsolvable – no plan exists. The

perspective function in this domain depends on a geometric model based on the agent’s

position, direction, and facing angle (as defined in Equation 2.3). This shows that with

proper usage of our F-STRIPS planner, we can represent continuous domains.

Our epistemic solver is able to reason about other agents’ epistemic states (vision) and

derive plans based on these for non-trivial goals that we believe would be tedious and

error-prone to encode propositionally, if possible at all given the continuous domain. As

far as we know, there is no current epistemic planner that can handle problems at this

level of expressiveness.

Moreover, this expressiveness bridges the gap between high-level abstract planning

spaces and low-level motion spaces, which has great potential for application in hybrid-

planning [134].

3.6.3 Social-media Network

The Social-media Network (SN) domain is an abstract network based on typical social

media platforms, in which agents can befriend each other to read their page, post on
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Parameters Performance

|Agt| d |G| |p| |Gen| |Exp| |Calls| TIME(s)
Goal

calls Total

BBL01 2 1 1 0 1 0 2 0.000 0.001 Ka1o2
BBL02 2 1 1 2 115 2 232 0.007 0.009 Ka1o1
BBL03 2 1 1 ∞ 605160 all 1210320 39.822 87.126 Ka2

o3
BBL04 2 2 1 2 115 2 232 0.015 0.017 Ka1

Ka2
o1

BBL05 2 1 1 0 1 0 2 0.000 0.002 DKa1,a2
{o1, o2, o3}

BBL06 2 1 1 0 1 0 2 0.000 0.002 EKa1,a2o2
BBL07 2 1 1 2 115 2 232 0.018 0.020 EKa1,a2{o1, o2}
BBL08 2 1 1 0 1 0 2 0.000 0.002 CKa1,a2

o2
BBL09 2 1 1 2 115 2 232 0.034 0.037 CKa1,a2

{o1, o2}
BBL10 2 2 1 2 115 2 232 0.026 0.028 Ka1

DKa,b{o1, o2, o3}
BBL11 2 2 2 6 4559 120 17807 0.592 0.620 Sa1

o3 ∧ ¬Sa2
Sa1

o3
BBL12 2 3 2 7 5254 127 30196 0.969 1.011 Sa1o3 ∧ ¬Ka1Sa2Sa1o3

Table 3.4: Results for the BBL domain.

a friend’s page, and view their friend list. The observation in this domain is evaluated

based on the communication channels constructed as the friendship networks. This

communication channel is a two-way and all-time communication, which is an extension

of the two-way one-time communication channels from the Gossip domain [125, 136].

In addition, to make it more challenging, we add sharing a secret without it being fully

revealed to an agent or a group of agents as one of the objectives. By decomposing

secrets into messages and posting through an agent’s friendship network, we model how

secrets can be shared between a group of individuals not directly connected without

anyone else on the network knowing the secret, and some secrets can be shared within

a group excepting some individuals. The former could be spies sharing information

with each other through the resistances’ personal pages, and the latter could be a group

arranging a surprise party for a mutual friend.

3.6.3.1 Example and Encoding in F-STRIPS

There are five agents, a, b, c, d, and e, with their friendship networks as shown in Fig-

ure 3.3. Their friend relations are represented by full lines between each agent. The

dotted lines are referenced later for illustration purposes.

Assume there is another agent g (the global agent), who is friended with all agents. This

agent g is the only acting agent in this domain, which means the friendship network is

fixed. In addition, to make it more challenging, agent g is only allowed to post on one
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a

b

c

d e

Figure 3.3: Example for Social-media Network.

of the other agents’ home pages. Let the epistemic queries be the set of propositions

Q, and p1, p2, p3 be three parts of the secret P . Any problems in this setup can be

represented by a tuple (A, V,D,O, I,G,F), where:

• A = {a, b, c, d, e}

• V = {(friended i j), (post p) (q) | i, j ∈ A, p ∈ P, q ∈ Q}

• D : D(friended i j) = D(q) = {0, 1}, D(post p) = A, where i, j ∈ A, p ∈ P, q ∈ Q

• O : post(i, p), where i ∈ A, p ∈ P

• I = { (friended a b) = 1, (friended a c) = 1, (friended a d)=1, (friended b e)=1,

(friended c d)=1, (friended d e)=1 }

• G: see below

• F : (@check q) 7→ {true, false}

The variable (friended i j) represents whether i and j are friends with each other. Action

(post i p) specifies that the message p is posted on agent i’s page. The initial state I

represents the friendship relations in Figure 3.3, with no message posted yet. Similarly,

the action post is the only source for epistemic relation changes.
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3.6.3.2 External Functions

Each agent is able to view all posts on their friends’ pages and also view the friend list of

their friends. In this example, agent a is able to read every post on agent c’s homepage,

and a knows c is friended with a and d. With this information, a is able to deduce that

any post p on a’s or d’s homepage is also readable for c, which in another format is

“KaKcp”.

The perspective function depends on the friendship network. For example, consider the

global state s = {a, b, c, d, e, (post p1) = b}, where for simplicity, a, b, c, d, e represents

whether the respective agent’s page is visible, p1 is a social media post from b, and the

friend relationship is as shown in Figure 3.3. We have fa(s) = {a, b, c, d, (postp1) = b};

fd(s) = {a, c, d, e}; and d’s perspective in a’s perspective of world s will be fd(fa(s)) =

{a, c, d}, since e is not in a’s perspective. Similarly, fe(fa(s)) will be empty. We formally

define the perspective function as:

SN domain: fi(s)={v′ | v′ ∈ s ∧ (friend i j) ∧ ((post v′)=j ∨ v′=j)}

We have not seen this domain or anything similar modelled in any existing approach.

The epistemic relation would be a problem for most approaches, as it involves distributed

knowledge and common knowledge. The network itself could be modelled by other ap-

proaches; however, the group knowledge that we reason about depends on the network.

It is not clear to us how existing approaches could compactly model the effect on knowl-

edge when the friendship network changes. In our approach, the perspective function

gives us this information and is straightforward to implement in C++.

3.6.3.3 Goal Conditions

Goals that we tested are shown in Table 3.5. For some epistemic formulae between a

and b, since they are friends, simply posting the message on either of their personal

pages is sufficient to establish common knowledge about the information in that post.

But for goals about the shared knowledge between a and e (they are not befriended

with each other), for example, EKa,ep1, the message needs to be posted on the page of

a mutual friend, such as agent b. In addition, since a and e are not friends, in each of

their perspectives of the world, there is no information (variables) describing each other.
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Therefore, neither EKa,eEKa,ep1 nor CKa,ep1 is possible without changing the network

structure.

Some goals are secretive:

1. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3)

Plan: post(a,p1), post(a,p2), post(c,p3)

2. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3) ∧ ¬Kc(p1 ∧ p2 ∧ p3)

Plan: post(a,p1), post(b,p2), post(c,p3)

The aims are to share the whole secret (p1∧p2∧p3) with a without b knowing the whole

secret — it can know at most two out of three propositions p1, p2, and p3. Some parts of

it, such as p3, need to be shared in the page that b does not have access to. In the second

example, agent c must also not know the secret, the secret now needs to be posted in a

way that b and c do not see some parts respectively, while a sees all the parts.

Finally, we look into those two desired scenarios in the introduction of SN for sharing

with a spy (goal 3) and organizing a surprise party for agent a (goal 4):

3. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3) ∧ ¬Kc(p1 ∧ p2 ∧ p3) ∧

¬Kd(p1 ∧ p2 ∧ p3) ∧ ¬Ke(p1 ∧ p2 ∧ p3)

Plan: post(a,p1), post(b,p2), post(c,p3)

4. Goal: ¬Ka(p1 ∧ p2 ∧ p3) ∧Kb(p1 ∧ p2 ∧ p3) ∧Kc(p1 ∧ p2 ∧ p3)∧

Kd(p1 ∧ p2 ∧ p3) ∧Ke(p1 ∧ p2 ∧ p3)

Plan: unsolvable

Sharing a secret to some specific individual without anyone else knowing the secret can

be done with the current network. However, if we alter the problem by adding a friend

relation between b and c, and apply the same goal conditions as above, no plan would

be found by the planner, because c sees everything a can see, and there is no way to

share some information to a without c seeing it.

For sharing a secret surprise party for agent a among all the agents without a knowing it,

the messages need to be shared in such a way that a is not able to get a complete picture

of the secrets. In the setup of the problem from Figure 3.3, since a sees everything seen

by c, there is no way to hold a surprise party without a knowing it. However, by adding
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a friend relation between e and c (SN14 in Table 3.5), the planner returns with the plan:

post(e,p1), post(e,p2), post(e,p3).

3.6.3.4 Results

Parameters Performance

|Agt| d |G| |p| |Gen| |Exp| |Calls| TIME(s)
Goal

calls Total

SN01 5 1 1 1 16 2 84 0.003 0.004 Kip1
SN02 5 2 1 1 16 2 84 0.005 0.006 KiKjp1
SN03 5 1 1 1 16 2 84 0.005 0.006 EKi,jp1
SN04 5 1 1 3 216 92 6572 1.007 1.015 EKi,jPs
SN05 5 1 1 3 216 92 6572 1.048 1.056 DKi,jPs
SN06 5 1 1 1 16 2 84 0.008 0.009 CKi,jp1
SN07 5 1 1 ∞ 216 all 15552 1.030 1.050 CKi,kp1
SN08 5 1 1 3 216 92 6572 0.420 0.429 KiPs
SN09 5 1 2 3 232 93 13288 0.815 0.829 KiPs ∧ ¬KjPs
SN10 5 1 3 3 565 175 37644 2.484 2.530 KiPs ∧ ¬Kj,kPs
SN11 5 1 5 3 816 251 90100 5.720 5.810 KiPs ∧ ¬KotherPs
SN12 5 1 5 ∞ 2160 all 777600 53.191 54.004 KiPs ∧ ¬KotherPs
SN13 5 1 2 ∞ 432 all 62208 9.809 9.895 ¬KiPs ∧KotherPs
SN14 5 1 2 3 216 92 13144 2.436 2.454 ¬KiPs ∧KotherPs

Table 3.5: Results for the Social-media Network domain.

Table 3.5 shows the result for our problems in the social-media network domain, where

Ps represents (p1 ∧ p2 ∧ p3) and Kgφ means
⋂

i∈gKiφ. The results show that our PWP

model can handle a variety of knowledge relations at the same time within reasonable

time complexity. Although we acknowledge that the lengths of the plans are not long

by comparison to some classical planning benchmarks, it is clear that the computational

burden comes from the epistemic reasoning. In addition, our results show the correlation

between the number of expanded/generated nodes and the number of external function

calls, which correlate with each other as well as total time.

3.6.4 Gossip

The Gossip problem is a canonical epistemic planning problem proposed by Baker and

Shostak [136]. The original version contains a group of people, with each knowing

a secret. They can communicate with each other by telephone. At each call, they

will learn what each other knows at that moment, including direct knowledge about a

secret and nested knowledge about others’ knowledge. The key problem is: what is the



Planning with Perspectives 130

minimum number of telephone calls that have to be performed before everyone knows

all the secrets? We also experiment with other goals, such as everyone knowing that

everyone knows all the secrets.

Different from the previous epistemic planning problems we experiment with in this

thesis, the knowledge generated in the gossip problem depends on the current knowledge

of each agent, rather than just the current world state itself. As such, we need to encode

this knowledge in our state. We demonstrate two different encodings with a simple

example (suppose there are three agents a, b and c, each of them has their own secret a′,

b′ and c′ respectively): one similar to the PEKB encoding in Section 3.4.2, and a novel

encoding based on actions.

3.6.4.1 State-based Approach Encoding

The Gossip problem can be represented by a tuple (V,D,O, I,G,F), where:

• V = {Is}

• D : dom(Is) = {0, . . . , 2|Agt||d|+1 − 1}

• O : call(x, y), where x, y ∈ Agt

• I = discussed below

• G = discussed below

• F = (@check Is q) 7→ {true, false}

The problem contains one variable, Is, and the domain is a set of bit vectors of size

|Agt||d|+1, in which d is the maximum depth of nested knowledge. Each bit in the vector

represents a single proposition, such as Sip, as outlined in Section 3.4.2. Is represents all

knowledge about secret s. In our implementation, the set is described by a large binary

integer. To query a seeing formula, we simply look at the bit at the corresponding index

in the bit vector Is.

For the call operator, we implement the handling of ‘seeing update’ to an external func-

tion, which is more compact and elegant than encoding directly in the actions, which
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would be equivalent to the encoding outlined by Muise et al. [87]. Therefore, the exter-

nal function would update the state based on the current state and the current action.

Consider the example of update in Table 3.6, where the number of agents is 3 and the

depth is 2, and Is represents the truth value of:

{Kaa
′,Kab

′,Kac
′,KaKba

′,KaKbb
′,KaKbc

′,KaKca
′,KaKcb

′,KaKcc
′,KbKaa

′,KbKab
′,

KbKac
′, Kba

′, Kbb
′, Kbc

′, KbKca
′, KbKcb

′, KbKcc
′, KcKaa

′, KcKab
′, KcKac

′, KcKba
′,

KcKbb
′, KcKbc

′, Kca
′, Kcb

′, Kcc
′}.

Index Action Is in binary Is in decimal

0 Initial State 100000000000010000000000001 67117057
1 call(a,b) 110110000110110000000000001 113467393
2 call(a,c) 111110111110110000111110111 132080119
3 call(b,c) 111110111111111111111111111 132120575
4 call(a,b) 111111111111111111111111111 134217727

Table 3.6: An example for Si updating.

The size of the state space depends on the number of possible epistemic relations, which

is bound by |Agt|d. Although this approach is näıve, the computational complexity of

the solution would be the same as the approach proposed by Muise et al. [87]. However,

we found a limitation when we experimented with this: the grounding of actions by the

planner was prohibitively expensive, in some cases running out of memory.

Can we do better? It seems unnecessary to store propositions that are never used to

solve the problem. Therefore, we propose another approach, which takes advantage of

the F-STRIPS planning language.

3.6.4.2 Action-based Approach Encoding

The intuition behind the action-based encoding is that we can calculate the epistemic

effects of actions using external functions. In this solution, we store the sequence of

actions (calls) that have been made, and then calculate the epistemic state from this

sequence.

The Gossip problem can be described as a tuple 7, (V,D,O, I,G,F), where

• V = {As}
7The bound of the D depends on the length of the plan, while the maximum length of the plan, |p|,

is bound by (d+ 1) · (|Agt| − 1) according to Cooper et al. [125]’s proof.
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• D : dom(As) = {0, . . . , (|Agt| · (|Agt| − 1)/2)|p| − 1}

• O : call(x, y′), where x, y ∈ Agt

• I = {As = 0}

• G = discussed as below

• F = { (@check As q) } 7→ {true, false}

The set of variables V in this approach is a bit vector (represented as an integer) used to

record the action sequence that the planner has applied to reach the current expanding

node. Since Cooper et al. [125] proves that even with one-way communication, any

gossip problem with |Agt| and d depth can be solved with (d + 1)(|Agt| − 1) calls, we

know that this is the upper bound of plan length. Using the same example as above, for

a gossip problem based on the above setup and depth of 2, the domain for As is from 0

to 36. Therefore, the initial state would be As = 0, since no one has made any call yet.

The effect of the action is encoded using an external function Γ : S × A → S, which

is a visibility update function. The planner calls Γ(As, a), where As is the bit vector

representing the history h of actions so far, and a is the current action. Then, Γ(As, a)

returns a new bit vector A′
s that represents h · ⟨a⟩ — the concatenation of h and a.

For an epistemic query, the perspective function applies ‘actions’ encoded in As to

calculate the current epistemic state.

We implemented two versions of this. The Full implementation näıvely implements the

scheme above. The Relative implementation takes advantage of the ability to parame-

terise perspective functions fi by only encoding As with propositions that are relevant

for the epistemic goal formula. For example, consider the epistemic goal KcKba
′. This

would result in |Agt||d|+1 = 27 epistemic relations in the Full encoding. When generat-

ing epistemic formula, we start with the secret first. Since any epistemic formula related

to b′ or c′ will be irrelevant to the query, we need not encode any epistemic relations

about those secrets. So, the maximum number of epistemic relations at level 1 is |Agt|,

because with one secret a′ and |Agt| agents, the greatest number of epistemic formulae

that can be generated is in the case of each agent sees that secret.

Iteratively, we do the same for the next level, from |Agt| amount of formulae, we select

the one, Kba
′ (1/|Agt|). There are at most |Agt| new epistemic formulae that can be
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generated to know this one formula. With each depth, we drop all the old formulae

except the one relative formula and generating |Agt| amount of new epistemic formulae.

Therefore, the complexity for a single modal literal would be in O(|Agt| · |depth|). The

worst case is all agents knowing all agents’ secrets, and nested up to the level of depth,

which would be equivalent to the Full representation.

In our experiments, we compare these three methods — state-based, action-based (full)

and action-based (relative) — with the baseline of Cooper et al. [125]’s method using

their tool for generating their Gossip Generator 8. Their generator compiles Gossip

problems into classical planning problems, but is not a general epistemic planning tool.

However, this is a suitable baseline as it allows us to evaluate solving Gossip problems

using a state-of-the-art approach. To compare the performance directly, we use the

BFWS(R0) planner to generate the results.

Parameters State Action (full) Action (relative) Gossip Generator

d |g| |p| |calls| TIME(s) |calls| TIME(s) |calls| TIME(s) TIME(s)
calls Total calls Total calls Total |p| Compile Total

G1-3 2 1 2 12 0.00 0.00 12 0.00 0.00 44 0.00 0.00 2 0.00 0.01
G2-3 2 9 4 126 0.00 0.00 102 0.00 0.01 989 0.02 0.02 2 0.00 0.02
G3-3 3 1 3 M M M 12 0.00 0.01 266 0.00 0.01 1 0.00 0.06
G4-3 3 27 5 M M M 422 0.37 0.37 3644 0.11 0.12 5 0.00 0.06
G5-3 4 1 4 M M M 34 0.06 0.07 724 0.01 0.02 3 0.01 0.26
G6-3 4 81 6 M M M 1625 15.54 15.55 13624 0.69 0.72 7 0.01 0.24
G7-3 5 1 4 M M M 38 0.43 0.43 724 0.01 0.02 4 0.04 1.76
G8-3 5 243 7 M M M 4845 333.90 334.00 47194 3.58 3.67 11 0.04 0.96
G1-4 2 1 2 − − − − − − 18 0.00 0.00 2 0.01 0.05
G2-4 2 16 7 − − − − − − 1935 0.06 0.07 7 0.01 0.06
G3-4 3 1 3 − − − − − − 26 0.00 0.00 3 0.01 0.43
G4-4 3 64 7 − − − − − − 11848 0.63 0.66 10 0.01 0.26
G5-4 4 1 3 − − − − − − 104 0.00 0.01 3 0.10 2.60
G6-4 4 256 9 − − − − − − 54711 4.49 4.61 14 0.10 1.57
G7-4 5 1 4 − − − − − − 484 0.02 0.03 4 0.25 31.82
G8-4 5 1024 11 − − − − − − 286288 38.82 39.40 22 0.25 9.72
G1-5 2 1 2 − − − − − − 126 0.00 0.01 2 0.01 0.09
G2-5 2 125 9 − − − − − − 12911 0.60 0.63 10 0.01 0.11
G3-5 3 1 3 − − − − − − 2288 0.08 0.09 3 0.03 1.65
G4-5 3 625 11 − − − − − − 68531 5.51 5.68 15 0.03 0.91
G5-5 4 1 3 − − − − − − 3888 0.17 0.19 4 0.15 83.12
G6-5 4 3125 13 − − − − − − 400627 55.00 56.14 22 0.15 7.61
G7-5 5 1 6 − − − − − − 116030 7.53 7.97 4 0.99 450.63
G8-5 5 15625 15 − − − − − − 2370575 546.68 558.51 32 0.99 59.72

Table 3.7: Results for the Gossip domain, where M means the planner ran out of
memory, and − means we did not run it because it would clearly exceed the memory

limit.

For the experiments, we run all approaches with 3 agents. Then, given that the perfor-

mance of the action-based (relative) approach dominates our other approaches, we only

run this encoding with the number of agents greater than 3.

8Downloadable from https://github.com/FaustineMaffre/GossipProblem-PDDL-generator

https://github.com/FaustineMaffre/GossipProblem-PDDL-generator
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From the Table 3.7, problems G2, G4, G6 and G8 are four types of test cases that

address classical gossip problem goals. Since the aim in the classical gossip problem is

to have each agent know about others’ knowledge, the size of the goal is |Agt||depth|.

The problem types G1, G3, G5 and G7 are for comparison to show how depth affects

single-goal problems.

For the results, the state-based approach is limited by the planner. The F-STRIPS

planner we use handles function variables as integers. Therefore, for the problem with

length larger than three, the possible state Is’s maximum value is 227 − 1. Because

the F-STRIPS planner we use grounded actions, this results in most of the problems

exceeding the maximum memory allocation on our Linux machine. These are indicated

by M . Both action-based approaches are able to handle gossip problems with larger

depth than the state-based approach. However, updating only relative knowledge prunes

a large amount of knowledge formulae that are not going to be checked, reducing total

execution time. Compared to Cooper et al. [125]’s approach, our approach has similar

performance on the problems with full goals, and performs slightly better on the problem

with single goals, as it will not generate irrelevant epistemic relations.

3.6.5 Discussion

Overall, the experiment results show that our solution outperforms Muise et al. [87]’s

encoding solution (the state-of-the-art). As it can be seen from the results in both the

Corridor and the Grapevine domains, the number of agents and the depth of epistemic

relations do not increase the computation time as rapidly as the PDKB planner.

In terms of expressiveness, our PWP approach can handle a variety of complex epistemic

relations, such as nested knowledge, distributed knowledge, and common knowledge, and

epistemic logic reasoning with continuous domains. This can be found in the scenarios

of the BBL and SN domains. In addition, even for the problem with epistemic relations

embedded in the state, such as the Gossip domain, our model also shows that it can

handle various problems regardless of the limitations from the planner itself.

The results show that the computation time depends heavily on how many times the

external functions are called, which is actually determined by the number of generated

nodes and expanded nodes during the searching process. Moreover, the amount of nodes
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involved in the search is affected by standard factors in search, such as the algorithm

used by the planner and the difficulty of the problem itself (reflected by the plan length

and the branching factor of the problem).

The results also show that the external solver takes up a large part of the execution time.

This is a prototype implementation, and this represents an opportunity for performance

optimisation of our code base and supports the claim that customisable perspective

functions are valuable.

3.7 Conclusion & Discussion

In this chapter, we revisited the agent’s perspective model outlined by Hu [4], referred

to as the PWP model, and introduced two novel semantics. We examined the soundness

and completeness of the entire semantics and anchored the set of formulae (NF+) that

is complete with the ternary semantics. Furthermore, we demonstrated how the PWP

model can represent established epistemic logic models, indicating that it is sufficiently

expressive to address problems solvable by those models. Additionally, we provided a

detailed explanation of the complete planning process implementation, including the use

of an external function for delegating epistemic reasoning to an external solver, as well

as the comparative expressiveness of our approach. Finally, we conducted experiments

on the same benchmarks used in Hu [4] and explored a challenging domain, Gossip,

which could not be modeled by Hu’s method.

However, there are still a few aspects that limit the significance of this work. The

first is our PWP model reasons about knowledge only, which means the PWP logic

is an S5 axiomatic system (discussed in Section 2.2.3). Extending the PWP model

to handle belief could significantly increase its expressiveness while being challenging.

Because the success of our PWP model is dependent on the property fi(s) ⊆ s for

perspective functions, which implies knowledge cannot be false. The second approach

(in Section 3.6.4.2) on the Gossip domain also provided us some intuition in terms

of implementing the above intuition, which is unnatural in the normal (traditional)

planning communities.

Secondly, the current implementation is inefficient in the number of external function

calls. All epistemic relations in one action’s preconditions or in the goals are evaluated
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separately, even if they are directly or closely related. Using goal conditions Saφ∧Saψ∧

SaSbφ as an example, in the current implementation, there are 4 perspectives being

generated to evaluate this goal, which are fa(s) for Saφ, fa(s) for Saψ, and fb(fa(s))

(fa(s) being generated first) for SaSbφ. A more efficient way is to generate all relevant

local perspectives one. Using the example, to evaluate Saφ ∧ Saψ ∧ SaSbφ, only fa(s)

and fb(fa(s)) are needed.

At last, although the current PWP model is valid (details can be found on the proofs of

soundness and completeness), its application in planning contains risks to the reader who

is not familiar with epistemic planning. Specifically, as described in the action example

of the benchmarks (Section 3.6.1.1), the truth values of the epistemic formulae in the

goal conditions are updated by the actions that could change agents’ epistemic states.

The assumption is that agents can only gain new knowledge while they cannot forget

what they knew. However, this implementation could result in that the goal conditions

can be met even if there are two contradicting epistemic formulae in the goal conditions,

such as Kax=1 and Kax=2. That is, each of these goal conditions is achieved (set to be

true) in different states. Although any modeler with a good understanding of epistemic

planning would not do that, it is still a risk for the new beginner in this field. Thus, we

need to extend the current PWP framework to make sure the epistemic formulae in the

goals are consistent.



Chapter 4

Planning with Multi-Agent Belief

using Justified Perspectives

A causal connection between earlier

belief (or knowledge) of p and later

belief (knowledge) of p is certainly a

necessary ingredient in memory.

—Goldman

This chapter presents a model, built on the PWPmodel, forKD45 belief over such plans,

with the ability to solve model-free problems. Instead of keeping track of all possible

beliefs (like Kripke structures and DEL-based existing semantic approaches, or updating

the knowledge base in syntactic approaches), we use a lazy-evaluation approach that

searches through previous states of the plan to re-construct what has been seen, and by

whom, to evaluate nested belief formulae. Our results show that we can efficiently solve

existing benchmarks in epistemic and doxastic planning, even with a simple prototype

planner.

4.1 Introduction and Motivation

In epistemic planning problems, agents need to reason about the ontic world and the

epistemic world. There is extensive research on epistemic logic reasoning and epistemic

137
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planning, each with its own strengths and limitations. As introduced in Section 2.3,

most epistemic planning approaches either explicitly maintain the Kripke structures

using DEL, or explicitly maintain the knowledge/belief database by using conditional

effects to update and revise it. Both approaches suffer from an exponential growth w.r.t.

the length of the action sequence for the former and the depth of the epistemic formula

used in the latter one (as discussed in Section 2.3.3).

In the previous chapter (Chapter 3), we formalised the lazy-evaluation approach, PWP,

which was originally proposed by Hu [4]. The PWP model (Definition 3.4) uses the

perspective function to define which variables each agent ‘sees’ in each state, and from

this, a multi-agent epistemic logic (knowledge) is built using the “what you get is what

you see” paradigm [1, 2, 140, 141]. By doing so, epistemic reasoning can be performed

without generating and reasoning over all epistemic relations. Section 3.6 shows PWP is

able to handle more expressive problems than standard PDDL-based epistemic planners

and avoids the costly pre-compilation [87, 88, 125] and maintenance of Kripke mod-

els [6, 106, 119]. In addition, their agent’s perspective model only depends on the state

variables’ valuation, so it can be applied to model-free planners as long as they expose

their current state, such as when planning with simulators [63].

The weakness of PWP is that it can plan only with knowledge, but not belief. By

following the discussion (in Section 2.2) of the difference between knowledge and belief,

in knowledge logic (axiomatic system S5), Kiφ → φ is an axiom, while in belief logics

(axiomatic system KD45), it is not. Thus, approaches such as PWP cannot model

problems in which agents can have incorrect beliefs.

In the following parts of this chapter, we extend the PWP approach to model justified

belief. We call this Planning with Multi-agent Belief using Justified Perspectives (JP).

The intuition is that when people reason about something they cannot see, they gen-

erate justified belief by retrieving information from their ‘memory’ that supports that

belief [35]. In our model, this information comes from the states they have observed in

the past. So, an agent believes something if they saw it in the past, and has no evidence

to suggest it no longer holds. This includes nested beliefs about other agents’ beliefs.

We illustrate this idea with the following state sequence in NIB domain (Example 1.2)

as an example, which intuitively follows the Sally-Anne Task (Example 1.1).
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Figure 4.1: Plan 4.2 to solve Example 4.1.

Example 4.1. Following the same example setup as in Example 1.2, the task becomes

a false belief task, such that:

1. Number q is 5 (q=5);

2. Agent b believes that q is 5 (Bb(q=5));

3. Agent a believes that q is 6 (Ba(q=6));

4. Agent b believes that agent a believes that q is 6 (BbBa(q=6)).

Recall that in the NIB domain, in Example 1.2, the agents are not allowed to peek into

the same box at the same time. Without this requirement, a valid plan would be:

Plan 4.1. “(peek a q)”, “(peek b q)”, “(return a)”, “(decrement q)”

Following the above plan (Plan 4.1), belief formula BbBa(q=6) is straightforward be-

cause agent b observed agent a peeking at q after the action “peek b q′′ — where both

a and b peeked at q and saw each other doing so — while a wasn’t peeking when q

decreased by 1.

A more challenging plan, as shown in Figure 4.1, to reason about (given the premises

that agents cannot both peek into the same box) is:

Plan 4.2. “(peek a q)”, “(return a)”, “(peek b q)”, “(decrement q)”

In this plan, agent a and b no longer peek into the box containing q at the same time,

which means we do not have KbKa(q = 6) in state s2. All desired epistemic formulae

are met for the same reason as in Plan 4.1, except item 4. For item 4, similarly, agent b

recalls that the last time it saw agent a peeking to see q was s1, when peekingaq is true.

However, agent b holds no knowledge or belief on the value of q from s1, which means b
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cannot generate the justified belief in s1. Fortunately, agent b gains belief of q from s3.

So, agent b still can justify its belief BbBa(q=6):

1. agent b recalls that the last time agent a peeked inside of the box containing q is

s1; and

2. after b saw a peek, the next time b saw the value of the (q=6) is at state s3.

In a model-free setting, reasoning about this is particularly challenging. Agents do not

have access to the action model, so they cannot reason about what other agents have

seen. Instead, they can only partially observe states and re-construct belief by observing

states and who else observes each state.

4.2 Related Work and Background

Most of the background and related work is covered in Chapter 2. In here, we only cover

the works that are closely relevant to this section.

4.2.1 Background on Knowledge and Belief

Recall that the relation between knowledge and belief is not clearly defined (in Sec-

tion 2.2.6). Some authors state that knowledge is truthful belief [142–144], while others

claim that knowledge is truthful justified belief [145–148]. Bjorndahl and Özgün [149]

define the topology for knowledge and belief based on the different types of justification,

while Grossi and van der Hoek [148] states that belief is generated, endorsed, or justi-

fied by external arguments. However, there are no definitions of nested belief based on

agents’ previous observations.

