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Epistemic planning — planning that incorporates knowledge and belief (knowledge
that could be false) — is crucial in many multi-agent and human-agent interaction set-
tings. However, existing approaches often struggle with scalability, particularly as the
number of agents or the depth of nested epistemic relations grows. A notable exception
is the state-based methods that use agent’s perspective model, which focuses reason-
ing only on the visible part of states for agents. By delegating epistemic reasoning
to an external function, this method enhances expressiveness and efficiency in solving
complex epistemic planning tasks. Despite these advantages, the PWP approach has
limitations, including an imprecise trade-off between efficiency and completeness and a

lack of systematic modeling for beliefs, especially false beliefs.

In this thesis, we extend agent’s perspective model to develop a more efficient and ef-
fective model for epistemic planning. First, we introduce multiple semantic formats
with agent‘’s perspective model to clarify the balance between efficiency and complete-
ness. Then, with the intuition that people reason unseen by retrieving their memory,
we extend the original model to handle justified beliefs, resulting in the Justified Per-
spective (JP) model. Furthermore, we formalize the encoding, design a planner with
various search algorithms, and conduct comprehensive experiments demonstrating that
our approach is both more efficient and expressive than the current state-of-the-art in
epistemic planning. Finally, the JP model is expanded to represent group beliefs (the
final missing puzzle of the epistemic logic), including distributed beliefs and common
beliefs.

Overall, in this thesis, we provide an efficient and expressive planning framework, includ-
ing an (action) model-free epistemic logic reasoning model, establishing the framework’s

potential for broader applications.
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Chapter 1

Motivation and Introduction

Theory of Mind is fundamental to

human cognition, enabling individuals
to interpret and predict the behaviour
of others by attributing mental states

to them.

— Frith and Frith

It has been more than 70 years since Turing proposed the famous question: “Can ma-
chine think?”, Artificial Intelligence (AI) has become a popular topic with numerous
studies on its applications and theory. As mentioned by Russell and Norvig [10], Al can
help humans manage the complexity of modern life. With the advance of the techniques
in the field of AI, more and more intelligent agents are involved in human life. How
those agents co-exist without any conflict becomes a new challenge to solve, especially
when those agents do not belong to the same system. In addition, as one of the goals
in AT research [11], AI applications are designed to enhance human abilities such as
decision-making and problem-solving. To make intelligent agents work in a multi-agent
environment or in a human-agent interaction environment, as mentioned by Breazeal
[12] integrating social intelligence into AI systems is essential for creating machines that

can collaborate effectively with humans.
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This is Sally.

=y

Sally goes out for a walk

Anne takes the marble out of the basket and puts it into the box.

Now Sally comes back. She wants to play with her marble.

Where will Sally look for her marble?

FIGURE 1.1: Illustration of the Sally-Anne task.

1.1 Motivation

As one fundamental concept in social intelligence, Theory of Mind (ToM) attracts the
attention of many researchers. Early foundational work by Premack and Woodruff [13]
framed ToM as a cognitive capacity essential for predicting and interpreting behaviour.
ToM involves not only understanding someone else’s mental state — including their
knowledge, beliefs, and inferences — but also recognizing that they may hold beliefs
different from what we know to be true. The Sally-Anne task, also known as the false-
belief task, was introduced by Baron-Cohen et al. [14] and is widely used to examine

individuals’ ToM abilities.

Example 1.1 (The Sally-Anne Task). As shown in Figure 1.1, the setup is as follows:
two individuals, Sally and Anne, are in a room with a basket and a box, both of which
are covered. The story begins with Sally placing a marble in the basket before leaving
for a walk. While she is away, Anne moves the marble from the basket to the box. The

question is: where will Sally look for her marble when she returns?
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To pass the test, the subject should be able to come up with the conclusions that Sally
will look into the basket for her marble. That is, in Sally’s mindset, she believes she
put the marble into the basket before she left and there is no evidence in her mind to
show the location of the marble has been changed. Passing this task demonstrates the

individual has a basic ability in ToM that can believe someone else holds a false belief.

In the field of AI, this concept was adapted in many different research efforts. At a
high level, those researches can be divided into two categories based on the fundamen-
tal methodology used, which are: the learning-based approach and the model-based

approach.

The first attempt to use a learning-based approach to model ToM is proposed by Rabi-
nowitz et al. [15], in which they use a meta-learning approach to observe another agent’s
behaviour across multiple episodes, gradually inferring that agent’s “policy embedding”.
They call the Theory of Mind neural network they trained as ToMnet. Their results
demonstrate that a trained ToMnet can predict actions based on the agent’s hidden or
incorrect beliefs. Another indirect but relevant field is Opponent Modeling using Deep
Reinforcement Learning [16], in which ToM was not explicitly modeled. In addition,
more recently, with the development of LLMs, some of the LLM models are also capable

of handling ToM tasks [17-19].

However, critics argue that the learning-based Al systems lack genuine ToM, instead rely-
ing on statistical correlations rather than causal understanding [20]. Consequently, these
concerns over black-box reasoning and potential misalignment with human mental-state
semantics have led researchers to consider model-based approaches — where explicit
representations of beliefs, desires, and intentions enhance transparency, interpretability,

and safety.

As one of the model-based approaches, Bayesian methods have emerged as a powerful
framework for modeling ToM. Foundational work is proposed by Baker et al. [21]. In
their framework, observers assume agents act (approximately) rationally to achieve their
goals, and they use Bayesian updates to infer what the agent must believe or desire. In
addition, there is much further research that uses Bayesian models [22-29]. However,
as mentioned by Baker et al. [25], the computational challenge persists in scaling these

models to real-world applications without approximations.
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Another standard model-based approach is Planning, which formulates a sequence of
actions to achieve objectives (goals) of the agents. Generally, planning to solve a problem
has: a model to represent the problem; a language that is used to form a specific
description of the problem; a solver to solve the problem automatically; a controller as
the result for the agent to act. The basic model in planning is the Classical Planning
model, in which the problem is deterministic and fully-observable. Although classical
Planning itself cannot handle ToM, adaptations by adding knowledge or belief logic in
the action started to appear in the late 20th century [30-33]. From this foundation,
a substantial body of research on FEpistemic Planning has developed both before and
after the formal introduction of the term by Bolander and Andersen [34], continuing to

expand to the present day.

1.2 Introduction

As for this thesis, the above motivation demonstrates the need for agents to reason
about epistemic logic, which is essential for multi-agent and human-agent interaction
applications. Compared to other methods, planning-based approaches have advantages
in explainability, transparency, safety, and reliability with enough generalization and
flexibility. Thus, this thesis is about epistemic planning. However, all existing ap-
proaches for epistemic planning face some drawbacks (mainly scalability), which limits
the development and its potential for real-world applications (Details in Section 2.3.3).

Thus, the research question that this thesis is answering is:

How can we enable expressive modelling and efficient solving of epistemic

planning problems?

Throughout this thesis, firstly, we provide a comprehensive background and literature
about epistemic planning. This includes the foundation for epistemic planning from
both sides (planning and epistemic logic), as well as the existing research. From the
literature, we pinpoint the constraints (mainly scalability) of existing epistemic planning
methods that hinder the advancement of the research and its potential for application.
In addition, we identify the first attempt to use a fundamentally different method by
Hu [4] to model and solve epistemic planning problems, which is known as the agent’s

perspective model.
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Hu’s intuition is that people know things by observation. Then, they reason about
knowledge by generating agents’ perspectives (observations), which are effectively local
states representing the observable part of the world for each agent. They claim that for
any epistemic domain, the modeler just has to define the domain-dependent perspective
function, which is the seeing rules of this domain, while their semantics do the reasoning
parts about agents’ (nested) knowledge. With this agent’s perspective model, they are
able to reason about nested knowledge and group knowledge by forming corresponding
perspectives using set operations. In addition, they used a non-standard planning lan-
guage to separate the epistemic reasoning from planning. By doing so, they can lazily
evaluate epistemic relations by an external reasoner when solving epistemic planning
problems. Moreover, their framework can work with any planner that supports external

functions.

We found their solution is promising for bridging the gap between epistemic planning
and its real-world application due to the efficiency and expressiveness of their framework.
Therefore, this thesis digs deeper into the agent’s perspective model to investigate the
properties (soundness and completeness) their model traded for efficiency. Then, we
formalize our findings and propose new semantics to balance between efficiency and

these properties.

Then, this thesis goes beyond the agent’s perspective model as it only handles knowl-
edge. Goldman [35] claims that people believe something they have seen, until they
see evidence to suggest otherwise. Following Goldman’s justified belief, instead of only
modeling agents’ perspectives (observations), we propose a new model, namely the Jus-
tified Perspective (JP) Model, that reasons about individual agents’ nested epistemic
logic, including both knowledge and belief. Agents’ justified perspectives are formed
by composing their current observation with their past observations. That is, we rea-
son about agents’ epistemic relations using the sequence of states rather than just the
current state. We show the formalization of the JP model as well as its semantics and
axiomatic system. Moreover, we also provide a problem encoding with a widely used
planning language and adopt some existing algorithms to search the state sequences.
With comprehensive experiments, this thesis shows the JP model is an expressive and

efficient framework to solve single-agent (nested) epistemic planning problems.

Further, this thesis extends the JP model to handle group (nested) beliefs. Differing
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FIGURE 1.2: Illustration of the example states in the Number In Boxes domain.

from agents’ knowledge, where it cannot be false since it is derived from the global
state (ground truth), agents can hold false beliefs. Thus, agents’ group beliefs cannot
simply be handled by merging their justified perspectives, like in the agent’s perspective
model. In this thesis, we show how we “safely” merge agents’ justified perspectives for
the distributed belief, and how we efficiently handle agents’ common belief by forming

a fix-point set of justified perspectives.

To better illustrate our work, we proposed a complex version of the Sally-Anne Task

that suits in planning as follows.

Example 1.2 (Numbers In Boxes). As shown in Figure 1.2, there are two agents, a
and b, and two numbers, p and q, hidden in separate boxes. The value of each number

ranges from 0 to 99.

The agents do not know the value of the numbers unless they peek into the corresponding

box. Fach box can only be peeked at by one agent at a time.

The numbers can be modified (incremented or decremented by 1) by a hidden third agent,
without a or b noticing. Consequently, neither a nor b would know that a number has

been changed unless they are peeking at it or peeking afterwards.

This example domain is the Numbers in Boxes (NIB) domain. The problems in this
domain can be identified by describing the initial situation and desirable goal conditions.

An example problem can be described by assuming the initial value for p and ¢ are
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4 and 6 and no agent is peeking at any box, and the goal conditions could be both
boxes being peeked at by an agent (any of the two example states on the right side
of Figure 1.2) and p x ¢ < 10. The goal conditions determine whether the problem
instance belongs to a classical planning problem or an epistemic planning problem. If
the goal conditions contain epistemic relations (knowledge or beliefs), then the problem
instance needs to be modeled as an epistemic planning problem ! rather than a classical
planning problem 2. Throughout this thesis, the above example is used to demonstrate
the approaches encountered as background or related work, as well as the approaches

proposed by this thesis.

!The formal definitions of epistemic planning problem is given in Section 2.3.1.1.

2 An exception is the methods that model and solve epistemic planning problems by converting it into
a classical planning problem. For those approaches, we still consider them as solving epistemic planning
problem instead of classical planning problem.



Chapter 2

Epistemic Planning

It is this that we omitted in our
investigation of the nature of virtue,
when we said that only knowledge
can lead to correct action, for true

opinion can do so also.

—Plato

In this chapter, we provide the background from both directions of Epistemic Planning,
which are Classical Planning and Epistemic Logic. Then, we review the two traditional
directions in Epistemic Planning. At the end, we raise the research question and outline

of this thesis.

2.1 Automated Planning

Planning is the model-based approach to action selection in artificial intelligence, where
the model is used to reason about which actions an agent should take to achieve some
objective, such as reaching a goal [37]. The concept initially appeared in General Prob-
lem Solver (GPS) [38]. Although their intuition is to design a system that mimics
human problem-solving processes, which is breaking down the complex task into sim-
pler subproblems and addressing them systematically, it is still providing groundwork for
subsequent developments in Al planning. That is, decomposition of goals and strategic
sequencing of actions to achieve those goals. This idea has been further investigated by

8
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Modelled Problem |»| Solver |‘ | Solution

FIGURE 2.1: Illustration of planning process to solve a problem instance.

Fikes and Nilsson [39], who developed a new problem-solving program, namely STRIPS
(STanford Research Institute Problem Solver). They illustrate the “planning” idea from
GPS with the process of: modelling the problem (with STRIPS language), solving the

problem and finding a solution (As shown in Figure 2.1).

There are many types of planning, including but not limited to: classical planning,
conditional planning, temporal planning, generalized planning, hierarchical planning, and

epistemic planning. Despite their differences, all of these follow a similar overall process.

The fundamental distinction between these variations lies in the type of problems that
each model handles. These models differ based on the assumptions made about the
dynamics of the world. For example, classical planning models assume deterministic,
instantaneous effects of actions and complete knowledge of the world, whereas temporal
models account for actions with durations, and partially-observable Markov-decision-
process models represent uncertainty through belief distributions over possible states of

the world.

As noted by Ghallab et al. [40], the conceptual model is not intended to be operational.
Instead, problems that can be represented by these models are concisely described using
declarative languages such as STRIPS [39] and PDDL (Planning Domain Definition
Language) [41]. These languages are sufficiently general to encode a variety of problems
while simultaneously revealing structural information that enables planners to scale to
large and complex problems. Once a problem instance is described, the planner applies
search algorithms to find a solution. The agent then follows this solution to complete
the task. The nature of the solution varies depending on the problem type: for classical
planning, it is typically a plan (a sequence of actions); while for more complex problems,
such as those involving non-deterministic actions, the solution may be a policy, which

maps every possible state to the best action.

2.1.1 Planning Assumptions

When it comes to planning assumptions, classical planning, as the foundational model

of planning, is the paradigm with the most fundamental assumptions that simplify the



Epistemic Planning 10

planning problem. The assumptions for classical planning have been outlined and dis-
cussed in various works [10, 37, 39, 40]. The most systematic analysis on planning as-
sumptions is done by Ghallab et al. [40]. These assumptions include, but are not limited
to, the following: the planning domain is finite, discrete (instantaneous), deterministic,
fully observable, static, Markovian, with restricted goals, considered as single-agent, uses

sequential plans, and operates within a closed-world assumption.

Assumption 1 (Finite). The set of all possible states and the set of all possible actions
for a classical planning problem need to be finite. Without this assumption, theo-
retically, any algorithm that is used to solve this problem can neither guarantee the
completeness nor termination of itself [42]. In addition, in its application, even with
the finite assumption, classical planning problems can be computationally challenging
(PSPACE-complete) [43]. Thus, a finite number of possible states and possible actions

is a well-accepted assumption in classical planning.

Assumption 2 (Discrete). Classical Planning models problems where both state and
action are discrete. Discrete state space can be ensured by a finite number of possible
states, while discrete action is not only about the finite number of actions. This also
ensures that the application of the action is instantaneous, which is discussed when
comparing to Temporal Logic in planning [44]. That is, in classical planning, states

transition from one to another instantly by applying an action.