Others use possible worlds to define both knowledge and belief [3, 150], which can be

found in Section 2.2.3 and Section 2.2.5. The idea in these logics is that the agents

have a possibility relation Ki that models whether the agent i can distinguish between

two states. Both the knowledge formula Kiφ and belief formula Biφ are defined as

that φ holds in all the worlds that agent i considers possible. The difference is that

the possibility relation Ki in modeling knowledge needs to be reflective and symmetric1,

1Reflective means for all s ∈ S, (s, s) must be in K, while symmetric means if there is a possibility
relation (s, t) in Ki, (t, s) must also be in Ki.
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while it is serial in modeling beliefs. Thus, such approaches have to maintain one

Kripke structure but two types of accessibility relations (one type for knowledge and

another type for belief) to model both knowledge and beliefs. The constraints on those

accessibility relations must hold to ensure a subset of axioms in the KB axiomatic system

(Definition 2.7) hold; e.g. if an agent knows something then it believes it. In this thesis,

knowledge is based on what an agent currently ‘sees’, while belief is based on what it

currently sees and has seen in the past.

The theoretical foundation [3] for knowledge is the S5 axiomatic system (Definition 2.2),

while for belief is the KD45 axiomatic system (Definition 2.2a). The difference between

these two sets of axioms is that: S5 includes the axiom Kiφ → φ (Axiom T), which

states that an agent’s knowledge must be the truth (reflexivity); while KD45 does not

have this axiom, so relations generated between possible worlds are derived from the

agent’s imperfect information of the world (could be false). Axiom D, replacing T in

KD45, captures ¬Kifalse, which is preserved by the serial possibility relation.

4.2.2 Related Work

Most DEL approaches do not support false-belief because they are built on S5 logics.

False-belief is challenging to model in DEL because it removes the ‘correct’ possibility

relation between worlds, which results in the agent’s belief state becoming isolated [116].

So, in order to allow agents to recover from false-belief, it requires special sensing or

announcing actions [6, 116, 151]. In addition, it is costly to maintain all agents’ possible

worlds.

As for the non-DEL-based approach, Muise et al. [88] define a proper epistemic knowl-

edge base (PEKB) that contains all epistemic formulae as literals. They convert an

epistemic planning problem into a classical planning problem using the precondition

and conditional effects in actions to update and revise the knowledge and belief literals

following some modal axiom, such as those of KD45n. The advantage of their approach

is that the model can be solved by any existing classical planner that supports condi-

tional effects. The limitations are: it cannot handle disjunctive belief; the depth of belief

is bounded; and the number of literals grows exponentially on the depth of epistemic

formulae, so the pre-compilation step has exponential time complexity.



Planning with Justified Perspectives 142

4.2.3 KB Axioms

As claimed by Gochet and Gribomont [81], the epistemic logic systems that handle

knowledge and belief (KB systems) at the same time could contain the unwanted axiom

(BiKiφ → Ki in Theorem 2.8). In order to avoid that, each epistemic logic system

needs to drop one of the three axioms from the KB axiomatic system (Definition 2.7):

KB1 (Kiφ → Biφ), D (¬Bifalse) and 5 (¬Biφ → Bi¬Biφ). However, every one of

those three axioms is intuitive: Axiom KB1 means if agent i knows φ, then i must

believe it; Axiom D (often in the form Biφ→ ¬Bi¬φ) means agent i cannot believe in

a contradiction; and, Axiom 5 means if agent i does not believe φ, then i should believe

he/she does not believe φ.

Fortunately, the epistemic logic system we proposed in this chapter (the JP model)

follows the intuition of the PWP model, which is “what you see is what you know”

(Siφ∧φ↔ Kiφ). In addition, it is also intuited by Goldman [35]’s idea that for the part

you do not see, you believe in what you have seen, unless you see evidence suggesting

otherwise. Combining those two intuitions together, we can form two (intuitive but

might not be accurate) intuitions of the relation between knowledge and belief: 1)

Knowledge is transient (only makes sense for the current state); and, 2) Belief is past

knowledge.

In addition, the JP model follows the KB axiomatic system introduced in Section 2.7,

except Axiom KB2 as a KB logic system only needs one of the bridge axioms to hold

(KB1 or KB2). The unwanted axiom in Theorem 2.8 (BiKiφ → Kiφ), arising from

combining Axioms KB1, D, and 5, is not unwanted in the JP model, considering its

strict definitions of knowledge and justified belief. The reason why the axiom in Theo-

rem 2.8 is the concern that agents believe they know something because they actually

know it. Intuitively, in our logic, BiKiφ only holds when Kiφ holds, which means

that believing knowledge does not cause new knowledge. That is, agents know some-

thing is the premise of them believing they know it. A formalized proof is provided in

Section 4.3.3.4.
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4.3 Justified Perspective (JP) Model

In this section, we introduce the Justified Perspective (JP) Model. The related back-

ground, including the epistemic logic of knowledge and belief, and epistemic planning,

are introduced in Chapter 2.

High-level speaking, we add two belief operators, Bi and Hi compared to the language

(Definition 3.3) in the PWP model. The belief operator Bi captures the intuition that

we believe something if we have seen it before, and we have seen no contradicting

evidence since. While the Hi operator captures whether we have a (committed) belief

of something, no matter whether we believe it to be true or false. Here “H” can be read

as “has a belief about”.

The term, justified perspective, represents the combination of agents’ perspectives (what

they observe) of the world and their past perspectives (what they observed) of the

world. The intuition of the justified perspective model, as mentioned in Section 4.1, is

that agents reason about the unseen from their “memory”. Thus, instead of only using

the current state for reasoning, the JP model uses the state sequence. Similar to the

PWP approach, this section introduces the signature, language, and model of justified

perspectives. We then present two semantics: one complete semantics for soundness and

completeness, and a ternary semantics for computational efficiency. As a state could be

repeatedly appearing in the sequence (see Plan 4.2), theoretically, the sequence space

could be infinite. Thus, we use S⃗n to represent the sequence space with the length of n.

A state in the sequence s⃗ at timestamp t (beginning at 0) is denoted by st or s⃗[t].

4.3.1 Signature and Language

The signature Σ = (Agt, V,D,R) of our model is exactly the same as the signature

defined in the PWP model (in Definition 3.1), as well as the definition of the state

(Definition 3.2). We also denote the state space and complete state space as S and Sc,

respectively. As previously noted, the JP model uses state sequences for reasoning rather

than individual states. A sequence is indicated by a lower-case letter with “⃗ ” as its

header, where S⃗ and S⃗c symbolize the sequence space and the complete-state sequence

space, respectively.
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In addition, the state override function ⟨ ⟩ (Definition 3.10) is also used in the JP model.

Moreover, since the JP model works with state sequences, we define the extensions of

state override function usage as follows:

Definition 4.1 (State Override Function with Sequences). Given a state sequence s⃗1

(with the length of n+ 1) and a state sequence seq (with the same length) and a state

override function ⟨ ⟩ from Definition 3.10, the definition of overriding s⃗1 with s⃗ is

defined as:

s⃗1⟨s⃗⟩ =
[
s⃗1[0]⟨s⃗[0]⟩, . . . , s⃗1[n]⟨s⃗[n]⟩

]
That is, we allow the override function to override a sequence of states by another

sequence of states, given that those two sequences have the same length.

Definition 4.2 (Language). The language LKB(Σ) is defined by the grammar:

φ ::= r(Vr) | ¬φ | φ ∧ φ | Siv | Siφ | Kiφ | Hiφ | Biφ,

where r(Vr) represents a predicate symbol applied to terms Vr, Vr ⊆ V , and r ∈ R.

Both Bi and Hi are belief operators. Biφ means that agent i believes that proposition φ

is true, while Hiφ represents i has a belief about φ (i.e. it means Biφ∨Bi¬φ). Seman-

tically, operator Hi is to operator Bi what operator Si is to Ki. However, intuitively,

agents’ knowledge is generated from their observation, while this relation is different

between B and H. The details are explained in semantics’ definition.

4.3.2 Model Instances

In this section, we define the instances of the JP model, which need to be defined by the

modeller when they use our approach to reason about the knowledge and belief formulae

in our language LKB(Σ).

Definition 4.3 (JP Model). Given a signature Σ = (Agt, V,D,R), an instance of the

justified perspective model M is defined as:

M = (Agt, V,D, π,O1, . . . ,Ok),
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in which Agt, V , D are from the given signature, π is the evaluation function. The

detailed definition is given as follows:

• The domain of variable v ∈ V is Dv, which is a set of all possible values of v (from

the definition of the signature). In here, a “None” value represented by symbol ⊥

is included (Dv := Dv ∪ {⊥}), which represents that the value of a variable is not

part of a particular agents’ observation. A state with all variables assigned with

⊥, denoted as s⊥ (s⊥ = {v=⊥| v ∈ V }). Thus, a special sequence is a sequence

with all states as s⊥, denoted as s⃗⊥.

• The interpretation function π : S × R → {true, false} determines whether the

atomic term r(Vr) is true in s. π is undefined if any of its arguments ti is a

variable v ∈ V that is not assigned a value in a given state s, i.e. v ̸∈ s ∨ v ̸=⊥.

• Functions O1, . . . ,Ok are inherited from PWP model defined in Definition 3.4,

except we rename the perspective function fi into observation function Oi, as fi

is our notation for the justified perspective function (Definition 4.6). In addition,

since the JP model evaluates epistemic relations based on state sequence, here

we allow the observation function to take input of a sequence as well. That is,

Oi(s⃗) = [Oi(s⃗[0]), . . . ,Oi(s⃗[n])] for a sequence s⃗ with length of n+ 1.

Since a state is a set (of variable assignments), the set operations are also applicable on

the state, such as set union operator “∪” and set minus operator “\”. However, since we

have introduced a special value (assignment) for representing none value, some specific

rules of set relations and operators need to be clarified.

Lemma 4.4. For any variable v ∈ V , we have v=⊥∈ {v= e} and v ∈ {v= e} for any

e ∈ Dv.

The special none value is acted as a place holder for reasoning about nested epistemic

relations. The state could also be defined as a set of variable identifiers union with a

set of assignments, such as {v, v → e}. In this way, v=⊥ could be represented by v only

without a valid assignment. Thus, it is straightforward for the above Lemma to hold.

But for simplicity, we model the state as a set of assignments only.

It is worthy to note that the observation functions in our Model (Definition 4.3), which

is from the PWP approach (Definition 3.4), also follow the above lemma. Specifically,
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from Lemma 4.4, we also have {v=⊥} ⊂ {v= e}, where e ∈ Dv \ {⊥}. Therefore, the

subset relation in Property 3 in Definition 3.4 also follows this, which we used later in

proofs for Theorem 4.9, 4.7 and 4.11.

4.3.2.1 Justified Perspectives

In this section, we propose two functions (a retrieval function in Definition 4.5 and a

justified perspective function in Definition 4.6) which are critical to generating agents’

justified perspective with arbitrary nesting.

First, we define a retrieval function R to retrieve a variable’s value from the latest

timestamp (state) that the agent had an ‘eye’ on this variable. From this, we will define

the perspective function fi to construct the agent’s justified perspective, and reason

about the agent’s justified belief following the intuition discussed in Section 4.1.

Definition 4.5 (Retrieval function). Given a sequence of states s⃗, a timestamp ts and

a variable v, the retrieval function, R : S⃗ × Z× V → D, is defined as:

R(s⃗, ts, v) =


s⃗[max(LT)](v) if LT ̸= {}

s⃗[min(RT)](v) else if RT ̸= {}

⊥ otherwise

where:

LT = {j | v ∈ s⃗[j] ∧ s⃗[j](v) ̸=⊥ ∧j ≤ ts},

RT = {j | v ∈ s⃗[j] ∧ s⃗[j](v) ̸=⊥ ∧ts < j ≤ |s⃗|}.

Here, s⃗ represents the sequence of states of a plan from a particular perspective, which

could be an agent’s perspective or the global perspective. The sets LT and RT denote the

sets of timestamps in which variable v is observed (i.e., defined and not equal to ⊥) to the

left and right of timestamp ts, respectively. Specifically, LT includes all timestamps less

than or equal to ts, and RT includes all timestamps strictly greater than ts, assuming

timestamps are indexed as a sequential list of natural numbers. Intuitively, LT contains

all timestamps before and on ts that variable v is seen, while RT are all timestamps

after ts that variable v is seen. Recall that ⊥ is a special value ‘None’. If this function

returns ⊥, it means that the agent has never seen a not-‘None’ value of variable v.
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The function R plays a crucial role. If we see an agent i seeing variable v, we know that

agent i learns the value of v. However, what value should we believe that i believes?

The function R determines this. If the value of variable v exists at time ts, then this is

in ‘our’ perspective, s⃗, and we see the variable at the same time as i, so R returns the

value of v in state sts. This is the straightforward case.

However, if we do not see variable v at time ts, what value should we assign to agent

i’s belief? The retrieval function R searches the timestamps before ts to find the most

recent reference to v. Intuitively, if we see that agent i sees v at ts, but we do not see

the value of v itself at time ts, then we believe that agent i believes the value is the same

as the last time we saw v. For example, if we peek at the coin in the box and see it is

a tail, and then we observe agent i peeking at the coin, it implies Bacoin= tail should

hold, because tail is the most recent observation of the coin.

If there is no value of v before ts, the function R retrieves the value by searching forward

(the timestamps after ts). Intuitively, if we believe that agent i sees v at ts, but we have

not seen variable v previously, then we assign i’s belief about v the next time we see v

after ts.

This is what we see in Plan 4.2 – agent b forms a belief about agent a based on agent

b’s observation after agent a’s observation. If there is no value found about v within s⃗,

then R function returns ⊥, as the variable has not been seen from s⃗.

Other design decisions could be made for R: searching forward first, then backwards;

finding the value closest to ts; or ‘forgetting’ the value of a variable after a certain

number of timestamps. Ultimately, there is no ‘correct’ design here and no design can

handle all possible cases, but we believe our choice above is intuitive and justified.

We can now give the definition of a perspective justified function fi for agent i. Intu-

itively, a justified perspective function models an agent’s perspective over the sequence

of states in a plan; specifically, an agent’s belief about each variable in each state from a

given state sequence, which can either be the sequence of global states or another agent’s

justified perspectives.

Definition 4.6 (Justified Perspective Function). Given the input state sequence s⃗ =

[s0, . . . , sn], a Justified Perspective (JP) function for agent i, fi : S⃗c → S⃗c, is defined as
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follows:

fi([s0, . . . , sn]) = [s′0, . . . , s
′
n]

where for all t ∈ [0, n] and all v ∈ V :

ltv = max({j | v ∈ Oi(sj) ∧ j ≤ t} ∪ {−1}), (1)

e = R([s0, . . . , st], ltv, v), (2)

s′′t = {v=e | st(v) = e ∨ v /∈ Oi(st⟨{v=e}⟩)}, (3)

s′t = s⊥⟨s′′t ⟩. (4)

This definition is not so straightforward, so let’s give it a high-level intuition. The

justified perspective function requires input of a current perspective (assume it is our

perspective). To reason what an agent believes, a justified perspective is constructed as

a sequence of states with the same length as our perspective. In each timestamp, for

each variable, we: 1) recall the last time (“ltv”) the agent saw the variable v, which is −1

if the agent has not seen this previously; 2) retrieve the value of the variable from ‘our’

memory using R (Definition 4.5); 3) form the state that the agent believes by removing

values that an agent has seen previously, but which are inconsistent with its current

observation; and 4) consider that the agents believe the value of all missing variables is

⊥ from the generated state (for future reasoning). Now, we explain the above steps in

detail.

First, recall that the sequence s⃗ = [s0, . . . , sn] can be either the global state sequence

or the perspective of another agent. Any state from the global state sequence is a

complete state, while Line (4) in Definition 4.6 ensures any state from any perspective

of any agent is also a complete state — s⊥ is always a complete state (Definition 4.3).

By doing so, although we cannot reason about the other agent’s belief of the missing

variables for now, it keeps the information for us to reason about it in the future. The

outcome of overriding a complete state with another state (could be partial or complete)

is a complete state. Thus, both input and output for the JP function are a sequence of

complete states.

Intuitively, an agent’s belief should be consistent with the agent’s observation in the cur-

rent state: if an agent sees something, it must believe it. Thus, we propose Theorem 4.7

Theorem 4.7. For any timestamp t in a given state sequence s⃗, Oi(s⃗[t]) ⊂ fi(s⃗)[t].
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Proof. This proof is straightforward. For any variable v ∈ V such as v ∈ Oi(s⃗[t]),

we have ltv = t due to Line (1) in Definition 4.6. Then, if s⃗[t](v) ̸=⊥, we have

R([s0, . . . , st], t, v) = s⃗[t](v), which means fi(s⃗)[t](v) = e = Oi(s⃗[t])(v). If s⃗[t](v) =⊥,

based on Theorem 4.9, Oi(s⃗[t])(v) = fi(s⃗)[t](v) =⊥. Therefore, Oi(s⃗[t]) ⊂ fi(s⃗)[t].

The timestamp ltv is the last timestamp that agent i sees variable v by state st, according

to the current perspective, which is −1 if agent i has not seen v at all. This tells us

the last time that agent i was seen observing variable v in the current perspective. This

evidence is used to justify belief [35].

However, if the current perspective represents an agent’s perspective, agent j, rather

than a global perspective, then agent j may not have seen variable v at time ltv—it may

have merely observed agent i seeing v, without seeing (knowing) v itself; e.g. the two

agents peek at the coin in the box at different times. We use R([s0, . . . , st], ltv, v) (Def-

inition 4.5) to find what value agent j will believe variable v was in state st. That is,

the most recent value before ltv or (if not found) the closest after ltv, as defined by R.

Therefore, the value R([s0, . . . , st], ltv, v) is the value of v that agent j ‘believes’ agent i

saw (Line 2).

Line (3) in this definition forms a justified (complete/partial) state of the agent i at

timestamp t. The assignment of variable v is in this justified state if: the retrieved

value of v (R([s0, . . . , st], ltv, v) = e) is the same as the input perspective (st(v) = e);

or (st(v) ̸= e) and the agent i cannot prove the value changed. The latter condition

requires some further explanation.

There are two possible scenarios when st(v) ̸= e: either v ∈ Oi(st) or v /∈ Oi(st). For

the first scenarios, v ∈ Oi(st), along with the premise (st(v) ̸= e), it is intuitive that if

st(v) is a non-none value, then agent j should believe that agent i believes (is seeing) v

equals to st(v), which is what j believes v is. Thus, we propose Theorem 4.8 to prove, in

the first scenarios, st(v) =⊥. Then, even if the retrieval function R returns a non-none

value, agent j is still not able to believe the agent i believes v is this value. Therefore,

we propose Theorem 4.9 and prove that even if e from Line 3 is not ⊥, j is still not able

to believe others believe v = e due to the same reason j cannot believe v = e. That is,

v /∈ s′′t .
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Theorem 4.8. For any timestamp t in a given perspective s⃗, if v ∈ Oi(s⃗[t]) and

R([s0, . . . , st], t, v) ̸= s[t](v), then we have s[t](v) =⊥.

Proof. Assume s[t](v) equal to some not-‘None’ value e ∈ (Dv \ {⊥}).

Since v ∈ Oi(s⃗[t])∧s⃗[t](v) ̸=⊥, it must be that LT from Definition 4.5 is not an empty set

(contains t at least), which means max(LT) = t. Thus, referring to the first condition,

we have R([s0, . . . , st], t, v) = s[t](v). This is not consistent with the given condition

(R([s0, . . . , st], t, v) ̸= s[t](v)), which means our assumption does not hold. Therefore,

we prove s[t](v) =⊥ by contradiction.

Theorem 4.9. For any timestamp in a given justified perspective s⃗, if v ∈ Oi(s⃗[t]) and

s⃗[t](v) =⊥, then we have fi(s⃗)[t](v) =⊥.

Proof. First, the given premise ensures s⃗[t](v) =⊥, which indicates that the given se-

quence is from another agent’s perspective (global sequence would not have any variable

with value of ⊥). Let this agent be j and the state sequence for the JP function to get

s⃗ as s⃗k. That is, fj(s⃗k) = s⃗.

Then, s[t](v) ≡ fj(s⃗k)[t](v) =⊥ has two possibilities: either j has never seen the value

of v since the beginning of the input sequence s⃗k (R([s⃗k[0], . . . , s⃗k[t]], t, v) =⊥); or j

has seen the value of v, but j also sees v has been changed according to Line (3) in

Definition 4.6.

For the first case, it is intuitive. For all timestamps t′ ∈ {0, . . . , t}, we have either

v /∈ Oj(s⃗k[t
′]) or v ∈ Oj(s⃗k[t

′]) ∧ s⃗k[t
′](v) =⊥, which ensures for all t′, fj(s⃗k)[t](v) ≡

s⃗[t](v) =⊥. Thus, R([s⃗[0], . . . , s⃗[t]], t, v) =⊥= s⃗[t](v), which means the first case will not

hold for the given premise.

As for the second case, j has seen some value e (R([s⃗k[0], . . . , s⃗k[t]], t, v) = e) of v before,

but s⃗[t](v) =⊥ due to e ̸= s⃗k[t](v) ∧ v ∈ Oj(s⃗k[t]⟨{v = e}⟩). Thus, there exists some

value e of v that is not none, which effectively means the retrieval function will get a not

none value of v. Assume the value returned by the retrieval function is e ∈ Dv \{⊥}, we

have e ̸= s⃗[t](v), which means the left condition for Line (3) in Definition 4.6 is not met.

Then, based on s⃗[t] ⊊ s⃗[t]⟨{v=e}⟩ (set relation) and v ∈ Oi(s⃗[t]) (the premise), we have

v ∈ Oi(s⃗[t]) ⊊ Oi(s⃗[t]⟨{v=e}⟩) according to Property (3) of the observation function (in

Definition 3.4). Thus, the right condition of Line (3) in Definition 4.6 is also not met.



Planning with Justified Perspectives 151

That is, the assignment of v is not in s′′t from Line (3), and a none assignment (v=⊥) is

added according to Line (4).

Therefore, the latter condition (st(v) ̸= e) can only be triggered by the second scenario

(v /∈ Oi(st)). Based on our intuition in Section 4.1, agents believe v’s value stays

unchanged unless they see it otherwise [35]. Agents saw the value changed either by

direct observation, or by indirect inference (v /∈ Oi(st)). Direct observation is trivial,

agents saw the value of the variable changed, while indirect inference is trickier. To

explain it, let us introduce another example as follows:

Example 4.2. Consider a corridor with 3 rooms, r1, r2, and r3. Three agents a, b, and

c are all located in r1. They can only observe the room that they are in. Let a plan be

agent b moving to r2.

The global sequence s⃗g, agent a’s observations of the global sequence Oa(s⃗g) and a’s

justified perspective fa(s⃗g) are as follows:

• s⃗g is [{loca=r1, locb=r1, locc=r1}, {loca=r1, locb=r2, locc=r1}];

• Oa(s⃗g) = [{loca=r1, locb=r1, locc=r1}, {loca=r1, locb=r2, locc=r1}];

• fa(s⃗g) = [{loca=r1, locb=r1, locc=r1}, {loca=r1, locb=⊥, locc=r1}].

Intuitively, the justified perspective of a should be the same as the global state for s0.

Since in s1, since a is in r1, we have loca, locc ∈ Oa(s1), which means ltloca = ltlocc = 1

and R(s⃗g, 1, loca) = R(s⃗g, 1, locc) = r1. As for locb, we have ltlocb = 0, which results in

e = R(s⃗g, 0, locb) = r1. However, we have s1(locb) = r2, which means s1(locb) = r1 does

not hold. Although it is perfectly fine for the agent to hold false beliefs in epistemic

planning, agent a should be able to reason that this belief is false (inconsistent with a’s

own observation), which is the indirect inference that we design to capture.

In order to capture indirect inference, firstly, agents assume the value e of v is un-

changed (e = R([s0, . . . , st], ltv, v)), which means the state st is overridden by the as-

signment v=e. In this case, agent a assumes locb = r1. Formally, we have Oa(s1⟨{locb=

r1}⟩) = Oa({loca = r1, locb = r1, locc = r1}) = {loca = r1, locb = r1, locc = r1}. Then, if

v /∈ Oi(st⟨{v = e}⟩), which means agents are not able to see v = e even if v’s value is

still e, then, it is reasonable to assume v’s value is still e. While, if v ∈ Oi(st⟨{v=e}⟩),
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which means agents will see v=e if v’s value is still e, it is not reasonable to assume the

value of v is still e (because the premise is that v /∈ Oi(st)). In this case, if locb = r1,

agent a should still be able to see locb. Thus, it is not reasonable to assume locb’s value

is still r1. Therefore, there is not going to be any assignment of v in s′′t (Line 3), while

s′t(v) =⊥ according to Line (4). In this case, the justified perspective of agent a is

fa(s⃗g) = [{loca=r1, locb=r1, locc=r1}, {loca=r1, locb=⊥, locc=r1}].

Overall, a JP function fi(s⃗) forms a justified perspective of agent i under the input

justified perspective s⃗. Thus, we can nest justified perspective functions arbitrarily to

form nested beliefs.

In addition, we also proposed the following theorems for nested justified perspective

function. Theorem 4.10 ensures if an agent believes something, then they must believe

themselves to see that belief, while Theorem 4.11 represents that if an agent believes

something, they believe that they believe it.

Theorem 4.10. For any timestamp t in any state sequence s⃗, Oi(s⃗[t]) ⊆ Oi(f (s⃗)[t]).

Proof. According to Theorem 4.7, we have Oi(s⃗[t]) ⊆ fi(s⃗)[t]. Based on the monotonicity

of the observation function (If s ⊆ s′, then Oi(s) ⊆ Oi(s
′)), we have Oi(Oi(s⃗[t])) ⊆

Oi(fi(s⃗)[t]). Given the idempotency of the observation function (Oi(s) = Oi(Oi(s))),

(Oi(Oi(s⃗[t])) = Oi(s⃗[t])), we have Oi(s⃗[t]) ⊆ Oi(f (s⃗)[t]).

Theorem 4.11. For any justified perspective s⃗, we have fi(s⃗) = fi(fi(s⃗)).

Proof. The base case is a sequence with one state [s0]. We have fi([s0]) = [s⊥⟨Oi(s0)⟩]

based on applying the JP function in Definition 4.6. According to Theorem 4.7 and

the monotonicity of the observation function (Property 3), we have: Oi(s0) ⊂ fi([s0])[0]

and Oi(Oi(s0)) ⊂ Oi(fi([s0])[0]); fi([s0])[0] ⊂ s0 and Oi(fi([s0])[0]) ⊂ Oi(s0), which are

effectively: Oi(s0) ⊂ Oi(fi([s0])[0]) ∧ Oi(fi([s0])[0]) ⊂ Oi(s0) ≡ Oi(s0) = Oi(fi([s0])[0]).

Thus, fi([s0]) = fi(fi([s0])).

For a sequence of more than one element, any state (fi(s⃗)[t]) at timestamp t in agent i’s

justified perspective depends on the input state sequence and agent’s observation before

t, which are [s⃗[0], . . . , s⃗[t]] and [Oi(s⃗[t]), . . . ,Oi(s⃗[t])] respectively.

Any variable v ∈ V can be classified into one of the following conditions:
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1. v ∈ Oi(fi(s⃗)[t])

2. v /∈ Oi(fi(s⃗)[t])

For Condition (1), according to Theorem 4.7, Oi(fi(s⃗)[t]) ⊂ fi(fi(s⃗))[t]. Since v ∈

Oi(fi(s⃗)[t]), following the same proof for Theorem 4.7, fi(s⃗)[t](v) = fi(fi(s⃗))[t](v).

For Condition (2), v /∈ Oi(fi(s⃗)[t]) indicates v /∈ Oi(s⃗[t]) (Theorem 4.10). The value of

both fi(s⃗)[t](v) and fi(fi(s⃗))[t](v) depends on the values from previous timestamp t − 1

(ltv is smaller than t in the process of generating both justified perspectives (fi(s⃗) and

fi(fi(s⃗))) according to Definition 4.6). Then, whether fi(s⃗)[t−1](v) and fi(fi(s⃗))[t−1](v)

are the same can be reasoned recursively until it reaches the base case.

Overall, fi(s⃗) = fi(fi(s⃗)) holds.

4.3.3 Semantics

Now, we give two different KD45 semantics: complete semantics and ternary semantics,

which extend our respective S5 semantics for the PWP model from Chapter 3. The

complete semantics have an exponential worst-case time complexity, while the ternary

semantics have a polynomial time complexity (for a given plan length) and have the

same properties of incompleteness as the PWP semantics.

4.3.3.1 Complete Semantics

The complete semantics inherits the definitions of Items (a) - (e) in Definition 3.11, but

with three minor changes: (1) the frame is a pair M, s⃗ instead of M, s, i.e. it requires a

sequence of states instead of a single state s; (2) the Si operator uses Oi instead of fi (our

function Oi is equivalent to PWP’s fi perspective function, while our justified perspective

function fi generalises for belief); and (3) the evaluation of atomic propositions is based

on the final state of the sequence s⃗.

Similarly as PWP, our complete semantics is to reconstruct the possible worlds and

evaluate epistemic logic formula accordingly. However, simply overriding the none value

variables in the agent’s justified perspectives would result in inconsistent perspectives,
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which is mainly caused by Line 3 in Definition 4.6. Thus, we propose a possible se-

quence function to generate the set of all possible sequences for agent i given a sequence

C(fi(s⃗), i) as follows:

Definition 4.12 (Possible Sequence Function). Given a state sequence s⃗ for agent i

(could be either justified perspective of i, or a sequence of observations of i) with length

of n + 1, all possible sequences that agree with s⃗ can be generated by the possible

sequence function, C : S⃗ ×Agt→ P(S⃗c), can be defined as:

C(s⃗, i) = {
[
w0, . . . , wn

]
| w0 ∈W0, . . . wn ∈Wn}

where for all t ∈ [0, n]:

Wt = {w′ | w′ ∈W ′
t , ∀v ∈ Oi(w

′) → v ∈ Oi(s⃗[t])}

W ′
t = {sc⟨s⃗[t] \ s⊥⟩ | sc ∈ Sc}

Intuitively, this function identifies possible worlds W ′
t for each state in the agent’s jus-

tified perspective s⃗[t] by adding possible values to those variables that are equal to ⊥.

However, some of the newly added values might be inconsistent with the agent’s justified

perspective function due to the indirect inference mentioned in Definition 4.6. This is

triggered by the agent i cannot see the variable v (v /∈ Oi(s⃗[t])), but the agent i sees

v once the state is “filled up” with possible value e of v. That is, if the value of v is e

originally, then the agent i should be able to see it. Thus, agent i must not believe the

value of v could possibly be e.