Assumption 3 (Deterministic). All actions in classical planning need to be determinis-
tic. That is, in a given state, the outcome of performing an (available) action is singular
and predictable. This allows the planner to use logical reasoning to determine the out-

comes of action sequences.

Assumption 4 (Fully Observable). The “fully observable” assumption posits that the
agent has complete and accurate knowledge of the current state of the environment at
all times. Similarly, this assumption is originally from STRIPS [39]. It is formed by the
fact that the initial state is fully observable, as well as all actions’ effects, which indicate

that every state in the problem-solving process is fully observable.

Assumption 5 (Static). The “static” assumption refers to the premise that the envi-
ronment remains unchanged except as a direct result of the acting agent’s actions. The

assumption originates from STRIPS [39] in 1971. In STRIPS, a state is modeled as a
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set of propositions, which currently hold, and actions (operators) are used to transi-
tion between states. The framework assumes that no external events or environmental

dynamics modify the state unless explicitly specified by the defined actions.

Assumption 6 (Markovian). The Markovian assumption is an important concept in
planning, stating that the next state resulting from an action depends solely on the
current state and the action executed, not on the sequence of previous states or ac-
tions. While in classical planning this property is often implicit, only a few works have
mentioned it [45]. With the above assumptions (Assumption 1 and Assumption 3), this
assumption is guaranteed. That is, for any non-Markovian problem with a finite number
of possible states and a finite number of possible actions, the number of possible state
sequences without repeats is also finite. Then, we can model the original problem by
modeling each state sequence as a state in the new model, which makes the problem

become Markovian.

Assumption 7 (Restricted Goals). The goal states for the problem need to be specified.
The objective of solving a problem is to select and apply actions to reach one of the states
that are considered as goal states. This assumption explicitly avoids extended goals, such

as states or transition constraints when solving the problem or utility functions.

Assumption 8 (Single-Agent). The “single agent” assumption in classical planning
needs some clarification. It restricts the problem to scenarios where only one decision-
making entity is responsible for finding a sequence of actions to achieve the goal. Orig-
inally, in STRIPS [39], this assumption also requires the acting agent to be the same
entity as the decision-making one. However, this limitation seems unnecessary. When
the problem, which this entity is trying to solve, contains multiple acting agents, who
follow the instructions (plan) generated by that decision-making entity, the plan gen-
erated is still in the single-agent setting. The explicit discussion on this can be found
in the latest edition (Edition 4) of Russell and Norvig’s book [10]. They distinguish
whether an entity should be modeled as an agent by whether its performance measure
(goals) completely or partially conflicts with others. For example, in modeling a multi-
agent pathfinding problem (using the simplest version), in which each agent has a goal
position to visit in a grid and they cannot be at the same location at the same time,
the modeler could consider this problem as single-agent if they consider the whole agent
group as the “single agent”. That is, this “single agent” has to choose one move for each

acting agent without collision as one action in the modeled problem.
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Assumption 9 (Sequential Plan). A solution to the problem should be a plan, which
is a finite linearly ordered sequence of actions. This assumption is consistent with

Assumption 1, Assumption 3 and Assumption 8.

Assumption 10 (Closed World). The ”closed-world” assumption in classical planning
posits that any fact not explicitly stated is considered false. This was first formalised
by Fikes and Nilsson [39]. They defined the state as a set of propositions (they called
well-formed formula) and the initial state is all the propositions that are initially true. In
addition, the state transition is done by operators, which contain a set of preconditions
and effects, where effects contain a list of propositions that become true (need to be
added to the state) and a list of propositions that become false (need to be removed
from the state). Their initial state aligns with the closed world assumption, and their

operator mechanism ensures the assumption holds all the time.

Compared to the list of assumptions in Ghallab et al. [40], we omitted the assumption of
“offline planning”, as all the works covered in this thesis are in the offline setting. While
we cover a few new assumptions, as the main research topic of this thesis, Epistemic
Planning, is: in a multi-agent (or human-agent interaction) environment (Assumption 8);
and, one’s belief depends on what happened in the past (Assumption 6); and, one’s
perspective of the world could follow the closed-world or possible-worlds assumption

(Assumption 10).

2.1.2 Planning Models

The planning model determines the type of problems that could be represented. We
start by explaining the basic planning model, Classical Planning Model, and then briefly

mention other planning models.

2.1.2.1 Classical Planning Model

Classical Planning Model, also known as a state-space model, is the widely accepted
theoretical ground for many different variations of planning. It was originated from
Mathematics (state space) and adapted by researchers studying Al about robotic con-

trol [46]. Then, the model is used by Ghallab et al. [40] as the basic theoretical ground
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FIGURE 2.2: Example initial state in the NIB domain.

for planning. A formal definition is found in Geffner and Bonet [37)’s work which is
commonly used by the current planning community. Here, we begin with Geffner and

Bonet’s definition, as it is somewhat simpler to comprehend than other definitions.

Definition 2.1 (State-Space Model). Following all assumptions in Section 2.1.1, a clas-

sical planning problem instance P can be defined by a tuple as follows:

P =(S,s0,5q,A,t,c), where:

S is the set of all possible states.

so is the initial state of the problem instance that sy € S.

S¢ is the set of goal states that S C S.

A is the set of all action, where the applicable action for a given state s is A(s) C A.

e t:S8x A— S is the deterministic transition function that returns the next state
s’ when applying action a in state s

o c:SxA — Ry is the cost function that determines the cost ¢(s, a) (a real number

that is larger or equal to 0) of applying action a in state s.

In the planning paradigm, a plan (solution) is a sequence of actions @ = [ag, ..., a,]
that could transition the initial state sy to one of the goal states s, € Sg. That is,
t(...t(s0,a0)...,an) = sg. A plan is optimal if and only if there does not exist another
plan that has less cost (X;cqo,... n)c(8i,ai)). The concept of the state space in the above
model might be clear to any Al researchers, but it might be too abstract to the reader
without relative background. Thus, we use the following example to explain how it

works.

Example 2.1 (NIB Example for Classical Planning). Following the same domain as

described in Example 1.2, we specify the initial state and goals. Initially, as depicted in
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Figure 2.2, no agents are peeking into the boxes and the values of the numbers p and q
are 4 and 6, respectively. The goal is to ensure that both numbers, p and q, are being

peeked at, regardless of which agent is looking at which number.

One way to model the above example is:

pty, Dby, pte, Pty € {0,1,2},pt, X pty, ¢ {1,4},

value,, value, value,, value, € {0,...,99}

Each state in the NIB domain can be represented by 4 elements: pt, and pt, are the
postures of the agents, where 0, 1 and 2 are postures that are standing, peeking at the
box containing p and peeking at the box containing ¢; pt, x pt, ¢ {1,4} ensures both
agents will not peek into the same box; value, and value, represent values of p and
g. With the above state space, the initial state is so = (0,0,4,6). The goal states are
Sag = {(1,2,x,y) | x,y € {0,...,99}} U {(Q,I,x,y) | z,y € {0,...,99}}, which is a set
union of: all states that a sees p and b sees ¢; and, all states that a sees ¢ and b sees p.

The returned set of available actions by the action function for any given state is:

¢

0 base case

U{peek(a,p)} if pt, = 0,pt, # 1
U{peek(a,q)} if pt, = 0,pty, # 2
U{peek(b,p)} if pt, # 1,pt, =0
U{peek(b,q)} if pty # 2,pt, =0

U{return(a,p)} if pt, =1
A((pty, pty, value,, valuey)) = U{return(a,q)} if pt, =2
U{return(b,p)} if pt, =1
U{return(b,q) } if pt, =2
U{increment(p)} if value, < 99
U{decrement(p)} if value, >0

U{increment(q)} if value, < 99

\U{decrement(q)} if value, > 0
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At last, the transition function is straightforward in that one value of the state will be

changed by the applied action accordingly. A valid plan is one of [peek(a,p),peek(b,q)],

[peek(a,q),peek(b,p)], [peek(b,p),peek(a,q)] and [peek(b,q),peek(a,p)].

As mentioned by Ghallab et al. [40], the classical planning model is important in planning
as one of the common motivations in most of the scientific research when facing a complex
question is to make restrictive assumptions. With reasonable assumptions, a simplified

problem can be worked out with general models (languages) and approaches.

2.1.2.2 Other Planning Models

As mentioned in its definition (Definition 2.1), the classical planning model follows all
assumptions in Section 2.1.1, as it provides the basics for all planning directions. Those
directions are found by relaxing one or many of those assumptions. In this thesis, we

only introduce the relevant ones.

The deterministic assumption (Assumption 3) receives much attention. In contrast to
deterministic actions, the alternatives are non-deterministic, probabilistic, and stochastic
actions. The classical planning domains with non-deterministic actions are named as
Fully-Observable Non-deterministic Domain (FOND) in Ghallab et al. [40]’s book. The
problem in FOND can be represented by a tuple that P = (S, so, Sg, A, t, ¢), where the
transition function becomes ¢t : S x A — P(S). That is, one action could have a set of
possible next states. A solution for any problem instances in FOND would be a policy

(a function that inputs a state and returns an action) instead of a plan.

From the domain in FOND, Brafman and Giacomo [47] introduced the Non-Markovian
Fully Observable Non-deterministic Domain (NMFOND) by also relaxing the Markovian
assumption (Assumption 6). A problem instance in NMFOND is often defined by a
tuple P = (8, s0,Sq, 4, t,c), where the transition function ¢ : ST x A — S and the goal

becomes a set of state sequences Sg C ST.

2.1.3 Planning Language

Planning languages are the bridge between the human modelers and the planning system.

Although the planning model defines the theoretical ground of the planning problems,
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the planning language is required as a practical tool to encode problems within the

corresponding planning model.

2.1.3.1 STRIPS

As the earliest language that can model classical planning problems, STRIPS [39] rep-

resents a classical planning problem as a tuple:

P =(F,0,I,G), where:

e Fis the set of all possible facts (positional variables, also named as fluents).

O is the set of all operators.
e [ C I is a set of all true facts in the initial situation.
e G C I is a set of facts that need to be true as the goal conditions.
The state representation in STRIPS is a subset of F', where all propositions that hold

true are included in the set, while those that do not hold are excluded, in alignment with

the closed-world assumption. Each operator o in STRIPS consists of three components:
e pre(o): The set of propositions (preconditions) that must be true for the action to
be applicable.
e add(o): The set of propositions that become true as a result of the action.
e del(o): The set of propositions that become false as a result of the action.
State transitions occur by applying an operator, transforming one set of propositions

into another. Since STRIPS does not account for customized operator costs, a plan is

optimal if there is no plan with fewer operators taken.

Using Example 2.1, the set of all facts can be expressed as:

. peeking(z, y), standing(z), z € {a,b},y € {p,q}

free(y), being_peeked(y), val(y, z) 2z €{0,...,99}
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The propositions peeking(z, y) indicate whether agent z is peeking into the box contain-
ing y. The propositions standing(z) signify that agent x is in a standing position (not
peeking into any box), while the propositions free(y) denote that the box containing
y is available for an agent to peek into. Finally, the propositions val(y, z) are true if
the current value of the number y is z. Overall, any state in the NIB domain can be

represented with a F of size 4 + 2 + 2 4+ 200 = 208.

The initial state can be represented by:

I = {standing(a), standing(b), free(p), free(q), val(p, 4), val(q, 6) }

The set of goal propositions requires some discussion. Intuitively, “having both boxes
to be being peeked at” means one of the peeking(a,p) and peeking(b, p) is true, and
one of the peeking(a,q) and peeking(b,q) is true. However, the goal conditions in
STRIPS need to be one set of propositions. Thus, “{peeking(a,p),peeking(b,q)} or
{peeking(b, p), peeking(a, ¢)}” would not be a valid G. On the second thought, free(x)
becomes false when someone is peeking at it, which means {—free(p), ~free(q)} could
be the goal conditions. However, STRIPS does not allow negation in its goal condi-
tion. Therefore, we need an additional set of propositions to serve as goal propositions,

G = {being_peeked(p), being_peeked(q)}.

All peek operators Opeck can be represented by:

peek(x, y)

Opec = pre: {free(y),standing(z)} x € {a,b}
add: {peeking(z,y), being_peeked(y)} y € {p,q}
del: {free(y),standing(x)}

The peek operators Opeek represent actions where an agent x peeks into a box containing
the number y. The preconditions, standing(z) and free(y), ensure that agent z is in a
standing position and that no one is peeking into the box containing y (ensuring the box
can only be peeked at by one agent at a time). Once the operator is performed, agent
x is peeking at y (making peeking(x,y) true), while the agent is no longer in a standing
position and the box is being peeked at. The return operators O;.¢tyrn are just the peek

operators swapping the set precondition and delete set to the add set and vice versa.
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All increment operators Oy, can be represented by:

)

increment(y, z, )

yeip g}
pre: {val(y,z)}

Oine = Z,Z’E{O,...,gg}

add: {val(y,2")}

Z=z-1
del: {val(y, z)} )

This example action is straightforward. It is worth mentioning that the boundary of y

is controlled by not having operators, such as increment(y, 99, 100), in Ojye.

Overall, O is the union of Opeek (size of 4), Oreturn (size of 4), Oine (size of 200) and

Ogec (size of 200). An example plan for the example goal propositions G would be

[peek(a, p), peek(b, q)].

2.1.3.2 Planning Domain Definition Language (PDDL)

In addition to STRIPS, the Planning Domain Definition Language PDDL [41] is com-
monly used to model planning problems. The original PDDL ! was proposed by McDer-
mott et al. [48] in 1998, for the first planning competition at the Artificial Intelligence
Planning and Scheduling (AIPS) [49] conference in 2000. The language is originally
designed to model all sorts of planning problems instead of just the classical planning
problems. A trimmed version of PDDL (known as PDDL 1.2) was introduced by Bacchus
[50] at the second AIPS planning competition by pruning unused features and focusing

on the classical planning problems.

As mentioned by Haslum et al. [41], although PDDL is intended to be a common mod-
eling language, it is important to recognize that it is not a standard. Thus, there is no
“formal” definition of the PDDL. By “formal”, we mean that there is no complete and
unambiguous formalization of the syntax or semantics for all of PDDL. Practically, to
our knowledge, there does not exist an “uniform” planner that supports all of PDDL.
Besides, different planner implementers have different interpretations of the ambiguous
parts of the PDDL. Therefore, in this thesis, we only provide the preliminary on the

parts that are relevant to what we used.

'McDermott et al. referred the version of PDDL as “PDDL 0.0”, while in most of the work, it has
been referred as “PDDL 1.0”.
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A standard PDDL instance contains two files: a domain file and a problem file, both
using the extension “.pddl”. The domain file specifies the descriptions of propositions
(predicates) and operators (actions). The action description covers the parameters,
preconditions, and effects (add and delete set of propositions, similar to operators in
STRIPS). The problem gives the objects, initial state, and goal conditions. One of the
key advantages of PDDL compared to STRIPS is that the domain file is reusable. Thus,
any problem instances from the same domain share one domain file, while the predicates
and actions are grounded by the objects in each paired problem file. In addition, the
domain file also provides a list of “requirements”, which contains some features that are

supported by some planners but not all of them, such as: :typing, negative-preconditions.