Using Example 4.2, the sequence of agent a’s observation Oa(s⃗g) is [{loca = r1, locb =

r1, locc=r1}, {loca=r1, locc=r1}] and a’s justified perspective fa(s⃗g) is [{loca=r1, locb=

r1, locc = r1}, {loca = r1, locb =⊥, locc = r1}]. The possible sequences that are consistent

with both can be generated by the sample process as follows: W ′
0 = W0 = {{loca =

r1, locb=r1, locc=r1}} as the agent observes everything in the timestamp 0; W ′
1 contains

three possible states, as locb has three not-‘None’ values (Dlocb = {r1, r2, r3,⊥}), while

W1 only contains two possible states due to locb=r1 not being consistent with a’s justified

perspective. This is because variable locb is in the possible world {loca = r1, locb =

r1, locc=r1} from W ′
1, but it is not in neither Oa(fa(s⃗g)[1]) nor Oa(Oa(s⃗g)[1]), which are

both {loca = r1, locc = r1}. Thus, C(fa(s⃗g), a) = C(Oa(s⃗g), a), which only contains two
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possible sequences: [{loca = r1, locb = r1, locc = r1}, {loca = r1, locb = r2, locc = r1}] and

[{loca=r1, locb=r1, locc=r1}, {loca=r1, locb=r3, locc=r1}].

Extending the intuition above, adding possible values to variables that contain no value

should not change agent i’s “observation”, because of indirect inference (discussed in

Definition 4.6), which is if some value e makes i sees v, while originally i cannot see v,

then i would consider e is not possible based on the fact i cannot see v. In here, the word

“observation” only refers to the variable symbols in agents’ observations, not the value.

That is, agent i observed a variable v ∈ Oi(s⃗[t]) while knowing or believing it’s none due

to lack of belief of this variable from its parent’s perspective (s⃗[t](v) =⊥). In another

word, the newly added possible value does not make agent i see any new variables, which

is ensured by Definition 4.12. In this case, by filling the possible values, agents could

update their observation (from Oi(s⃗[t])(v) =⊥), but only by the value of variables, not

the variables themselves. The formalization of this is proposed as the following lemma.

Lemma 4.13. Given a state sequence s⃗ for agent i (could be i’s observation sequence or

justified perspective) with the length of n, for any g⃗ in C(s⃗, i), we have ∀t ∈ {0, . . . , |s⃗|}, Vt =

V ′
t , where Vt = {v | ∀v ∈ Oi(s⃗[t])} and V ′

t = {v | ∀v ∈ Oi(g⃗[t])}.

From its definition (Definition 4.12), we have any sequence generated by a possible

sequence function is consistent with the agent’s justified perspective. By consistent, we

mean ∀g⃗ ∈ C(s⃗, i), ∀t ∈ {0, . . . , |s⃗|}, s⃗[t] ⊆ g⃗[t]. This is straightforward as the possible

sequence g⃗ is just adding a consistent possible value to s⃗.

Then, does agent i hold the consistent observations and beliefs under the possible world

g⃗ ∈ C(s⃗, i) (i believes possible) need some discussion. Thus, we propose the following

two theorems.

Theorem 4.14. Given agent i’s observations of a state sequence Oi(s⃗) with the length

of n+ 1, for any g⃗ in C(Oi(s⃗), i), we have ∀t ∈ {0, . . . , n},Oi(s⃗)[t] ⊆ Oi(g⃗)[t].

Proof. The proof for this is trivial. According to Definition 4.12, the possible sequences

are generated from Wt, which is adding consistent possible values for variables v such

that f (s⃗)[t](v) =⊥. With Lemma 4.13, we have Oi(s⃗[t]) ⊆ Oi(g⃗[t]).
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Intuitively, one should think the above theorem should use “=” (∀t ∈ {0, . . . , n},Oi(s⃗)[t] =

Oi(g⃗)[t]). The reason for using “⊆” has been mentioned in the paragraph above the the-

orem. The agent could update their observation of the variables equal to ⊥ with their

possible values. Those variables with value none ⊥ in the agent’s observation indicate

that the agent sees those variables, but does not “know” the value of them due to their

values being missing in the parent perspectives.

Theorem 4.15. Given agent i’s perspective of a state sequence fi(s⃗) with the length of

n+ 1, for any g⃗ in C(fi(s⃗), i), we have ∀t ∈ {0, . . . , n}, fi(s⃗)[t] ⊆ fi(g⃗)[t].

Proof. We prove this by induction. For the base case (timestamp 0), we have fi(s⃗)[0] =

s⊥⟨Oi(s⃗[0])⟩ and fi(g⃗)[0] = s⊥⟨Oi(g⃗[0])⟩. Since Oi(s⃗[0]) ⊆ Oi(g⃗[0]), we have fi(s⃗)[0] ⊆

fi(g⃗)[0].

For any timestamp t ∈ {0, . . . , |s⃗|}, the justified perspective of g⃗ for agent i is generated

by Definition 4.6, in which the ltv for all variables are the same as in fi(s⃗)[t] due to

Lemma 4.13. To clarify this proof, let Condition 1, 2, and 3 be ltv = t, s⃗[t](v) ̸=⊥, and

fi(s⃗)[t](v) ̸=⊥ in this proof. Then, if the last timestamp i sees v is the current timestamp

t, v has a not-none assignment and this assignment is consistent with i’s observation

(all conditions hold), we have fi(s⃗)[t](v) = fi(g⃗)[t](v); if the current value of v from s⃗[t]

is not consistent with i’s observation (Condition 1 and 2 hold, while 3 does not), we

have fi(g⃗)[t](v) = g⃗(v) and fi(s⃗)[t](v) =⊥; if v is none from the sequence (Condition 2

does not hold, while others hold), we have the same conclusion as the previous one; if

v is not observed by i in the current timestamp, then both values are determined by

their values in the previous timestamp (t− 1), which are fi(s⃗)[t](v) = fi(s⃗)[t− 1](v) and

fi(g⃗)[t](v) = fi(g⃗)[t− 1](v), based on Definition 4.6.

Then, recursively run this proof from t to t− 1 all the way until the base case, we have

∀t ∈ {0, . . . , |s⃗|}, fi(s⃗)[t] ⊆ fi(g⃗)[t].

The intuition behind this theorem is that, in the possible worlds (sequences), generated

from agents’ justified perspectives, their original beliefs (in their justified perspectives)

must hold. That is, they cannot consider a world (sequence) possible, if what they

believe is not held in this world (sequence). In addition, we can push the above theorem

a little bit further. If the agents consider a world (sequence) g⃗ to be possible based
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on their justified perspectives, then, in this sequence (g⃗), the agents should believe this

sequence (g⃗) is possible. Thus, we proposed Theorem 4.16.

Theorem 4.16. For any possible sequence g⃗ ∈ C(fi(s⃗), i) that i considers possible given

a state sequence s⃗, we have g⃗ ∈ C(fi(g⃗), i).

Proof. This proof can be done by considering two conditions: (1) ∃t ∈ {0, . . . , |s⃗|}, fi(s⃗)[t] ̸=

fi(g⃗)[t] and (2) vice versa.

The Condition (2) is trivial, as fi(s⃗) = fi(g⃗), we have C(fi(s⃗), i) = C(fi(g⃗), i), which

means g⃗ must be in C(fi(g⃗), i). The Condition (1) can be proved by induction.

For the timestamp 0, this is trivial. Since g⃗[0] is consistent with Oi(s⃗[0]) (Lemma 4.13),

we have fi(g⃗)[0] = Oi(g⃗[0]) ∪ s⊥. Therefore, g⃗[0] is a valid state in W0 when generating

C(fi(g⃗), i) as O(fi(g⃗)[0]) = Oi(Oi(g⃗[0])). This is because: Oi(g⃗[0]) ⊆ fi(g⃗)[0] indicates

Oi(Oi(g⃗[0])) ⊆ Oi(fi(g⃗)[0]); and, fi(g⃗)[0] ⊆ g⃗[0] indicates Oi(fi(g⃗)[0]) ⊆ Oi(g⃗[0]).

Similarly as proof for Theorem 4.15, for any timestamp t ∈ {0, . . . , |s⃗|}, the justified

perspective of g⃗ for agent i are generated by Definition 4.6, in which the ltv for all

variables are the same as in fi(s⃗)[t] due to Lemma 4.13. Different from that proof, the

condition g⃗[t](v) =⊥ must not hold, as the g⃗ is a possible world (sequence), which does

not contain none value. Thus, the conditions required discussion are: (1) whether the

most recent timestamp agent i sees v is t (ltv = t); and, (2) whether agent i believes

a not-none value of v (fi(g⃗)[t](v) ̸=⊥). If the first condition holds (agent i sees v at t),

the second one must hold (the value of v that agent i believes at t must not be none).

This is because the state has been filled with consistent possible values for the none

variables, which makes the condition for indirect inferences not exist. For this proof, if

the first condition holds, we have fi(g⃗)[t](v) = g⃗[t](v). This indicates the value of v at

timestamp t will not be overridden by possible values when generating C(fi(g⃗), i). If the

first condition does not hold, then the value of fi(g⃗)[t](v) is equal to fi(g⃗)[t− 1](v) based

on Definition 4.6.

Then, recursively run this proof from t to t− 1 to the base case, we have g⃗ ∈ C(fi(g⃗), i).

After constructing the possible worlds (sequences) for agent’s justified perspectives, we

can now provide a complete semantics for our model.
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Definition 4.17 (Complete Semantics). The complete semantics for the model M with

a given state sequence s⃗ (with n+ 1 states) can be defined as:

(a) (M, s⃗) ⊨ r(Vr) iff π(s⃗[n], r(Vr)) = true

(b) (M, s⃗) ⊨ ϕ ∧ ψ iff (M, s⃗) ⊨ ϕ and (M, s⃗) ⊨ ψ

(c) (M, s⃗) ⊨ ¬φ iff (M, s⃗) ̸⊨ φ

(d) (M, s⃗) ⊨ Siv iff v ∈ Oi(s⃗[n])

(e) (M, s⃗) ⊨ Siφ iff ∀g⃗ ∈ C(Oi(s⃗), i), (M, g⃗) ⊨ φ or

∀g⃗ ∈ C(Oi(s⃗), i), (M, g⃗) ⊨ ¬φ

(f) (M, s⃗) ⊨ Kiφ iff (M, s⃗) ⊨ φ ∧ Siφ

(g) (M, s⃗) ⊨ Hiφ iff (M, s⃗) ⊨ Biφ, or (M, s⃗) ⊨ Bi¬φ

(h) (M, s⃗) ⊨ Biφ iff ∀g⃗ ∈ C(fi(s⃗), i), (M, g⃗) ⊨ φ

where C is the possible sequence function defined in Definition 4.12.

Any formula in our language L(Σ) is always a relation in some perspectives, which

eventually are evaluated by the last state in that perspective. Therefore, Items (e), (f),

(g) and (h) are evaluated in the format of (a). Items (b) and (c) are straightforward for

logic operator ∧ and ¬ in the language L(Σ).

Items (d), (e) and (f) are the same as in PWP (see Definition 3.13), except the formula

is evaluated on a state sequence instead of a single state. While the definition of the

new belief operator, Item (h), requires some discussion, Item (g) is straightforwardly

dependent on it.

At a high level, the definition of Biφ aims to capture is that agent i believes φ if in

its past (including present) it knew φ: that is, Kiφ was true. However, this does not

capture situations where φ ∧ Siφ, such as Siφ and φ are observed as true in different

past states, or even φ contains references to variables observed in different states.

For example, consider the proposition Ba(x + y ≥ 0), Dx = Dy = {−1, 1} and agent

a observes x = 1 in state s0, then observes y = 1 in state s1, while not observing x in

state s1 at all. The complete state space for is Sc = {{x=1, y=1}, {x=1, y=−1}, {x=

−1, y=1}, {x=−1, y=−1}}.

It is not the case that M, s0 ⊨ Sa(x+ y ≥ 0) or M, s1 ⊨ Sa(x+ y ≥ 0) because agent a

does not see the value of y in state s0 or the value of x in state s1. However, it seems
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valid to state that M, s1 ⊨ Ba(x+ y ≥ 0) because it can remember x = 1 from state s0,

and has no evidence to suggest x has changed. Based on the Item (h), fa(s⃗) is needed

to evaluate the proposition Ba(x+ y ≥ 0).

In the last state s1, the perspective function identifies the most recent timestamps in

which x and y are seen by agent a, which are 0 and 1 respectively. Then, the retrieval

function R retrieves the value of x and y, which are x = 1 and y = 1. So, the last state

in agent a’s justified perspective fa(s⃗) at s1 is {x=1, y=1}. Then, in the previous state

s0 (initial state), the ltx and lty (following Definition 4.6) identified by the perspective

function are 0 and −1. So that, R retrieves x’s value is 1, and a’s justified perspective at

timestamp 0 (fa(s⃗) at s0) is {x=1, y=⊥}. That is, fa(s⃗) = [{x=1, y=⊥}, {x=1, y=1}]

Then, according to Definition 4.12, for each complete state g ∈ Sc, applying the function

override g⟨⟩ on each state from a’s justified perspective with none assignment removed

(fa(s⃗)[t] \ s⊥), we have W ′
0 = W0 =

{
{x= 1, y =−1}, {x= 1, y = 1}

}
and W ′

1 = W1 ={
{x=1, y=1}

}
. That is, two possible sequences are formed as C(fa(s⃗), a) = {−→sa1,−→sa2},

where: −→sa1 = [{x=1, y=−1}, {x=1, y=1}] and −→sa2 = [{x=1, y=1}, {x=1, y=1}].

Then, we have M, s⃗ ⊨ Ba(x + y ≥ 0) is equivalent to M,−→sa1 ⊨ (x + y ≥ 0) ∧M,−→sa2 ⊨

(x + y ≥ 0) . Then, based on Item (a) in semantics, both formulae hold, which means

M, s⃗ ⊨ Ba(x+ y ≥ 0) holds.

4.3.3.2 Ternary Semantics

Now, we show how to implement our model using ternary logic semantics, based on the

ternary semantics from the PWP model in Section 3.3. This semantics offers a polyno-

mial time complexity logic, compared to the complete semantics, which is exponential

in the number of states in the problem. It sacrifices completeness for efficiency. The

ternary values for propositions are: 0 denotes false, 1 denotes true, and 1
2 means the

truth value is unknown (unable to be proved).

Definition 4.18 (Ternary Semantics). The ternary semantics for the model M with a

given state sequence s⃗ (with n states) can be defined as:
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(a) T [s⃗, r(Vr)] = 1 if π(s⃗[n], r(Vr)) = true;

0 else if π(s⃗[n], r(Vr)) = false;

1
2 otherwise

(b) T [s⃗, ϕ ∧ ψ] = min(T [s⃗, ϕ], T [s⃗, ψ])

(c) T [s⃗,¬φ] = 1− T [s⃗, φ]

(d) T [s⃗, Siv] = 1
2 if v /∈ s⃗[n] or i /∈ s⃗[n]

0 else if v /∈ Oi(s⃗[n])

1 otherwise

(e) T [s⃗, Siφ] = 1
2 if T [s⃗, φ] = 1

2 or i /∈ s⃗[n];

0 else if T [Oi(s⃗), φ] = T [Oi(s⃗),¬φ] = 1
2 ;

1 otherwise

(f) T [s⃗, Kiφ] = T [s⃗, φ ∧ Siφ]

(g) T [s⃗, Hiφ] = 1
2 if T [s⃗, φ] = 1

2

0 else if T [s⃗, Biφ] = T [s⃗, Bi¬φ] = 1
2 ;

1 otherwise

(h) T [s⃗, Biφ] = T [fi(s⃗⊥⟨s⃗⟩), φ]

It is worthy to mention that, compared to the complete semantics, Item (h) in the

ternary semantics requires the input sequence s⃗ to be filled by a non-state sequence

s⃗⊥. This ensures the input of the JP function is a complete state sequence, considering

Item (e) could result in a partial state sequence becoming the input of Item (h). While

this would not happen in the complete semantics, as the observations are filled in with

possible worlds (Item (e) in Definition 4.17).

This ternary semantics gives 1
2 value when the targeting state or sequence does not have

sufficient information to evaluate. This could cause some of the formulae (non-logical

separable formula in Definition 3.17) to be evaluated as ‘unknown’ (12). While we argue

that the agents might not have a pre-knowledge of all V and D (all possible worlds) from

the model, it is reasonable for them to not know the unobserved part of the world. For

example, using our motivated problem (Plan 4.2 in Example 4.1), the state sequence s⃗
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would be 2:

• s⃗[0] = {(false, false, false, false), p=4, q=6},

• s⃗[1] = {(false, true, false, false), p=4, q=6},

• s⃗[2] = {(false, false, false, false), p=4, q=6},

• s⃗[3] = {(false, false, false, true), p=4, q=6},

• s⃗[4] = {(false, false, false, true), p=4, q=5}

Let sequence s⃗′ only contain s0 and s1, which is the state sequence at timestamp 1. The

seeing relation SbSaq, which is T [s⃗′, SbSaq] in ternary semantics, is evaluated as 1
2 .

Agent b’s observation is generated by the observation function Ob, which is the same as

fNIB
i defined in Section 3.1.1:

Ob(s⃗′) = [{(false, false, false, false)}, {(false, true, false, false)}]

From agent b’s observation, we can generate agent a’s observation as:

Oa(Ob(s⃗′)) = [{(false, false, false, false)}, {(false, true, false, false)}]

T [Ob(s⃗′), Saq] =
1
2 because q /∈ Ob(s⃗′[1]). Therefore, T [s⃗′, SbSacoin] = 0. Intuitively

speaking, agent b can only see agent a peeking into the box and b cannot see that

number q is in the box. However, if this seeing relation is in the complete semantics

(M, s⃗′ ⊨ SbSaq), the evaluation is true.

This is because, in the complete semantics,M, s⃗′ ⊨ SbSaq is equivalent to ∀g⃗ ∈ C(Ob(s⃗′), b),

M, g⃗ ⊨ Saq by applying item (e), where all worlds (sequences) agent b considers possible

are:

C(Ob(s⃗′), b) =


{(false, false, false, false), p=n1, q=n2},
{(false, true, false, false), p=n3, q=n4}


∣∣∣∣∣∣∣

n1, n2, n3,

n4 ∈ {0, . . . , 99}


2In the following example, we denote the value of all peeking variables as a tuple of boolean value,

with the order as “peekingap,peekingaq,peekingbp,peekingbp” for readability. For example, the initial
state would be {(false, false, false, false), p=4, q=6}.
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Then, according to item (d), the set of all agent a’s observations for all sequences in

C(Ob(s⃗′), b) is generated as the following set:
{(false, false, false, false)},
{(false, true, false, false), q=n4}


∣∣∣∣∣∣∣ n4 ∈ {0, . . . , 99}


Since q is in the last state of all sequences in the above set, we have Saq holds for all

the sequences we generated for agent b. Thus, M, s⃗′ ⊨ SbSaq holds.

As for a belief relation BbSaq with the same sequence, T [s⃗′, BbSaq] = 1. This is because

belief is evaluated based on the justified perspective of agent b, according to item (h) in

Definition 4.18:

fb(s⃗′) =

{(false, false, false, false), p=⊥, q=⊥},

{(false, true, false, false), p=⊥, q=⊥}


Then, under b’s justified perspective, agent a’s observations are:

Oa(fb(s⃗′)) =

{(false, false, false, false)},
{(false, true, false, false), q=⊥}



Since q is in Oa(fb(s⃗′))[1], we have T [fb(s⃗′), Saq] = 1. Thus, T [s⃗′, BbSaq] = 1.

4.3.3.3 Complexity

The time complexity for the complete semantics and the ternary semantics is similar

to the PWP approach. The only difference is the time complexity for the new justified

perspective function.

To evaluateM, s⃗ ⊨ φ, the worst-case scenario is that φ is a belief formula with the depth

of d. Then, the justified perspective function complexity is in Θ(d · |V |2 · |s⃗|3), which

is for each variable, getting the ltv, getting R(s⃗, ltv, v), for s in s⃗ and for each level of

nesting from φ. In addition, if the history of all corresponding justified perspectives is

well-stored, this can be done in linear time in terms of |s⃗|. That is, if all corresponding

justified perspectives (including all corresponding observations) from timestamp 0 to t−1

are stored and can be visited in constant time, then, to generate justified perspectives
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for timestamp t, besides generating Oi(s⃗[n]), only need to retrieve R(s⃗, ltv, v) (ltv is from

observations), which is linear in terms of |s⃗|.

For the complete semantics, in s⃗, each state could have |V | × |D| possibilities. Thus,

the number of possible sequences is |V ×D||s⃗|. So, the complexity of the query in the

complete semantics is in Θ(d · |V |2 · |s⃗|3 · |V ·D||s⃗|), which is exponential on the input size.

While, in the ternary semantics (Definition 4.18), the complexity of epistemic formula

evaluation is in the same complexity class as generating the corresponding justified

perspectives, assuming Item (a) is in Θ(1).

4.3.3.4 The Axiomatic System for the JP model

As noted in Section 4.2, there is no underlying definition for our justified belief. So,

there is no underlying model to which we can prove soundness or completeness. We can

only show our model is sound with respect to KD45 logic as follows.

Theorem 4.19. The following axioms hold, making this a KD45 logic:

K (Distribution): Biφ ∧Bi(φ→ ψ) → Biψ

D (Consistency): Biφ→ ¬Bi¬φ

4 (Positive Introspection): Biφ→ BiBiφ

5 (Negative Introspection): ¬Biφ→ Bi¬Biφ

Proof. Based on the definition of Bi, M, s⃗ ⊨ Biφ is equivalent to for all g⃗ ∈ C(fi(s⃗), i),

such that M, g⃗ ⊨ φ. From this, Axiom K is: M, g⃗ ⊨ φ and M, g⃗ ⊨ (φ → ψ) imply

M, g⃗ ⊨ ψ, which holds trivially.

For Axiom D, M, s⃗ ⊨ Biφ is equivalent to ∀g⃗ ∈ C(fi(s⃗), i), M, g⃗ ⊨ φ. By induction, we

have ̸ ∃g⃗ ∈ C(fi(s⃗), i), M, g⃗ ̸⊨ φ, which means M, s⃗ ̸⊨ ¬Biφ. Thus, Axiom D holds.

For Axiom 4,M, s⃗ ⊨ Biφ is equivalent to for all g⃗ ∈ C(fi(s⃗), i), such thatM, g⃗ ⊨ φ. Based

on Theorem 4.15, since fi(s⃗) is consistent with any fi(g⃗), we have C(fi(g⃗)) ⊆ C(fi(s⃗)).

Because g⃗ ∈ C(fi(s⃗), i),M, g⃗ ⊨ φ, we have g⃗ ∈ C(fi(g⃗)), i),M, g⃗ ⊨ φ. That is, Axiom 4

holds.

For Axiom 5, M, s⃗ ⊨ ¬Biφ is M, s⃗ ̸⊨ Biφ, which is effectively ∃g⃗ ∈ C(fi(s⃗), i), M, g⃗ ̸⊨ φ.
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This can be proved by considering two conditions: (1) ∃g⃗ ∈ C(fi(s⃗), i), M, g⃗ ̸⊨ φ and

̸ ∃g⃗ ∈ C(fi(s⃗), i), M, g⃗ ⊨ φ; (2) ∃g⃗ ∈ C(fi(s⃗), i), M, g⃗ ̸⊨ φ and ∃g⃗′ ∈ C(fi(s⃗), i), M, g⃗′ ⊨ φ.

The first one is effectively ∀g⃗ ∈ C(fi(s⃗), i), M, g⃗ ̸⊨ φ. According to Theorem 4.16, for all

g⃗ ∈ C(fi(s⃗), i), there exists a p⃗ (effectively p⃗ = g⃗ as g⃗ ∈ C(fi(g⃗), i)) such that M, p⃗ ̸⊨ φ.

The second one requires some discussion. It only happens when g⃗ ̸= fi(s⃗) and g⃗′ ̸= fi(s⃗).

Let the length of the sequence |s⃗| be n. This is caused either by the possible values filled

in for the variables that are not in Oi(s⃗[n]) or the variables such that Oi(s⃗[n])(v) =⊥.

The first condition is straightforward. The variables not in Oi(s⃗[n]) are also not in

Oi(s⃗[n]) (Lemma 4.13), which means the possible values that generated g⃗ is also valid

when generating all possible sequence for C(fi(g⃗′), i), which make this Axiom holds.

While, the second condition is not possible in complete semantics. The input sequence

for Item (g) and (h) are state sequence with complete not-none value assignments based

on Definitions 4.17 and 4.12. Thus, the observation of any variables v for any timestamp

t could not be none. Overall, Axiom 5 holds for all possible conditions.

Recall in Section 2.2.6, Voorbraak [93] proposed another bridge axiom (Theorem 2.8)

between knowledge and belief (BiKiφ → Kiφ), which is claimed to be the unwanted

axiom by Gochet and Gribomont [81]. As reasoned at the end of Section 4.2, this

axiom becomes valid in our definition of knowledge and belief (justified belief). Here,

we formalised it by proposing the following theorem to show this unwanted axiom holds

for both the complete semantics and the ternary semantics.

Theorem 4.20. Given a sequence of states s⃗ with a length of n+1, we have Oi(fi(s⃗)[n]) =

Oi(s⃗[n]).

The above theorem is tricky to prove since fi(s⃗)[n] does not guarantee to be a subset of

s⃗[n] (we cannot use the monotonicity of the observation function directly).

Proof. We prove this by contradiction.

Firstly, according to Theorem 4.10, we have Oi(s⃗[n]) ⊆ Oi(fi(s⃗)[n]). This means all

assignments in Oi(s⃗[n]) are also in Oi(fi(s⃗)[n]).

Then, assuming there exists an assignment (v = e), such that v = e ∈ Oi(fi(s⃗)[n]) and

v=e /∈ Oi(s⃗[n]).
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According to the definition of the JP function (Definition 4.6), this assignment (v= e)

must be in one of the following conditions:

1. v ∈ Oi(s⃗[n])

2. v /∈ Oi(s⃗[n])

For Condition (1), since v ∈ Oi(s⃗[n]), we have either Oi(s⃗[n])(v) = fi(s⃗[n])(v) or

Oi(s⃗[n])(v) ̸= fi(s⃗[n])(v). The former cannot be the case as fi(s⃗[n])(v) = Oi(fi(s⃗)[n])(v)

(v=e ∈ Oi(fi(s⃗)[n]) from our assumption), which results in Oi(fi(s⃗)[n])(v) = Oi(s⃗[n])(v),

which violates our assumption (v= e /∈ Oi(s⃗[n])). The latter (Oi(s⃗[n])(v) ̸= fi(s⃗[n])(v))

results in s⃗[n](v) =⊥ (Theorem 4.8), which means Oi(s⃗[n])(v) =⊥. Then, according

to Theorem 4.9 (we have both v ∈ Oi(s⃗[n]) and s⃗[n](v) =⊥), we have fi(s⃗[n])(v) =⊥=

Oi(s⃗[n])(v), which violates our assumption (v=e /∈ Oi(s⃗[n])).

For Condition (2), when v /∈ Oi(s⃗[n]), Line 3 in Definition 4.6 ensures the agent i has

a belief of v but still cannot see v in i’s justified perspectives. Thus, v is also not in

Oi(fi(s⃗)[n]), which violates our assumption (v=e ∈ Oi(fi(s⃗)[n])).

Therefore, we have considered all conditions for the above assumption and all of them

are proved to contain contractions. Thus, the assumption does not hold, which proves

Theorem 2.8.

Now, with the above theorem, we are able to show that the unwanted axiom (BiKiφ→

Kiφ) in Theorem 2.8 holds. Using the ternary semantics as an example. For any

given sequence s⃗ with its length as n + 1, T [s⃗, BiKiφ] = 1 equals T [fi(s⃗), Siφ ∧ φ] = 1,

which is T [Oi(fi(s⃗)), φ] = 1 and T [fi(s⃗), φ] = 1. Based on Theorem 4.20, we have

Oi(fi(s⃗))[n] = Oi(s⃗)[n], which means T [Oi(fi(s⃗)), φ] = 1 indicates T [Oi(s⃗), φ] = 1. In

addition, since the observation function is contractive (Oi(s) ⊆ s), π(Oi(s⃗)[n], φ) = 1 (it

is not 1
2 means all variables needed to evaluate φ are in Oi(s⃗)[n]) indicates π(s⃗[n], φ) = 1.

With both T [Oi(s⃗), φ] = 1 and T [s⃗, φ] = 1 (from π(s⃗[n], φ) = 1), we have T [s⃗, Kiφ] = 1.

Then, to sum up, the axiomatic system that the JP model follows is all KB axioms

(except Axiom KB2) in Definition 2.7. The
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Quoted text: “

Definition 4.21 (Axioms for KB in the JP model). Presented are 9 axioms:

K: (Knowledge)
(
Kiφ ∧Ki(φ→ ψ)

)
→ Kiψ

T: (Knowledge) Kiφ→ φ, φ→ ¬Ki¬φ

4: (Knowledge) Kiφ→ KiKiφ

5: (Knowledge) ¬Kiφ→ Ki¬Kiφ

K: (Belief)
(
Biφ ∧Bi(φ→ ψ)

)
→ Biψ

D: (Belief) ¬Bi false

4: (Belief) Biφ→ BiBiφ

5: (Belief) ¬Biφ→ Bi¬Biφ

KB1: Kiφ→ Biφ

”

Since the JP model is an extension of the PWP model, axioms for knowledge (KT45,

which is also known as S5) are proved to hold in Section 3.2 (for the complete semantics)

and Section 3.3. While axioms for belief (KD45) are proved in Theorem 4.19. The

bridge axiom KB1 holds trivially due to Theorem 4.7. As we argue above, having all of

Axiom KB1, Axiom D, and Axiom 5 (causing the unwanted axiom) is not an issue in

the JP model. This is because our definitions of the knowledge and (justified) belief are

more strict. If an agent justifiably believes that they know something, then they actually

know it. Otherwise (if they do not hold that knowledge), they should not justifiably

believe they hold that knowledge. In other words, the only way BiKiφ can be true is

if Kiφ holds as well. That is, although the unwanted axiom in Theorem 2.8 holds in

our model, it does not represent a ‘causal’ relation between believing knowledge and

knowledge.

4.4 Implementation

In this section, we show how we model the epistemic planning problem, including the

encoding for epistemic logic formulae, and efficient pruning techniques that can enhance

the performance of the search algorithm.
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4.4.1 Problem Formalization

Since the JP model works with state sequences, the truth values of agents’ knowledge

or belief formulae do not depend only on the current state, but depend on the whole

state sequence. Thus, firstly, we have to define non-Markovian in planning. Then, we

can extend the formulation to incorporate the external function in F-STRIPS, similar

to how it is in the PWP approach (Section 3.5). At last, we provide a formal encoding

to represent any epistemic planning instance with a language that is extended from

Planning Domain Definition Language (PDDL).

4.4.1.1 Non-Markovain Fully Observable Deterministic Domain

There is no existing definition of classical planning with a non-Markovian setting, so

we have to define it on our own. We now introduce the basic semantics model of a

Non-Markovian Fully Observable Deterministic Domain (NMFODD). An NMFODD is

an extension of the classical planning problem introduced in Section 2.1.2.1, which is

inspired by the definition of Non-Markovian Fully Observable Non-deterministic Domain

(NMFOND) [47]. The action function, transition function, and goal function depend on

the entire track of history of the states.

An NMFODD problem is represented by a tuple:

P = (S, s0, A, a→, t→, g→),

where:

• S is the state space (the set of all possible states), and S⃗ denotes the sequence

space;

• s0 is the initial state (s0 ∈ S);

• A is the set of all actions;

• a→ is the action function, which maps the current state sequence to a set of

available actions: a→ : S⃗ → {A};

• t→ is the transition function, which takes the current sequence and an action and

returns the next state: t→ : S⃗ ×A→ S;
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• g→ is the goal function, which determines whether the goal is achieved given the

current sequence: g→ : S⃗ → {true, false}.

4.4.1.2 NMFODD problems in F-STRIPS

Similarly to the PWP approach, in order to model an epistemic planning problem using

the JP model defined in the previous section, we have to introduce an external function

in NMFODD. Here, we provide an extended version of F-STRIPS (in Section 2.1.3.3),

namely Non-Markovian Functional STRIPS (NM-F-STRIPS). Any problem instance in

NMFODD can be represented with NM-F-STRIPS as a tuple:

P = (LF ,O→
F , IF ,G→

F ),

where: LF and IF are the same as in F-STRIPS; O→
F represents all transitions and G→

F

represents all goal propositions. Both O→
F and G→

F include non-Markovian propositions

(could be in both precondition and effect for the operators). Those non-Markovian

propositions are evaluated with the input of the whole state sequence in the search

path.

4.4.1.3 Epistemic Planning problem in NM-F-STRIPS

Now, we can provide a formal formulation for modeling any Epistemic Planning instance

using the JP model in NM-F-STRIPS, namely EP-NM-F-STRIPS.

Given any instance in EP-NM-F-STRIPS, let the signature of this instance be Σ =

(Agt, V,D,R), the language as LKB(Σ), and the JP model for this instance as M =

(Agt, V,D, π,O1, . . . ,Ok), this instance can be represented by a tuple:

P = (Agt, V,D,E,O→
F , IF ,G→

F , f
→),

where:

• Agent set Agt and variable V are from signature Σ (also the same as in modelM);
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• All variable’s domain D is from model M (same D in Σ with a special ‘None’

value ⊥), where V × D forms the state spaces Sc ⊊ S, sequence space S⃗ and

complete sequence space S⃗c;

• E is the set of all involved epistemic formulae (ϵ ⊂ LKB(Σ));

• O→
F is the set of all operators o→ (o→ : S⃗c → Sc);

• IF is the initial state (IF ∈ Sc);

• G→
F is the set of goal conditions, which could contain variable assignments (ontic

goal conditions) and epistemic formulae (epistemic goal conditions from E);

• f→ is the external function that implements M and the ternary semantics (Def-

inition 4.18) to evaluate the epistemic formula based on the state sequence from

the current search path (f→ : S⃗ × E → {true, false}).

An epistemic formula ϵ ∈ E can be in the goal conditions (ϵ ∈ G→
F ) and preconditions

of an operator o→ ∈ O→
F (ep ∈ Pre(o→)).

4.4.1.4 Functional PDDL Encoding

Now, we propose a PDDL-like language encoding to describe any epistemic planning in-

stance P = (Agt, V,D,E,O→
F , IF ,G→

F , f
→). The base of this language used is PDDL2.1 [52],

which allows the usage of functions, while an external function (from F-STRIPS) is

added. Thus, we name this language Functional Planning Domain Definition Lan-

guage (F-PDDL).

The signature of V is defined as functions. An example of functions in the NIB domain

(Example 4.1) is given as follows:

1 (: functions
2 (peeking ?i - agent ?n - number)
3 (value ?n - number)
4 )

Code Example 4.1: F-PDDL Functions Example

The domain D for each variable is defined as ranges:

1 (: ranges
2 (value integer [0 ,99])
3 (peeking enumerate [‘t’,‘f’])
4 )
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Code Example 4.2: F-PDDL Ranges Example

The set of all actions (O→
F ) is represented by action schema in PDDL. An example

(ontic) action “return” is given as follows:

1 (: action return
2 :parameters (?i - agent ?n - number)
3 :precondition (and
4 (= (peeking ?i ?n) ‘t’))
5 )
6 :effect (and
7 (assign (peeking ?i ?n) ‘f’)
8 )
9 )

Code Example 4.3: F-PDDL Action Example: “return”

Although the given example is only related to ontic state, the action schema allows

epistemic formulae in the precondition and effect. More examples can be found in

Section 4.5.

An example goal conditions for the same coin example can be represented as follows:

1 (:goal
2 (and
3 (= (value q) 5)
4 (= (@ep ("+ b [b]") (= (value q) 5)) ep.true)
5 (= (@ep ("+ b [a]") (= (value q) 6)) ep.true)
6 (= (@ep ("+ b [b] + b [a]") (= (value q) 6)) ep.true)
7 )
8 )

Code Example 4.4: F-PDDL Goal Example using External Function @ep

The above goal conditions contain one ontic goal condition (q=5) and three epistemic

goal conditions (Bbq=5, Baq=6 and BbBaq=6). The external function is represented

by (@ep ("<query>") (<φ>)), where "<query>" is all epistemic operators (from S, K,

H and B in language LKB(Σ)) in the epistemic formula, where the φ is the r(Vr), +

and − represent affirmation and negation.

Besides embedding a normal epistemic formula, epistemic planning would benefit more

from a more abstract representation. Compared to STRIPS language, PDDL provides

more flexibility using action schemas instead of specifying propositions in operators.

Specifically, in order to do so in PDDL, action effects can be modeled in the declarative

format in terms of updating the state variables based on the previous state (Marko-

vian). However, the actions when modeling problems in EP-NM-STRIPS could be
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non-Markovian. Some action’s effects might be updating the value of a variable to what

the acting agent believes (non-Markovian effects). Thus, we have to use another type

of external function (@jp) to retrieve the value from the agent’s justified perspective.

An example code for the same goal conditions as in Code Example 4.4 is provided as

follows.

1 (:goal
2 (and
3 (= (value q) 5)
4 (= (@jp ("b [b]") (value q)) 5)
5 (= (@jp ("b [a]") (value q)) 6)
6 (= (@jp ("b [b] b [a]") (value q)) 6)
7 )
8 )

Code Example 4.5: F-PDDL Goal Example using External Function @jp

This goal set checks goal conditions for a sequence s⃗ with a length of n+ 1 by:

• s⃗[n](q) = 5;

• fb(s⃗)[n](q) = 5;

• fa(s⃗)[n](q) = 6;

• fa(fb(s⃗))[n](q) = 6.

In the above examples, the usage of the external function @jp is similar to @ep, while

a more intuitive example can be found in Section 4.5.1.3.

4.4.2 Planner

As there is no existing planner that can directly solve an EP-NM-F-STRIPS instance,

we have to create one. One potential solution is to adapt a planner that can solve

F-STRIPS instances by: 1), fitting the input of the external function with the current

search path; 2), introducing the epistemic formula in language; 3), implementing the JP

model, including ternary semantics (with a history of all generated justified perspectives

for efficiency). However, all the classical search algorithms would not work on solving

an EP-NM-F-STRIPS instance because even the simplest pruning procedure, duplica-

tion elimination (pruning visited state), would not work due to the Non-Markovian

assumption. Therefore, we have to develop our own planner and algorithms. To ensure
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completeness, the basic search algorithm used is Breadth First Search (BFS) without

duplication elimination. Although duplicate elimination is impossible for solving a gen-

eral NM-F-STRIPS instance, as the searched path will never be repeated, there are

some optimizations we can use to solve EP-NM-F-STRIPS, as it is a subset of general

NM-F-STRIPS.

4.4.2.1 Duplication Elimination

Duplication elimination is important to our planner, not only because of the efficiency it

provides, but also because it allows the planner to prove a problem instance is unsolvable.

Since the JP model uses the sequence of the states, the search cannot use the current

state itself for duplication elimination. As the agent’s knowledge and belief are formed

from the state sequence through justified perspectives, a dictionary of perspectives is

used as the identification for this sequence.

We now define the dictionary keys of any epistemic formula as its corresponding per-

spective functions in a high-order function format.

Definition 4.22 (High-Order Epistemic Function). Given an agent set (size of k) from

the signature Agt ∈ Σ, let i and j be any agents in Agt, Oi be any observation function

in O0, . . . ,Ok, fi be any justified perspective function in f0, . . . , fk, and empty as a special

function:

1. Oi ·Oj(s⃗) = Oj(Oi(s⃗))

2. fi ·Oj(s⃗) = Oj(fi(s⃗))

3. fi · fj(s⃗) = fj(fi(s⃗))

4. Oi · fj(s⃗) = fj(s⃗⊥⟨Oi(s⃗)⟩)

5. empty(s⃗) = s⃗

This definition is straightforward. Since both the observation function O and the jus-

tified perspective function f take a state sequence as input, they can compact (nest)

freely, except the input of the justified perspective function needs to be a complete state

sequence. Thus, when compacting a justified perspective function on an observation
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function, we need to fill in the result sequence of the observation function (could be

a partial state sequence) with ‘None’ value ⊥ by using the state override function (in

Definition 4.1). The special function empty is introduced as the global perspective, as

well as the base case when generating all perspective keys in the following definition.

Definition 4.23 (Perspective Keys PK). Given any formula φ, its perspective keys ,

PK(φ) , is:

PK(φ) = {pk(φ)}, where:

pk(φ) =



Oi · pk(ψ) φ is in the format of Siψ

pk(ψ),Oi · pk(ψ) φ is in the format of Kiψ

fi · pk(ψ) φ is in the format of Biψ or Hiψ

empty otherwise

Thus, any ontic formula will have the key as an empty string, which indicates the

global perspectives. The keys of any epistemic formula, using BiSjφ as an example, will

perspective function names of all its corresponding epistemic operators, fi ·Oj · empty 3.

While the keys of a formula BiKjφ are {fi · Oj , fi}. Since the keys of any epistemic

formula are a high-order function of its corresponding perspectives, we can use keys to

generate its perspectives.

Definition 4.24 (Duplication Pruning Set Function). Given an EP-NM-F-STRIPS

problem instance as P = (Agt, V,D,E,O→
F , IF ,G→

F , f
→) and the current expanding se-

quence as s⃗, let E′ ⊆ E be E′=G→
F ∪PRE(O→

F ), where PRE(O→
F ) =

⋃
o→∈O→

F
pre(o→)

then we can define the Duplication Pruning Set (DPS) function (DPS : PK → P(PK×

S)) as follows:

DPS(s⃗) = {key → key(s⃗)[n] | key ∈
⋃
ϵ∈E′

PK(ϵ)}

Thus, the duplication pruning set for any given sequence s⃗ is a dictionary that contains

keys and the last state of corresponding perspectives based on these keys.

3The high-order function name fi ·Oj · empty is effectively the same as fi ·Oj (Definition 4.22). Thus,
for simplicity, we omit the compaction of ·empty in the following content.
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Theorem 4.25. For any two given sequences s⃗1 and s⃗2 with length of n1+1 and n2+1

respectively, if DPS(s⃗1) = DPS(s⃗2), there does not exist a formula φ ∈ LKB(Σ) such

that T [s⃗1, φ] ̸= T [s⃗2, φ].

Proof. Proof by contradiction.

Assuming DPS(s⃗1)=DPS(s⃗2), there exists a formula φ ∈ LKB(Σ) such that, T [s⃗1, φ] ̸=

T [s⃗2, φ]. We prove this inductively on the structure of φ based on the cases in the ternary

semantics (Definition 4.18).

Firstly, let us discuss the base cases. For any epistemic formula φ in language LKB(Σ),

after applying our ternary semantics for any amount of time, it would eventually come in

the format of r(Vr) or Siv, which matches Case (a) or Case (d) in the ternary semantics.

Case (a): This is straightforwardly evaluated based on the last state of the sequence,

where the sequence is generated with some key pk(φ) ∈ PK(φ). If T [pk(φ)(s⃗1), r(Vr)] ̸=

T [pk(φ)(s⃗2), r(Vr)], then we have π(pk(φ)(s⃗1)[n1], r(Vr)) ̸= π(pk(φ)(s⃗2)[n2], r(Vr)) . So

that, we also have pk(φ)(s⃗1)[n1] ̸= pk(φ)(s⃗2)[n2]. Due to pk(φ)(s⃗1)[n1] = DPS(s⃗1)[pk(φ)]

and pk(φ)(s⃗2)[n2] = DPS(s⃗2)[pk(φ)], we have DPS(s⃗1) ̸= DPS(s⃗2), which is contra-

dictory to our assumption.

Case (d): In this case, we have two perspective keys to evaluate, pk(φ) ∈ PK(φ)

and pk(φ)′ ∈ PK(φ), where pk(φ)′ = pk(φ) · O−1
i . Firstly, if T [pk(φ)′(s⃗1), Siv] or

T [pk(φ)′(s⃗2), Siv] is
1
2 and the other is not (assuming T [pk(φ)′(s⃗1), Siv] = 1

2), then,

we have either i /∈ pk(φ)′(s⃗1)[n1] or v /∈ pk(φ)′(s⃗1)[n1]. Since T [pk(φ)′(s⃗2), Siv] ̸= 1
2 ,

both i and v are in pk(φ)′(s⃗2)[n2]. Thus, we have pk(φ)′(s⃗1)[n1] ̸= pk(φ)′(s⃗2)[n2]. Due

to pk(φ)′(s⃗1)[n1] = DPS(s⃗1)[pk(φ)
′] and pk(φ)′(s⃗2)[n2] = DPS(s⃗2)[pk(φ)

′], we have

DPS(s⃗1) ̸= DPS(s⃗2), which is contradictory to our assumption. Secondly, if both

T [pk(φ)′(s⃗1), Siv] and T [pk(φ)
′(s⃗2), Siv] do not equal to 1

2 , we have exact one of them

is 1 and another is 0 (assuming T [pk(φ)′(s⃗1), Siv] = 1). Since T [pk(φ)′(s⃗1), Siv] = 1

and T [pk(φ)′(s⃗2), Siv] = 0, we have v ∈ pk(φ)(s⃗1)[n1] and v /∈ pk(φ)(s⃗2)[n2]. Thus,

we have pk(φ)(s⃗1)[n1] ̸= pk(φ)(s⃗2)[n2] Due to pk(φ)(s⃗1)[n1] = DPS(s⃗1)[pk(φ)] and

pk(φ)(s⃗2)[n2] = DPS(s⃗2)[pk(φ)], we have DPS(s⃗1) ̸= DPS(s⃗2), which is contradictory

to our assumption.

Case (b) and Case (c): Conjunction and negation are trivial, we just apply the se-

mantics and it will match one of the other cases.
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Case (e) and Case (g): Those can be proved with the same reasoning process as

Case (d).

Case (f) and Case (h): Those can be proved by applying the semantics, Case (f)

becomes two formulae and Case (h) becomes one formula, which can be recursively

matched with any of the cases in this proof. Eventually, they will match the base

cases.

4.4.2.2 Pruning by “Have No Belief” (HNB)

The justified perspectives of some epistemic planning domains can be reasoned with

direct observation, while others require indirect inference. To differentiate those two

types, a definition for the domains that require indirect inference is presented as follows:

Definition 4.26. Let all Epistemic Planning Domains be EPD, domains that require

indirect inference EPDII can be defined as:

EPDII =


M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀M = (Agt, V,D, π,O1, . . . ,Ok) ∈ EPD,

where: ∃sc ∈ Sc,

∃v ∈ V,

∃i ∈ Agt,

if v /∈ Oi(sc),

∃e ∈ Dv such that v ∈ Oi (sc⟨{v=e}⟩)


In addition, the set of epistemic planning domains that only requires direct observation

EPDDO can be represented by EPDDO = EPD \ EPDII .

The nature of any problem instance in EPDDO ensures that once the “have seen” rela-

tion Hiφ becomes true, it will never become false again. In other words, any epistemic

goal relation that contains “Have No Belief” (HNB) must stay true for all time. Once it

becomes false, it will never be true again. Thus, pruning by HNB is another optimization

that can be done.

The definition of the HNB goal formula is abstract. An epistemic formula that can be

considered as an HNB formula, if and only if, there is an odd number of negations that

appear before the last belief operator H, such as ¬Hiφ, or ¬BiHjφ.
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4.4.2.3 Search Algorithm

As the search space for any NM-F-STRIPS state space is unbounded, any depth-based

search algorithm, such as Depth First Search (DFS) would not be complete. Thus, we

choose BFS as our baseline, namely bfs. In addition, in order to prove unsolvability

for the unsolvable instances, we embedded duplication elimination (Section 4.4.2.1) into

bfs as bfsdc. Besides, pruning by HNB is also included in the search bfsdcu.

There is no existing efficient heuristic function for solving problems in NMFODD as far

as we know. The most common heuristic function, Delete Relaxation Heuristic [72], is

not suitable to use, as it affects the justified perspective of agents. In the delete relaxed

problem, when an assignment is never false, it cannot form the desired false-belief.

Since relaxation is the principle to design a good heuristic function [40], the most effi-

cient and admissible general heuristic function we proposed is Precondition and Delete

Relaxation (PDR) heuristic function (hPDR). The idea is to remove the precondition list

and delete list for all actions in an EP-NM-F-STRIPS problem instance, which becomes

P¬Pre&¬Del = (Agt, V,D,E,O→
F¬Pre&¬Del

, IF ,G→
F , f

→). The summation of all actions’

costs in an optimal plan to solve P¬Pre&¬Del is the value of hPR.

As Bonet and Geffner mentioned, calculating such a heuristic (hPDR) is as hard as solving

the problem itself. Thus, we proposed Goal-Counting heuristic hGC to approximate

hPSR as follows:

Definition 4.27 (Goal-Counting Heuristic). Let P = (Agt, V,D,E,O→
F , IF ,G→

F , f
→)

be the planning instance, Gepistemic ⊆ G→
F be the set of epistemic goal conditions and

Gontic ⊆ G→
F be the set of ontic goal conditions. The value of the goal counting heuristic

for a given sequence s⃗ can be defined as:

hGC(s⃗) =
∣∣∣{ϵ|ϵ ∈ Gepistemic, ¬f→(s⃗, ϵ)}

∣∣∣+ ∣∣∣{v|v=e ∈ Gontic, s⃗[n](v) ̸= e}
∣∣∣,

where the length of the sequence s⃗ is n+ 1.

Thus, we used hGC with two standard heuristic search algorithms, A* and Greedy Best

First Search, namely astar and greedy, which both are extensions from bfsdcu.
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4.5 Experiments

To demonstrate the effectiveness and expressiveness of our model, we run experiments

on both the existing benchmark problems for comparison with another state-of-the-art

approach and newly proposed benchmarks that are difficult to solve by other approaches.

In addition, we also design and run large-scale experiments on synthetic versions of prob-

lems to explore how the features, such as the number of agents, the depth of epistemic

formulae, the number of epistemic formulae in the goal condition and the length of the

solution, affect the performance of each proposed search algorithm (bfs, bfsdc, bfsdcu,

astar and greedy) of our planner as well as the performance of epistemic formulae

reasoning with the JP model in external functions (f→).

4.5.1 Benchmark Experiments

In this section, we experiment on the common benchmark epistemic planning problems

from the PDKB approach [88], as well as some trickier domains, which are either too

complex or impractical to be modeled by other approaches. The benchmarks we used

from PDKB approaches include Selective Communication in Grid (SCs), Corridor and

Grapevine. The domain Thief is omitted, since finding the plan itself in it cannot reflect

the full ability of epistemic reasoning. Since there are two roles in this domain, guard

and thief, and their objectives are conflictive, the plan that meets anyone’s objective

would make no sense to the other under the centralized planning setting (as discussed

in Assumption 8). The implementation of the benchmarks from the PDKB planner is

used as a comparison.

Besides, as one of the benchmarks in many works [117, 140], we also include the Coin

domain. Unfortunately, we did not find an attempt for the coin domain of the PDKB

approach. In addition, BBL is included besides the benchmarks. Similarly, as men-

tioned in Section 3.6.2, two-dimensional line of sight evaluation is not suitable to be

implemented in PDKB (propositional).

The viability experiments are performed on a Linux machine with 8 CPUs (Intel Core

i7-10510U CPU 1.80 GHz × 8) and 16 gigabytes (GB) memory. However, since the

planner does not have any parallel implementation, the full power of the machine is not

reached to eliminate outlier performance. The timeout is set to be 600 seconds, and the
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memory limit is 8GB for both approaches. The search algorithm used is greedy using

goal counting as a heuristic function (mentioned in Section 4.4.2.3). The source code,

benchmarks, and experiment results can be found online at:

https://github.com/guanghuhappysf128/bpwp

Throughout this section, we will use the following notation:

• Agt: the set of agents in the problem instance;

• d: the maximum depth of any nested epistemic formulae in the problem instance;

• G: the set of goal conditions in the problem instance;

• p⃗: the computed sequential plan; and,

• |Gen| and |Exp|: the number of nodes generated and expanded during the search.

4.5.1.1 Selective Communication (SC)

The domains SCs were initially defined by Alshehri et al. [124] (inspired by Wu et al.

[132]) where agents’ task is cooperatively searching for survivors. They defined 5 different

scenarios — the first 4 are with different capabilities of moving and communication, while

the last one alters those agents’ ability of perception. Specifically, the 5 scenarios are:

1 Non-epistemic Goal (!epgoal) scenario: It is a simple scenario where the goal is

non-epistemic, requiring agents to search through the entire grid.

2 Epistemic Goal (epgoal) scenario: In addition to searching the entire grid, the

goal also requires all agents to believe the locations of all survivors. During this

process, the communication between agents are on a public channel that is visible

to everyone.

3 Broadcast Communication (board) scenario: In this scenario, a commander, an

agent who remains stationary, is designated. The communication is the same as

epgoal. The goal is to have the entire grid searched and only the commander to

believe the locations of all survivors.

https://github.com/guanghuhappysf128/bpwp
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Figure 4.2: Example layouts and initial states for Grid domain.

4 Non-Broadcast Communication (!board) scenario: All is the same as board, ex-

cept only one of the agent can communicate to the commander.

5 Blocked Cells (blocked) scenario: The communication is the same as epgoal,

while blocked cells are introduced. The agent has to sense the next cell and

believe it is unblocked before moving into it. Agents can communicate not only

the location of survivors but also whether a cell is blocked or not to improve

efficiency of overall plan (avoid every agent sense a room once, etc). In addition to

the epistemic goals that every agent believes the locations of all survivors, specific

ending location for each agent is design to verify the plan efficiency improvements

on communication of blocked cells.

They implement the above 5 scenarios on 2 different domains: Grid and Block World

for Team (BW4T). Since the rule of communication, which is the rule of seeing for

the observation functions Oi in our model, is the same, we only select one domain to

implement (Grid). In the Grid domain, there are k agents and 3 survivors located in a

x × y grid. They tested with 3 or 4 agents, in a 3 × 3 or a 3 × 4 grid respectively (4

instances per scenario) as shown in Figure 4.2.

The actions they modelled are: move, observe and communicate. Agents’ beliefs are

generated by either observing a cell or “hearing” from others’ belief by communicate.

Specifically, those beliefs are generated and updated by the action effects. While, in

our model, the belief is generated by state sequence. For example, agents’ belief of the

location of a survivor is generated either by: agents having been in the same room as

that survivor; or, agents having heard the location of that survivor from communication

with others. By doing so, we can delegate the epistemic reasoning to the external
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function f→ instead of specifying the epistemic effects in action effects in any planning

language. Therefore, the different communication rules can be modeled as one single

domain file instead of different domain files.

Specifically, in the Grid domain, let Sur be the set of survivors, we have V = {(loc i),

(movable i), (sharable i), (receivable i), (loc j), (shared j)|i ∈ Agt, j ∈ Sur}. The

observation function for each scenario can be represented by Table 4.1. For simplicity,

we only include visibility of the survivors’ location here. Agents can “see” the location

of the survivor j if: 1) the agent is in the same location as j (it is intuitive for the agent

to see survivors without a “sense” action if they are in the same location); and, 2) the

location of j is shared by others and agent i can receive this message, which indicates it

is either in scenario 2 or 5 (where everyone can receive messages), or i is a commander

(the only one that can receive).

Scenarios (loc i) (receivable i) (loc j) (shared j) (loc j) ∈ Oi(s⃗[n])

All x - x - True
2,3,4,5 - True - True True

Table 4.1: Clarification for seeing relation in difference scenario.

Due to the seeing rules for the grid problem, we have to make two changes (in both

methods for consistency) to the original goal conditions in PDKB, in which it is unsolv-

able by our modeling. Firstly, we have to remove ¬Bb(loc sur1) = r4, because Agent b

locates in r4 initially, it does not make sense for agent b not seeing sur1 (it makes sense in

PDKB as they require a sense action to explicitly update the belief ¬Bb(loc sur1)=r4).

Secondly, we have to remove the goal conditions that require Agent c and d to be at

r3 in the blocked problem instances. The reason is that in the goal conditions, PDKB

instances also require ¬Bc(loc sur1) = r4 and ¬Bd(loc sur1) = r4. In blocked scenario

(Scenario III and IV in Figure 4.2), it is impossible in the JP model to have agents pass-

ing r4 (to reach r3) without having ¬Bi(loc sur1)=r4 no longer hold. For consistency in

comparing results, we also updated goal conditions in the PDKB instance accordingly

before running their solver.

The result is shown in Table 4.2.The JP approach has a better performance (shorter

solving time, as bold font in the table) compared to PDKB in most of the cases, except

for those trickier ones (larger amount of nodes generation in PDKB). This happened
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Problem Our approach PDKB

|Agt| |G→
F | |Gen| |Exp| JP Total |p⃗| |Gen| |Exp| Pre Total |p⃗|

!epgoal:
3 9 56 6 0.05 0.10 6 161 27 0.83 0.94 15
3 12 92 9 0.11 0.20 9 287 37 1.18 1.33 21
4 9 53 5 0.03 0.08 5 193 26 1.13 1.27 14
4 12 84 8 0.13 0.22 8 341 45 2.18 2.36 20

epgoal:
3 18 74 10 0.95 1.05 9 2.7K 1.4K 0.69 0.81 42
3 21 358 48 11.58 12.30 16 4.8K 2.5K 1.24 1.43 53
4 21 507 49 13.82 14.79 13 1.0M 73.1K 1.13 9.25 44

24 506 46 23.49 24.86 17 10.2K 4.8K 2.00 2.42 43

broad:
3 12 39 7 0.12 0.16 7 155 25 6.95 7.69 19
4 12 49 6 0.12 0.17 6 155 25 0.81 0.93 19
3 15 61 10 0.32 0.41 10 243 38 1.75 1.99 25
4 15 65 8 0.32 0.40 8 374 54 2.84 3.10 25

!broad:
3 12 47 8 0.12 0.16 8 300 58 8.83 9.43 23
4 12 59 7 0.15 0.20 7 300 58 9.54 10.14 23
3 18 68 12 0.76 0.84 12 502 70 34.95 37.90 30
4 18 88 11 0.95 1.07 11 502 70 38.88 40.59 30

blocked:
3 11 619 32 5.60 6.27 14 796 230 3.06 3.35 46
3 14 1.4K 64 28.18 30.31 20 1.0K 279 6.04 6.54 59
3 12 619 32 8.36 9.11 14 1.2K 397 4.97 5.42 49
4 16 2.2K 75 90.85 95.07 20 2.8K 1.2K 9.24 10.13 68

Table 4.2: Experimental results for Grid domain, where JP, Pre and Total represent
time (in seconds) took by external function (JP function) calls, pre-compilation step in

PDKB and total instance solving time.

due to the search algorithm and heuristic function that we used could be optimized, as

well as some implementation details.

4.5.1.2 Corridor

Figure 4.3: The layout and example initial state for the Corridor domain.
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The corridor domain was originally presented by Kominis and Geffner, which is also

used in the experiments for the PWP approach in this thesis (in Section 3.6.1). Several

agents located in four rooms of a corridor try to learn a secret (Figure 4.3). One of the

agents (a) has the ability to move between rooms, sense the secret, shout and shout lie.

The action shout announces the true value of the secret as long as agent a knows the

secret (by performing sense action before), while the action shout lie announces the false

value of the secret. For both actions, agents in the same room or adjacent rooms learn

the shouted value of the secret. The objective is to find a plan for agent a that makes

some agents believe the secret while some other agents believe the secret is false.

The setup of the experiments in PDKB [88] is in terms of agents (3, 5 and 7) and

epistemic formulae depth (1, 3 and 5). The initial states for each instance are the

same as the 7-agent one, except for having fewer agents, which is shown in Figure 4.3.

Muise et al. use the same goal conditions for every instance to show how the number

of agents and epistemic depth affect the performance. We follow their domain and

experiment design. The state space of the corridor domain can be modelled by V =

{loci, sensed, sct, shared sct, locshared sct | i ∈ Agt} and Dlocj = {1, 2, 3, 4} (where j ∈

Agt∪{sct} and others are boolean variables). The goal conditions are Bb¬sct and Bcsct.

An example implementation can be found in Appendix C.2.

Problem Our approach PDKB

|Agt| d |Gen| |Exp| JP Total |p⃗| |Gen| |Exp| Pre Total |p⃗|

3 1 32 9 0.01 0.01 5 35 16 0.05 0.08 8

5 1 32 9 0.01 0.02 5 37 16 0.06 0.10 8

7 1 32 9 0.01 0.03 5 38 16 0.07 0.11 8

3 3 32 9 0.03 0.04 5 35 16 0.57 0.62 8

5 3 32 9 0.04 0.05 5 37 16 3.66 3.86 8

7 3 32 9 0.03 0.04 5 38 16 11.95 12.74 8

3 5 32 9 0.03 0.05 5 35 16 42.48 45.64 8

5 5 32 9 0.05 0.07 5 - - - TO -

7 5 32 9 0.05 0.06 5 - - - TO -

Table 4.3: Experimental results for Corridor domain.
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The results can be found in Table 4.3. Since the goal conditions and related initial

states are the same, the number of nodes generated and expanded is constant across all

problems, while only the number of agents and the depth of epistemic formulae affect

the execution time. We can see that those two features have a great impact on the pre-

compilation time in the PDKB approach, but not on our justified perspective evaluation.