Syntactically, PDDL is not case-sensitive, and all expressions are enclosed in matching
brackets. In 1998, McDermott et al. [48] valid term names “are strings of characters
beginning with a letter and containing letters, digits, hyphens (-) and underscores (_)”.
However, in many planners, hyphens are disallowed in term names, as they are used for
a different feature named “typing”. Most of the key words start with a colon, except

“define”, “domain” and “problem” in the file header.

An example is provided using the same problem instance in Example 2.1. The domain

file is shown in Code Example 2.1 and the problem file? is shown in Code Example 2.2.

(define (domain NIB)
(:requirements :strips :typing :negative-preconditions)

(:types
agent num value

(:predicates
(peeking 7a - agent 7n - num)
(standing 7a - agent)
(free ?n - num)
(value ?n - num ?v - value)
(increasing ?7vl 7v2 - value)
(decreasing 7vl ?7v2 - value)

(:action peek
:parameters (7a - agent 7n - num)
:precondition (and
(standing 7a)
(free 7n)
)
teffect (and

2Some lines are omitted for readability. The complete problem file can be found in Appendix B.1.
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25 (peeking 7a 7n)
26 (not (free 7n))
27 (not (standing 7a))
28 )
29 )
30
31 (:action return
32 :parameters (7a - agent 7n - num)
33 :precondition (and
34 (peeking 7a 7n)
35 )
36 teffect (and
37 (free 7n)
38 (standing 7a)
39 (not (peeking 7a ?7n))
40 )
a1 )
42
43 (:action increment
44 :parameters (?n - num ?7vl ?7v2 - value)
45 :precondition (and
46 (value ?n ?7v1l)
47 (increasing ?7vl ?7v2)
48 )
49 :effect (and
50 (value ?n ?7v2)
51 (not (value ?n ?v1))
52 )
53 )
54
55 (:action decrement
56 :parameters (?n - num ?7vl ?v2 - value)
57 :precondition (and
58 (value ?n ?7v1l)
59 (decreasing 7vl ?7v2)
60 )
61 :effect (and
62 (value ?n ?7v2)
63 (not (value ?n ?7vl))
64 )
65 )
66 | )
CoDE EXAMPLE 2.1: PDDL Domain: NIB
1 | (define (problem NIB_example)
2 (:domain NIB)
3 (:objects
4 a b - agent
5 P 9 - num
6 vO vl v2 v3 v4 vb v6 v7 v8 v9
7 ; Placeholder for skipped object declarations
8 v90 v91 v92 v93 v94 v95 v96 v97 vO98 v99 - value
9 )
10
11 (:init
12 (standing a)
13 (standing b)
14
15 (free p)
16 (free q)




17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
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(value p v4)
(value q v6)

(increasing vO0 v1) (decreasing vl vO0)

(increasing v1 v2) (decreasing v2 v1)

; Placeholder for skipped predicate declarations
(increasing v97 v98) (decreasing v98 v97)
(increasing v98 v99) (decreasing v99 v98)

)

(:goal (and
(not (free p))
(not (free q))

CoDpE ExAMPLE 2.2: PDDL Problem: NIB

The above PDDL example follows PDDL 1.2 syntax. It modeled the problem instance
from Example 2.1 following a very similar way as in STRIPS language. The state
representation for the PDDL is described by the set of facts (predicates) that are true in
it, which is the same as STRIPS. Everything other predicate that is not in the current
state is assumed to be false, which follows the closed world assumption (Assumption 10).
Specific to the above example, :predicates, :types and :objects form the set of all facts
(same as F' is STRIPS). Since all PDDL 1 only models propositions (predicates), the
values of two numbers p and ¢ need to be enumerated as a set of propositions, which

are covered by Line 13 in the domain file and Line 3-9 in the problem file.

PDDL differs mainly from STRIPS in that certain components, specifically the domain
file, of a problem instance in PDDL can be applied to describe other instances within
the same domain. This offers greater generalizability in PDDL compared to STRIPS.
Moreover, as outlined in :requirements, PDDL is versatile enough to accommodate fea-
tures such as “:negative-preconditions”, which broadens the scope of problems it can

model beyond the classical planning problems.

Although there are many modifications of the language, including but not limited to:
PDDL 2.1 [51], PDDL + [52], PDDL 2.2 [53], PDDL 3.0 [54] and PDDL 3.1 [55]. Here,

we only discuss the modifications that are relevant to this thesis, which are PDDL 2.1.
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As depicted in earlier examples, both PDDL 1 and the STRIPS framework represent
problems through facts, which are propositional variables. This implies that any vari-
able’s value in a problem’s state is strictly true or false. Nevertheless, to effectively
model real-world challenges—where constraints and objectives frequently entail numeric
reasoning—numeric variables become essential. Therefore, PDDL 2.1, introduced by
Fox and Long [51], incorporates instances of “functions” 3. An illustration of how the
NIB problem instance (Example 2.1) is modeled in PDDL 2.1 is provided in Code Ex-

ample 2.3 and Code Example 2.4.

(define (domain NIB)

(:requirements :strips :typing :negative-preconditions)

(:types
agent num value
)
(:predicates
(peeking 7a - agent ?n - num)
(standing 7a - agent)
(free ?n - num)

(: functions
(value ?n - num) - value

(:action peek
:parameters (7a - agent ?n - num)
:precondition (and
(standing 7a)
(free 7n)
)
:effect (and
(peeking 7a ?7n)
(not (free 7n))
(not (standing 7a))

)

(raction return
:parameters (7a - agent ?n - num)
:precondition (and
(peeking 7a ?7n)
)
:effect (and
(free 7n)
(standing 7a)
(not (peeking 7a ?7n))

3Here, “functions” diverges from its mathematical definition; it resembles variables acquiring a nu-
meric value.
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(:action increment
:parameters (?n - num)
:precondition (and

)
teffect (and
(assign (value ?n) (+ (value 7n) 1))
)
)

(:action decrement
:parameters (?n - num)
:precondition (and

)
teffect (and
(assign (value ?n) (- (value 7n) 1))

)

CoDE EXAMPLE 2.3: PDDL 2.1 Domain: NIB

(define (problem NIB_example)
(:domain NIB)

(:objects
a b - agent
P 9 - num

)

(:init

(standing a)
(standing D)

(free p)
(free q)

(= (value p) 4)
(= (value q) 6)

(:goal (and
(not (free p))
(not (free q))

)
)
(:bounds

(value - int[0..99])
)

CobpE EXAMPLE 2.4: PDDL 2.1 Problem: NIB

As shown in the example, PDDL 2.1 keeps the original predicate definition from PDDL,

and the value of the numbers p and g are modeled as functions. In addition, PDDL 2.1
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adapts expressions and conditions over numeric values, including arithmetic and com-
parison operators, such as —, >, etc. Any example action updates numeric value can be
found between Line 44 to 52 in the domain file, where the variable is assigned its origin
value plus one. In contrast to Code Example 2.2, the modeler is not required to specify

the values and their relations by detailing them through propositions.

2.1.3.3 Functional STRIPS (F-STRIPS)

However, declarative languages like STRIPS and PDDL have limited the scope of plan-
ning, as certain environments representing planning models are difficult to encode declar-
atively, but are easily defined through simulators such as the Atari video games [56].
Thus, an extension of STRIPS, Functional STRIPS (F-STRIPS) has been proposed
by Geffner [57] by introducing first-class function symbols to STRIPS, which provides
additional flexibility in modeling planning problems. Although there are some mature
ideas about integrating functions in both STRIPS [58-62] (using constant symbols and
their domains of interpretation) and PDDL [48], F-STRIPS is different from those in two

ways: allowing nesting in functions; and allowing customized representation functions.

Any problem modeled by F-STRIPS can be represented as P = (Lp, Op,Zr,Gr), where
L is the language, O is the set of operators, and Zp and Gp are formulae representing
the initial state and goal conditions. The language L is defined by declaring the fluents
and their domains, while the operators are defined by using representation functions,
including the standard representation functions, such as “+”7 , “=", and “>”, and cus-
tomised representation functions defined by the modeler. The states are represented
by complete assignments, which means each fluent is assigned a value. Moreover, the
operators define the transitions, where the precondition decides their availability, and

the effects indicate the assignments that will be updated.

The potential of customised representation functions of F-STRIPS did not get fully ex-
plored until Frances et al. [63]’s work. Their novel concept involves employing F-STRIPS
model domains that do not use a declarative action representation. This approach is
particularly useful for domains where the relations are too complex to be represented
by declarative planning language or involve even black-box relations (a simulator, such
as Atari video games [56]). They treated those relations as external functions with a

special symbol “@Q”.
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In their formalization, any classical F-STRIPS problem can be represented by a tuple
(V,D,0,7,G,F), where V and D are variables (named as functions in the language)
and domains, O, Z, G are operators, initial state, and goal conditions. The set of
external functions, F, allows the planner to handle problems that contain the above
expressive relations. The external function can be either implemented intuitively in any

programming language, or obtained from the simulation.

2.1.4 Planner

Besides the problem model and representations, a solver, which is also called a plan-
ner, plays another important role in planning by applying algorithms, usually search

algorithms, to generate a solution for the modeled problem.

2.1.4.1 Search Algorithms

The basic search algorithms used are the blind (uninformed) search algorithms, such as
Breadth First Search (BFS), Depth First Search (DFS), Iterative Deepening (ID) and
Uniform-cost Search, etc. Those algorithms have their own advantages and limitations.
The performance measures for those search algorithms include completeness, optimality,
time complexity, and space complexity. BFS ensures completeness, given the state
space of the problem is finite, and also guarantees optimality, given the costs of all
actions are uniform. An extension of BFS is Uniform-cost Search [64] (akin to the
Dijkstra algorithm [65], also known as Best First Search in some work [66]), which is
optimal with any positive action costs. DFS is neither complete nor optimal, but it has
significantly lower space complexity (O(b#* D)) in comparison with BFS (O(b%)), where
b is the branching factor, d is the optimal depth, and D is the maximum depth. ID is a
combination of BFS and DFS, which also inherits the advantages from both algorithms:
the same completeness and optimality from BFS; and the same space complexity from

DFS.

One of the most successful computational approaches to planning is the heuristic (in-
formed) search [67]. It employs a heuristic function to estimate the cost from the given
state to achieve goals. The standard heuristic search algorithms include A* [68], Greedy

Best-First Search (GBFS) and Weighted A* [69]. The heuristic function distinguishes
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different planners [70]. A few properties are defined to analyse the performance of the
heuristic functions, which are: admissibility, safety, goal-awareness, and consistency. In
addition, to achieve good performance, the heuristic functions should be as informed as
possible. Using the planner LAMA as an example, the heuristic it uses is a landmark-
based heuristic derived from the model [71] along with other delete-relaxation heuris-
tics [72]. This makes LAMA be one of the state-of-the-art planners in the planning
competition (won the international planning competition twice in 2008 and 2011). The
limitation of the heuristic functions is that most efficient heuristics require the model to
be encoded in STRIPS or PDDL (following the classical planning assumptions, such as
Assumption 3 and 6) since those heuristic functions explore action’s determinism and
Markovian from their declarative representations. This restricts the expressiveness of

the models significantly.

2.1.4.2 Variations in Planners

The standard classical planning languages and solvers do not support the use of proce-
dures or external theories. As introduced in Section 2.1.3.3, the first theoretical research
that solves this problem is from Geffner [57]’s F-STRIPS language, where the denota-
tion of (non-fluent) function symbols can be given using external functions. In addition,
Dornhege et al. [73] proposed an extension of the PDDL language (PDDL/M) that uses
a similar idea called semantic attachments. They apply this idea by integrating with
existing heuristic search-based planners. Their approach is widely used for robotic mo-
tion planning [74-77]. Planning Modulo Theories were introduced by Gregory et al., an
idea inspired by SAT Modulo Theories [79], where specialized theories were integrated

too with a heuristic search planner.

The reason why functions are not “first-class citizens” in planning languages is that
there was no clear way to deal with them that is both general and effective. Most
planning approaches ground all functions, which allows them to convert the problem to
a classical propositional planning problem that can be solved using a classical planner,
but recently, a new family of algorithms called BFWS have been proposed as a new
width-based planning [80]. They show their width-based approaches are as efficient as

most of the state-of-the-art heuristic search approaches.
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2.2 Epistemic Logic

At the beginning of this section, we give some necessary logic operators, notations, and
axioms for epistemic logic. Then, we discuss the preliminaries of one part in epistemic
logic, which is “knowledge”. Knowledge requires the system to model and reason about
the actual environment and the agents’ knowledge about this environment, and of agents’
knowledge of others’ knowledge about this environment, and so on. In addition, we give
the preliminaries for the other type of epistemic logic — belief. Similarly, belief can be

nested arbitrarily. Differing from knowledge, belief is less restricted.

For handling both belief and knowledge, we follow the most fundamental and widely
used approach, the one that is using Kripke Structure. Firstly, in this chapter, we show
how the Kripke Structure is used to handle knowledge, group knowledge, as well as
belief and group belief. In addition, we also give background on the difference between

knowledge and belief.

At the end, we show an extended epistemic logic model, namely Dynamic Epistemic

Logic, which is designed to formalize the changing of the state and Kripke structure.

It is worthy to mention to the reader that in this chapter, we used the terms “single
knowledge” (or “individual knowledge”) and “single belief” as the differentiation from
the terms “group knowledge” and “group belief”, while they could contain multiple
agents in the full formula. For example, we consider: “agent a knows agent b knows
©” is a single-knowledge relation, as in each knowledge nesting level, there is only one
agent; “agent a knows ¢ and agent b knows ¢” is a conjunction of two single-knowledge

relations; “agent a and agent b knows ¢” is a group-knowledge relation that a and b as

a group, and each agent in this group uniformly knows ¢.

2.2.1 Preliminary for Knowledge in Epistemic Logic

The fundamental models for epistemic logic are based on classical logic. Following clas-
sical logic, the fundamental epistemic logic is also a propositional logic. Thus, given the
set of all propositions Prop = {p1, ...}, the basic language Ly (Prop) used in epistemic

logic can be defined as follows:

pu=p|-p|oAep|Kp, where:
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K is a general knowledge operator that is going to be replaced by K; or K¢ later (once
single-knowledge or group-knowledge is introduced). The interpretation of K¢ is that

® is known.

Other logic operators are included, such as =, and —. The material implication operator
in this thesis is denoted as —, which is also commonly represented by D or = in other
works. The disjunction operator V is omitted as classical epistemic logic follows De
Morgan’s Laws from classical logic (AV B = =(=A A =B)). Other logic operators,

such as [, are not relevant in this thesis. Thus, those are omitted.

The semantics for all formulae in language L£x (Prop) are the same as in classical logic,

except for the knowledge operator, which is going to be explained later in this section.