Following the PWP approach (Section 3.5), the JP approach also uses lazy evaluation.

The epistemic formulae are evaluated only when the search node is being generated

rather than generating all epistemic formulae at the pre-compilation step (what PDKB

does).

In addition to efficiency, the expressiveness of two models is another interesting aspect

to compare. In PDKB implementation, [88] assume the agents know the location of all

other agents and the agents know where the secret has been shared as well as the shared

value of the secret (they just do not believe the value unless it was shared directly to

them). Therefore, we implemented the observation function following their assumption.

That is, agents see every variable all the time, except for sct, which has only been seen

by agent i if and only if Agent a shared or lied in the same or adjacent location as i.

We believe the first assumption is not necessary but reasonable, while the second as-

sumption is not reasonable. For example, one of the effects in the PDKB corridor domain

file for the action agent a lying in r4 is BbBc¬sct, which we believe is not reasonable.

The effect of the action should only be viewed by those in r4 of r3, as r2 is not adjacent

to r4 (as shown in Figure 4.3). Therefore, we proposed a new observation function that,

in addition to sct, determining whether agents see both locshared sct and shared sct also

depends on whether their relative distance is smaller or equal to 1. The experimental

results are not presented here as it is exactly the same (Table 4.3), due to the current

goal conditions not being affected by this change. However, we are able to reason about

some nesting propositions, such as ¬HbBcsct (effectively, ¬BbBcsct∧¬Bb¬Bcsct), while

the PDKB approach cannot. Both versions of the observation function implementation

can be found in Appendix C.2.

4.5.1.3 Grapevine

Grapevine, proposed by Muise et al. [87], is a similar problem to Corridor. The seeing

rule becomes that the secret will be known to everyone in the same room. With only
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Figure 4.4: The layout and example initial state for the Grapevine domain.

two rooms available, the scenario makes sharing secrets while hiding from others more

difficult. The basic setup is for each agent to have their own secrets (a propositional

variable). Initially, all agents are located in room r1 (as shown in Figure 4.4). Agents

can move between those two rooms and share or lie about their own secret. In addition,

they can also share about others’ secrets based on what they believe.

For the observation function, firstly, agents see each other’s location. This is because

there are only two rooms, agents are either in the same room, or in the other room.

The visibility of the secrets is related to sharing and lying actions. In order to model

sharing and lying, we need three variables for each agent’s secret. Using agent a’s

secret as as an example, those three variables are: (truth_value ?s) (denoted as

tas), (lying_value ?s) (denoted as las) and (shared_value ?s) (denoted as sas),

representing the secret’s truth value, lying value, and currently sharing value (could be

shared by any agent). tas and las are visible solely to their owner agent, agent a, while

the agents that perceive sas is determined by the room in which the secret as is being

shared.

The action agents share or lie about their own secret would have the effect:

• (assign (shared_value ?s) (truth_value ?s)), or

• (assign (shared_value ?s) (lying_value ?s)) respectively.

While the action sharing_others_secret needs some discussion. Intuitively, agents

could only share the value of others’ secret of the value that they believe. In existing

approaches, including PDKB and PWP, they have to specify the value of what agents

believe in the modeling language. Specifically, they model this action as the agent can

choose to share others’ secret as truth value or share others’ secret as false value. That

is, they have to enumerate all possible values of the secret for this action. Although
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the secret in grapevine is only boolean, both approaches miss the opportunity to model

variables with larger Dv or even continuous Dv.

However, with the capability of introducing external function @jp, we are able to model

sharing_others_secret as one PDDL action:

1 (: action sharing_others_secret
2 :parameters (?a - agent , ?s - secret)
3 :precondition (
4 (= (own ?a ?s) 0)
5 (= (sharing) 0)
6 (!= (@jp ("b [?a]") (shared_value ?s)) jp.none)
7 )
8 :effect (
9 (assign (shared_loc ?s) (agent_loc ?a))

10 (assign
11 (shared_value ?s)
12 (@jp ("b [?a]") (shared_value ?s)))
13 (assign (sharing) 1)
14 )
15 )

Code Example 4.6: F-PDDL example action in Grapevine domain using external
function @jp.

The preconditions require that the agent does not own the secret (Line 4), there is no

other secret being shared at the moment (Line 5) and the agent has a not-‘None’ belief in

the secret (Line 6). The effects represent that the secret is shared in the same location as

the agent (Line 9), the secret is being shared (Line 13) and the shared value of the secret,

(shared_value ?s), is being shared as what the agent believes (Line 10-Line 12). This

representation models the agent’s belief as part of the language without specifying its

value, which allows the JP model to have the potential to model continuous domains.

The experimental results can be found in Table 4.4. As it shows in the table, PDKB

took a costly pre-compilation step when d becomes 2 (around 9 seconds when |Agt|

is 4 and 200 seconds when |Agt| is 8). In other words, their solving times are highly

dependent on d and |Agt|. Although our approach could solve these problems within a

short period of time (a few seconds) independent of those features, it failed to solve the

final two problems because of the large number of nodes generated or expanded. This is

due to both the complexity of the problem (branching factors) and the lack of effective

heuristic functions.
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Problem Our approach PDKB

|Agt| |G→
F | d |Gen| |Exp| |JP| JP Total |p⃗| |Gen| |Exp| Pre Total |p⃗|

4 2 1 93 11 4.2 0.08 0.10 4 80 15 0.48 0.56 4

4 4 1 167 22 7.0 0.17 0.20 9 108 14 0.47 0.56 7

4 8 1 387 48 13.3 1.37 1.44 18 137 14 0.48 0.57 12

4 2 2 78 10 4.1 0.07 0.08 4 57 13 9.16 11.22 5

4 4 2 90.5K 12.4K 10.2 - MO - 88 11 9.24 11.28 7

4 8 2 4.1K 548 21.7 50.89 52.72 24 1.2K 330 9.18 11.75 23

8 2 1 189 15 4.3 0.26 0.30 4 112 16 3.74 4.69 4

8 4 1 343 30 7.1 0.86 0.93 9 5.9K 194 3.75 5.68 11

8 8 1 807 60 13.5 7.28 7.48 18 970 260 3.72 4.67 16

8 2 2 158 14 4.1 0.29 0.33 4 169 31 199.60 481.85 5

8 4 2 26.2K 2.3K 7.4 - MO - 355 34 202.56 483.75 9

8 8 2 7.2K 524 17.9 - MO - 561 51 200.78 496.39 15

Table 4.4: Experimental results for Grapevine domain, where |JP| is the average
length of the justified perspectives for all external function calls.

For branching factors, considering 8 agents examples, the agents are able to move be-

tween rooms (8 available actions), share or lie about their own secrets (16 available

actions), and share others’ secrets (56 available actions in the worst case). Since any

agent can share others’ secrets once they have belief about them, there is no direct

pruning that can be done regarding the branching factors.

As for the heuristic function, using the 5th instance as an example, the goal conditions

are: BbBc¬ψ, Bcψ, BdBcψ and Bbψ, where ψ is (= (shared as) True). The goal

counting heuristic for all successors of the root nodes is 4 except: 1) it becomes 3 when

agent a lies about as; and, 2) it becomes 1 when agent a shares the truth of as. Since

the search algorithm is greedy, it expands the latter condition first. A valid solution

would be to move d away and let a lie about as, however, the goal counting heuristic for

that node would be 2. This is because once a lies with b and c in the room, both Bcas

and Bbas become false. Having the heuristic value for the correct node as 2 means, with

the greedy search algorithm, this node will only be expanded when all the nodes with
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heuristic smaller than 2 have been expanded, which caused our planner to run out of

memory.

As for the last two instances with both 8 agents and d = 2, our planner failed to find a

solution for the similar reason as above. The number of nodes generated and expanded

is much higher for instances with |G→
F | = 4 than |G→

F | = 8, while the latter one has much

longer state sequences when evaluating epistemic formulae. This is expected due to the

duplication elimination procedure mentioned in Section 4.4.2.1. The size for duplication

elimination depends on G→
F ∪ PRE(O→

F ) according to Definition 4.24. Specifically, in

these two instances, the latter one contains more goal conditions, which results in the

latter one having a larger DPS key size. That is, the state sequence would be less likely

to be eliminated due to the larger DPS key size, resulting in the average length of the

search path being much longer.

4.5.1.4 Coin

The Coin domain is based on the problem described in Example 4.1. It was originally

inspired by the coin example in Baral et al. [117] and the false-belief task by Bolander

[140]. Even though there is no attempt from the PDKB approach on this domain,

since the scale of this domain is small (all instances can be solved within 0.01 seconds),

we still include this because it is our motivational example, and the results show the

expressiveness of our approach.

The coin domain contains two agents, a and b, and a coin c could be either head or tail.

The coin is in the box and not visible to all agents unless they are peeking into the box.

The actions that agents can take are either “peek” into the box or “return” to their

standing position. In addition, there is a secret hidden agent who can “flip” the coin

without either a or b noticing, unless they are peeking into the box. The task is to form

some false beliefs between agents as it is shown in Figure 4.5.

We used three variables to model it: (peeking a), (peeking b) and (face c), where c

could be Head or Tail, and peeking is a binary relation. Agents are able to see whether

the others are peeking into the box all the time, while the value of c is only visible to

the agent that is currently peeking.
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Figure 4.5: A solution for the 5th instance in Coin domain.

|Agt| d |p⃗| |Gen| |Exp| JP Total G→
F

2 1 1 4 1 0.00 0.00 Bac=head

2 1 2 6 2 0.00 0.00 Bac= tail

2 1 3 11 4 0.00 0.00 Bac=head ∧Bbc=head

2 1 4 11 4 0.00 0.00 Bac=head ∧Bbc= tail

2 2 4 36 14 0.02 0.03 c= tail ∧Bbc= tail ∧Bac=head ∧BbBac=head

2 2 8 37 14 0.01 0.03 BbBac=head ∧BaBbc= tail

Table 4.5: Experimental results for Coin domain.

The results are shown in Table 4.5. Most of the results are trivial, while the last two

could use some explanation.

The 5th is the same as our motivating example (Example 4.1), which contains 4 goal

conditions. The plan returned is the same as Plan 4.2. The first three goal conditions

are straightforward, but not the last one (BbBac = tail). In order to evaluate this

epistemic formula, we need to extract justified perspective for b first. The initial state

is {(peeking a)=False, (peeking b)=False, (face c)=head} 4.

As shown in Figure 4.5, the global sequence of the plan is:

s⃗ = [F-F-Head,T-F-Head,F-F-Head,F-T-Head,F-T-Tail].

Agent b’s observations of the global sequence are:

Ob(s⃗) = [F-F- , T-F- , F-F- , F-T-Head, F-T-Tail],

4For similarity, in this section, we only use value to represent state. Therefore, the given initial state
will be represented as F − F −Head
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where ‘ ’ represents the variable not in b’s observation. Then, according to Definition 4.6,

we have agent b’s justified perspective as:

fb(s⃗) = [F-F-⊥,T-F-⊥,F-F-⊥,F-T-Head,F-F-Tail].

Agent a’s observations in agent b’s perspective are:

Oa(fb(s⃗)) = [F-F- , T-F-⊥, F-F- , F-T- , F-T- ].

Then, applying fa on fb(s⃗) for timestamp 0, we have F-F-⊥ since ltc = −1. For timestamp

1 and 2, although ltc = 1 in both of them, the retrieved value of c is still ⊥, because,

for both cases, the value of c in the input sequence for retrieval function R are all ⊥

([fb(s⃗)[0], fb(s⃗)[1]] for timestamp 1 and [fb(s⃗)[0], . . . , fb(s⃗)[2]] for timestamp 2).

While, for timestamp 3 and 4, we still have ltc = 1 (as 1 is the last timestamp b sees a

sees coin). Then, due to LT = {} for both (agent b has not seen c before or at timestamp

ltc = 1) and RT = {3} for timestamp 3 and RT = {3, 4} (agent b has seen c twice after

timestamp ltc = 1) for timestamp 4 in Definition 4.5, both R([[fb(s⃗)[0], . . . , fb(s⃗)[3]]], 1, c)

and R([[fb(s⃗)[0], . . . , fb(s⃗)[4]]], 1, c) equal the value of c in the timestamp 3 of the input

sequence, which is Head. Therefore, agent a’s justified perspective under agent b’s belief

(b’s justified perspective) is:

fa(fb(s⃗)) = [F-F-⊥,T-F-⊥,F-F-⊥,F-T-Head,F-F-Head]

Therefore, the last goal condition for the 5th example is achieved.

In the last instance, the plan returned by our planner is “peek(a)”, “return(a)”,

“peek(b)”, “return(b)”, “peek(a)”, “flip(c)”,“return(a)”, “peek(b)”. However,

an optimal plan for that instance would be “peek(b)”, “return(b)”, “flip(c)” and

“peek(a)”. Intuitively, b believes a sees what b saw, and a believes b saw what a sees.

Both goal conditions are fulfilled at the last timestamp. However, due to the greedy

search algorithm with goal counting heuristic, the planner seeks to achieve any of the

goal conditions as soon as possible.

The first three actions in the first plan result in BbBac = Head (although BaBbc =

Head). The following plan makes agent a believe b believes c is Tail, while BbBac =
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|Agt| d |p⃗| |Gen| |Exp| JP Total G→
F

2 1 3 37 9 0.01 0.02 Bbv=True
2 1 3 41 10 0.03 0.04 Bav=True ∧Bbv=True
2 2 7 149 37 0.36 0.40 BbBav=True ∧BaBbv=True
2 2 5 325 81 0.38 0.46 BbBav=True
2 3 5 325 81 0.45 0.53 BbBaBbv=True
2 4 5 381 95 0.78 0.89 BaBbBaBbv=True

Table 4.6: Experimental results for BBL domain.

Head stays the same due to the design decision (checking past first) of the retrieval

function R (in Definition 4.5).

4.5.1.5 Big Brother Logic (BBL)

BBL [2] contains stationary cameras that can turn and observe a certain angular range

in a 2-dimensional plane. For example, camera a and camera b (agents) are located

in positions (3, 3) and (2, 2) respectively, while a propositional object v with value

True is located in position (1, 1). Cameras have two actions: clockwise-turn and

anticlockwise-turn. For simplicity, we set the angle of turning to be enumerated from

the set {0◦,±45◦,±90◦,±135◦, 180◦} and the turning angle to 45◦, but as the external

functions are implemented in Python, we can replace this with floating point numbers

to model continuous directions. We use the same problems as in the PWP approach

(Section 3.6.2.3), but with modified goals to support belief instead of knowledge.

The observation function is the same as the PWP approach: j ∈ Oi(s) iff

(
| arctan( |s(yi)−s(yj)|

s(xi)−s(xj)
)− s(diri)| ≤ s(angi)

2

)
∨(

| arctan( |s(yi)−s(yj)|
s(xi)−s(xj)

)− s(diri)| ≥ 360◦−s(angi)
2

) (4.1)

where (xi, yi) is the location of the agent i, while (xj , yj) is the location of the target

(could be an agent or an object).

An implementation (including both domain and problem file, as well as the observation

function) can be found in Appendix C.1.
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Results are shown in Table 4.6. Initially, camera a faces −135◦, while camera b faces

90◦. Since v ∈ Oa(s0), the plan for second instances is the same as the first one, which

is only to take three anti-clockwise turns. The optimal plan for the rest of the instances

should be to turn clockwise for 5 times, as they require b sees loca (indicating b sees

a sees locb). However, due to the nature of greedy with goal counting heuristic, for

the 3rd instance, turning anti-clockwise for 7 times will achieve one of the goals first

(Bbv=True), resulting in the goal counting heuristic becoming 1 instead of 2.

4.5.2 Large-Scale Experiments

In addition to the benchmark experiments, we perform a large-scale experiment in order

to examine the search algorithms, including the proposed two pruning methods, and the

complexity of the ternary semantics.

The search algorithms we explore are bfs, bfsdc, bfsdcu, astar, and greedy (defined in

Section 4.4.2.3). The number of problem instances solved (including proven unsolvable)

is chosen as a direct comparison between search algorithms. In addition, for the solvable

instances by all algorithms, the efficiency can be compared by the number of nodes that

have been expanded. On the other hand, for the proved unsolvable instances by all

algorithms (except bfs, which cannot prove unsolvability), the number of nodes that

have been expanded to prove the problem instance is unsolvable can also show the

algorithms’ efficiency.

The domain we selected for large scale experiments is BBL, since it is: firstly, not too

trivial to be solved in 0.1 seconds, such as the Coin or Corridor domain; secondly, not too

complex (easily becoming unsolvable due to the large branching factors), including the

Grapevine domain; lastly, not containing too many ontic goal conditions (which would

result in the ontic planning parts affecting the results), such as SC domains.

The whole experiment was conducted on three Nectar Research Cloud VMs with 64

VCPUs and 256GB RAM. The Nectar Research Cloud is a collaborative Australian

research platform supported by the NCRIS-funded Australian Research Data Commons

(ARDC). The experiments are performed in parallel within a Docker environment with

the 8GB memory limitation and 600 seconds time limitation.
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4.5.2.1 Experiment Design

We vary the following parameters in these experiments:

• The maximum depth of epistemic formulae from 1 to 4 in increments of 1;

• The number of agents between 2 to 4 in increments of 1;

• The number of goal propositions from 1 to 4, in increments of 1.

For this, we have 48 parameter combinations. For each setting, we ran up to 500 random

instances. The random factors are the epistemic goal formulae selected and the initial

state. The number of randomly selected instances is smaller than 500 for the first setting,

as there are only 384 instances for this setting (2-agents, maximum goal depth is 1 and

1 goal proposition). For simplicity, we set the randomness for the initial by randomizing

the initial direction for all agents, which means the location of the agents is the same as

in Section 4.5.1.5. The locations of the newly added agents c and d are (0,0) and (0,1)

respectively. Since there are 8 possible directions, the number of possible initial states is

64 for 2-agents. The number of possible goal epistemic formulae with max depth of 1 is 6,

which are Baψ, ¬Haψ, ¬Baψ, Bbψ, ¬Hbψ and ¬Bbψ, where ψ is (= (value v) True).

Therefore, the number of possible instances for the first setting is 64×8 = 384. Overall,

there are 23884 instances run for each algorithm.

For each instance in this experiment, we record the solvability of the instance, the search

time, the average external function call time, the number of nodes generated, the number

of nodes expanded, the max length of the search path, the average length of the search

path (which is the same as the average length of the input for the justified perspective

function). For readability, we merged the results of different maximum goal epistemic

formulae settings together, which means the result will have 12 subplots (2 − 4 agents

and 1− 4 epistemic goals size).

Solvability is an important metric in planning. The status includes solvable, proven

unsolvable, time out and memory out. A problem instance is solvable means the search

algorithm has found a solution in time, while a problem instance is “proven unsolv-

able” means the search algorithm has successfully finished and failed to find a solution.

Both “time out” and “memory out” mean the search algorithm is unable to prove the

solvability of the problem instance.
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4.5.2.2 Results

Figure 4.6: Solvability (in percentage) for all search algorithms of all instances.

The solvability results are summarized in Figure 4.6. As the nature of the plain BFS

search (without duplication elimination), bfs cannot prove unsolvability for any in-

stance. Because BBL belongs to EPDDO (defined in Section 4.4.2.2), pruning by HNB

is another optimization that can be used in any of the search algorithms. As can be

seen from the results, with the HNB pruning (bfsdcu) can prove unsolvability for a lot

more instances compared to bfsdc, except when the problem instances are too trivial

(2 agents and 1 goal condition). The performances for bfsdcu, astar and greedy are

quite similar in terms of proving unsolvability, because they all use the same duplica-

tion elimination and HNB pruning. This is because to prove unsolvability, the search

algorithm needs to expand all nodes (except those that can be safely pruned), which

might be slightly affected by the node expansion orders, but it is highly dependent on

the problem’s reachable state space itself. Therefore, some further analysis is needed.

We use the number of nodes expanded as the indicator to show the performance of the

search, rather than execution time, which can be affected by other jobs running on the

machine. Since the instances that are solved by the initial state would have the same
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Figure 4.7: The ratio of nodes expanded between bfs and other search algorithms
for the bfs-solvable instances.

number of nodes expanded, which is 1, we filtered out those instances when generating

results.

The first result (as shown in Figure 4.7) is from all instances that are solvable by bfs,

in which the ratio is generated by dividing the number of nodes expanded with the

search algorithm by the number of nodes expanded with bfs (our baseline in this case).

The performance of bfsdc and bfsdcu is similar as the solvable instances that contain

HNB formulae are not common, which is evaluated later in this section. With the

problem instances becoming more complex, astar has better performance than those

two blind search algorithms, while greedy has better performance than astar. It is

worth mentioning that the results are generated with all solvable instances, except one

outlier (problem_bbl_a2_g4_d3_34074_init_a2_00062.pddl) to increase readability.

That problem instance contains 4 goal conditions, 3 of which become true with one plan

while the other one needs a completely different plan to make it true. As mentioned in

Section 4.5.1, greedy has poor performance that is stuck in the local optimum, which

results in it expanding 4 times more nodes than the baseline. Despite this raw (1 out of

23884) outlier, greedy is the most efficient search algorithm on the solvable cases.
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Figure 4.8: The ratio of nodes expanded between bfsdc and other search algorithms
(excepts bfs as it cannot prove unsolvability) for the bfsdc-proven-unsolvable instances.

As for unsolvability, as shown in Figure 4.8, greedy has the same performance as bfsdc

for some subplots in all instances that can be proved unsolvable by bfsdc. For some

subplots, the numbers of instances that can be proven unsolvable by bfsdc are too few

(less than 10%, which is less than 50 instances). This can be shown from Figure 4.6.

When the number of agents is greater than 2, and the goal size is larger than 1, the

percentage of the problem instance that is proven to be unsolvable by bfsdc is less

than 10%. Thus, those results are not reliable. In addition, when the goal size is

1, the heuristic function goal counting has minimum effectiveness on improving the

search efficiency (hGC(s⃗) = 1 for any sequence before generated goal state). Thus, the

performances between bfsdc and others are almost the same.

Therefore, only the results in three subplots (with the number of agents and goal size

pairs as: 2-2, 2-3 and 2-4) are reliable. From those results, the number of nodes ex-

panded to prove the instance is unsolvable for the other three search algorithms (bfsdcu,

astar and greedy) is much fewer compared to bfsdc.

The HNB pruning cannot be evaluated directly from any of the above figures. We

have shown above that with HNB pruning, bfsdcu can prove unsolvability for a lot

more instances compared to bfsdc (in Figure 4.6). However, does this make the search
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Figure 4.9: The ratio of nodes expanded between bfsdc and other search algorithms
that used HNB pruning for the bfsdc-solvable and HNB involving instances.

algorithm more efficient (expanding fewer nodes) for the solvable cases remain to be

evaluated. The ratio of the number of nodes expanded compared to bfs (as shown

in Figure 4.7) cannot reflect this, because many randomly generated goal conditions

do not contain HNB epistemic formulae. Moreover, even in those instances containing

HNB, many instances are solved without involving HNB pruning. This happens either

because the instance is too trivial, or the HNB relation(s) in the goal condition are too

complex to be negated. Therefore, we show the results in Figure 4.9 by filtering out

those instances.

This result shows that with HNB pruning, the search algorithm expands fewer nodes in

most of the cases when the problem is solvable. Therefore, the HNB pruning is efficient

no matter whether the problem is solvable or not. But it has a greater impact on proving

unsolvability.

At last, the efficiency of the justified perspective function is shown in Figure 4.10. The

instances run by bfs are excluded, as they have the same performance for all unsolvable

cases and, with some noise from the server running, they show some strange straight

vertical lines (same average depth but slightly different average time) in the result. The

results show that, in solving each problem instance, no matter which search algorithm
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is used, the average time used to reason about epistemic logic in our implementation is

linear in terms of the search path length. This verifies our claim in Section 4.3.3.3.

Figure 4.10: The average length of the search path and average external function
calling time for all instances, where the x-axis represents the length and y-axis represents

the time (in milliseconds).

Overall, though massive experiments in the BBL domain, we have shown both opti-

mizations — Duplication Elimination and HNB pruning — improve efficiency. We also

believe this conclusion is general, since there is no reason why the results on the BBL

domain cannot be generalized to other epistemic planning domains. As for the search

algorithm, we believe in most of the cases, greedy (with goal-counting as heuristic)

would have better performance, except when the goal conditions could make it stuck in

the local optimal.

4.6 Conclusion and Discussion

In this chapter, we extend the S5 Logic of PWP to the JP model in order to handle

beliefs. The JP model reasons about the knowledge and belief relation by constructing a

corresponding justified perspective, built on the intuition that humans reason about the

unseen from their past observations unless they see (saw) evidence to suggest otherwise.

We give the definition of the retrieval function and justified perspective function. Along
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with the observation function from the PWP model, agents’ justified perspective can be

constructed with arbitrary nesting.

Then, similarly as in the PWP approach (Chapter 3), we provide two forms of the

semantics: the complete semantics (Definition 4.17) and the ternary semantics (Defini-

tion 4.18). Although it is not possible to prove the soundness and correctness of our

justified belief model, we prove that the new logic satisfies the principles of belief de-

scribed by the axioms of the logic KD45. In addition, we show the complexity of the

ternary semantics can be reasoned in polynomial time.

Besides, we formalised the epistemic planning problems that our model can handle as EP-

NM-F-STRIPS and provide a F-PDDL encoding to represent those instances. Moreover,

we develop the JP model as an (action) model-free (planning) tool and embed it as the

external functions in the F-PDDL encoding. By integrating classical planning search

algorithms, we are able to provide a planning tool to solve epistemic planning with

knowledge and beliefs.

At last, we show the expressiveness and efficiency of our planning tool through exper-

iments on standard benchmarks. In addition, we perform a large-scale experiment to

compare the efficiency of different search algorithms, as well as to verify our claim about

the complexity of the ternary semantics.

As for the concerns raised about the PWP model (mentioned in Section 3.7), by reason-

ing over all epistemic relations (including knowledge and beliefs) from agents’ justified

perspective, the JP model: 1) handles knowledge and belief; 2) improves the efficiency of

the external function (using DPS set); and, 3) handles inconsistency in the problem de-

scription for the modeler. The first concern is handled as one of the main contributions

of the work in this chapter. The second and third are solved by evaluating all epistemic

queries described in F-PDDL once when the node is generated (for goal conditions) and

expanded (for preconditions) instead of once for each query.

The only limitation compared to the JP model with the PWP model is for the group

epistemic relations. The PWP model is able to handle single-(nested-)knowledge and

group-(nested)-knowledge, while the JP model handles single-(nested)-belief. As for the

group belief, the approach used in the PWP approach would not work. For example, the

distributed knowledge in the PWP model uses set union to merge agents’ perspectives.
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While in the JP model, since agents’ justified perspectives can have false values (lead-

ing to justified false-beliefs), merging their justified perspectives would cause conflicts.

Therefore, how to model agents’ justified group beliefs becomes the next problem to

solve.



Chapter 5

Planning with Group Belief using

Group Justified Perspectives

In this chapter, we extend the single-agent (nested) justified beliefs model to the Group

Justified Perspective (GJP) model, to handle group justified beliefs. We follow the same

intuition as the JP model that when people reason about something they cannot see,

they generate justified beliefs by retrieving the information they have seen in the past,

unless they have seen evidence to suggest otherwise [35]. By defining group justified

perspective functions, we can reason about uniform belief, distributed belief, and com-

mon belief, even mixed with individual and group knowledge operators. Our finding is

that, different from the above intuition, when it comes to group beliefs, agents do not

have to form a group knowledge to generate a group belief. For example, a common

belief could be formed even though its corresponding common knowledge has not been

formed beforehand.

5.1 Introduction and Motivation

As introduced in the previous chapter (Chapter 4), the JP model is efficient and expres-

sive in handling single-agent (nested) belief. Following the intuition of ‘belief is past

knowledge’, they are able to construct the justified perspective for agents based on their

past observations. However, applying this intuition näıvely to group belief is neither

complete nor consistent. It is possible that some agents in a group see value changes

200
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that affect their own knowledge and belief while the group’s belief stays the same. In

addition, it is possible to form a common belief about a proposition even if there was no

prior common knowledge about this previously. For example, consider agent a looking

in a box and seeing a coin with heads, and then agent b looking into the box a minute

after agent a and seeing it is heads. At no point did they see the coin at the same time,

so they cannot form common knowledge that the coin is heads (it may have changed

in the minute in between). However, they can form a common belief that it is heads

because they each saw heads and have no evidence to suggest the value has changed.

We illustrate this idea with our motivating domain, NIB (Example 1.2), following the

same initial state as in Example 2.1.

Example 5.1. Recall that in Example 1.2, there are two agents, a and b, two numbers,

p and q in separate boxes. The agents have to peek into the box to see the value of the

number in it, and each box can only be peeked at by one agent at a time.

Now, let’s consider the following two interesting and challenging group belief tasks:

1. a and b have a common belief that q > 4 and:

• agent a and b believes that they have a common belief about q’s value;

• while q’s values in their believed common belief are different.

2. a and b have a common belief that q > 4 and:

• agent a believes that they have a common belief about q’s value;

• while b believes they don’t have a common belief about q’s value;

• and b believes a believes that they have a common belief about q.

For the first task, the condition is that both a and b believe they have a common belief

on q’s value while q’s values in their believed common belief are different. This indicates

the common beliefs they have are false beliefs. Even though each of them holds a false

belief of their common belief, the common belief (about a formula that holds in both

agents’ believed common beliefs) can still be formed. As shown in Figure 5.1, a valid

plan to achieve Task 1 above would be:

Plan 5.1. “(peek a q)”, “(return a)”, “(decrement q)”, “(peek b q)”
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Figure 5.1: An example plan to solve Task 1 in Example 5.1.

Figure 5.2: An example plan to solve Task 2 in Example 5.1.

In the plan, agents a and b do not peek into the box containing q at the same time. So, at

no point neither the statement “agent a knows that agent b knows q > 4” (KaKbq > 4)

nor KbKaq > 4 holds. Further, the common knowledge CK {a,b}q > 4 does not hold.

However, we assert that the common belief CB{a,b}q > 4 should hold if agents have

memory. Since agent a sees q = 6 at s1 and agent b sees q = 5 at s4, both Baq = 6

and Bbq = 5 hold, which implies both Baq > 4 and Bbq > 4. In addition, since agent a

sees agent b peeking into the box at s4 and Baq = 6, BaBbq = 6 should hold. Similarly,

BbBaq = 5 should hold. Therefore, we have both BaBbq > 4 and BbBaq > 4. Given

that a and b both saw that each other peeked in the box, and saw that each saw that

each peeked into the box, etc, both a and b believe each other believes q > 4 with infinite

depth. From the definition by Fagin et al. [3], this constitutes common belief.

In addition, in the view of the agent a, q = 6 is a common belief among a and b, since

agent a saw q = 6 at s1 and saw agent b see q at s3. For the similar reasoning, agent b

believes CB{a,b}q = 5. Thus, Task 1 is achieved.

As for Task 2, as shown in Figure 5.2, a valid plan is as follows:

Plan 5.2. “(peek a q)”, “(return a)”, “(peek b q)”, “(decrement q)”
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The common belief CB{a,b}q > 4 holds for the similar reason as above. Agent a holds

the same false belief (BaCB{a,b}q = 6), while agent b saw q = 6 immediately after a saw

the number and saw q = 5 in the last state, which indicates agent b no longer believes

there is a common belief among a and b on the value of q.

In the following parts of this chapter, we propose group perspective functions to reason

about uniform belief, distributed belief, and common belief (as in the GJP model).

We discuss an implementation that extends an existing epistemic planning tool, and

report experiments on key domains in epistemic planning. Our results show that we can

efficiently 1 and expressively solve interesting problems with group belief, even with a

basic blind search algorithm.

5.2 Background

Most of the background and related works are introduced in Chapter 2. Thus, we only

include those that are relevant to this work and have not been mentioned earlier.

Recall that semantically speaking, ifKiφ (agent i knows φ is true) holds (Axiom T), then

φ holds; while if Biφ (agent i believes φ), it is not necessarily the case that φ holds. In

short: agents can have incorrect beliefs, but not incorrect knowledge. For group beliefs,

there are mainly three types: uniform beliefs, also known as shared beliefs; distributed

beliefs; and common beliefs.

Uniform belief, denoted EBGφ, is straightforward — it means that everyone in group

G believes proposition φ. There are a number of approaches to model uniform belief [152,

153].

Distributed belief, denoted DBGφ, combines the beliefs of all agents in group G. It is,

effectively, the pooled beliefs of group G if the agents were to “communicate” everything

they believe to each other. Any model has to consider the pooled beliefs from each agent

and the pooled beliefs from the group that are not held by any of its individual agents,

but are held by the group. For example, if agent a believes x = 1 (and nothing else) and

agent b believes y = 1 (and nothing else), distributively, the group {a, b} believes that

x = y, even though no individual agent believes this. Distributed belief is challenging

1Note: we do not have any existing approach to compare to.



Planning with Group Justified Perspectives 204

because agents can have conflicting beliefs: if agent a believes x = 1 and agent b believes

x = 2, what should the distributed belief be?

There are two main approaches to model distributed belief: (1) belief merging [154–

156]; and (2) merging the agents’ epistemic accessibility relations [90, 142, 157–162].

Typically, merging conflicting beliefs is solved using some form of ordering over agents

or propositions, meaning that some agents (propositions) receive priority over others. In

this chapter, we give two definitions of distributed belief: one that accepts inconsistent

distributed belief; and one in which conflicting beliefs are removed entirely, leading to

a modal operator that obeys the axiom of consistency (axiom D). In what is the most

closely related work to ours, Herzig et al. [163] combine the two approaches of belief

merging and the merging of accessibility relations to define a logic for modeling explicit

and implicit distributed beliefs. Explicit distributed belief is obtained from each agent’s

individual belief base; while implicit belief is derived from the group’s collective belief

base. In addition, they also introduce customized belief combination operators to model

consistent distributed beliefs.

Common belief, denoted CBGφ, is defined as: all agents in G believe φ, all agents in G

believe that all agents in G believe φ, all agents in G believe . . . , up to an infinite depth

of nesting. The existing work [164–168] reasons for belief on belief bases or possible

worlds. The PWP approach (in Chapter 3) forms the common knowledge of a group

by finding the fixed point (see Definition 3.7) intersection of all perspectives from all

agents in the group, showing that this fixed point always exists within a finite bound.

However, this approach cannot handle justified beliefs.

5.3 Group Justified Perspective (GJP) Model

In this section, we formally propose our group justified perspective (GJP) model by

adding group operations for uniform belief, distributed belief, and common belief to the

JP model, inheriting the existing group modal operators from the PWP approach.
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5.3.1 Preliminaries

Firstly, recall the signature of both PWP and JP models as follows: A signature Σ is

described by the tuple Σ = (Agt, V,D,R), with Agt being a finite set of agent identifiers

(of size k), V as a finite set of variables (of size m) such that Agt ⊆ V and m ≤ k,

implying agent identifiers serve as variables. Furthermore, D denotes the set of all

domains, where each Dvi corresponds to a possibly infinite domain of constant symbols

for each variable vi ∈ V . Lastly, R denotes a finite collection of predicate symbols.

Domains can be discrete or continuous.

In addition, we follow the same definitions and notations used in the JP model from

Section 4.3, including but not limited to, the definition of state (a set of variable assign-

ments), the state space (S), the complete-state space (Sc), the sequence space (S⃗), the

complete sequence space (S⃗c), and the override function for both state (Definition 3.10)

and sequence (Definition 4.1).

Then, the language of the GJP model can be defined by the following grammar:

Definition 5.1 (Language). Given a signature Σ = (Agt, V,D,R), the language LGKB(Σ)

is defined by the grammar:

φ ::= r(Vr) | ¬φ | φ ∧ φ | Siv | Siφ | Kiφ,

φ ::= ESGφ | DSGφ | CSGφ | EKGφ | DKGφ | CKGφ,

φ ::= Biφ | EBGφ | DBGφ | CBGφ,

where r ∈ R, Vr ⊆ V are the terms of r, r(Vr) are predicates and R is the set of all

predicates; i ∈ Agt is any agent and G ⊆ Agt is a group of agents.

The group seeing operators, ES , DS and CS , and knowledge operators, EK , DK and

CK are from the PWP model (in Definition 3.6), while the Bi operator is from the

JP model (in Definition 4.2). In this section, we add the operators EBGφ, DBGφ and

CBGφ to represent that agents from group G jointly, distributedly and commonly believe

φ respectively.

The definition of a model instance in GJP is the same as defined in Definition 4.3. We

copied it as follows for easier referencing:
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Quoted text: “

Definition 5.2 (JP Model). Given a signature Σ = (Agt, V,D,R), an instance

of the justified perspective model M is defined as:

M = (Agt, V,D, π,O1, . . . ,Ok),

in which Agt, V , D are from the given signature, π is the evaluation function.

The detailed definition is given as follows:

• The domain of variable v ∈ V is Dv, which is a set of all possible values of v

(from the definition of the signature). In here, a “None” value represented

by symbol⊥ is included (Dv := Dv∪{⊥}), which represents that the value of

a variable is not part of a particular agents’ observation. A special complete

state is that a state with all variables assigned with ⊥, which denoted as s⊥

(s⊥ = {v=⊥| v ∈ V }). Thus, a special sequence is a sequence with all state

as s⊥, which denoted as s⃗⊥.

• The interpretation function π : S × R → {true, false} that determines

whether the atomic term r(Vr) is true in s. π is undefined if any of its

arguments ti is a variable v ∈ V that is not assigned a value in a local state

s, i.e. v ̸∈ s ∨ v ̸=⊥.

• Functions O1, . . . ,Ok are inherited from PWP model defined in Defini-

tion 3.4. In addition, Oi(s⃗) = [Oi(s⃗[0]), . . . ,Oi(s⃗[n])] for a sequence s⃗ with

length of n+ 1.

”

Similar, since a state is a set (of variable assignments), the set operations are also

applicable on the state, such as set union operator “∪” and set minus operator “\”. In

addition, we also follow Lemma 4.4 in the JP model, in which: for any variable v ∈ V ,

we have v=⊥∈ {v=e} and v ∈ {v=e} for any e ∈ Dv.

As for the functions, the retrieval function R and the justified perspective function f
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follow their original definitions (Definition 4.5 and Definition 4.6) in JP as well. Addi-

tionally, the function C for possible sequences (Definition 4.12) is included.

The last part is the semantics. Similarly as in the PWP model and the JP model, we

provide both complete semantics and ternary semantics. Since we are only introducing

the group belief operators in this chapter, the semantics for other operators are inherited

from their original definition in the corresponding model. Specifically, for individual

knowledge (including seeing) and belief operators, item (a) to item (h) from the JP model

is inherited (in Definition 4.17 for the complete semantics and in Definition 4.18 for the

ternary semantics). In addition, for the group seeing and knowledge operators, item (i)

to item (p) are adopted from item (g) to item (n) in Definition 3.12 for the complete

semantics and in Definition 3.22 for the ternary semantics by converting the input from

a state to a sequence. Therefore, the item index for the group belief operators starts

from character ‘q’. The full definitions (including all epistemic operators that our model

can handle) of each semantics are provided at the end of this thesis (In Section 6.1).

5.3.2 Semantics for Group Belief

In this section, we define group justified perspective functions for uniform belief, dis-

tributed belief, and common belief, and add ternary semantics for them.

5.3.2.1 Uniform Belief

Uniform Belief is straightforward. Since a uniform belief of φ is that everyone in the

group believes φ, the uniform justified perspective function is just a set union of every-

one’s individual justified perspectives.

Definition 5.3. (Uniform Justified Perspectives)

ef G(s⃗) =
⋃
i∈G

{fi(s⃗)}

Definition 5.4 (Ternary Semantics for Uniform Belief). Omitting the model M for

readability, uniform belief EBG for group G is defined:

(q) T [s⃗,EBGφ] = min({T [⃗g, φ] | g⃗ ∈ ef G(s⊥⟨s⃗⟩)})
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The ternary value of T [s⃗,EBGφ] depends on the agent that holds the most conservative

beliefs of φ.

While, for the complete semantics, whether all agents in the group uniformly believe φ

depends on all possible sequences that any agent believes possible.

Definition 5.5 (Complete Semantics for Uniform Belief). Uniform belief EBG for group

G is defined:

(q) M, s⃗ ⊨ EBGφ iff ∀i ∈ G, ∀w⃗ ∈ C(fi(s⃗), i),M, w⃗ ⊨ φ

That is, for each agent i in the group G, the set C(fi(s⃗), i) contains all possible sequences

that agent i believes possible. If and only if φ holds for all w⃗ ∈ C(fi(s⃗), i), we have

M, s⃗ ⊨ EBGφ.

5.3.2.2 Distributed Belief

Distributed Belief is more challenging than distributed knowledge. The Knowledge

Axiom T : Kiφ⇒ φ, which states that knowledge must be true, does not hold for belief.

This means that agents can hold incorrect beliefs. If we simply take the distributed

union of the perspectives for all agents i ∈ G, as it is done in PWP, we could obtain

conflicting beliefs, so the implicit distributed belief would be inconsistent. To ensure

consistency, we form the group distributed justified perspective instead of just uniting

each agent’s justified perspective. Intuitively, agents follow their own observations and

“listen” to agents that have seen variables more recently. The distributed perspective

function df is defined as follows.

Definition 5.6 (Distributed Justified Perspectives). The distributed justified perspec-

tive function for a group of agents G is defined as follows:

dfG([s0, . . . , sn]) = [s′0, . . . , s
′
n]
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where for all t ∈ [0, n] and all v ∈ dom(st):

ltv = max({j | v ∈
⋃

i∈GOi(sj) ∧ j ≤ t} ∪ {−1}), (1)

e = R([s0, . . . , st], ltv, v), (2)

s′′t = {v=e | st(v) = e ∨ v /∈
⋃

i∈GOi(st⟨{v=e}⟩)}, (3)

s′t = s⊥⟨s′′t ⟩. (4)

In this definition, the group distributed justified perspective follows everyone’s obser-

vation and uses the retrieval function R (in Definition 4.5) to identify the value of the

variables which are or were not seen by any agent from the group. Intuitively, given any

agent i in the group, the value from i’s observation in timestamp t, Oi(st), which leads

to knowledge, must be true (Axiom T) in st. While, the value of an unseen variable is

determined by anyone in the group that saw it last. To be specific, the last timestamp

the group sees v, ltv, is determined by the group observation (formed by union), and

then, value e is retrieved by identifying the closest value that is consistent with it. Line

(3) ensures the “group memory” is consistent with the group observation, while Line

(4) ensures the group justified perspective is a sequence of complete states. So, this

definition mimics the definition of the JP function from Definition 4.6, except that the

variable’s value in a state s′t are taken by the agent(s) that have the most recent view

of it.

Figure 5.3: State sequence s⃗ and dfG(s⃗) in Example 5.2.

Example 5.2. Let the set of variables be V = {x, y}, domains be Dx = Dy = {1, . . . , 6},
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and a state2 sequence be s⃗ = [s0, s1, s2], where: s0 = 1-2, s1 = 3-4 and s2 = 5-6. Assume

a sees x and y in s0, while b sees y in s1 and c sees x in s2. So, Oa(s⃗)=[1-2,τ -τ ,τ -τ ],

Ob(s⃗)=[τ -τ ,τ -4,τ -τ ] and Oc(s⃗)=[τ -τ ,τ -τ ,5-τ ]. This is visualised in Figure 5.3.

So, we can see from Example 5.2 that forming distributed belief is about finding the

observation from each agent and deducing the value of group unseen variables, following

the same intuition as JP Model (In Section 4.1). Missing values in group observations

(noted as “?”) are retrieved from the “group memory” (previous group observation),

equating to retrieval from the agent who last observed this value according to the times-

tamp. Thus, df G(s⃗) = [1− 2, 1− 4, 5− 4].

Definition 5.7 (Ternary Semantics for Distributed Belief). The distributed ternary

semantics are defined using function T , omitting the model M for readability:

(r) T [s⃗,DBGφ] = T [df G(s⊥⟨s⃗⟩), φ]

This semantics guarantees that the group distributed justified belief is consistent. That is

done by only merging agents’ observations into the group distributed observation, which

is consistent with the global state, and deducing the value of unseen variables from

it. This definition is particularly nice as many existing definitions of distributed belief

require us to define preference relations over e.g. agents or states, to resolve conflicts; see

e.g. [169]. In our definition, the preference relation is implicit – it prefers more recent

observations over older observations.

In order to give a definition for the complete semantics, identifying the possible sequences

that are distributedly believed by the group is necessary. Therefore, we propose the

following definition (adapted from the possible sequence function in Definition 4.12):

Definition 5.8 (Distributed Possible Sequence Function). Given a state sequence s⃗ for

agent i (could be either justified perspective of i, or a sequence of observations of i) with

length of n+1, all possible sequences that agree with s⃗ can be generated by the possible

sequence function, Cd : S⃗ ×Agt→ P(S⃗c), can be defined as:

Cd(s⃗, G) = {
[
w0, . . . , wn

]
| w0 ∈W0, . . . wn ∈Wn}

2We use the shorthand m-n to represent the state [x = m, y = n] and τ to represent the ‘value’ of an
unseen variable.
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where for all t ∈ [0, n]:

Wt = {w′ | w′ ∈W ′
t ,∀v ∈

⋃
i∈GOi(w

′) → v ∈
⋃

i∈GOi(s⃗[t])}

W ′
t = {sc⟨s⃗[t] \ s⊥⟩ | sc ∈ Sc}

This function is the same as the possible sequence function, which generates all possible

worlds inW ′
t and filters out worlds containing inconsistent observations inWt. The only

difference is the observation used to ensure consistency becomes the group distributed

observations (
⋃

i∈GOi(s⃗[t])).

Then, the complete semantics for the distributed belief can be defined as:

Definition 5.9 (Complete Semantics for Distributed Belief). Distributed belief DBG

for group G is defined:

(r) M, s⃗ ⊨ DBGφ iff ∀w⃗ ∈ Cd(df G(s⃗), G),M, w⃗ ⊨ φ

An intuitive example (Example 5.3) is given, adapted from Example 4.2, which is used

to demonstrate that the past value is removed by indirect inferences in the JP function.

Example 5.3. Consider a corridor with 3 rooms, r1, r2, and r3. Three agents a and b

are all located in r1, while agent c is located in r3. They can only observe the room that

they are in. Let a plan be agent b moving to r2.

The global sequence s⃗g, each agent’s observations Oi(s⃗g) and justified perspective fi(s⃗g)

are as follows:

• s⃗g is [{loca=r1, locb=r1, locc=r3}, {loca=r1, locb=r2, locc=r3}];

• Oa(s⃗g) = [{loca=r1, locb=r1}, {loca=r1}];

• fa(s⃗g) = [{loca=r1, locb=r1, locc=⊥}, {loca=r1, locb=⊥, locc=⊥}];

• Ob(s⃗g) = [{loca=r1, locb=r1}, {locb=r2}];

• fb(s⃗g) = [{loca=r1, locb=r1, locc=⊥}, {loca=r1, locb=r2, locc=⊥}];

• Oc(s⃗g) = [{locc=r3}, {locc=r3}];

• fc(s⃗g) = [{loca=⊥, locb=⊥, locc=r3}, {loca=⊥, locb=⊥, locc=r3}].
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The reasoning about each agent’s justified perspective can be found after Example 4.2.

While for the distributed justified perspectives, df {a,c} needs some discussion.

Since the locations of a and c are seen by themselves all the time, only the value of b

needs to be constructed. According to Definition 5.6, ltlocb is the latest timestamp that

variable locb is seen by any agent from the group {a, c}, which is 0 since no one sees b

in timestamp 1 and a saw b in timestamp 0. Then, following Line 2 in Definition 5.6,

R(s⃗g, 0, locb) returns r1, which is the value of locb when a and b were both in r1. However,

based on Line 3, if locb is r1, then locb should be in the distributed observation of a and

c, which indirectly infers that locb should not be r1. Therefore, we have:

df {a,c}(s⃗g) = [{loca=r1, locb=r1, locc=r3}, {loca=r1, locb=⊥, locc=r3}]

It seems there is no distributed belief in group {a, c} about b’s location. However, follow-

ing the complete semantics, we haveM, s⃗ ⊨ DB{a,c}(locb=r2) since Cb(df {a,c}(s⃗g), {a, c})

is {[{loca=r1, locb=r1, locc=r3}, {loca=r1, locb=r2, locc=r3}]}. Specifically, there are

three possible states in W ′
1 from Cb(df {a,c}(s⃗g), {a, c}), which are:

• w′
1 = {loca=r1, locb=r1, locc=r3}

• w′
2 = {loca=r1, locb=r2, locc=r3}

• w′
3 = {loca=r1, locb=r3, locc=r3}

While state w′
1 and w′

3 are removed when generating W1 from Cb(df {a,c}(s⃗g), {a, c})

because if locb=r1 or locb=r3, then the group of a and c should distributively see locb

in timestamp 1.

5.3.2.3 Common Belief

Common belief is the infinite nesting of beliefs. Our definition avoids having to calculate

the infinite regression by calculating the fixed point of the group’s perspectives.
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Definition 5.10 (Common Justified Perspectives). Given a set of perspectives (that is,

a set of sequences of states) S⃗, the common justified perspective is defined as:

cf G(s⃗) =


⋃

s⃗∈S⃗ ef G(s⃗) if
⋃

s⃗∈S⃗ ef G(s⃗) = s⃗

cf G(
⋃

s⃗∈S⃗ ef G(s⃗)) otherwise.

The function applies a set union on the uniform perspectives of the group for each input

perspective. Then, the common perspective function repeatedly calls itself by using the

output of one iteration as the input of the next iteration, until the input set and output

set are the same, which means a convergence of the common perspectives. Semantically

speaking, each iteration adds one level deeper nested perspectives of everyone’s uniform

belief for evaluation on whether everyone in the group believes.

The common justified perspectives function cf G contains the fixed point of all agents’

perspectives, their perspectives about others’ perspectives, and so on to infinite depth.

Although the depth is infinite, the definition of cf G converges in finite iterations:

Theorem 5.11. Given a state sequence of length n, the iterations needed for cf G(S⃗) to

converge are bounded above 2|V |×n.

Proof. Since for each variable in the last state of a justified perspective w⃗, its value is

either visible (same as its in the last state of the global perspective), or not visible (same

as its in the second-last state from w⃗), the number of possible states in each index of

a justified perspective is 2|V |. So, the number of possible perspectives given a global

state sequence s⃗ with a length of n is 2|V |×n. In calculating cf G, either the base case

holds (that is, combining the perspective of the group for all s⃗ ∈ S⃗ does not change the

common perspective), so it terminates and adds no new perspectives; or the recursive

step holds. In this case, the input of the cf function is a set that contains perspectives

from each agent in the format of S⃗ = {fi(s⃗), fi(s⃗′), · · · | ∀i ∈ G}. Then, we apply fj for

each agent j in the group G on each perspective from S⃗ as S⃗′ =
⋃

s⃗∈S⃗ ef G(s⃗). For each

fi(s⃗) from S⃗, we have fj(fi(s⃗)) in S⃗
′ for each agent j in the group G. With Theorem 4.11,

we have fj(fi(s⃗)) = fi(s⃗) when i = j. Therefore, we have S⃗ ⊆ S⃗′. At worst, we add

one new sequence each iteration, meaning that cf G(S⃗) converges by at most 2|V |×n

iterations.
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Although in the worst-case scenario, the maximum number of iterations is |cf G({s⃗})|,

practically, in our experiments, we find that it converges after a few iterations (see

Section 5.4).

Definition 5.12 (Ternary Semantics for Common Belief). The group ternary semantics

are defined using the function T , omitting the model M for readability:

(s) T [s⃗,CBGφ] = min({T [⃗g, φ] | g⃗ ∈ cf G({s⊥⟨s⃗⟩})})

Similar to the complete semantics for distributed belief, a new possible sequence function

is needed to identify all sequences that are commonly believed to be possible by the

group.

Definition 5.13 (Common Possible Sequence Function). Given a state sequence s⃗ for

agent i (could be either justified perspective of i, or a sequence of observations of i) with

length of n+1, all possible sequences that agree with s⃗ can be generated by the possible

sequence function, Cc : S⃗ ×Agt→ P(S⃗c), can be defined as:

Cc(s⃗, G) = {
[
w0, . . . , wn

]
| w0 ∈W0, . . . wn ∈Wn}

where for all t ∈ [0, n]:

Wt = {w′ | w′ ∈W ′
t , ∀v ∈ cO(G,w′) → v ∈ cO(G, s⃗[t])}

W ′
t = {sc⟨s⃗[t] \ s⊥⟩ | sc ∈ Sc}

cO(G, s) is defined in Definition 3.7

Compared to the distributed possible sequence function Cd, the common possible se-

quence function only removes a possible value when everyone in the group commonly

sees it in w′ but not in s⃗[t], which means everyone did not commonly see it before filling

in the missing variables with their possible values.

Then, the complete semantics for the distributed belief can be defined as:

Definition 5.14 (Complete Semantics for Common Belief). Common belief CBG for

group G is defined:

(s) (M, s⃗) ⊨ CBGφ iff ∀c⃗ ∈ cf G({s⃗}),∀w⃗ ∈ Cc(c⃗, G), (M, w⃗) ⊨ φ
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An example for group justified perspective functions is provided using the same problem

in Example 5.1 3 as follows:

Example 5.4. For example with Plan 5.1, let G = {a, b} We have ef G(s⃗) is {[τ, 6,

6, 6, 6], [τ, τ, τ, τ, 5]}. Then, since the current ef G(s⃗) is not equal to {s⃗}, we nestedly

apply ef G to generate cf G({s⃗}). From Theorem 4.11, we have fa(fa(s⃗)) = fa(s⃗) and

fb(fb(s⃗)) = fb(s⃗). fb(fa(s⃗)) is [τ, τ, τ, τ, 6] and fa(fb(s⃗)) is [τ, τ, τ, τ, 5]. So that, the current

cf G is a set that contains the following perspectives: 1: [τ, 6, 6, 6, 6]; 2: [τ, τ, τ, τ, 5]; 3:

[τ, τ, τ, τ, 6]; 4: [τ, τ, τ, τ, 5].

Since this is also not equal to ef G(s⃗), we again apply ef G on each perspective. Item (1)

and (2) result in the same set, as the previous step, while both fa and fb on item (3)

result in item (3) itself and both fa and fb on item (4) result in item (4) itself. Now,

we have that cf G({s⃗}) has converged.

For ternary semantics, following Example 5.4, we have ef G(s⃗) = {[τ, 6, 6, 6, 6], [τ, τ,

τ, τ, 5]}. The ternary representation T [s⃗,EBGn < 7] is evaluated as the minimum

value in {T [[τ, 6, 6, 6, 6], n < 7], T [[τ, τ, τ, τ, 5], n < 7]}, which is {1, 1} due to {π(6, n <

7), π(5, n < 7)}.

For the T [s⃗,CBGn < 7], the (converged) common group justified perspectives are {[τ, 6,

6, 6, 6], [τ, τ, τ, τ, 5], [τ, τ, τ, τ, 6], [τ, τ, τ, τ, 5]}, which is evaluated as {1, 1, 1, 1}. Therefore,

T [s⃗,CBGn < 7] is 1.

To sum up, this section presents semantics for group joint, distributed, and common be-

lief. Given that joint belief evaluates each agent’s justified perspective, while distributed

belief synthesizes a justified perspective from a group’s collective observations, the time

complexity of these is polynomial, specifically scaled by the number of agents, analogous

to the JP model. Theorem 5.11 shows that the worst-case time complexity for common

belief is exponential, factoring in the iterations to identify the fix-point set (common

justified perspectives) of individual justified perspectives.

3For simplicity, we only show the value of number q instead of the agent’s local state. The variables
(peeking a p), (peeking a q), (peeking b p) and (peeking b q) are visible to all agents at all times.
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5.4 Experiments

Since there are no planning benchmarks for group belief, we select three domains (Num-

ber, Grapevine, and Big Brother Logic) from the previous chapter and add several chal-

lenging problem instances (7 for each domain) that use group belief, including instances

with inconsistent or nested beliefs.

5.4.1 Implementation

The source code of the planner, the domain, the problem, and external function files, as

well as experimental results, are downloadable from:

https://github.com/guanghuhappysf128/bpwp/tree/aamas.

We use the F-PDDL encoding (in Section 4.4.1.4). To demonstrate the efficiency of

our model instead of the particular search algorithms, we use the BrFS (Breadth-First

Search) search algorithm with duplicate removal, which is bfsdc in Section 4.4.2.3.

The experiments are run on a Linux machine (Ubuntu 20.04) with 8 CPUs (Intel i7-

10510U 1.80GHz) and 16GB RAM. The external functions, implemented in Python,

evaluate the belief formulae (either in action preconditions or goals) as search nodes are

generated. We implement the group justified perspective model and its corresponding

ternary semantics. All results are shown in Table 5.1.

5.4.2 Number

Number is an adapted domain from the coin domain in Section 4.5.1.4. The problem

settings, as described in Example 5.1, are of agents taking turns to peek into boxes

containing one changeable number each. For simplicity, we only use one number q in

the experiments. We created 7 instances to evaluate our group’s justified perspective

operators and ran these through our planner. As can be seen from the columnMax and

Avg, the number of iterations in cf G that it takes to find a fixed-point for a common

perspective set is around 2− 3, which is nearly the same as checking one of the nested

uniform perspectives. The planner was able to solve the problems with low time costs

even for a complex problem such as N4.

https://github.com/guanghuhappysf128/bpwp/tree/aamas
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ID Exp Gen
Common External Total |p| Goals
Max Avg |calls| AT(ms) T(s)

N0 39 140 0 0 207 0.085 0.048 4 EBGq < 6
N1 7 25 0 0 33 0.095 0.006 2 DBGq < 6
N2 39 140 4 2.199 207 0.255 0.075 4 CBGq < 6
N3 120 435 4 2.461 668 0.414 0.354 6 EBGq < 6 ∧ ¬CBGq < 6
N4 347 1273 5 2.716 2041 0.798 1.906 8 EBGEBGq < 6 ∧ ¬CBGq < 6
N5 31 111 3 2.134 161 0.307 0.068 4 ¬EBGn=5 ∧ ¬EBGn=6 ∧ CBGq < 6
N6 50 177 3 1.649 257 0.301 0.107 4 BaCBGn=6 ∧BbCBGn=5

G0 5 35 4 3.028 41 3.17 0.149 1 CBGscta= t
G1 66 450 4 3.195 691 5.94 4.542 4 EBGscta= t ∧ CBGscta= t → 1

2
G2 240 1828 5 3.496 3282 9.984 35.764 6 EBGEBGscta= t ∧ CBGscta= t → 1

2
G3 103 913 4 3.018 1138 4.882 6.14 3 BbCBGscta=f ∧ CB{a,c,d}scta= t
G4 328 2959 4 2.664 3792 10.717 42.776 4 CB{b,c}CBGscta=f ∧ CB{a,d}scta= t

G5 66 450 4 3.195 691 6.469 4.89 4 DBGEBGscta= t ∧ CBGscta= t → 1
2

G6 70 455 0 0 734 1.326 1.396 4 DBGEBGscta= t ∧BaEBGscta= t → 1
2

BBL0 2 8 4 3.111 11 9.387 0.107 1 CBGo2=2
BBL1 5 19 4 3.143 26 10.617 0.279 2 EBGo2=2 ∧ CBGo2=2 → 1

2
BBL2 177 708 4 3.492 1011 21.724 22.072 5 CBGo1=1
BBL3 189 756 4 3.485 1067 42.853 45.841 5 CBG(o1=1 ∧ o2=2)
BBL4 1595 6380 0 0 10295 0.486 6.05 9 EBG(o1=1 ∧ o2=2 ∧ o3=3)
BBL5 1595 6380 0 0 10295 0.39 5.007 9 EBGo1 < o2
BBL6 2 8 0 0 11 0.663 0.009 1 DBGo1 < o2

Table 5.1: Result for three domains (N0-N6, G0-G6, BBL0-BBL6 are instances for
Number, Grapevine and BBL respectively). G represents the group of agents – {a, b}
for Number and BBL; and, {a, b, c, d} for Grapevine. ‘Exp” and “Gen” are the number
of nodes expanded and generated during search, “Max” and “Avg” under “Common”
as the maximum and average level of nesting required to compute cf G, |calls| and
“AT(ms)” under “External” as the number and average time of external function calls,
and |p| as plan length. Since we implement the ternary semantics, we denote the ternary

evaluation result T [s⃗, φ] equal to 0, 1
2 and 1 as ¬φ, φ→ 1

2 and φ respectively.