The fundamental axioms and rules we listed below are referred from Gochet and Gri-
bomont [81]’s book chapter and Fagin et al. [3]’s book. The combinations of these
axioms or rules provide a family of sound and complete axiomatic systems for different

variations of epistemic logics.

Definition 2.2 (Epistemic Logic Benchmark Statements). Here are listed 7 intuitive

axioms and two inference rules as follows:

P: (Tautology Property) Classical tautologies are valid
K: (Knowledge Property) (Ko ANK(p = 1)) = K1

T: (Distribution Property) Ko — o, p—=-K-p

B: (Brouwerian Property) o — K-K-p

4: (Positive Introspection Property) | K¢ — KK

5: (Negative Introspection Property) | “ K¢ — K—K¢p

D: (Consistency Property) =K false

MP: (Modus Ponens) (oA (p—= ) >0

KG: (Knowledge Generalization) o — Kop

Both Axiom P and Rule MP are intuitive. Since they hold in classical logic, they must
also hold in epistemic logic as well. Axiom K is the “epistemic version” of Rule MP: if
@ and ¢ — 1 are known, then ) must also be unknown. While Axioms T, B, 4, 5, and

D are valid in some formal systems but not in all.
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The intuition for Axiom T is straightforward: if ¢ is known, then it must be true;
and, if ¢ holds, then not ¢ must not be known. Axioms 4 and 5 indicate known
(4) or not known (5) relations should be known. Combining Axioms T and 5, we have
Axiom B. Axiom D represents that knowledge is consistent, which means a contradiction

or impossible cannot be unknown.

As mentioned by Gochet and Gribomont, some of the above axioms and rules are widely
accepted and intuitively valid. Thus, those must hold in any appropriate formal sys-
tem, while others are more controversial. Some would be relaxed from valid to simply

satisfiable in other systems.

Historically, Axiom P and both inference rules are commonly accepted by most of the
logic systems, including all epistemic logic systems discussed in this subsection. With
this premise, the axiomatic system is named after other significant axioms, excluding
Axiom P, Rule MP, and Rule KG. Here, we listed some common axiomatic systems:
KT4 (also known as S4), KT45 (also known as S5) and KD45. The details are given

in the later parts of this section.

2.2.2 Kripke Structure

The standard and foundational epistemic logic model is defined following the Kripke

structure. We follow the formal definition from Fagin et al. [3]’s book.

Definition 2.3 (Kripke Structure). Let Pro be a finite set of propositions and Agt be

a finite set of agents (k of them), a Kripke structure is a tuple:

M = (VV,?T,/C(),. . .,K:k), where:

e W is a non-empty set of all possible worlds;

e 7 is an interpretation function such that w(w) : Prop — {true, false} defines

which propositions are true and false in world w € W

o ICy,..., Ky represents the accessibility relations over worlds for each of the k agents

in Agt.
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Given a world * w and a proposition p, the evaluation of p over w is 7(w)(p). p is true
in w if and only if 7(w)(p) is true. K; for agent i is a binary relation ® over worlds. For
any pair of worlds v and w, if (w,v) € K;, then we say that agent i cannot distinguish
between v and w when in world w. In other words, the world v and w are equivalent
to agent 7 if and only if (w,v) € K;. For example, an agent throws a coin and covers it
in his/her hand. Before the coin is revealed, others cannot distinguish between the coin

being head up or tail up.

In addition, they also discussed the five constraints for these accessibility relations as

follows.

Definition 2.4 (Epistemic Logic Benchmark Statements). For any accessibility relation
K in a given Kripke structure M = (W, w,Ky,...,Kx), b common constraints of K can

be defined as:

Reflexive: Yw € W, we have (w,w) € K

Symmetric: | Vw,w' € W, we have that (w,w’) € K if and only if (w',w) € K
Transitive: | Vw,w',w” € W, we have if (w,w’), (v, w") € K, then (w,w”) € K
Euclidean: | Vw,w',w"” € W, we have if (w,w’), (w,w”) € K, then (v, w") € K

Serial: Vw € W, we have Jw’ € W such that (w,w’) € K

The above five constraints are not independent. As proposed by [3]: if K is reflexive and
Euclidean, then K is symmetric and transitive; if K is symmetric and transitive, then K

is Euclidean. In addition, if K is reflexive, then K is serial.

With the definition of Kripke structures and constraints on the accessibility relations,
the semantics for knowledge and group knowledge can be formed. It is worthy to mention
here, the definition of knowledge and belief by [3] follows the same semantics, while the
difference lies in the properties of the equivalence relations XC;, which will be covered in

the later parts of this section.

“In some of the literature, worlds are used interchangeably with the word “state”, but in this the-
sis, we use “state” with a slightly different meaning from world, which will be explained later (after
Definition 3.2).

In some work, this binary relation was also refereed to Equivalence relation. However, it can be
called as equivalence relation only if it met some desired constraints (as discussed below).
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2.2.3 Kripke Structure for Knowledge

The Kripke structure that can model agents’ knowledge is the same as in Definition 2.3.
Fagin et al. [3] discussed different combinations of accessibility relation constraints from
Definition 2.4, which form 4 different Kripke structures: M (reflexive), M (reflexive
and transitive), M (reflexive, symmetric and transitive) and M¢* (Euclidean, serial

and transitive).

They chose Mt as the Kripke structure to reason about the semantics of knowledge. In
other words, any accessibility relation K in M"*! is reflexive, symmetric, and transitive.
They also call these relations equivalence relations. In addition, they proved that for
any formulae in the language L (Prop), S5 (KT45 in Definition 2.2) is a sound and

complete axiomatization.

2.2.3.1 Semantics for Single-Knowledge

Let signature ¥ contain a countable set of all primitive propositions Prop = {p1, p2, ...}
and a finite set of agents Agt = {a1,aq,...}, the syntax for epistemic logic language

Lk (X) (in the form of BNF) is defined as:

pu=pleAe| | Kp, where:

p € Prop and i € Agt.

K,y represents that agent ¢ knows proposition ¢, = means negation and A means con-
junction. Other operators such as disjunction and implication can be defined in the
usual way. This definition allows arbitrary nesting on the knowledge operator, such as,

K, Kypp representing agent a knows that agent b knows p.
Then, they give the semantics for this knowledge language.

Definition 2.5 (Semantics for Single Knowledge with Kripke Structure). Given a
Kripke structure M = (W, n,Ky,...,Kx) and the current world w, the truth value
of any formula in language Lk (X) can be defined as:

(a) (M,w)Ep iff  7w(w)(p) = true

(b) (M,w)E K;p iff (M,v)E ¢ for all v such that (w,v) € K;
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The notions (M, w) F p from item (a) read as “(M,w) satisfies p”. That is, the proposi-
tion p evaluated by 7 is true given the current world w and the model M. (M, w) F K;p
is defined by formula ¢ being true at all worlds v reachable from w via the accessibility
relation K;. Besides, conjunction and negation are defined by standard propositional

logic rules.

This semantics allows knowledge to be nested as well. For example, K,K;p means p
is true at all worlds reachable by applying the accessibility relation IC, followed by /.
To be specific, (M,w) E K,Kpp is true if and only if: (M,v) F Kpp for all v such that
(w,v) € Kq4, which means (M, v') E p for all o' such that (v,v") € K, for all v such that

(w,v) € KCy. This idea generalises to an arbitrary level of nested knowledge.

With the semantics for knowledge, they are able to prove that S5 is a sound and com-
plete axiomatization for the Kripke structure M = (W, Ko, ...,K) discussed at the

beginning of this section (Section 2.2.3).

Now, let us elaborate the Kripke structure and its knowledge semantics by using the
following example (from Example 1.2). First, we construct the Kripke structure M =
(W, m,Ko,...,Kg). The set of all possible worlds W follows the state-space in the clas-
sical planning model in Example 2.1 (Section 2.1.2.1). To show the accessibility relation
for each agent, we use the following notation to represent some subsets of all possible
worlds:

Wijay =10, 7,2,9) | (i,j,2,y) € W}, where:

W

any ¢, j, x, y can be replaced by an underscore “”, which matches any value in
the possible worlds. For example, Wy __ represents a set of states in which pt, =
pt, = 0. The possible worlds in this example can be divided using W;; , where
(i,7) € {(0,0),(0,1),(0,2),(1,0),(2,0),(1,2),(2,1)}. That is, the possible worlds are
divided into 7 sets according to agents’ postures (as shown in Figure 1.2). Then, the

accessibilities in the Kripke structure for knowledge can be constructed as follows:

e For Wy __, a binary relation for any two possible worlds in Wy ___ that contains
the same value of pt;, will be added into IC, (That is, every combination of size two
in each set Wy, and Wy __ will be added to C,); and, respectively the same
for W_o,__ on Ky;
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e For W a binary relation for any two possible worlds in W; ___that contain the

1=y=y=7

same pt;, and value, will be added into KC,; and, respectively the same for W_ 1

on Kp;

e For W5 __, abinary relation for any two possible worlds in W5 ___that contain the
same pt, and value, will be added into Ky; and, respectively the same for W_o

on ICp;

From the above construction, the accessibility relations I, and Ky are trivially reflexive,
symmetric, and transitive. The evaluation function 7 is just standard, following classical

logics.

Then, using the above Kripke structure, the semantics of knowledge can be discussed.

In order to do so, we need to have a few example epistemic goals in language Lk (3).

Example 2.2 (NIB Example Knowledge Formulae). Following Example 1.2, the exam-

ple epistemic formulae are listed as follows:

1. Kq(p=4)

2. KoKy(p=4)

5. Ko(p x q=4)

4. Ka(px q<99%)

5. Ko Ky(p x g < 99?)

For each of the above epistemic formulae, their truth value can be evaluated using the

semantics from Definition 2.5 as follows:

1. (M,w)EF Kq(p=4) holds if and only if w € W;_4,_. Based on the construction of
the M, all the worlds that agent a considers possible (V(w,v) € K,), contain the
same value of value, as in w. That is, the value of p is 4 in every state that agent a
considered possible. Thus, (M, w) F K,(p=4) holds. While, for any v’ ¢ Wy _4_,
then it is either a knows p is a different value (v’ € Wy _, , where x # 4), or a

does not know the value of p (w' € W; where i # 1).

s=y=y=7
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2. (M,w) F K,Kp(p=4) will never hold in the given Kripke structure. Following
the above conclusion, (M, w) E Kq(p=4) holds if and only if w € Wy _4 . Thus,
(M,w) F KKp(p=4) = Yw' € Wi _4_,(M,w') F Ky(p=4). Since the number
p cannot be peeked by both agent at the same time, which means v’ ¢ W 14 .

Thus, Kp(p=4) does not hold in any w’, which means (M, w) F K,Kp(p=4) will

never hold.

3. (M,w) E Kq(p x ¢g=4) will also never hold in the given Kripke structure. This is
trivial if w € Wy . If w e Wy, where Wy C (W__.y, where x x y=4).
Following the above conclusion, (M,w) E K,(p = k) holds if and only if w €
Wi, _k,_. There exists (w,v) € K, such that the value of ¢ in v is not equal to
4 =+ k. Thus, (M,w) F Kq(p x ¢=4) does not holds for all w € W;_j, . Similar,
(M,w) E Kq(p x ¢g=4) does not holds for all w € Wy __.

=y=y

4. Both (M, w) F Ku(p x ¢ < 992) and (M,w) F K,Kp(p x ¢ < 99?) holds trivial as
(M, w) E (p x g <99%) holds for all w € W.

In the above example, it seems less intuitive that agent a cannot have the knowledge
that px q is 4 even if p X ¢ actually is 4. This happens because the above Kripke structure
is constructed only based on the current state without any other implicit information
nor the state transitions that update the knowledge. How the knowledge evolves will be

covered in the later part of this section as well as in this thesis.

2.2.3.2 Semantics for Group-Knowledge

Following the same intuition, the concept of group-knowledge can be defined. For this,
with the same signature ¥ above, the grammar of the language (Lox (X)) is extended

to:

pu=ploAe|-¢| Kip|Egp| Doy | Cayp, where:
p € Prop, i € Agt, and G are a non-empty set of agents such that G C Agt.

FEqp represents that everyone in the group G knows ¢ and Cgyp represents that it is
commonly known in the group G that ¢ is true, which means that everyone knows ¢,

and everyone knows that everyone knows ¢, ad infinitum. Dgp represents distributed
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knowledge, which means if all agents in G pooled their knowledge together, they would

know ¢, even though it may be that no individual in the group knows .

Following the similar semantics as the single knowledge, they give the semantics for the

group knowledge operators as follows.

Definition 2.6 (Semantics for Group Knowledge with Kripke Structure). Given a
Kripke structure M = (W, n,Ky,...,Kx) and the current world w, the truth value

of any formula in language Lo i (2) can be defined as:

(M,w)F Eqp iff (M,w)E K;p forallieG
(M,w)E Cgp iff (M,v)FE ¢ for all v that are G—reachable

(M,w)E Dgy iff (M,v)FE ¢ for all v such that (w,v) € (e Ki

By definition, (M, w) E Eg¢ holds if and only if ¢ is known by all agents (uniformly) in
G. This can also be rewritten in a form that is similar to Dgp, which is: (M, w) F Egp

holds if and only if (M, v) F ¢ for all v such that (w,v) € J,cq K-

World v is G—reachable from w if w can reach v within k steps of accessible relations,
or for some k where £ > 1. Common knowledge (M, w) F Cgyp holds if and only if in
all worlds v that are G—reachable by following the accessibility relations of all agents

in G, ¢ is true.

For distributed knowledge, (M,w) F Dge holds if and only if in all worlds that all
agents from G agree are possible, ¢ is true. It might be easier to think in the reverse
direction: we say Dge is true in (M,w) if and only if we eliminate worlds that any
agent in G knows to be impossible, and ¢ is true in all the remaining possible worlds.
That is, when “pulling” all agents’ knowledge together, there might be some accessibility
relations from KC; that are disapproved by another agent j. This might be less intuitive
when one considers that pulling knowledge together would gain more knowledge for the
group. This is because the more binary relations in the evaluation, the more uncertainty
of the knowledge. If any agent i knows everything about the given world w, then, the

w in IC; would only connect to itself ((w,w) € K;).