Item (1) would be solved by just one agent peeking into the box and the number de-

creased by 1. Items (0) and (2) are solved by decrementing the number first and all

agents take turns to peek, as both of the agents a and b uniformly and commonly be-

lieve n = 5. Items (N3) and (N4) are more challenging and deserve some discussion. Item

(N3) means both a and b believe q is smaller than 6, while they do not commonly be-

lieve it. The returned plan is: “(peek a)”, “(return a)”, “(peek b)”, “(decrement”,

“(return b)”, “(peek a)”. Intuitively, a sees q first, and then b sees q changed. When

a sees q again, as the design decision made in the JP function (Definition 4.6), a will

assume when b sees q, q is the value a believes (which is 6).

Item (N4) means both a and b believe that both of them believe q is smaller than 6,

while they still do not commonly believe it. The returned plan is: “(peek a)”, “(return

a)”, “(peek b)”, “(subtraction)”, “(return b)”, “(peek a)”, “(return a)”, “(peek

b)”. It is simpler to show the perspectives of each agent 4:

4Here, we also omit peekinga and peekingb for readability.
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[fa(s⃗)] = [τ, 6, 6, 6, 6, 6, 5, 5, 5]

[fb(s⃗)] = [τ, τ, 6, 6, 6, 6, 5, 5, 5]

[fb(fa(s⃗))] = [τ, τ, τ, 6, 6, 6, 6, 6, 5]

[fa(fb(s⃗))] = [τ, τ, τ, 6, 6, 6, 5, 5, 5]

[fa(fb(fa(s⃗)))] = [τ, τ, τ, 6, 6, 6, 6, 6, 6]

In the last state in the perspective, a sees q , where the q is fb(fa(s⃗))[6] = 6. So that we

have EBGEBGq < 6 ∧ ¬CBGq < 6. Item (5) and item (6) are the same as Task 2 and

Task 1 in our motivating example (Example 5.1) respectively.

5.4.3 Grapevine

Grapevine is a benchmark domain in epistemic planning [88]. In two adjacent rooms, 4

agents, in the same room, each have their own secret. All agents can move between the

two rooms and share or lie about a secret scti, if either the secret is their own secret

or they have heard the secret from someone. That is, they need to believe the secret

(Biscti) before they can share or lie about it. Initially, all agents a, b, c, d are located in

the left room, and they only know about their own secrets.

We created 7 instances inspired from the original non-group instances [88], which include

some formulae with arbitrary nesting, such as DB nested with EB . As outlined in the

table, the average number of iterations of cf G used to find the fixed point of common

perspectives is around 2.5− 3.5.

As for the specific group beliefs in the goal conditions, item (0) is trivial. To form a

common belief in the group about scta, agent a just needs to share scta when everyone

is in the same room.

Items (G1) and (G2) are more interesting. Item (G1) represents that everyone in a

group believes scta but there is no common belief on scta, while item (G2) represents

that everyone in a group believes that everyone believes scta, but still no common belief

is formed. The plan to solve (G1) is still intuitive: “(move-right b)”, “(sharing a

scta)”, “(move-right a)” and “(sharing a scta)”. One of the agents moves to the

other room first, then a shares scta, and moves to the other room to share with that

agent individually. The plan for (G2) is the same as (G1) but with 2 extra actions:

“(move-left b)” and “(sharing b,scta)”. Intuitively, after everyone knows scta, agent



Planning with Group Justified Perspectives 219

b returns to the original room and tells others that it believes the scta as well by sharing

scta.

Items (3) and (4) form different common beliefs. Item (3) is formed by agent a lying

about scta while b is in the room and shares the actual secret value after b leaves. While

item (4) is formed by agent a doing the same process for both agent b and c.

Different from the plan of items (1) and (5), item (6) contains BaEBGscta → 1
2 . So that

a’s secret is shared by another agent to b in another room rather than a.

5.4.4 Big Brother Logic (BBL)

BBL [2] is a domain that stationary cameras can turn and observe with a certain an-

gular range in a two-dimensional plane. The cameras do not have any volume to block

others’ line of sight. For simplicity, we limit the camera’s angle of turning to a set

{0◦,±45◦,±90◦,±135◦, 180◦} and the field is in a 5 × 5 grid. Initially, camera a and b

are located at (3, 3) and (1, 1) with directions of −135◦ and 90◦, while o1, o2, and o3 are

located at (0, 0), (2, 2), and (3, 3), with values 1, 2, and 3 respectively. We have run 7

instances adapted from the origin group knowledge instance in the PWP approach (in

Section 3.6.2). The average number of iterations of cf G needed to find a fixed-point com-

mon perspective is slightly higher than 3.0− 3.5; and again, the main cost is evaluating

epistemic formulae, but the search algorithm also contributes to computation time.

Items (BBL5) and (BBL6) are worthy of discussion. For item (BBL5), both agents need

to turn around to see both o1 and o3. While for item (BBL6), only agent b turns to see

o3. By “pulling” agent a’s and b’s justified perspective together, we have both o1 and

o3 in df G(s⃗)[n].

5.5 Conclusion

In this chapter, we extend the JP model in Chapter 4 to handle group beliefs, namely

the GJP model; provide definitions for ef (Definition 5.3), df (Definition 5.6), and

cf (Definition 5.10) to construct the group’s uniform justified perspectives, the group’s

distributed justified perspective, and the group’s common justified perspectives; define
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ternary (in Definition 5.4, Definition 5.7, and Definition 5.12) and complete (in Defi-

nition 5.5, Definition 5.9, and Definition 5.14) semantics for all group belief operators

(EB , DB , and CB); implement its ternary semantics as a model-free planning tool; and

demonstrate its expressiveness and efficiency on new domains. The results show that

our approach can effectively handle multi-agent epistemic planning problems with group

beliefs and do so efficiently, even with a simple prototype F-PDDL planner implementing

a Breadth First Search with duplication elimination.



Chapter 6

Conclusion and Future Directions

In this chapter, we first summarize our work, followed by stating its contributions. Then,

we discuss the limitations of our work and propose future directions.

6.1 Summary

This thesis has explored the challenges and advancements in epistemic planning, specifi-

cally addressing issues of scalability, generalizability, expressiveness, and efficiency through

novel planning approaches based on Justified Perspectives (JP). The epistemic relations

this work handles include agents’ individual or group (nested) knowledge and beliefs,

Given a signature Σ of the problem, those epistemic relations can be formally represented

by the following language:

Definition 6.1 (Language LGKB(Σ)). Given a signature Σ = (Agt, V,D,R), the lan-

guage LGKB(Σ) is defined by the grammar:

φ ::= r(Vr) | ¬φ | φ ∧ φ | Siv | Siφ | Kiφ

φ ::= ESGφ | DSGφ | CSGφ | EKGφ | DKGφ | CKGφ

φ ::= Biφ | EBGφ | DBGφ | CBGφ

where r ∈ R, Vr ⊆ V are the terms of r, r(Vr) are predicates and R is the set of all

predicates; i ∈ Agt is any agent and G ⊆ Agt is a group of agents.

221
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Then, following our definitions of the state (Definition 3.2) and notation of the state

space (S), the complete state space (Sc), the sequence space (S⃗), and the complete

sequence space (S⃗c), we can define an instance of our model as:

Definition 6.2 (Model). Given a signature Σ = (Agt, V,D,R), an instance of our model

M is defined as:

M = (Agt, V,D, π,O1, . . . ,Ok),

in which Agt, V , D are from the given signature, π is the evaluation function. The

detailed definition is given as follows:

• The domain of variable v ∈ V is Dv, which is a set of all possible values of v (from

the definition of the signature). In here, a “None” value represented by symbol ⊥

is included (Dv := Dv ∪ {⊥}), which represents that the value of a variable is not

part of a particular agents’ observation. A state with all variables assigned with

⊥, denoted as s⊥ (s⊥ = {v=⊥| v ∈ V }). Thus, a special sequence is a sequence

with all states as s⊥, denoted as s⃗⊥.

• The interpretation function π : S × R → {true, false} determines whether the

atomic term r(Vr) is true in s. π is undefined if any of its arguments ti is a

variable v ∈ V that is not assigned a value in a given state s, i.e. v ̸∈ s ∨ v ̸=⊥.

• Functions O1, . . . ,Ok are inherited from PWP model defined in Definition 3.4. In

addition, Oi(s⃗) = [Oi(s⃗[0]), . . . ,Oi(s⃗[n])] for a sequence s⃗ with length of n+ 1.

Then, with the definitions of the sequence override function ⟨ ⟩ (Definition 4.1), the

retrieval function R (Definition 4.5), the justified perspective function fi (Definition 4.6),

the common observation function cO (Definition 3.7), the uniform justified perspective

function ef (Definition 5.3), the distributed justified perspective function df (Defini-

tion 5.6), and the common justified perspective function cf (Definition 5.10), we can

provide a ternary semantics for our model with language LGKB(Σ) as follows:

Definition 6.3 (Ternary Semantics). Give a signature Σ = (Agt, V,D,R) and an in-

stance of our model M = (Agt, V,D, π,O1, . . . ,Ok) with the current state sequence as s⃗

with n+1 states, the ternary semantics for language LGKB(Σ) can be defined as (where

the model M is omitted for readability):
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(a) T [s⃗, r(Vr)] = 1 if π(s⃗[n], r(Vr)) = true;

0 else if π(s⃗[n], r(Vr)) = false;

1
2 otherwise

(b) T [s⃗, ϕ ∧ ψ] = min(T [s⃗, ϕ], T [s⃗, ψ])

(c) T [s⃗,¬φ] = 1− T [s⃗, φ]

(d) T [s⃗, Siv] = 1
2 if v /∈ s⃗[n] or i /∈ s⃗[n]

0 else if v /∈ Oi(s⃗[n])

1 otherwise

(e) T [s⃗, Siφ] = 1
2 if T [s⃗, φ] = 1

2 or i /∈ s⃗[n];

0 else if T [Oi(s⃗), φ] = T [Oi(s⃗),¬φ] = 1
2 ;

1 otherwise

(f) T [s⃗, Kiφ] = T [s⃗, φ ∧ Siφ]

(g) T [s⃗, Hiφ] = 1
2 if T [s⃗, φ] = 1

2

0 else if T [s⃗, Biφ] = T [s⃗, Bi¬φ] = 1
2 ;

1 otherwise

(h) T [s⃗, Biφ] = T [fi(s⃗⊥⟨s⃗⟩), φ]

(i) T [s⃗,ESGα] = min({T [s⃗, Siα] | i ∈ G}),

(j) T [s⃗,EKGφ] = T [s⃗, φ ∧ ES iφ],

(k) T [s⃗,DSGv] = 1
2 if v /∈ s⃗[n] or ∀i ∈ G, i /∈ s⃗[n];

0 if v /∈
⋃

i∈GOi(s⃗[n]);

1 otherwise,

(l) T [s⃗,DSGφ] = 1
2 if T [s⃗, φ] = T [s⃗,¬φ] = 1

2 or ∀i ∈ G, i /∈ s⃗[n];

0 if T [
⋃

i∈GOi(s⃗), φ] = T [
⋃

i∈GOi(s⃗),¬φ] = 1
2 ;

1 otherwise,

(m) T [s⃗,DKGφ] = T [s⃗, φ ∧DSGφ],

(n) T [s⃗,CSGv] = 1
2 if v /∈ s⃗[n] or ∃i ∈ G, i /∈ s⃗[n];

0 if v /∈ cO(G, s⃗[n]);

1 otherwise,

(o) T [s⃗,CSGφ] = 1
2 if T [s⃗, φ] = T [s⃗,¬φ] = 1

2 or ∃i ∈ G, i /∈ s⃗[n];

0 if T [cO(G, s⃗), φ] = T [cO(G, s⃗),¬φ] = 1
2 ;
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1 otherwise,

(p) T [s⃗,CKGφ] = T [s⃗, φ ∧ CSGφ],

(q) T [s⃗,EBGφ] = min({T [⃗g, φ] | g⃗ ∈ ef G(s⊥⟨s⃗⟩)})

(r) T [s⃗,DBGφ] = T [df G(s⊥⟨s⃗⟩), φ]

(s) T [s⃗,CBGφ] = min({T [⃗g, φ] | g⃗ ∈ cf G({s⊥⟨s⃗⟩})})

where:

⋃
i∈GOi(s⃗) is [

⋃
i∈GOi(s⃗[0]), . . . ,

⋃
i∈GOi(s⃗[0])],

cO(G, s⃗) is [cO(G, s⃗[0]), . . . , cO(G, s⃗[n])].

Then, with the definitions of the possible sequence function C (Definition 4.12), the

distributed possible sequence function Cd (Definition 5.8), and the common possible

sequence function Cc (Definition 5.13), we can define the complete semantics as follows:

Definition 6.4 (Complete Semantics). Give a signature Σ = (Agt, V,D,R) and an

instance of our model M = (Agt, V,D, π,O1, . . . ,Ok) with the current state sequence as

s⃗ with n+ 1 states, the complete semantics for language LGKB(Σ) can be defined as:

(a) (M, s⃗) ⊨ r(Vr) iff π(s⃗[n], r(Vr)) = true

(b) (M, s⃗) ⊨ ϕ ∧ ψ iff (M, s⃗) ⊨ ϕ and (M, s⃗) ⊨ ψ

(c) (M, s⃗) ⊨ ¬φ iff (M, s⃗) ̸⊨ φ

(d) (M, s⃗) ⊨ Siv iff v ∈ Oi(s⃗[n])

(e) (M, s⃗) ⊨ Siφ iff ∀g⃗ ∈ C(Oi(s⃗), i), (M, g⃗) ⊨ φ or

∀g⃗ ∈ C(Oi(s⃗), i), (M, g⃗) ⊨ ¬φ

(f) (M, s⃗) ⊨ Kiφ iff (M, s⃗) ⊨ φ ∧ Siφ

(g) (M, s⃗) ⊨ Hiφ iff (M, s⃗) ⊨ Biφ, or (M, s⃗) ⊨ Bi¬φ

(h) (M, s⃗) ⊨ Biφ iff ∀g⃗ ∈ C(fi(s⃗), i), (M, g⃗) ⊨ φ

(i) (M, s⃗) ⊨ ESGα iff for all i ∈ G, (M, s⃗) ⊨ Siα

(j) (M, s⃗) ⊨ EKGφ iff (M, s⃗) ⊨ (φ ∧ ESGφ)

(k) (M, s⃗) ⊨ DSGv iff v ∈
⋃

i∈GOi(s⃗[n]) or |Dv| = 1

(l) (M, s⃗) ⊨ DSGφ iff ∀w⃗ ∈ Cd(
⋃

i∈GOi(s⃗), G),M, w⃗ ⊨ φ or

∀w⃗ ∈ Cd(
⋃

i∈GOi(s⃗), G), (M, w⃗) ⊨ ¬φ

(m) (M, s⃗) ⊨ DKGφ iff (M, s⃗) ⊨ (φ ∧DSGφ)
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(n) (M, s⃗) ⊨ CSGv iff v ∈ cO(G, s⃗[n]) or |Dv| = 1

(o) (M, s⃗) ⊨ CSGφ iff ∀w⃗ ∈ Cc(cO(G, s⃗)), (M, w⃗) ⊨ φ or

∀w⃗ ∈ Cc(cO(G, s⃗)), (M, w⃗) ⊨ ¬φ

(p) (M, s⃗) ⊨ CKGφ iff (M, s⃗) ⊨ (φ ∧ CSGφ)

(q) (M, s⃗) ⊨ EBGφ iff ∀i ∈ G, ∀w⃗ ∈ C(fi(s⃗), i), (M, w⃗) ⊨ φ

(r) (M, s⃗) ⊨ DBGφ iff ∀w⃗ ∈ Cd(df G(s⃗), G), (M, w⃗) ⊨ φ

(s) (M, s⃗) ⊨ CBGφ iff ∀c⃗ ∈ cf G({s⃗}),∀w⃗ ∈ Cc(c⃗, G), (M, w⃗) ⊨ φ

where:

⋃
i∈GOi(s⃗) is [

⋃
i∈GOi(s⃗[0]), . . . ,

⋃
i∈GOi(s⃗[0])],

cO(G, s⃗) is [cO(G, s⃗[0]), . . . , cO(G, s⃗[n])].

Moreover, we show the soundness and completeness of our logic, as well as the axiomatic

system it follows, by proposing and proving several theorems. In addition, we formalized

the epistemic planning problems that can be solved by our model as EP-NM-F-STRIPS

(in Section 4.4.1.3) and show its encoding with a PDDL-like language, F-PDDL (in

Section 4.4.1.4). As the problem becomes non-Markovian, we implement several search

algorithms (in Section 4.4.2.3) that also work for a non-Markovian setting, with duplica-

tion elimination (in Section 4.4.2.1) for EP-NM-F-STRIPS and ‘Have Not Seen‘ pruning

(in Section 4.4.2.2) for a subset of EP-NM-F-STRIPS (EPDDO).

Last but not least, to demonstrate the efficiency and expressiveness of our model, we

perform experiments on benchmark domains, including SCs (in Section 4.5.1.1), Coin (in

Section 4.5.1.4), Corridor (in Section 4.5.1.2), and Grapevine (in Section 4.5.1.3), as well

as some trickier domains, which are either too complex or impractical to be modeled

by other approaches, including BBL (in Section 4.5.1.5). Furthermore, we perform

comprehensive empirical experiments in Section 4.5.2 to compare the implemented search

algorithms and examine their performance (efficiency) on a large scale.

6.2 Contribution

This thesis answered the research question in Section 1.2, including the sub-research

questions in Section 2.5.1. The model we proposed is an efficient, expressive, gener-

alizable, and scalable framework for solving epistemic planning problems, unlike other

existing approaches. The efficiency is shown by our experimental results (in Section 3.6,
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Section 4.5 and Section 5.4), while the scalability is ensured as our model reasons about

epistemic relations in polynomial time (in Section 4.3.3.3). The usage of the exter-

nal function with PDDL-like encoding (F-PDDL), which can be implemented by any

programming language, ensures the expressiveness of our approach. As mentioned in

Section 3.5.2, in order to model problem instances in a domain, the modeler only has

to define the observation function (the seeing rule of this domain). This means the

user does not need to have a comprehensive understanding of epistemic logic to use our

framework, which ensures its generalizability.

Our primary contributions are summarized as follows:

• Extension of Agent’s Perspective Model: We developed multiple semantic

formats for it (named the new model as PWP model), balancing efficiency and

completeness in knowledge reasoning.

• Justified Perspective (JP) Model: We introduced a framework that integrates

justified beliefs, allowing agents to reason over unseen information using current

and past observations.

• Formalization of Epistemic Logic Encoding: A robust encoding schema was

proposed to model epistemic planning problems (EP-NM-F-STRIPS) in a struc-

tured planning language (F-PDDL).

• Development of an Efficient Planner: We implemented a F-STRIPS plan-

ner with state sequence as its external function input, and provided various search

algorithms, improving computational feasibility while preserving epistemic expres-

siveness.

• Expansion to Multi-Agent Group Beliefs: We extended JP to group epis-

temics, handling distributed belief and common belief efficiently.

• Comprehensive Empirical Evaluation: Our experiments demonstrated the

effectiveness of our approach over existing epistemic planning methods in terms of

scalability and expressiveness.

Together, these contributions push the boundaries of planning-based epistemic reasoning

in multi-agent systems and provide a foundation for applying these models in real-world

AI applications.
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6.3 Limitation

Despite the progress made, this research has certain limitations, which are mainly caused

by the planning assumptions.

Although our epistemic reasoning process is shown to be polynomial, the lack of an

efficient heuristic function is the bottleneck that limits the performance of our planner.

This was caused by the epistemic planning problem becoming non-Markovian, which

makes most of the state-of-the-art heuristic functions inapplicable, such as delete relax-

ation [72].

In addition, as classical planning is the basic fragment of planning-based techniques, the

assumptions it follows limit its potential for real-world application. For example, the

static assumption (Assumption 5) means the state only changes by the acting agent.

This assumption does not make sense in many applications such as robotics, in which

the environment in the real world could also change the state. For example, gravity

could change the position of a falling object.

Another limitation is that the epistemic planning is claimed to be useful in a multi-agent

cooperation setting or a human-agent interaction setting. However, most of the research

in epistemic planning is based on centralised planning, which is not suitable for either

setting.

6.4 Future Direction

This thesis provides a foundation for future work in epistemic planning, with several

promising directions for further exploration.

Firstly, an efficient heuristic function for non-Markovian problems (or just EP-NM-F-

STRIPS problems) would significantly improve the performance of our planner. We

believe the key to finding such a heuristic function lies in two aspects, the agents’

justified perspectives and the width-based search [80]. The agents’ justified perspectives

are used to evaluate epistemic formulae in the problem, which are used for duplication

elimination. It acts like extracted features of the state sequence. In addition, width-

based search algorithms can have decent performance without using any information
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from the action model [63], which means it only uses information from the current

state. Our potential idea is to use the last states of all justified perspectives as the state

representation to implement the width-based search algorithms.

Secondly, relaxing the assumptions of epistemic planning is another choice to improve

its potential for real-world applications. Using the static assumptions as an example,

currently, in the JP model, agents assume the unseen variables stay unchanged until they

see evidence to suggest otherwise. This intuition does not make sense when reasoning

about dynamic variables, such as the position of a falling object. Agents should assume

the changing pattern of the variable, h = 1
2gt

2 for a falling object, and predict its height

based on the last observation and its changing pattern when they no longer see it. There

is an on-going work [170] (supervised by me) to address this assumption. By integrating

a model of evolution for state variables, the new Predictive Justified Perspective (PJP)

model is able to handle the changing variables through a value updated mechanism

based on existing observations. Although the newly generated perspectives (what agents

believe) are not necessarily subsets of originated observations (what agents see), the se-

mantics of the new model is proven to be still in KD45. In addition, by changing this

value updated mechanism (predictive model) into: a noise handling mechanism, such as

Kalman Filter [171]; or an outlier rejection mechanism, such as Random Sample Con-

sensus (RANSAC) [172], the updated JP model is able to handle the noisy observations

(relaxing Assumption 3), which is more suitable for a real-world application.

Last but not least, most of the existing work on epistemic planning follows a centralised

setting, which is not suitable for its application. Agents’ ability to reason about epistemic

logic is essential when it’s in a decentralised multi-agent setting to interact with other

agents preferably without a predefined communication protocol. Thus, investigating

decentralised epistemic planning is essential for its multi-agent applications. Besides,

whether the epistemic planning framework can be used in a human-agent interaction

setting is also important. Research in this setting is limited to a few instances [173, 174]

However, none of those works contain comprehensive human experiments to verify the

viability of using epistemic planning to model human belief inferences. Furthermore,

the recent explosion of research on Large Language Models (LLMs) allows the epistemic

planning model to potentially assess LLMs’ reasoning capabilities [175, 176].
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Byzantine Generals Domain

The form of the common knowledge between two agents a and b does not only rely on

the intersection on both agents’ perspectives, but also relies on the intersection on both

agents’ nested perspectives over that intersection, etc. Until we reach a fixed point,

which one intersection l of agents’ nested perspectives is the same as the intersection on

agents’ perspectives over l. A common example is provided as follows:

The classic example is the Byzantine Generals:

Example A.1. There are 2 generals who cannot directly communicate and must decide

on when to attack their common enemy. Each general will attack only if the 2 generals

have common knowledge of the time of the attack, but such (infinitely-nested) common

knowledge cannot be attained by sending a messenger back and forth k times between the

generals, since on the last trip the messenger could fail to arrive.

Let a and b be two generals, pa and pb be messages they want to send to each other.

For simplicity, let’s set the maximum nested depth is 4. The initial state is:

{pa, KaKaKapa, pb, KbKbKbpb}.

By sending the messenger from a to b, the current state now becomes:

{pa, KaKaKapa, pb, KbKbKbpb, KbKbKbpa, KbKbKapa, KbKaKapa}.

After that, let b send messenger back, the state becomes:
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{pa, KaKaKapa, KaKaKapb, KaKaKbpb, KaKbKbpb, KaKbKapa, KaKbKbpa,

KaKaKbpa, pb,KbKbKbpb, KbKbKbpa, KbKbKapa, KbKaKapa}.

Then, let’s apply the perspective functions on the current state:

Oa(s) = {KaKapa,KaKapb,KaKbpb,KbKbpb,KbKapa,KbKbpa,KaKbpa, }

Ob(s) = {KbKbpb,KbKbpa,KbKapa,KaKapa}.

If we query common knowledge, we must evaluate the intersection between Oa(s) and

Ob(s), denoting as s′, which is:

s′ = {KbKbpb,KbKbpa,KbKapa,KaKapa}.

But for common knowledge, we need to apply perspective functions until we reach

termination. Applying another layer of perspective function on s′:

Oa(s
′) = {Kapa} and Ob(s

′) = {Kbpb,Kbpa,Kapa}

Their intersection s′′ is {Kapa}.

Since s′ ̸= s′′, we must apply another layer of perspective function, and then we will

get their intersection becomes an empty set, which is their common knowledge. As the

fixed point is an empty set, there is no common knowledge between a and b.

Overall, their nth perspective function intersection would be the sender’s local perspec-

tive over k−nth messenger sending. Their perspectives are never the same between the

time k−nth and k−n− 1th, and it terminates as empty. Thus, they will never achieve

common knowledge by sending messenger back and forth.
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PDDL Examples

Here we give the example PDDL files representing classical planning problems mentioned

in the main body of this thesis.

B.1 Example NIB problem using PDDL 1.0

The NIB problem can be found in Example 2.1. Although it is in the main body of this

thesis, for easier reference, we copy the code example for the domain file as follows:

1 (define (domain NIB)
2

3 (: requirements :strips :typing :negative -preconditions)
4

5 (: types
6 agent num value
7 )
8

9 (: predicates
10 (peeking ?a - agent ?n - num)
11 (standing ?a - agent)
12 (free ?n - num)
13 (value ?n - num ?v - value)
14 (increasing ?v1 ?v2 - value)
15 (decreasing ?v1 ?v2 - value)
16 )
17

18 (: action peek
19 :parameters (?a - agent ?n - num)
20 :precondition (and
21 (standing ?a)
22 (free ?n)
23 )
24 :effect (and
25 (peeking ?a ?n)
26 (not (free ?n))

231



Conclusion 232

27 (not (standing ?a))
28 )
29 )
30

31 (: action return
32 :parameters (?a - agent ?n - num)
33 :precondition (and
34 (peeking ?a ?n)
35 )
36 :effect (and
37 (free ?n)
38 (standing ?a)
39 (not (peeking ?a ?n))
40 )
41 )
42

43 (: action increment
44 :parameters (?n - num ?v1 ?v2 - value)
45 :precondition (and
46 (value ?n ?v1)
47 (increasing ?v1 ?v2)
48 )
49 :effect (and
50 (value ?n ?v2)
51 (not (value ?n ?v1))
52 )
53 )
54

55 (: action decrement
56 :parameters (?n - num ?v1 ?v2 - value)
57 :precondition (and
58 (value ?n ?v1)
59 (decreasing ?v1 ?v2)
60 )
61 :effect (and
62 (value ?n ?v2)
63 (not (value ?n ?v1))
64 )
65 )
66 )

Code Example B.1: PDDL1.0 Domain: NIB

1 (define (problem NIB_example)
2 (: domain NIB)
3 (: objects
4 a b - agent
5 p q - num
6 v0 v1 v2 v3 v4 v5 v6 v7 v8 v9
7 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
8 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29
9 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39

10 v40 v41 v42 v43 v44 v45 v46 v47 v48 v49
11 v50 v51 v52 v53 v54 v55 v56 v57 v58 v59
12 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69
13 v70 v71 v72 v73 v74 v75 v76 v77 v78 v79
14 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89
15 v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 - value
16 )
17

18 (:init
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19 (standing a)
20 (standing b)
21

22 (free p)
23 (free q)
24

25 (value p v4)
26 (value q v6)
27

28 (increasing v0 v1)(decreasing v1 v0)
29 (increasing v1 v2)(decreasing v2 v1)
30 (increasing v2 v3)(decreasing v3 v2)
31 (increasing v3 v4)(decreasing v4 v3)
32 (increasing v4 v5)(decreasing v5 v4)
33 (increasing v5 v6)(decreasing v6 v5)
34 (increasing v6 v7)(decreasing v7 v6)
35 (increasing v7 v8)(decreasing v8 v7)
36 (increasing v8 v9)(decreasing v9 v8)
37 (increasing v9 v10)(decreasing v10 v9)
38 (increasing v10 v11)(decreasing v11 v10)
39 (increasing v11 v12)(decreasing v12 v11)
40 (increasing v12 v13)(decreasing v13 v12)
41 (increasing v13 v14)(decreasing v14 v13)
42 (increasing v14 v15)(decreasing v15 v14)
43 (increasing v15 v16)(decreasing v16 v15)
44 (increasing v16 v17)(decreasing v17 v16)
45 (increasing v17 v18)(decreasing v18 v17)
46 (increasing v18 v19)(decreasing v19 v18)
47 (increasing v19 v20)(decreasing v20 v19)
48 (increasing v20 v21)(decreasing v21 v20)
49 (increasing v21 v22)(decreasing v22 v21)
50 (increasing v22 v23)(decreasing v23 v22)
51 (increasing v23 v24)(decreasing v24 v23)
52 (increasing v24 v25)(decreasing v25 v24)
53 (increasing v25 v26)(decreasing v26 v25)
54 (increasing v26 v27)(decreasing v27 v26)
55 (increasing v27 v28)(decreasing v28 v27)
56 (increasing v28 v29)(decreasing v29 v28)
57 (increasing v29 v30)(decreasing v30 v29)
58 (increasing v30 v31)(decreasing v31 v30)
59 (increasing v31 v32)(decreasing v32 v31)
60 (increasing v32 v33)(decreasing v33 v32)
61 (increasing v33 v34)(decreasing v34 v33)
62 (increasing v34 v35)(decreasing v35 v34)
63 (increasing v35 v36)(decreasing v36 v35)
64 (increasing v36 v37)(decreasing v37 v36)
65 (increasing v37 v38)(decreasing v38 v37)
66 (increasing v38 v39)(decreasing v39 v38)
67 (increasing v39 v40)(decreasing v40 v39)
68 (increasing v40 v41)(decreasing v41 v40)
69 (increasing v41 v42)(decreasing v42 v41)
70 (increasing v42 v43)(decreasing v43 v42)
71 (increasing v43 v44)(decreasing v44 v43)
72 (increasing v44 v45)(decreasing v45 v44)
73 (increasing v45 v46)(decreasing v46 v45)
74 (increasing v46 v47)(decreasing v47 v46)
75 (increasing v47 v48)(decreasing v48 v47)
76 (increasing v48 v49)(decreasing v49 v48)
77 (increasing v49 v50)(decreasing v50 v49)
78 (increasing v50 v51)(decreasing v51 v50)
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79 (increasing v51 v52)(decreasing v52 v51)
80 (increasing v52 v53)(decreasing v53 v52)
81 (increasing v53 v54)(decreasing v54 v53)
82 (increasing v54 v55)(decreasing v55 v54)
83 (increasing v55 v56)(decreasing v56 v55)
84 (increasing v56 v57)(decreasing v57 v56)
85 (increasing v57 v58)(decreasing v58 v57)
86 (increasing v58 v59)(decreasing v59 v58)
87 (increasing v59 v60)(decreasing v60 v59)
88 (increasing v60 v61)(decreasing v61 v60)
89 (increasing v61 v62)(decreasing v62 v61)
90 (increasing v62 v63)(decreasing v63 v62)
91 (increasing v63 v64)(decreasing v64 v63)
92 (increasing v64 v65)(decreasing v65 v64)
93 (increasing v65 v66)(decreasing v66 v65)
94 (increasing v66 v67)(decreasing v67 v66)
95 (increasing v67 v68)(decreasing v68 v67)
96 (increasing v68 v69)(decreasing v69 v68)
97 (increasing v69 v70)(decreasing v70 v69)
98 (increasing v70 v71)(decreasing v71 v70)
99 (increasing v71 v72)(decreasing v72 v71)

100 (increasing v72 v73)(decreasing v73 v72)
101 (increasing v73 v74)(decreasing v74 v73)
102 (increasing v74 v75)(decreasing v75 v74)
103 (increasing v75 v76)(decreasing v76 v75)
104 (increasing v76 v77)(decreasing v77 v76)
105 (increasing v77 v78)(decreasing v78 v77)
106 (increasing v78 v79)(decreasing v79 v78)
107 (increasing v79 v80)(decreasing v80 v79)
108 (increasing v80 v81)(decreasing v81 v80)
109 (increasing v81 v82)(decreasing v82 v81)
110 (increasing v82 v83)(decreasing v83 v82)
111 (increasing v83 v84)(decreasing v84 v83)
112 (increasing v84 v85)(decreasing v85 v84)
113 (increasing v85 v86)(decreasing v86 v85)
114 (increasing v86 v87)(decreasing v87 v86)
115 (increasing v87 v88)(decreasing v88 v87)
116 (increasing v88 v89)(decreasing v89 v88)
117 (increasing v89 v90)(decreasing v90 v89)
118 (increasing v90 v91)(decreasing v91 v90)
119 (increasing v91 v92)(decreasing v92 v91)
120 (increasing v92 v93)(decreasing v93 v92)
121 (increasing v93 v94)(decreasing v94 v93)
122 (increasing v94 v95)(decreasing v95 v94)
123 (increasing v95 v96)(decreasing v96 v95)
124 (increasing v96 v97)(decreasing v97 v96)
125 (increasing v97 v98)(decreasing v98 v97)
126 (increasing v98 v99)(decreasing v99 v98)
127

128

129 )
130

131 (:goal (and
132 (not (free p))
133 (not (free q))
134 )
135 )
136 )

Code Example B.2: PDDL1.0 Problem: NIB



Appendix C

F-PDDL Examples

Here we give the example PDDL files as well as the external function codes.

C.1 Example BBL problem using F-PDDL

The BBL problem can be found in Section 4.5.1.5. The domain file and example problem

file (using BbBav=True ∧BaBbv=True as the goal) are given as follows:

1 (define
2 (domain bbl)
3

4 (: types ;todo: enumerate types and their hierarchy here , e.g.
car truck bus - vehicle

5 locatable
6 turnable askable - locatable
7 )
8

9

10

11 (: functions
12 (dir ?a - turnable)
13 (x ?a - locatable)
14 (y ?a - locatable)
15 (v ?a - askable)
16 )
17

18 ;define actions here
19 (: action turn_clockwise
20 :parameters (?i - turnable)
21 :precondition (
22 )
23 :effect (
24 ; increase sth by 1
25 (increase (dir ?i) 1)
26 )
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27 )
28

29 (: action turn_anti_clockwise
30 :parameters (?i - turnable)
31 :precondition (
32 )
33 :effect (
34 ; increase sth by 1
35 (decrease (dir ?i) 1)
36 )
37 )
38

39 )

Code Example C.1: F-PDDL Domain: BBL

1 (define
2 (problem bbl04)
3 (: domain bbl)
4

5 (: agents
6 a b - turnable
7 )
8

9 (: objects
10 p - askable
11 )
12

13 (:init
14 (assign (dir a) ’sw ’)
15 (assign (dir b) ’n’)
16 (assign (x a) 3)
17 (assign (x b) 2)
18 (assign (x p) 1)
19 (assign (y a) 3)
20 (assign (y b) 2)
21 (assign (y p) 1)
22 (assign (v p) ’t’)
23 )
24

25 ; the @ represent this is an epistemic evaluation
26 ;
27 (:goal
28 (and
29 (= (@ep ("+ b [b] + b [a]") (= (v p) ’t’)) ep.true)
30 (= (@ep ("+ b [a] + b [b]") (= (v p) ’t’)) ep.true)
31 )
32 )
33

34 ; D, domain of variables , in order to differentiate from the
domain , we use range as key word

35 (: ranges
36 (dir enumerate [’w’,’nw’,’n’,’ne’,’e’,’se’,’s’,’sw ’])
37 (x integer [0,4])
38 (y integer [0,4])
39 (v enumerate [’t’,’f’])
40 )
41

42 (: rules
43

44 )
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45 )

Code Example C.2: F-PDDL Problem: BBL

The observation function for BBL (Equation 4.1) is implemented in Python as follows:

1 def checkVisibility(self ,state ,agent_index ,var_name ,entities:
typing.Dict[str ,Entity],

2 functions:typing.Dict[str ,Function],
3 function_schemas:typing.Dict[str ,

FunctionSchema ]):
4 if not agent_index in entities.keys():
5 raise ValueError(f"agent_index [{ agent_index }] not found

in entities")
6 if not entities[agent_index ]. enetity_type == EntityType.AGENT:
7 raise ValueError(f"agent_index [{ agent_index }] is not an

agent")
8 if var_name not in functions.keys():
9 raise ValueError(f"var_name [{ var_name }] not found in

functions")
10

11 function = functions[var_name]
12 function_schemas_name = function.function_schema_name
13 target_list = function.entity_index_list
14

15 # for the bbl domain , all visibility function should be the
same

16 # based on whether the agents physically see the objects/
agents or not

17 # and all functions in bbl domain have only one entity
18 if len(target_list) != 1:
19 raise ValueError("all function in bbl should have only one

entity",var_name)
20

21 target_index = target_list [0]
22 try:
23 #extract necessary variables from state
24 # logger.debug(f"loading variables from state ")
25 target_x = state[f"x {target_index}"]
26 target_y = state[f"y {target_index}"]
27 agent_x = state[f"x {agent_index}"]
28 agent_y = state[f"y {agent_index}"]
29 agent_dir = dir_dict[state[f"dir {agent_index}"]]
30

31 # extract necessary common constants from given domain
32 # logger.debug(f"necessary common constants from given

domain ")
33 agent_angle = common_constants[f"angle {agent_index}"]
34

35 # agent is able to see anything in the same location
36 if target_x == agent_x and target_y == agent_y:
37 return True
38

39 # generate two vector
40 v1 = np.array(( target_y - agent_y ,target_x - agent_x))
41 v1 = v1 / np.linalg.norm(v1)
42 radians = math.radians(agent_dir)
43 v2 = np.array((math.cos(radians),math.sin(radians)))
44 # logger.debug(f’v1 {v1}, v2 {v2}’)
45 cos_ = v1.dot(v2)
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46 d_radians = math.acos(cos_)
47 d_degrees = math.degrees(d_radians)
48 # logger.debug(f’delta angle degree is {round(d_degrees ,3)

}’)
49

50 if d_degrees <= agent_angle /2.0 and d_degrees >= -
agent_angle /2.0:

51 inside = True
52 else:
53 inside = False
54 # logger.debug(f’visibility is {inside}’)
55 return inside
56 except KeyError as e:
57 self.logger.debug(e)
58 self.logger.debug("state: %s",state)
59 return False
60 except TypeError as e:
61 self.logger.debug(e)
62 self.logger.debug("state: %s",state)
63 return False

Code Example C.3: F-PDDL observation functions: BBL

C.2 Example Corridor problem using F-PDDL

The Corridor problem can be found in Section 4.5.1.2. The domain file and example

problem file are given as follows:

1 (define
2 (domain corridor)
3

4 (: types
5 secret agent
6

7 )
8

9 (: functions
10 (agent_loc ?a - agent)
11 (movable ?a - agent)
12 (secret_loc ?s - secret)
13 (sensed ?s - secret)
14

15 (secret_lying_value ?s - secret)
16 (secret_truth_value ?s - secret)
17 (shared_value ?s - secret)
18 (shared_loc ?s - secret)
19 )
20

21 ;define actions here
22 (: action move_right
23 :parameters (?a - agent)
24 :precondition (
25 (= (movable ?a) 1)
26 ; (= (sharing) 0)
27 )
28 :effect (
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29 (increase (agent_loc ?a) 1)
30 )
31 )
32

33 (: action move_left
34 :parameters (?a - agent)
35 :precondition (
36 (= (movable ?a) 1)
37 )
38 :effect (
39 (decrease (agent_loc ?a) 1)
40 )
41 )
42

43 (: action sense
44 :parameters (?a - agent , ?s - secret)
45 :precondition (
46 ; (= (sharing) 1)
47 (= (movable ?a) 1)
48 (= (agent_loc ?a) (secret_loc ?s))
49

50 )
51 :effect (
52 (assign (sensed ?s) 1)
53 )
54 )
55

56

57 (: action shout_truth
58 :parameters (?a - agent , ?s - secret)
59 :precondition (
60 (= (movable ?a) 1)
61 (= (sensed ?s) 1)
62 )
63 :effect (
64 (assign (shared_loc ?s) (agent_loc ?a))
65 (assign (shared_value ?s) (secret_truth_value ?s))
66 )
67 )
68

69 (: action shout_lie
70 :parameters (?a - agent , ?s - secret)
71 :precondition (
72 (= (movable ?a) 1)
73 (= (sensed ?s) 1)
74 )
75 :effect (
76 (assign (shared_loc ?s) (agent_loc ?a))
77 (assign (shared_value ?s) (secret_lying_value ?s))
78 )
79 )
80 )

Code Example C.4: F-PDDL Domain: Corridor

1 (define
2 (problem corridor09)
3 (: domain corridor)
4

5 (: agents
6 a b c d e f g - agent
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7 )
8

9 (: objects
10 s - secret
11 )
12

13 (:init
14 ; valid locations are 1,2,3,4
15 ; secret is at location -1 if not shared (avoid adjcent as

well)
16 (assign (agent_loc a) 1)
17 (assign (agent_loc b) 2)
18 (assign (agent_loc c) 3)
19 (assign (agent_loc d) 1)
20 (assign (agent_loc e) 3)
21 (assign (agent_loc f) 2)
22 (assign (agent_loc g) 4)
23

24 (assign (movable a) 1)
25 (assign (movable b) 0)
26 (assign (movable c) 0)
27 (assign (movable d) 0)
28 (assign (movable e) 0)
29 (assign (movable f) 0)
30 (assign (movable g) 0)
31

32 (assign (secret_loc s) 2)
33 (assign (sensed s) 0)
34

35 (assign (secret_truth_value s) ’t’)
36 (assign (secret_lying_value s) ’f’)
37

38 (assign (shared_value s) ’f’)
39 (assign (shared_loc s) -1)
40 )
41

42

43 (:goal (and
44 (= (@ep ("+ b [b] + b [b] + b [b] + b [b] + b [b]") (=

(shared_value s) ’f’)) ep.true)
45 (= (@ep ("+ b [c] + b [c] + b [c] + b [c] + b [c]") (=

(shared_value s) ’t’)) ep.true)
46 )
47 )
48

49 (: ranges
50 (agent_loc integer [1 ,4])
51 (secret_loc integer [1 ,4])
52 (movable integer [0 ,1])
53 (sensed integer [0 ,1])
54 (shared_loc integer [-1,4])
55 (secret_truth_value enumerate [’t’,’f’])
56 (secret_lying_value enumerate [’t’,’f’])
57 (shared_value enumerate [’t’,’f’])
58 )
59

60 (: rules
61

62 )
63 )
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Code Example C.5: F-PDDL Problem: Corridor

We also provide two versions of the observation function for the corridor domain here.

One (Code Example C.6) is consistent with the PDKB approach; the other one (Code

Example C.7) is the one we believe is more meaningful.

1 def checkVisibility(self ,state ,agent_index ,var_name ,entities:
typing.Dict[str ,Entity],

2 functions:typing.Dict[str ,Function],
3 function_schemas:typing.Dict[str ,

FunctionSchema ]):
4 if not agent_index in entities.keys():
5 raise ValueError(f"agent_index [{ agent_index }] not found

in entities")
6 if not entities[agent_index ]. enetity_type == EntityType.AGENT:
7 raise ValueError(f"agent_index [{ agent_index }] is not an

agent")
8 if var_name not in functions.keys():
9 raise ValueError(f"var_name [{ var_name }] not found in

functions")
10

11 function = functions[var_name]
12 function_schemas_name = function.function_schema_name
13 target_list = function.entity_index_list
14

15

16 if ’agent_loc ’ == function_schemas_name:
17 # it means this is agent ’s location
18 # based on the assumption from PDKB
19 # agent can see all the location all the time
20 return True
21 elif ’movable ’ == function_schemas_name:
22 return True
23 elif ’secret_loc ’ == function_schemas_name:
24 return True
25 elif ’sensed ’ == function_schemas_name:
26 return True
27 elif ’secret_truth_value ’ == function_schemas_name \
28 or ’secret_lying_value ’ == function_schemas_name:
29 # it depends on whether agent has sensed the value if it

is agent a (movable)
30 movable = state[f’movable {agent_index}’]
31 if movable == 1:
32 sensed = state[f’sensed {target_list [0]}’]
33 return sensed == 1
34 else:
35 return False
36 elif ’shared_loc ’ == function_schemas_name:
37 # it means this is a location variable
38 # agent will know the secret is been shared if they are in

the same room where the secret shared
39 # if state[var_name] == 0:
40 # return True
41 # return abs(int(state[var_name ])-int(state[f’agent_loc {

agent_index }’])) <=1
42

43 ### this is true becasue the assumption from PDKB
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44 return True
45

46 elif ’shared_value ’ == function_schemas_name:
47 # it depends on whether agent sees that secret been shared
48 shared_loc = state[f’shared_loc {target_list [0]}’]
49 agent_loc = state[f’agent_loc {agent_index}’]
50 return abs(int(shared_loc)-int(agent_loc)) <=1
51 else:
52 raise ValueError(f"function_schemas_name [{

function_schemas_name }] not found")

Code Example C.6: F-PDDL observation functions: Corridor (PDKB version)

1 def checkVisibility(self ,state ,agent_index ,var_name ,entities:
typing.Dict[str ,Entity],

2 functions:typing.Dict[str ,Function],
3 function_schemas:typing.Dict[str ,

FunctionSchema ]):
4 if not agent_index in entities.keys():
5 raise ValueError(f"agent_index [{ agent_index }] not

found in entities")
6 if not entities[agent_index ]. enetity_type == EntityType.

AGENT:
7 raise ValueError(f"agent_index [{ agent_index }] is not

an agent")
8 if var_name not in functions.keys():
9 raise ValueError(f"var_name [{ var_name }] not found in

functions")
10

11 function = functions[var_name]
12 function_schemas_name = function.function_schema_name
13 target_list = function.entity_index_list
14

15

16 if ’agent_loc ’ == function_schemas_name:
17 # it means this is agent ’s location
18 # based on the assumption from PDKB
19 # agent can see all the location all the time
20

21 # this changes the assumption of all location are
known.

22 if state[f’agent_loc {agent_index}’] == state[f’
agent_loc {target_list [0]}’]:

23 return True
24 else:
25 return False
26 elif ’movable ’ == function_schemas_name:
27 return True
28 elif ’secret_loc ’ == function_schemas_name:
29 return True
30 elif ’sensed ’ == function_schemas_name:
31 return True
32 elif ’secret_truth_value ’ == function_schemas_name \
33 or ’secret_lying_value ’ == function_schemas_name:
34 # it depends on whether agent has sensed the value if

it is agent a (movable)
35 movable = state[f’movable {agent_index}’]
36 if movable == 1:
37 sensed = state[f’sensed {target_list [0]}’]
38 return sensed == 1
39 else:



Conclusion 243

40 return False
41 elif ’shared_loc ’ == function_schemas_name:
42 # it means this is a location variable
43 # agent will know the secret is been shared if they

are in the same room where the secret shared
44 # if state[var_name] == 0:
45 # return True
46 # return abs(int(state[var_name ])-int(state[f’

agent_loc {agent_index }’])) <=1
47

48 ### this is true becasue the assumption from PDKB
49 # return True
50

51 # change the agent know secret been sharing all the
time.

52 if state[var_name] == -1:
53 return True
54 shared_loc = state[f’shared_loc {target_list [0]}’] if

type(state[f’shared_loc {target_list [0]}’]) == int else -1
55 agent_loc = state[f’agent_loc {agent_index}’] if type(

state[f’agent_loc {agent_index}’]) == int else -3
56 return abs(int(shared_loc)-int(agent_loc)) <=1
57

58 elif ’shared_value ’ == function_schemas_name:
59 # it depends on whether agent sees that secret been

shared
60 shared_loc = state[f’shared_loc {target_list [0]}’] if

type(state[f’shared_loc {target_list [0]}’]) == int else -1
61 agent_loc = state[f’agent_loc {agent_index}’] if type(

state[f’agent_loc {agent_index}’]) == int else -3
62 return abs(int(shared_loc)-int(agent_loc)) <=1
63 else:
64 raise ValueError(f"function_schemas_name [{

function_schemas_name }] not found")

Code Example C.7: F-PDDL observation functions: Corridor (JP version)
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Williams, José Reinaldo Silva, and Blai Bonet, editors, Proceedings of the Twenty-

Second International Conference on Automated Planning and Scheduling, ICAPS

2012, Atibaia, São Paulo, Brazil, June 25-19, 2012. AAAI, 2012. URL http:

//www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4693.

[79] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT

modulo theories: From an abstract davis–putnam–logemann–loveland procedure

to dpll(T ). J. ACM, 53(6):937–977, 2006. doi: 10.1145/1217856.1217859. URL

https://doi.org/10.1145/1217856.1217859.

[80] Nir Lipovetzky and Hector Geffner. Width and serialization of classical planning

problems. In ECAI 2012 - 20th European Conference on Artificial Intelligence.

Including Prestigious Applications of Artificial Intelligence (PAIS-2012) System

Demonstrations Track, Montpellier, France, August 27-31 , 2012, pages 540–545,

2012. doi: 10.3233/978-1-61499-098-7-540. URL https://doi.org/10.3233/

978-1-61499-098-7-540.

[81] Paul Gochet and E. Pascal Gribomont. Epistemic logic. In Dov M. Gabbay

and John Woods, editors, Logic and the Modalities in the Twentieth Century,

https://doi.org/10.1613/jair.5560
https://doi.org/10.1613/jair.5560
https://doi.org/10.1109/ICRA.2012.6225237
http://ijcai.org/Abstract/15/218
http://ijcai.org/Abstract/15/218
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4693
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4693
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.3233/978-1-61499-098-7-540
https://doi.org/10.3233/978-1-61499-098-7-540


Bibliography 255

volume 7 of Handbook of the History of Logic, pages 99–195. Elsevier, 2006. doi: 10.

1016/S1874-5857(06)80028-2. URL https://doi.org/10.1016/S1874-5857(06)

80028-2.

[82] Plato. Theaetetus. Hackett Publishing, 1892. Oxford University Press, American

branch.

[83] AJ Ayer. The problem of knowledge, 1956.

[84] Roderick Chisholm. Perceiving: A philosophical study, 1957.

[85] Edmund L. Gettier. Is justified true belief knowledge? Analysis, 23(6):121–123,

1963. doi: 10.1093/analys/23.6.121.

[86] Giacomo Bonanno. A simple modal logic for belief revision. Synthese, 147(2):

193–228, 2005. ISSN 00397857, 15730964. URL http://www.jstor.org/stable/

20118657.

[87] Christian J. Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller,

Adrian R. Pearce, and Liz Sonenberg. Planning over multi-agent epistemic states:

A classical planning approach. In Blai Bonet and Sven Koenig, editors, Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,

2015, Austin, Texas, USA, pages 3327–3334. AAAI Press, 2015. doi: 10.1609/

AAAI.V29I1.9665. URL https://doi.org/10.1609/aaai.v29i1.9665.

[88] Christian Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim Miller,

Adrian R. Pearce, and Liz Sonenberg. Efficient multi-agent epistemic planning:

Teaching planners about nested belief. Artif. Intell., 302:103605, 2022. doi:

10.1016/j.artint.2021.103605. URL https://doi.org/10.1016/j.artint.2021.

103605.

[89] Kaarlo Jaakko Juhani Hintikka. Knowledge and Belief: An Introduction to the

Logic of the Two Notions. Cornell University Press, Ithaca, NY, USA, 1962.

[90] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity

for modal logics of knowledge and belief. Artificial Intelligence, 54(3):319–379,

1992. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(92)90049-4. URL

https://www.sciencedirect.com/science/article/pii/0004370292900494.

https://doi.org/10.1016/S1874-5857(06)80028-2
https://doi.org/10.1016/S1874-5857(06)80028-2
http://www.jstor.org/stable/20118657
http://www.jstor.org/stable/20118657
https://doi.org/10.1609/aaai.v29i1.9665
https://doi.org/10.1016/j.artint.2021.103605
https://doi.org/10.1016/j.artint.2021.103605
https://www.sciencedirect.com/science/article/pii/0004370292900494


Bibliography 256

[91] Wiebe van der Hoek. Systems for knowledge and beliefs. In Jan van Eijck,

editor, Logics in AI, European Workshop, JELIA ’90, Amsterdam, The Nether-

lands, September 10-14, 1990, Proceedings, volume 478 of Lecture Notes in Com-

puter Science, pages 267–281. Springer, 1990. doi: 10.1007/BFB0018447. URL

https://doi.org/10.1007/BFb0018447.

[92] Sarit Kraus and Daniel Lehmann. Knowledge, belief and time. Theor. Comput.

Sci., 58:155–174, 1988. doi: 10.1016/0304-3975(88)90024-2. URL https://doi.

org/10.1016/0304-3975(88)90024-2.

[93] F. Voorbraak. As Far as I Know: Epistemic Logic and Uncertainty. Quaes-

tiones infinitae. Department of Philosophy, Utrecht University, 1993. ISBN

9789039302590. URL https://books.google.com.au/books?id=2knoOAAACAAJ.

[94] Fred I. Dretske. Knowledge and the Flow of Information. MIT Press, Stanford,

CA, 1981.

[95] Ronald Fagin and Joseph Y. Halpern. Belief, awareness, and limited reasoning:

Preliminary report. In Aravind K. Joshi, editor, Proceedings of the 9th Inter-

national Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, Au-

gust 1985, pages 491–501. Morgan Kaufmann, 1985. URL http://ijcai.org/

Proceedings/85-1/Papers/095.pdf.

[96] Jacques Dubucs. On logical omniscience. Logique et Analyse, 34(133/134):41–55,

1991. ISSN 00245836, 22955836. URL http://www.jstor.org/stable/44085040.

[97] Wolfgang Lenzen. Recent work in epistemic logic. Acta Philosophica Fennica, 30:

1–219, 1978.

[98] Timothy Williamson. Knowledge and its Limits. Oxford University Press, 10

2002. ISBN 9780199256563. doi: 10.1093/019925656X.001.0001. URL https:

//doi.org/10.1093/019925656X.001.0001.

[99] Joseph Y. Halpern. Should knowledge entail belief? J. Philos. Log., 25(5):483–494,

1996. doi: 10.1007/BF00257382. URL https://doi.org/10.1007/BF00257382.

[100] Jon Barwise. Scenes and other situations. The Journal of Philosophy, 78(7):369–

397, 1981. ISSN 0022362X, 19398549. URL http://www.jstor.org/stable/

2026481.

https://doi.org/10.1007/BFb0018447
https://doi.org/10.1016/0304-3975(88)90024-2
https://doi.org/10.1016/0304-3975(88)90024-2
https://books.google.com.au/books?id=2knoOAAACAAJ
http://ijcai.org/Proceedings/85-1/Papers/095.pdf
http://ijcai.org/Proceedings/85-1/Papers/095.pdf
http://www.jstor.org/stable/44085040
https://doi.org/10.1093/019925656X.001.0001
https://doi.org/10.1093/019925656X.001.0001
https://doi.org/10.1007/BF00257382
http://www.jstor.org/stable/2026481
http://www.jstor.org/stable/2026481


Bibliography 257

[101] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public

announcements, common knowledge, and private suspicions. In Proceedings of the

7th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’98,

page 43–56, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

ISBN 1558605630.

[102] Jan Plaza. Logics of public announcements. In Proceedings 4th international

symposium on methodologies for intelligent systems, pages 201–216, 1989.

[103] Jelle Gerbrandy. Dynamic epistemic logic. Logic, Philosophy and Linguistics (LP),

1997.

[104] Hans Van Ditmarsch and Barteld Kooi. Semantic results for ontic and epistemic

change. Logic and the foundations of game and decision theory (LOFT 7), 3:

87–117, 2008.

[105] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epis-

temic Logic. Springer Publishing Company, Incorporated, 1st edition, 2007. ISBN

1402058381.

[106] Thomas Bolander. A gentle introduction to epistemic planning: The DEL ap-

proach. In Sujata Ghosh and R. Ramanujam, editors, Proceedings of the Ninth

Workshop on Methods for Modalities, M4M@ICLA 2017, Indian Institute of Tech-

nology, Kanpur, India, 8th to 10th January 2017, volume 243 of EPTCS, pages

1–22, 2017. doi: 10.4204/EPTCS.243.1. URL https://doi.org/10.4204/EPTCS.

243.1.

[107] Vaishak Belle, Thomas Bolander, Andreas Herzig, and Bernhard Nebel. Epis-

temic planning: Perspectives on the special issue. Artif. Intell., 316:103842,

2023. doi: 10.1016/J.ARTINT.2022.103842. URL https://doi.org/10.1016/

j.artint.2022.103842.
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and Pierre Régnier. A lightweight epistemic logic and its application to planning.

Artif. Intell., 298:103437, 2021. doi: 10.1016/j.artint.2020.103437. URL https:

//doi.org/10.1016/j.artint.2020.103437.

[128] Ronald P. A. Petrick and Fahiem Bacchus. Extending the knowledge-based ap-

proach to planning with incomplete information and sensing. In Didier Dubois,

Christopher A. Welty, and Mary-Anne Williams, editors, Principles of Knowledge

Representation and Reasoning: Proceedings of the Ninth International Conference

(KR2004), Whistler, Canada, June 2-5, 2004, pages 613–622. AAAI Press, 2004.

URL http://www.aaai.org/Library/KR/2004/kr04-064.php.

[129] Hai Wan, Rui Yang, Liangda Fang, Yongmei Liu, and Huada Xu. A complete

epistemic planner without the epistemic closed world assumption. In Proceedings

of the Twenty-Fourth International Joint Conference on Artificial Intelligence,

IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 3257–3263, 2015.

URL http://ijcai.org/Abstract/15/459.

[130] Jie Fan, Yanjing Wang, and Hans van Ditmarsch. Contingency and knowing

whether. Rew. Symb. Logic, 8(1):75–107, 2015. doi: 10.1017/S1755020314000343.

URL https://doi.org/10.1017/S1755020314000343.

[131] Andreas Herzig and Faustine Maffre. How to share knowledge by gossiping. In

Multi-Agent Systems and Agreement Technologies - 13th European Conference,

EUMAS 2015, and Third International Conference, AT 2015, Athens, Greece, De-

cember 17-18, 2015, Revised Selected Papers, pages 249–263, 2015. doi: 10.1007/

978-3-319-33509-4 20. URL https://doi.org/10.1007/978-3-319-33509-4_

20.

[132] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning for multi-agent

systems with bounded communication. Artificial Intelligence, 175(2):487–511,

2011. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2010.09.008. URL

https://www.sciencedirect.com/science/article/pii/S0004370210001578.

[133] James Hales, Tim French, and Rowan Davies. Refinement quantified logics of

knowledge and belief for multiple agents. Advances in Modal Logic, 9:317–338,

2012.

https://doi.org/10.1016/j.artint.2020.103437
https://doi.org/10.1016/j.artint.2020.103437
http://www.aaai.org/Library/KR/2004/kr04-064.php
http://ijcai.org/Abstract/15/459
https://doi.org/10.1017/S1755020314000343
https://doi.org/10.1007/978-3-319-33509-4_20
https://doi.org/10.1007/978-3-319-33509-4_20
https://www.sciencedirect.com/science/article/pii/S0004370210001578


Bibliography 262

[134] Miquel Ramı́rez, Michael Papasimeon, Nir Lipovetzky, Lyndon Benke, Tim Miller,

Adrian R. Pearce, Enrico Scala, and Mohammad Zamani. Integrated hybrid plan-

ning and programmed control for real time UAV maneuvering. In Elisabeth André,
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[149] Adam Bjorndahl and Aybüke Özgün. Logic and topology for knowledge, knowa-

bility, and belief. Rev. Symb. Log., 13(4):748–775, 2020. doi: 10.1017/

S1755020319000509. URL https://doi.org/10.1017/S1755020319000509.

[150] Robert Stalnaker. On logics of knowledge and belief. Philosophical Studies, 128

(1):169–199, 2006.

[151] Kai Li and Jan van Eijck. Public announcements, public lies and recoveries. J.

Log. Lang. Inf., 31(3):423–450, 2022. doi: 10.1007/s10849-022-09351-4. URL

https://doi.org/10.1007/s10849-022-09351-4.

[152] Petar Iliev. On the relative succinctness of some modal logics. PhD thesis, Uni-

versity of Liverpool, UK, 2013. URL http://repository.liv.ac.uk/14481/.

[153] Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. On the

succinctness of some modal logics. Artif. Intell., 197:56–85, 2013. doi: 10.1016/j.

artint.2013.02.003. URL https://doi.org/10.1016/j.artint.2013.02.003.
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[156] Patricia Everaere, Sébastien Konieczny, and Pierre Marquis. Belief merging versus

judgment aggregation. In Gerhard Weiss, Pinar Yolum, Rafael H. Bordini, and

Edith Elkind, editors, Proceedings of the 2015 International Conference on Au-

tonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May

4-8, 2015, pages 999–1007. ACM, 2015. URL http://dl.acm.org/citation.

cfm?id=2773279.
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