Now, let us elaborate on the group knowledge semantics with the same Kripke structure
constructed in Section 2.2.3.1. Some group knowledge formulae are given in the following

example.
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Example 2.3 (NIB Example Group Knowledge Formulae). Following Example 1.2, the
example group knowledge formulae are listed as follows, where group G contains both

agent a and b:

1. Eg(p=4)
2. Dg(p x g=4)

3. CG’(pta: 1)

For each of the above epistemic formulae, their truth value can be evaluated using the

semantics from Definition 2.6 as follows:

o (M,w)E Eg(p=4) will never hold in the given Kripke structure. (M, w) F K,(p=

4) will not hold for any w € W; ___ where i is not 1, and (M,w) F Ky(p=4) will

not hold for any w € W_; _ where j is not 1. The union of the above two sets
forms all possible worlds W. Thus, (M,w) F Eqg(p=4) will never hold for any

weW.

o (M,w) F Dg(p=4) holds if and only if w € Wi 24, U Wa 1 ,,, where z X y =
4. Using w' € Wi2,14 as example, based on current world w’, the accessibility
relations in /C, is the set Ky(w') = {(w',v) | v € Wi2,1,_}, while the accessibility
relations in K, is the set Kp(w') = {(w',v) | v € Wig_4}. Based on group
semantics, (M, w) F Dg(p=4) is equivalent to (M, v) F (p=4) for all v such that
(w,v) € N;eq Ki- The intersection ICq(w') N ICy(w’) is {(w',w’) | w' = (1,2,1,4)}.
Thus, we have (M,v) F (p =4). Following the same process for all the other
combinations of z and y, we have (M,w) F Dg(p=4) holds if and only if w €

Wi2.2eyUWai1 .y, where z X y=4.

o (M,w)E Cqg(pt,=1) if and only if w € W; __ . We consider this by all posture

y=y=y—

of agent b. If b is not peeking, given an example state v’ = (1,0,z,y) € Wi __,

the reachable possible worlds by b’s accessibility relations is Kp(w') = Wi, . The

reachable possible worlds for a based on the possibles worlds from b (KCp(w')) is
also W10,__. The above process has converged on the set W7 _ . It ends in the
same converged set if agent a’s accessibility relations is evaluated first. Thus, the

set of all G —reachable possible worlds is W1 o,__, and pt, is 1 in all of them, which
means (M, w) E Cg(pt,=1) holds.
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2.2.4 Preliminary for Belief in Epistemic Logic

The relation between knowledge and belief has been discussed by both philosophers
and logicians. The first intuition is from Meno by Plato [36]. As the epigraph aptly
quotes, Plato claimed knowledge is true opinion (belief). Later on, in Theaetetus [82],
he disproved the above idea by extending it to that knowledge is true opinion combined
with a definition or a rational explanation. That is, one knows that a proposition p holds
if and only if: 1), p is true; 2), one believes p holds; and, 3), one is justified in believing
p. His idea is further explained by defining the necessary and sufficient conditions for

knowledge by Ayer [83] and Chisholm [84].

However, in 1963, Gettier [85] proposed a counter-example to their definition of the
knowledge, which shows that even with necessary and sufficient conditions, the justified
true belief is still not enough to generate knowledge. This is caused by a person can
justifiably believe a proposition for the wrong reason. In order to avoid this issue, one
could add one condition to the above Plato’s definition: the reason for the third condition
(one is justified in believing p) holds should be the same as the reason the first condition
holds. However, this results in those two conditions (first and third) no longer being
independent, which indicates the connections between knowledge and belief are difficult

to analyse. Thus, we define the belief operator here first.

Using a similar format from the grammar of the knowledge operator in Language
L (Prop), the grammar for the language (Lp(Prop)) that contains the belief operator

for a set of propositions Prop can be defined as:

pu=p|-p|oAe|Bp, where:

p € Prop. This language is simply replacing the knowledge operator K with the belief

operator B.

In general, the key distinction between knowledge and belief lies in that knowledge must
reflect the actual world, whereas belief does not have this requirement. As shown in
the following definition (Definition 2.2a), the axiomatic system defined for knowledge
(Definition 2.2) can be used for belief by replacing K with B, and removing Distribution

Property Axiom T as well as Brouwerian Property Axiom B.
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Definition 2.2a (Epistemic Logic Benchmark Statements for Belief)

Here are listed 5 intuitive axioms as follows:

P: (Tautology Property) Classical tautologies are valid
K: (Knowledge Property) (Bcp A B(p — ¢)) — By

4: (Positive Introspection Property) | By — BBy

5: (Negative Introspection Property) | =By — B-Byp

D: (Consistency Property) -B false

The removal of Axiom T stems from the fact that agents may hold beliefs that are not
necessarily true, while Axiom B is omitted because agents may also believe in their own
beliefs, regardless of their veracity. Axiom D serves as the axiom ensuring consistency,
which prevents agents from believing in impossibilities, such as contradictions. In certain
studies [86-88], an alternative version of the Consistency Property Axiom D is used:
By — = B—y, emphasizing that an individual’s beliefs should remain consistent rather

than merely possible.

2.2.5 Kripke Structure for Belief

With the axiomatic system (in Definition 2.2a) for language L£p(Prop), we can now give

the classical definition for belief by using Kripke structures.

The signature of the model is the same as in Section 2.2.3, while the grammar of the
language is also the same, except the language Lx(X) and Lok (X) were replaced by
language Lp(X) — which is Lx(X) by replacing the knowledge operator K with belief
operator B—and Lgp(X), where E, D and C become EB, DB and C B respectively. The
representation of the Kripke structure stays the same (Definition 2.3). The difference

lies in the requirements for the accessibility relation.

As mentioned in Fagin et al. [3]’s book, the Kripke structure that models belief is
M®* which means the accessibility relations in M¢* must be Fuclidean, serial, and
transitive (from Definition 2.4), rather than equivalent relations (reflexive, symmetric,
and transitive) for knowledge. Then, the semantics for single belief and group belief are
the same as in Definition 2.5 and Definition 2.6 respectively. They also provide a proof

that KD45 is a sound and complete axiomatization for M.
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2.2.6 Knowledge Versus Belief

Gochet and Gribomont [81] points out that analysing concepts of knowledge and be-
lief in isolation is not very promising. The relation between knowledge and belief is
complicated, as briefly mentioned when we introduced belief earlier. There are many
research [89-91] analyses on the connection and difference between knowledge and belief.

Here, we only show the relevant works to this thesis.

Although the Kripke structure can be used to model knowledge and belief, it is trickier
when both knowledge and belief are evaluated in the same model. Thus, Kraus and
Lehmann [92] use two types of accessibility relation =; and =; to represent indistin-
guishability for agent ¢ on knowledge and belief respectively. Similarly, as introduced
earlier, they required =; to be an equivalence relation (reflexive, symmetric, and transi-
tive), while =; should be Euclidean and serial, but it is not necessarily symmetric and
reflexive. Then, following the intuition that “It is easier to believe something than to
know it.”, they proposed that for any two possible worlds w and w’, w ~; w' — w =; w'.
That is, K;¢ — B;p (Axiom KB1), which is proved by Gochet and Gribomont [81].
Then, Gochet and Gribomont also proposed another intuitive “bridge axiom” named
Axiom KB2, which is B;p — K;B;p. To sum up, they proposed an axiomatic system

as evaluation for systems that handle both knowledge and belief as follows.

Definition 2.7 (Axioms for KB). Presented are 10 axioms:

K: (Knowledge) | (Kip A Ki(¢p = v)) = Kb
T: (Knowledge) | Ko — ¢, ¢ — " K;—¢

4: (Knowledge) | Ko — K;K;p

5: ( )

Knowledge Ko — K=K
K: (Belief) (Big A Bi(p = ¢)) — By
D: (Belief) —B; false
4: (Belief) Bip — B;Bjp
5: (Belief) - By — B;—B;p
KB1: Ko — B;p
KB2: B;p — K;Bjp

In addition, Voorbraak [93] raised a theorem as shown in Theorem 2.8, which claimed

agents believe they know ¢ do know it.
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Theorem 2.8 (The unwanted axiom). B;K;p — K;

The above axiom might be intuitive in the agents’ local view, but globally it is counter-

intuitive. One should have the ability to believe to know a false proposition.

However, as proven by Gochet and Gribomont [81], the above theorem holds for the
axiomatic system provided in Definition 2.7. Since the proof is based on three axioms:
KB1, D and 5, they claimed that one of these three axioms must be removed to avoid
having Theorem 2.8 hold in a logic system. For instance, some researchers [93, 94] chose
to drop Axiom KB1 forming “Objective Knowledge”, while others [95, 96] removed
Axiom D which causes an agent’s beliefs to be inconsistent (B;p A By /4 Bi(p A1)).
In addition, Axiom 5 was questioned by Lenzen [97]. As an agent’s knowledge is always
consistent with the true world, they claim that one cannot — by mere introspection
— ascertain whether they know something. Furthermore, Williamson [98] proved that
with an additional Axiom KB3 (B;p — B;K;p), the axiomatic system in Definition 2.7
results in another unwanted axiom, Axiom €2, where B; — . This issue was fixed by
Halpern [99], in which they limited Axiom KB1 to be objective (non-modal formulae).
They proved with this restriction, the axiomatic system mentioned above is sound and

complete.

Overall, it is common for a logic system to follow S5 for knowledge (as described in
Section 2.2.3) and KD45 for belief, as well as using Axiom KB1 and Axiom KB2 as

the bridge between knowledge and belief.

2.2.7 Knowledge & Belief Updates

While Kripke structures can effectively model knowledge and belief, they follow a “fixed”
methodology. This means that the assessment of epistemic relations relies on the speci-
fied (input) world (state), like a “snapshot” of the dynamic reality. This can be elabo-
rated further with the well-known Muddy Children [3, 100] example.

Example 2.4. There are n children, and m of them with mud on their forehead. They
can all see each other’s foreheads, but not their own. They will announce immediately
when they know whether they are muddy or not. To help them find out whether they
themselves are muddy or not to get themselves cleaned, their teacher can help. Firstly,

the teacher told them: “At least one of you has mud on your forehead.” (m > 0). Then,
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the teacher will repeatedly ask one question to them all: do you know whether you are
muddy or not? The process stops when everyone knows whether they have mud on their

forehead.

This has been proven that the teacher has to ask for m — 1 times for the muddy children
to announce they know that they are muddy, thereby allowing the clean children to
recognize that they are clean. For example, when m is 1, it is trivial that the only muddy
child will notice no one else has mud on their forehead after the teacher’s statement,
which means himself/herself is muddy since there is at least one child who is muddy
(m > 0). So that, the muddy child will announce immediately, while the clean children
stay quiet. Right after this announcement, others will know their forehead is clean by

induction.

When there are two children who are muddy (m = 2), both muddy children see there is
one child who is muddy and they cannot see their own forehead. In the meantime, the
clean children see two muddy children and are also unsure about their own cleanness.
The teacher is able to help them by asking the question once. Then, both muddy children
will know immediately they are muddy, because if they are not, the other muddy child
would make the announcement before the teacher asking the question. Since the other
muddy child did not announce, which means that child sees another muddy child, and
everyone else is clean, the conclusion is straightforward that both muddy children will
know they are muddy. Once they made the announcement, the remaining clean children
will know the identity of the two muddy children (if there were 3, then both of them

would remain silent), which indicates they are clean.

The above induction is captured by Kripke structures in Fagin et al. [3]’s book. They
used an example with 3 children (n = 3), namely a, b, and ¢, and used a tuple (pq, pp, Pc)
to represent the state, where p,, pp, p. are propositional variables with a value of 0 or
1, representing whether each child is muddy or not. That is, a tuple (0,0,0) means all
three children are clean, while a tuple (0, 1, 1) represents that child a is clean and both

b and ¢ are muddy.

The visualization can be found in Figure 2.3. Each node represents a state, and each

edge represents an accessibility relation IC; with agent index i as it label.
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(0,0,0)

(1,0,0) (0,0,1) (1,0,0) (0,0,1)

b
(1,1,0)

(0,1,1) (1,1,0) (0,1,1)

(1,1,1) (1,1,1)

a: Scenario 1 b: Scenario 2

FIGURE 2.3: Examples for Muddy Children using Kripke Structure [3], where the self-
loops are omitted.

Initially (as shown in Figure 2.3a), children are able to observe others except them-
selves, signifying their inability to distinguish between possible worlds, where the only
distinction is the variable representing their own cleanliness. Then, once the teacher
made the statement (m > 0), all the children would consider the world (0,0,0) as not
possible. Therefore, the world and its related accessibility relations have been removed
and formed a new Kripke structure as shown in Figure 2.3b. Although the Kripke struc-
ture can capture the epistemic relations in the above example, it evaluates epistemic
formulae with the input of a static world. In other words, it cannot handle the changes
in between. Despite numerous studies [101-104] in Epistemic Logic that address the up-
dates of knowledge and belief, this thesis highlights only the most pertinent one, namely

Dynamic Epistemic Logic.

2.2.7.1 Public Announcement in Dynamic Epistemic Logic (DEL)

As discussed in Ditmarsch et al. [105], Dynamic Epistemic Logic (DEL) refers to a col-
lection of extensions of epistemic logic that incorporate dynamic operators for reasoning
about information dynamics. Since utilizing DEL is not the central focus of this thesis,
we will limit our discussion to the most renowned and frequently cited version of DEL,
as presented by Ditmarsch et al. [105], which is a version that mainly covers the changes
of knowledge. As DEL is widely used in Epistemic Planning, which is the most relevant
concept that is going to be introduced in the forthcoming section (Section 2.3), here,
we only show the intuitive idea about updating the epistemic model with a formula ¢

rather than delving into the planning-centric notion of epistemic actions, which is also
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the reason we chose to present Ditmarsch et al.’s work. In addition, we make some

adjustments to the notion to make it consistent with other parts of this section.

DEL keeps the Kripke structure as introduced in Section 2.2.2 and follows the same
semantics (including language Lx (Prop)) in Section 2.2.3.1. Moreover, it incorporates
the language and semantics for the common knowledge operator “C” described in Sec-
tion 2.2.3.2. Given the signature of their model ¥ = (Prop, Agt), the formalization of
the language L c((¥) is presented by the BNF as follows:

pu=ploANe|-p| K| Cap | [ple, where:

p € Prop, i € Agt and G C Agt. To capture the changes between two epistemic
states (instances of Kripke structure), they proposed formula [p]¢) to represent after the
state updated with ¢, formula 1 holds, as shown in Figure 2.3. Then, they added the

semantics for the newly proposed update operator [| as:
(M, w) E [l iff (M,w)E ¢ implies M | ¢, w E 1, where:

M | ¢ represents the model M = (W,7w,Ky,...,K)) is updated by ¢ into M’ =
(W' 7, Ky, ..., K},), where:

W' = {w | (M,w) F ¢} (2.1)
Ki=K;n(W x W) (2.2)

With their definition, the changes in between Kripke structure M; (Figure 2.3a) and My
(Figure 2.3b) from Example 2.4 can be formally represented, which is M; | m > 0 = M.
That is, the initial Kripke structure, including the accessibility relation for every child,
has been updated by their teacher’s first statement m > 0. Since (M, (0,0, O)) #m >0,
the world space in the updated Kripke structure does not contain world (0,0,0). In
addition, all the accessibility relations that contain (0,0,0) are removed in the updated

Kripke structure as well.

Ditmarsch et al. [105] named this ¢ as the effect of a public announcement action, which

is aligned with the teacher’s statement and questions in the muddy children example.
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In addition, they also provided other types of epistemic actions, which are going to be

mentioned in Section 2.3.1.

2.3 Reasoning with Epistemic Logic in Planning

Epistemic Planning is a combination of Automated Planning, Epistemic Logic, and
Knowledge Representation and Reasoning. Its distinction from classical planning pri-
marily involves the representation of the agents’ epistemic logic and integrated epistemic
logic reasoning into the planning. As mentioned by Bolander [106], Belle et al. [107], ex-

isting research in epistemic planning is divided into syntactic and semantic approaches.

2.3.1 Semantic Approaches

Semantic approaches, which are also termed as model-theoretical approaches, necessitate
the usage of a theoretical epistemic logic model as their foundation, generally the Kripke
model (introduced in Section 2.2.2) and evaluate agents’ epistemic formulae according
to this model. Although the Kripke structure can model agents’ knowledge or belief in a
static world, as noted in Section 2.2.7, it is complemented by event-based models [3] like
DEL (detailed in Section 2.2.7.1) for dynamic updates. The DEL is designed to handle
the changes between Kripke structures, which are often caused by the actions done by
the agents, which is aligned with automated planning. Thus, the concept of epistemic

planning is formalised in DEL by Bolander and Andersen [34], Bolander [106].

2.3.1.1 The DEL Approach

In their work, Bolander and Andersen [34] are the first to give a definition of the Epis-
temic Planning Problem. Their definition is extended from Ghallab et al. [40]’s definition
of the classical planning problem, which is very similar to Geffner and Bonet [37]’s def-
inition (Definition 2.1). Bolander and Andersen and Ghallab et al. differ from Geffner
and Bonet’s definition by separating the planning task into a planning domain and a

problem instance.

In their work, a signature ¥ is defined as ¥ = (Prop, Agt), where Prop is a collection

of propositions and Agt a collection of agents. The language Lxc(X) in their model
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is an expansion of Lrcq(X) achieved by omitting the update operator “[|”. That is,
a standard modal logic language with knowledge operator K and common knowledge
operator C'. Then, they used the same Kripke structure (in Definition 2.3), denoting it
as M, and semantics (in Definition 2.5 and C' in Definition 2.6). Then, they gave the
definition of the epistemic planning domain and epistemic planning problem instances

as follows.

Definition 2.9 (Epistemic Planning Domain). Given a signature ¥ = (Prop, Agt)
and its language Lxc(X), an epistemic planning domain is a restricted state-transition

system D = (S, A,~), where:

e S is a finite state space of Lxc(X)
e A is a finite set of actions of Lxc(X)

s®a if a is applicable in s
e v is defined by: v(s,a) =

undefined otherwise

They claim if all states and actions are from L (3) (without common knowledge oper-
ator), then the domain is called an epistemic planning domain without common knowl-

edge. If |Agt| = 1, then it is called a single-agent % epistemic planning domain.

Definition 2.10 (Epistemic Planning Problem). Given an epistemic planning domain
D = (S, A,~) (including its signature ¥ = (Prop, Agt) and language L (X)) and the
Kripke structure that models this domain as M, an epistemic planning problem instance

in this domain can be defined as a tuple P = (D, sg, ®4), where:
e s is the initial state, a member of S
o &, is a set of formula in Lxc(X), called goal formulae. The set of goal states Sg

is Sa={s|s€SAVM,skE ¢}

Different from Ditmarsch et al. [105]’s work, Bolander and Andersen differentiated the
global (epistemic) state and local (epistemic) state, and performed event updates on all

of them. They used the notion (M, Wy) to represent an epistemic state in M = (W, 7, ),

SNote: their usage of the term is different from ours as discussed and in Assumption 8 from Sec-
tion 2.1.1. In addition, it is also different from our interpretation of “single-knowledge” or “single-belief”
at the beginning of Section 2.2.
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where Wy C W and K are functions that map Agt to its accessibility relations set. A
singleton W, represents the global epistemic state, while given any global epistemic state

(M, {w}), an agent i’s local epistemic state would be (M, {w’ | (w,w") € K(i)}).

Then, they took the concept of the event model and the event executions [104] to for-
malize their own event model, which is also known as update model or action model, as

follows.

Definition 2.11 (Event Model). An event model for language Lx¢(X) is a tuple £ =

(E, Kg, pre, post), where:

e [ is a finite (non-empty) set of events

Kg : Agt — P(E x E) is a function that assigns accessibility relation to each

agent.

pre: E — Ligc(X) is a function that assigns a precondition to each event.

post : E — Lic(X): assign each event a postcondition.

This event model is very similar to the actions in classical planning, except the indis-
tinguishable relation function K. For any agent ¢ € Agt, Kg(i) returns a set of binary
relations. Each of these relations (e1,e2) € Kg(i) represents that the agent ¢ cannot
tell the difference between action e; and action ey that has taken place. Similarly, they
differentiated local and global epistemic actions as a pair of (€, E;), where E; C E.
The global epistemic action is a singleton Fy4, while given any global epistemic action

(€,{e}), an agent i’s local epistemic action would be (€,{€¢’ | (e,€') € Kg(i)}).

The core idea of the DEL framework is the product update, which keeps both possible

worlds and possible actions.

Definition 2.12 (Product Update). Given an epistemic state (M, W) and an epistemic
action (&, Ey), where M = (W, m,K) and € = (E, Kg, pre, post), the product update is
defined as the epistemic state (M, Wy) ® (€, Eq) = (W', m,K'), W}), where:

o W ={(w,e) e Wx E|Mwkpre(e)}

o K'(i) = {((w,e), (w',e)) € W x W | (w,w') € K(i), (e,€) € Kg(i)}
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o Wi={(w,e) e W |weWyeec Ey}

When evaluating the semantics on (w,e), they apply the action e on the world w to
generate a new world, and apply the evaluation function 7 in the newly generated world.
In addition, they allow nesting on the events. For example, from a world w applying
action a; and ag would be ((w,ai),as). They also provide a few common properties of
the actions, including epistemic or ontic, public or private. For example, the teacher’s

statement in the muddy children example (Example 2.4) is a public announcement.

At the end, as one of their contributions, they showed that based on their formaliza-
tion, single-agent (|Agt| = 1) epistemic planning is decidable, whereas multi-agent epis-
temic planning is undecidable (even without common knowledge) due to the exponential
growth on the g related to the depth of epistemic formulae, the number of agents, and
the number of events. This conclusion shows how complex the problem of multi-agent

epistemic planning is, as well as the limitations of the DEL-based approaches.

2.3.1.2 Planning Aspects on the DEL-Based Approaches

The DEL-based formalism has been used to explore the theoretical properties of epis-
temic planning in many research works [1, 108-115]. From the planning perspectives, the
DEL-based approach can be implemented by either developing a customised planning
language and planner for the DEL-based formalism and solving the problems directly or
encoding the problems into classical planning problems and solving them by a normal
classical planning planner. In addition, as complexity results shown by Bolander and
Andersen [34], efficiency becomes one of the main issues that are targeted by a lot of

work to improve the practicability of the DEL-based formalism.

The former implementation is straightforward. Baral et al. [116] (originally Baral et al.
[117]) defined an action language m.A* that represents and reasons about the effects
of actions for epistemic planning. Similar to others, they divide actions in epistemic
planning into different types based on the effects of the action, including world-altering
actions (also known as ontic actions in some works [118]), sensing actions, and announce-
ment actions. The semantics of mA* follows the one in Kripke structure, and they use

pointed Kripke structures to represent the states of the actual worlds and the states
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of agents’ knowledge and beliefs. Furthermore, other languages are proposed based on

mA*, including mAP by Fabiano et al. [119] and E-PDDL by Fabiano et al. [120].

Le et al. utilize mA* to develop two epistemic forward planners, EFP and PG-EFP.
They defined their planning problem as a tuple (Agt, F, A, O), where Agt is the set of
agent identifiers and F is the set of fluents. The actions and effects in their model are
determined by the set of all actions A and the observability statement set O. They
specify preconditions and three possible effects for the actions, which are ontic, sensing,
and announcement. Ontic actions change the state (actual world), while sensing actions
reveal the truth value of some fluent f. Announcement actions announce the truth
value of some fluent f, which affects the set O. In the set O, they propose two kinds of
observations: fully observable actions by observes; and partially observable by aware_of.
Their semantics are defined by transition functions, which can handle three types of
agents’ awareness of the execution of one action: fully, partially, and oblivious. They
implement their model on two planners, EFP and PG-EFP, with breadth-first search
and heuristic search respectively. They propose the definition of an epistemic planning
graph, and use it as their main data structure in the search. As for PG-EFP, they
derive heuristic values directly from the structure of the epistemic planning graph. They
compared their planners against Muise et al. [87]’s and Huang et al. [7]’s solutions on
Corridor, Collaboration-and-communication [115], and Assembly Line [7]. From their
comparison, we find EFP does not suffer from the exponential blow-up on the depth of
the epistemic relations, but it is affected by the length of the plan. As for PG-EFP,
it does perform better than EFP on several problems, but the expressiveness is not as

good as EFP.

The latter approach of epistemic planning using DEL-formalism has first been explored
by Kominis and Geffner [115]. Similarly, to improve the planning efficiency, their model
only captures a fragment of the DEL by using the intuition of the belief state from
the partially observable planning. Their approach also maintains the problem’s Kripke
structure. By their definition (adapting STRIPS), an epistemic planning problem P is a
tuple (Agt, F, 1,0, N,U,G). In their model, Agt is the set of agent identifiers, I is a set
of possible initial states rather than just one initial state in STRIPS. Then, instead of
tracking the problem by only updating actual states, they combine the Kripke structure
with the state at time step ¢ and possible initial states by using beliefs, B(t). A set

of beliefs B(t) contains a set of B(s;,t) for each possible initial state s;. And in each
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B(s,t), there are the actual state v(s,t) and indistinguishable relations 7;(s, t) between
the current state and possible initial state for each agent 7. By doing so, they are able to
construct the Kripke structure from the initial state for each agent. They define three
kinds of action sets, O, N and U to maintain and update the Kripke structure during
the searching process. Set O represents all physical (ontic) actions, which is the same
O as in classical planning. The action set N denotes a set of sense actions, which can
be used to infer knowledge. The sense actions will iterate on each agent and remove
the inconsistent belief relations according to the given formula, which they adapt from
Levesque [121]. The last action set U is used to update beliefs according to the fact ¢.

The update will keep the possible previous state that agrees with ¢ and delete the rest.

They convert epistemic planning problems to classical planning problems using stan-
dard compilation techniques for partially-observable planning. As far as we can tell
from their experiments in this work [115], they keep the depth of the epistemic rela-
tion fixed at one and vary the number of agents or the number of rooms. Their results
show that their model is able to solve all cases presented with different suitable plan-
ners. Furthermore, they extended their work to handle nested belief in a multi-agent
setting [118]. In addition, in this extension, they perform planning from the perspective
of each agent following planning methods in modeling and solving Partial-Observable

Non-Deterministic (POND) problems.

2.3.2 Syntactic Approaches

Another direction of modeling and solving the epistemic planning problems is the syn-
tactic approach. The syntactic approach represents and reasons about agents’ knowl-
edge and beliefs using sets of true epistemic formulae, namely “knowledge-bases”. It
starts with a knowledge-base and updates it according to the action sequence. Some
earliest works in knowledge-base planning are proposed by Petrick and Bacchus [122].
Since there is no commonly used theoretical model for the syntactic approaches, we
only show a few examples in this thesis. Similarly to the semantic approach, research
works that implemented the syntactic approach have two directions: either converting
the epistemic planning problems into classical planning problems [1, 87, 88, 123-127];
or developing their own language and planner to model and solve epistemic planning

problems [7, 122, 128-130].
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Many works with the syntactic approach (knowledge base) focus on converting the epis-
temic planning problems to the classical planning problems. So that, they can incorpo-
rate the state-of-the-art classical planner to achieve efficiency. Muise et al. [88] (originally
Muise et al. [87]) proposed an approach to model and solve multi-agent epistemic plan-
ning problems by generating all effects (belief updates) of the epistemic action in the
pre-compilation phase. This is done by grounding epistemic fluents into propositional
fluents and using additional conditional effects of actions to enforce desirable properties
of beliefs. They define an instance of Multi-agent Epistemic Planning (MEP) problems
as a tuple P = (F, A, Agt, I, G), where, similar to STRIPS (Section 2.1.3.1), F' is the
set of propositions (facts), A is the set of actions (operators), I is the initial state, G is
the set of goal conditions, and Agt is the set of agents. The epistemic formulae (literals)
their model handles following this grammar: “¢ ::= p | B;¢ | =¢”. The literal “B;¢”
reads as “agent ¢ believes ¢”. Their model is restricted to epistemic formulae with a

predefined finite depth of nested beliefs and excludes disjunctions.

They take three processes to convert their model to STRIPS and ensure those processes
keep their solution sound and complete. In the first step, they remove negations and add
logical consequences of all positive effects when applying an action to maintain deduc-
tive closure. Then, the beliefs about the negation of an unobservable effect (including
other beliefs that can deduce this unobservable effect) are removed to handle uncer-
tainty. At last, they handle different level belief updates by using conditional effects to
cover the mutual awareness. They evaluate their approach on benchmarks, including
Corridor [115] domain, Grapevine domain (a combination of Corridor and Gossip [131]),
and Selective Communication [132]. Their results show that their approach is able to
model and solve epistemic planning problems within a typically short time, but the
compilation time to generate fluents and conditional effects (converting the epistemic
planning problem into a classical planning problem) is exponential in both the number

of agents and the maximum depth of epistemic relations.

Rather than using classical planners, Huang et al. [7] built a native multi-agent epistemic
planner and proposed a general representation framework for multi-agent epistemic prob-
lems. They consider the multi-agent epistemic planning problems from a third-person
point of view. They implement a planner, MEPK, to handle their representation fol-
lowing well-established belief revision and update algorithms. Although this approach

is different from Kominis and Geffner [115] and Muise et al. [87] as they have their own
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encoding and an epistemic planner, it still requires a compilation phase before plan-
ning to re-write epistemic formulae into a specific normal form called Alternating Cover
Disjunctive Formulae (ACDF) [133]. The ACDF formula is worst-case exponentially
longer than the original formula. Their result indicates that their approach suffers from

a similar computational burden as either Kominis and Geffner or Muise et al..

2.3.3 Discussion of the Existing Epistemic Planning Works

Epistemic planning plays a pivotal role as a bridge between theoretical advancements in
epistemic logic and their practical applications in real-world scenarios. As briefly men-
tioned in Section 2.3.1 and Section 2.3.2, a significant limitation of existing approaches
in epistemic planning is their lack of practicability, which continues to limit progress in

the field.

Firstly, this limitation is evident even within the context of modeled complex instances in
epistemic planning domains rather than solving them, where the term ”complex” refers
to scenarios involving a large number of agents and highly nested epistemic relations.
While existing approaches are theoretically capable of handling such instances, their

practical applicability is limited.

In particular, constructing and maintaining the Kripke structure for a complex problem
instance with any semantic approach is often infeasible for a modeler. This challenge
is amplified when changes involve deeply nested epistemic relations. Similarly, correctly
generating all epistemic action effects during the pre-compilation phase is also challeng-
ing when involving deeply nested epistemic relations for the syntactic approach. Thus,
scalability is an issue when modeling those complex instances. Besides, even if those
problem instances are properly modelled, the feasibility of solving them is also concern-
ing. The semantic approach must preserve Kripke structures, including accessibility
relations, and update them with event-based models. Intuitively speaking, as agents ob-
serve more (epistemic) actions, the possible worlds they consider should narrow until all
target epistemic formulae are validated by the semantics used. Conversely, the syntac-
tic method uses a knowledge base to represent agents’ knowledge and belief. Intuitively
speaking, as more (epistemic) actions are performed, this knowledge-base should expand
to a big set until all goal epistemic formulae are in it. Both approaches require a costly

data structure at some stage.
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Despite the scalability, the efficiency 7 is another limitation when solving them. It is
inefficient to reason about knowledge over the possible worlds, as it is exponential to
the maximum depth of epistemic relations. Specifically, it is the product of the number
of possible worlds for each agent that appears in the given epistemic relations. In the
syntactic approach, although there is no time taken for evaluating epistemic formulae
when planning, updating the whole knowledge-base is still exponential, as the number
of possible action effects is the number of agents to the power of the maximum depth of

epistemic relations.

In addition, generalizability — the ease with which these approaches can be adapted to
model new epistemic planning domains — remains a significant concern. Whether using
the semantic approach or the syntactic approach, current approaches require modelers
to possess a deep understanding of both epistemic logic and the targeting domain. More
specifically, modelers are required to specify how each action affects an agent’s individual
and nested knowledge or beliefs, often to a highly detailed level. This manual effort

creates a substantial barrier to the adoption of epistemic planning.

Last but not least, expressiveness remains a notable limitation in current epistemic
planning approaches, a challenge inherited from classical planning. Declarative planning
languages are not inherently designed to handle complex functions or dynamics, such
as those governed by physical laws. For instance, consider modeling the concept of a
line of sight. While this is intuitive for humans and straightforward to implement in
imperative programming languages such as Python or C++, representing it in a planning
language is often infeasible and impractical. This lack of expressiveness restricts the
ability of epistemic planning to model and solve problems that require such nuanced

representations, further limiting its applicability to real-world scenarios.

Overall, the current epistemic planning approaches have a significant gap between theo-
retical work and real-world applications because of the limitations: scalability, efficiency,
generalizability, and expressiveness. The first attempt to address the above limitations
on modeling and solving epistemic is done by Hu [4]. They proposed a state-based ap-
proach that is able to reason about epistemic logics with efficiency. In addition, they
decomposed epistemic planning by using an external function (implemented apart from

planning) to handle epistemic logic reasoning. By their approach, they are able to use

"The efficiency we discussed here is only about the efficiency in reasoning about epistemic logic. The
efficiency of the search algorithms when planning is not relevant to content of this thesis.
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any programming language to model epistemic logic rather than using a declarative

planning language. The details can be found in the following section.

2.4 State-based Epistemic Planning

In this section, we introduced the first attempt on a state-based approach that models
and solves epistemic planning problems which is done by Hu [4]. In their work, they
show intuitively how the knowledge can be derived from state by observation (from their
Nuaive semantics) and how the epistemic logic reasoning can be done by an external
solver. This approach derives the agent’s knowledge (including group knowledge) from
the state directly without explicitly maintaining the changes in the Kripke structure.
In addition, since this approach reasons on the states only, it is an action-model-free

approach that can work with simulators or even in other techniques beyond planning.

2.4.1 Background

The general background has been introduced in previous sections in this chapter, in-
cluding Planning (Section 2.1), Epistemic Logic (Section 2.2) and Epistemic Planning
(Section 2.3). Some additional background about seeing relation specific to their work [4]

is provided here:

FIGURE 2.4: Example for Big Brother Logic.

Quoted text: “ Gasquet et al. [2] noted the relationship between what an agent

sees and what it knows. They define a more specific task of logically model-

ing and reasoning about cooperating tasks of vision-based agents, named Big
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Brother Logic (BBL). Their framework models multi-agent knowledge in a con-
tinuous environment of vision, which has many potential applications such as
reasoning over camera inputs, autonomous robots, and vehicles. They introduce

the semantics of their model and its extensions on natural geometric models.

In their work, the agents (stationary cameras) are in a Euclidean plane R?, and
they assume that those cameras can see anything in their sight range, and they
do not block others’ sight. They extend Fagin et al. [3]’s logic by noting that,
at any point in time, what an agent knows, including nested knowledge, can be
derived directly from what it can see in the current world. Instead of Kripke

frames, they define a geometric model as (pos, dir,ang), in which:

e pos: Agt — R?
o dir: Agt - U

e ang : Agt — [0,2m)

where U is the set of unit vectors of R?, the pos function gives the position of
each agent, the dir function gives the direction that each agent is facing, and the
function ang gives the angle of view for each agent. Those functions are defined

for every agent.

A model is defined as (pos,ang, D, R), in which pos and ang are as above, D is
the set of possible dir functions and R is the set of equivalence relations, one for

each agent a, defined as:
R, = {(dir,dir") € D* | for all b # a, dir(b) = dir’(b)}

The definition above shows the equivalence relation for agent a between the
worlds (pos, dir,ang) and (pos,dir’, ang), that if in two direction functions that
all agents except a have the exact same directions, then those two direction

functions are indistinguishable to a.

In this context, standard propositional logic is extended with the binary operator

a > b, which represents that “a sees b”. This is defined as:

(pos,ang, D, R),dir Favb iff pos(b) € Cpos(a),dir(a),ang(a)
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in which Cpog(a),dir(a),ang(a) i the field of vision that begins at pos(a) from di-

ang(a)
2

rection dir(a) and covers degrees in both clockwise and counter-clockwise

directions.

Figure 2.4 shows an example with two agents, a; and ao, and model
((0.0,0.0),60°, D, R) and ((4.2,0.0),60°, D, R) respectively, along with four ob-

jects, b1, ba, b3, and by. Based on the current world, for agent a;, we have:

e (pos,ang, D, R),dir E a1 > as;
e (pos,ang, D, R),dir E ay > by;

e and (pos,ang, D, R),dir E aj > bs.

From this, Gasquet et al. show the relationship between seeing and knowing. For

example, K, (b> c¢) is defined as abbAa>cAbrec.

They also define a common knowledge operator, in a similar manner to that of
Fagin et al.’s definition based on G—reachable worlds. In Figure 2.4, the formula
C {a1,a2} 01 >bs holds by their definition, because a; and as can both see bs, and can
both see each other. From those, we can deduce based on the laws of geometry
that a; can see “as can see by” as a; can see both as and by, and as can see bs.
Furthermore, from the previous statement, and as can see a1, we get that as can
see “ap can see that as can see by”, etc. Thus, some common knowledge has been

established. ”

In addition to Gasquet et al.’s work, another source of inspiration for Hu’s research is
from Cooper et al. [1]. Cooper et al. generalise seeing relations from the visibility in the
actual world to the abstract ideas of seeing propositions.= This means that agents can
see properties about the world, and can see and know whether other agents see these
properties. This is flexible enough to model, for example, whether agents see the same
value of a traffic light or whether agents see that others see the same value of a traffic

light. Thus, Hu [4] includes Cooper et al.’s formulization as follows:

Quoted text: “ Cooper et al. [1] add an extra type of formulae a that describes
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formulae (propositions) that can be seen:

a == plSa

o = alpAhe|-p| K,

in which p € Prop (the set of propositional variables) and ¢ € Agt. The gram-
mar of « defines visibility relations. S;a reads as “agent i sees a”. Note the
syntactic restriction that agents can only see atomic propositions or nesting of

seeing relationships that see atomic propositions.

From this, they note the equivalences K;p <> p A S;p and K;—p < —p A S;p.
To be specific, they disallow S;—p. This tight correspondence between knowing
and seeing is intuitive: an agent knows p is true if p is true and the agent can
see the variable p. Such a relationship is the same as the one between knowing

something is true and knowing whether something is true [122, 123, 130]. ”

Comparing these two bodies of work, Gasquet et al. use a geometric model to represent
the environment and derive knowledge from this by checking the agents’ line of sight.
Their idea formalises the notation that “seeing is believing”. However, their logic is
focused only on agents’ visions in physical spaces.While in Cooper et al.’s world, the
seeing operator applies to propositional variables or formulae (even includes epistemic
formulae), and thus visibility is more abstract, such as “seeing” (hearing) a message
over a telephone (instantaneous effects). This connection between seeing and knowing
is similar to the idea of sensing actions in partially-observable planning [6, 73-77, 115,
118, 119, 126], as seeing/sensing generates new knowledge. However, sensing actions are

actions, whereas the idea of ‘seeing’ is a relation over properties of states.

Differing from all the works above, Hu [4] generalises seeing relations by defining the
perspective functions, which are domain-dependent functions defining what agents see
(the seeing rules) in particular worlds. The result is more flexible than seeing relations.
It allows epistemic logic (knowledge), such as BBL, to be defined and reasoned with a

simple perspective function.
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2.4.2 Agent’s Perspective Model

Now, we introduce one of the core ideas in Hu [4]’s work, which is the Agent’s perspective
model. By following F-STRIPS (using functional variables rather than propositions),

their model is able to handle problems with both discrete and continuous domains.

They defined any epistemic planning problem that can be handled by their model as

follows:

Quoted text: ¢ We defined an epistemic planning problem as a tuple
(Agt,V,D,0,Z,G,F), in which Agt is a set of agents, V is a set of variables,
D stands for domains for each variable, in which domains can be discrete or con-
tinuous, Z and G are the initial state and goal states set respectively, and both
of them are also bounded by V and D. Specifically, the initial state should be a
complete assignment for all V', while the goal states set is a set of complete states
that satisfy goal conditions (assignments or relations between variables’ values).

O is the set of operators, with arguments in the terms of variables from V. The

9

[ denotes the external functions.

2.4.2.1 Language

Then, they defined the language of their model as follows:

Quoted text:

Definition 2.13. Goals, actions preconditions, and conditions on conditional

effects are epistemic formulae, defined by the following grammar:

pu=Ri,...,vx) |~ | oA | Siv| Sip | Kip,

in which: R is k-arity “ontic” relation symbol, which takes k ground values
and returns true or false indicating whether the relation R(vi,...,v;) with
v1,...,0 € V is true or not in the current state; S;v with v € V and S;p

are both visibility formulae, and K;p is a knowledge formula.
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With this definition, they divide all formulae in their model into three categories: ontic

formulae 8, visibility formulae, and knowledge formulae.

Ontic formulae do not only include basic mathematical relations, but also relational
terms defined by the underlying planning language, which means they can have relations

between variables. They gave an example as follows:

Quoted text: “ For example, from Figure 2.4, “pos(a;) = (0,0)” is a true
formula expressing the position of agent a;, while “pos(a;) = pos(az)” is
false. Since they used F-STRIPS, which allows more complex customized re-
lations, as long as they are defined in the external functions. For example,
we can define an ontic relation in an external function to compare distance
between objects, called @Qfar_away(pos(i),pos(j),pos(k)). This external func-
tion takes three coordinates as input and returns a Boolean value, whether
the distance between ¢ and j is longer than ¢ and k. From the same sce-
nario in Figure 2.4, Qfar_away(pos(ai),pos(bs),pos(b2)) would be true, while
Qfar_away(pos(ay), pos(b1), pos(by)) would be false, since b; and by are at the

b

same distance to aj.

Their intuition is that this function can be defined and implemented in any programming
language, such as C++, as the external functions, and the planner is unaware of its

semantics.

As for seeing relations, their intuition is from “seeing a proposition” [1]. They gave an

example as follows:

Quoted text: “ Using a proposition p as an example, “agent i knows whether

p” can be represented as “agent ¢ sees p’. The seeing formula represents two

related interpretations: either p is true and ¢ knows that; or, p is false and ¢

knows that. With higher-order observation added, this intuition provides them

8From their discussion, we believe the naming is not accurate. Thus, we rename it as ontic formulae
onwards.
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a way to reason about others’ epistemic viewpoints about a proposition without
actually knowing whether it is true. Building on this concept, their seeing formula
represents two related interpretations: S;v (seeing a variable) and, S;p (seeing a
formula). The formula S;v can be understood as variable v has some value, and
no matter what value it has, agent ¢ can see the variable and knows its value. The
formula S, can be interpreted as: for formula ¢, no matter whether it is true or
false, agent ¢ knows whether it is true or not. To make sure ¢ knows whether ¢ is
true or not, the evaluation for this seeing formula is simplified by them to that
agent i sees all the variables in . For example, in Figure 2.4, S, pos(by) can
be read as “agent a; sees variable pos(b2)”, and it represents whether agent a;
knows by’s location, wherever by locates. In the case of seeing an ontic formula,
let ¢ be far_away(pos(ai), pos(bs), pos(b2)). Then, S,, ¢ can be read as “agent a;
sees the relation far_away(pos(ay),pos(bs), pos(b2))”, which is: “agent a; knows

whether b, is farther away from a; than by”. ”

Following Cooper et al. [1]’s idea on defining knowledge based on visibility, they define
knowledge as: K;p <> ¢ A S;p. That is, for ¢ to know ¢ is true, it needs to be able to
see p, and ¢ needs to be true. In other words, if you can see something and it is true,

then you know it is true.

2.4.2.2 Model

Their model decomposes the planning model from the epistemic logic reasoning model.
As discussed later in their implementation, their planner reasons about epistemic logic by
external functions. Therefore, we introduce their model and semantics of their external
epistemic logic (knowledge) reasoning solver. The novel part of this model is the use of
perspective functions, which are functions that define the seeing rules of the epistemic
planning domain, instead of using full Kripke structures. From this, a rich knowledge

model can be built up independent of the planning process.

Quoted text: “

Definition 2.14 (Quoted from Hu [4]). A model M is defined as M =

(V,D, 7, fi,...,fn), in which symbols are explained as follows:
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V is a finite set of variables and D is a function that maps each variable to its
(non-empty) domain. One example is D(vy) = {ey,...,e,} for variable v;. From
V and D, we define a state s € S as a set of variable assignments, denoted as
{vi=ei,...,vr=er}. We use s(v;) to represent the value of v; in state s. There
are two kinds of states, namely global state and local state. A global state is
a complete assignment for all variables in V. Whereas, a local state, which
represents an individual agent’s perspective of the global state, can be either
a partial or a complete assignment. If v; is not in a local state, s(v;) = null.
The set of all states (local and global) is denoted as S. 7 is a set of evaluation
functions, such that for 7wy € 7, 7, : R — S — {true | false}, where Ry is a set
of atomic relational symbols of the form R(v1,...,v,). If 7 is applied to a local
state in which a variable v; occurs in R(vy,...,vy,) but is not in the local state,

then 7, must be evaluated to false.

Finally, fi,...,f. : S — & are the agents’ perspective functions that given a state
s, will return the local state from agents’ perspectives. A perspective function,
fi + & — S is a function that takes a state and returns a subset of that state,
which represents the part of that state that is visible to agent 7. These functions
can be nested, such that fj(fi(s)) represents agent i’s perspective of agent j’s
perspective, which can be just a subset of agent j’s actual perspective. The

following properties must hold on fi,...,f, for all i € Agt and s € S:

1. fi(s) Cs
2. fi(s) = fi(fi(s))
3. If s C ¢, then fi(s) C f;(s)

The model they defined follows the F-STRIPS language, which is also very similar to
first-order Kripke structure for knowledge in Fagin et al. [3]’s book. The difference lies in
the perspective function fy, ..., fr. First-order Kripke structures still keep the possible
worlds and their accessibility relation KC;, while Hu uses perspective function to define
the semantics of the epistemic relations in their language as below. Then, they gave

their semantics with an explanation as follows:



Epistemic Planning

61

Quoted text:

Definition 2.15 (Semantics for Single Knowledge with Perspective Function [4]).
Given an agent’s justified perspective model M = (V, D, fi, ..., fi), the seman-

tics of their language is defined as:

—
&

F R(vy,...,v) iff m(R,s(v1),...,s(vg))=true

VA

i
=

F S, v iff 3 € D(v), such that, (v=x) € fi(s)

VA

e
o

F S R(vi,...,vg) iff Vo € {vy,... 0}, (M,s) E Siv

VA

N
(o9

F Si—eiff (M,s) ES; ¢

VA

Si (pAY) iff (M,s) ES; ¢ and (M,s) ES; ¥

—
—

F S S5 @iff (M, fi(s)) E Sj¢

VA

E S; S; ¢ is always true

—
09
uCJD

—~ —
5 = @
~— ~— ~— ~— ~— ~— ~— ~— ~—

F S Kj o iff (M, fi(s)) F K; ¢

VA

EXE=X2EEEEE
Lrreze

VA

—~
—

F K; iff (M,s) E pand (M,s) E Sip

Relations are handled by the evaluation function m(s). The relation R is evalu-
ated by getting the value for each variable in s, and checking whether R holds

or not. Other propositional operators are defined in the standard way.

In (b), S;v, read “Agent i sees variable v”, is true if and only if v is visible in
the state f;j(s). That is, an agent sees a variable if and only if that variable is in
its perspective of the state. Similarly in (c), an agent knows whether a domain-
dependent formula is true or false if and only if it can see every variable of that
formula. For example, in Figure 2.4, S, by is false and S, b2 is true, which is
because by is in a1’s perspective (blue area), while b; is not. The remainder of
the definitions simply deal with logical operations in our language. It is worth
noticing that in (d) S; —¢ is in fact equivalent to S;¢, because both ¢ and —p
contain exactly the same variables. Besides, the semantics of S; —¢ is “¢ knows
whether = is true or not”, which is the same as the semantics of S;p: “i knows
whether ¢ is true or not”. This effectively just defines that “seeing” a formula
means seeing its variables. Furthermore, seeing a conjunction S;(¢ A ¢) in our

model is equivalent to (S;pAS;1) in (e). We can simply prove this by constructing
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a (m + n)-ary relation @ for any m-ary relation ¢ and n-ary relation ¢ following

the truth value of pA1). Disjunction works the same due to “YVp = (= A—p)”.

The above items (f) and (g) are both about nested seeing relations. In the case
of (f), whether S;S;p (i # j) is true is equivalent to whether S;¢ holds in agent
1’s perspective of the world s. However in the case of 5;5;(p, as noted by Cooper

et al. [1], an agent always sees what it sees, to S;S;¢p is a validity.

The definition as shown in (i) follows the idea in Cooper et al. [1]’s paper on the
relation between knowledge and seeing: agent ¢ knows ¢ if and only if the formula
is true at (M, s) and agent i sees it. Using the same example as previously,
K, Qfar_away(pos(ay), pos(bz), pos(bs)) is false, even if a; does see by and bs,
by is not farther than b3 to a;. While, K,, Qfar_away(pos(ai), pos(bs), pos(bs))
is true. In addition, combining negation semantics from the seeing relation, we

have K;o V K;—¢ < (p AS;p) V (mp A Si—p) <> S;p, which is also similar as the

2

idea of “knowing whether” K, in Miller et al. [123]’s paper.

2.4.2.3 Validation

They also validated their single knowledge semantics. Firstly, they discuss some basic
properties of their logic. Then, they prove the soundness of their model, followed by
showing the completeness of their model for logically separable formulae. In the following
parts of this section, they use the following example: a state s contains one variable x,
and the domain for z is {1,2,3}. Therefore, all global states in this example for our
model contain s; = {zx =1}, s = {x =2}, s3 = {x =3}. The state space is formed as
S = S. U {Sempty}, where Sempry = {}. This example is visualized in Figure 2.5, where
k1 and ks represent two Kripke structures: agent ¢ does not know the value of z in any

world; and agent ¢ knows the value of z in all three worlds, respectively.

They claim their semantics follows S5 axioms and proves it as follows:

Quoted text:

Theorem 2.16 (Quoted from Hu [4]). The S5 azioms of epistemic logic are

valid in this logic. That is, the following axioms hold:
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FIGURE 2.5: Two Examples of Kripke Structure [4]

(K) Kilp—1v) — Kip— Ky
(T) K; - @

(4) K; —  KiK;p

(5) —Kip - Ki=K;p

They proved the above theorem as follows:

Quoted text:

Proof. We first consider axiom (T). By our semantics, (M,s) E K; ¢ is true, if
and only if, both (M,s) F ¢ and (M,s) E S;p are true. Therefore, it is trivial
that axiom (T) holds.

For (K), based on our definition of knowledge, we have (M,s) F K;(p — 1)
is equivalent to (M,s) E Si(¢ — ¢) and (M,s) E (¢ — ). Then, by our
semantics, we have that (M,s) E S;(¢ — 1) is equivalent to (M,s) E S;—p
or (M,s) E S;i. From propositional logic, ¢ — 1 is equivalent to —¢ V ¢. We
combine (M,s) E - with (M,s) E S;p to get (M,s) E —K;p and similarly
for ¢ to get (M,s) E K;i, which is equivalent to (M,s) F K;po — K;v from

propositional logic.

To prove (4) and (5), we use the properties of the perspective function f;. The

second property shows, a perspective function for agent ¢ on state s converges
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after the first nested iteration, which means (M, f;(s)) = (M, f;(fi(s))). Therefore,
whenever (M, fi(s)) E ¢, then ¢ also holds in (M, f;(fi(s))), implying that K;e
holds too (4). According to (i) in our semantics, we have K;—K;p <> K;(=Sip V
—p) < (S;Sip A =Sip) V (Si—p A —¢). In combining our semantics on seeing
relation (g) and (d), we have (M, s) F K;—K;p = (M, s) F (true A=S;o) V (Sip A
—), which is in fact equivalent to (M,s) F =Si¢ V - and thus matches the

premise “=K;p <> =S;p V —¢”. Hence, (5) holds. O

Then, they proved the soundness and completeness of their semantics by constructing
a corresponding Kripke structure. They proposed a theorem (Theorem 2.17) to prove
that for every instance in their model M, there is a corresponding Kripke structure M.

Their theorem and proofs are provided here:

Quoted text: “

Theorem 2.17 (Quoted from Hu [4]). Let M be any instance of the agent’s

perspective model; there exists at least one corresponding Kripke structure M.

Proof. We can prove this theorem by constructing one corresponding Kripke

structure M*¥ for any M.

Let any instance from our model be M = (V, D, «, fi,...,f,) and its correspond-
ing Kripke structure M%X = (SK 7% K,...,K,). As S in Kripke structure
syntax is a set of all possible worlds (states), we create a set of propositions for
all the variables v € V by taking the Cartesian product V x D(v), and then
assigning true/false value to each proposition in that product. Therefore, any
global (complete) state s from M can find an identical s’ in M* by assigning
false value to all the propositions except those indicating assignments (v = e) in
s. It is trivial that the evaluation function 7 is identical to 7. So, we only have
to define the accessibility relations in the Kripke structures, Ky, ..., /C,, to rep-
resent perspective functions. Since K; contains all the accessibility relations for
agent i, and each relation is a pair of possible worlds (states), we now construct

K1,...,K, by following steps:
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e For each agent i, IC; is:
o For each possible state s in MX:

1. Find i’s perspective of world s by f;(s);

2. For each possible world s’ in M® where f;(s) = fi(s'), add the pair

of accessibility relation (s, s’) in K;

For each state s, we create accessibility relations (s, s’) into K; by pairing s with
all possible worlds s’ that agree on all of the “visible” variables for agent 7. In
other words, agent ¢ considers s’ is possible given the current world s, as 7 is

unsure about value of those variables ¢ cannot “see”. O

As they mentioned, although the above theorem holds, the corresponding Kripke struc-
ture does contain more information that their semantics deliberately choose to ignore.
Their construction above is only a full structure without any imperfect information (in-
formation that implies a constraint on the variable value without identifying the value).
Using example from Figure 2.5, k; is a full structure without any imperfect information.
If agent ¢ knows whether the value of x is not 1, then we remove the bidirectional edges
between s; and s9 and between s; and s3. Thus, in the Kripke structure, we can have

something such as K;x > 1 while it cannot be directly modeled by their model.

Then, since “seeing operator” (from their model) is not defined in Kripke structure, they
need to define it first before reasoning about its soundness and completeness of their

semantics. Their definition is presented as follows.

Quoted text:

Definition 2.18 (Quoted from Hu [4]). (Seeing formula in Kripke structure).
Let any Kripke structure be M ¥, any agent be i and any formula in our grammar

be :

o (MK, s) F S;viff Jv=e € s, such that, V(s,t) € K;, (ME,s) F v=e <
(MXt) F v=e.
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o (ME s) E S; piffV(s,t) €Ki, (MK 5) F oo (MK 1) E .

Their definition of seeing operator in Kripke semantics for S;v and S;¢ was derived from
Wan et al. [129]’s definition of “knowing whether”. Their explanation about the above

definition is given as:

Quoted text: “ An agent i sees variable v in (M¥, s), if and only if, there exists

a value e such that, v=e is agreed to be true (v=e € s) by all the worlds that
1 considers possible given the current world is s. In other words, ¢ sees v, if and
only if, in all the possible worlds, v has a constant value e. The definition for

Sip is more intuitive: S;p holds if and only if all of ¢’s possible worlds from s

agree on the truth value of . ”

With the definition of the seeing operator in Kripke structure, then, they can reason
about soundness and completeness of their semantics. But first, they proved item (g),
which is the special case in semantics, holds in the model also holds in the constructing

Kripke structure (as proposed in the following theorem).

Theorem 2.19. (M%) E S;S;¢ is always true.

The proof is given as follows:

Quoted text:

Proof. We prove this by contradiction. Assume S;S;¢ is false for some (M~ s),
and denote all worlds agent ¢ consider possible at state s as K;(s). Then, by

Definition 2.18, we have:

° (MK,S) E —5;S;p = 3t1,ts such that (S,tl), (S,tQ) e K, (MK,tl) ESipA
(MKatQ) F - P

which means there exist worlds ¢;, ¢y from KC;(s) such that S;p is true in ¢; and

false in to. Separately, we have:
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o (ME t1)E Sip =Vt, such that (t1,t)) € Ki, (M5 t1) E o & (ME #) E
 and

o (ME t5) E S;p = 3th, ) such that (ta,th), (t2,th) € Ki, (MEth) E oA
(M5, t5) F =y

This means that for all worlds in /C;(¢1) agree on the value of ¢, and for all worlds
in [C;(t2), there exist th,t}, such that ¢ is true in ¢, and false in t§. Since K; is
symmetric and transitive, we have (s,t1) <> (¢1,s) and (¢1,s) A (s,t2) — (t1, t2).
Therefore, all of (s, 1), (s,t2) and (¢1,t2) are in IC;, which means K;(s) = K;(t1) =
KCi(t2). Then, we have that Vt; € KC;(t1), (M5, t1) E ¢ < (MK ) E ¢, which
contradicts our earlier assertion that 3ty t) € KC;(t2), (M, th) E oA(ME ) E

_|()0,

Therefore, there does not exist a model (M, s) that makes —5;S;¢ satisfiable,

meaning that S;S;¢ is always true. O

Then, they proposed a theorem for the soundness in general cases in their semantics as

follows:

Quoted text:

Theorem 2.20 (Quoted from Hu [4]). (Soundness). Let s be the current state,
M be our model, and M*¥ be the corresponding Kripke structure defined using

the approach in the proof of Theorem 2.17. The following hold:

(1) If (M,s) £ S; v, then (M¥,s) E S;v

(2) If (M,s) £ S; R(vi,...,v), then (M% s) E S; R(vy,...,v)
(3) If (M,s) E Si—p, then (MK, s) E S;=¢p

(4) If (M,s) E Si (p A9), then (M¥,s) & S; (9 AY)

(5) If (M,s) £ S; S; o, then (MX,s) E S; S; ¢

(6) Both (M,s) E S; S; ¢ and (M¥ s) E S; S; ¢ are always true.
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(7) If (M,s) & S; K; ¢, then (MK,S) E S Kjp

(8) If (M,s) F K; ¢, then (MX,s) F K; ¢

They prove the above theorem as follows:

Quoted text:

Proof. The proof for (1) is based on our semantics for visibility of a variable v:
agent i sees v in (M, s), if and only if, there exists some value e that (v=e) € f;(s).
The existing value e means (M, s) E S;v is consistent in all states that i considers
possible from /C;. By the definition of S;v in Kripke semantics, for all the possible
worlds, the value of v agrees on e if and only if (M*,s) F S; v holds. Therefore,

our semantics for S;v in (M, s) holds for (M%) as well.

For example in Figure 2.5: for any state s in S, if (M,s) F S; v holds (k2 in
the figure), which means f;(s) is equal to s in any of sy, s, 53, (M%,s) E S; v
will hold, as there is only one accessible relation in IC; for each state s which
is one of (s, s1), (s,s2), (s,s3), respectively, and value of v is agreed as 1, 2, 3,
respectively. If (M,s) E S; v is false (k; in the figure), which means agent i
cannot see variable v and f;(s) is s, then, (M s) E S; v will not hold, as
K; would be {(s1,s1), (s1,52), (s1,83), (s2,51), (S2,52), (s2,53), (s3,51), (83, 52),

(s3,83)}, and variable v does not be agreed on one value in all states.

The remaining proofs are straightforward. Since the evaluation function = is
almost identical for both M and M, and each value in R(vi,...,vx) is the
same due to (1), the result for R(vy,...,vy) is the same in both M and M¥.
Therefore, (2) in this theorem holds. Then, all remaining in M holds in M¥
because (1) and (2) hold, except (6) holds as Theorem 2.19 and item (g) in
Definition 2.15. O
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Then, they proposed a theorem for the completeness of their semantics and showed the

proof as follows.

Quoted text:

Theorem 2.21 (Quoted from Hu [4]). (Completeness). Let s be the current
state, M be any instance in our model, and M¥ be its corresponding Kripke
structure constructed following the steps in the proof for Theorem 2.17. All the
following hold for any formula in our language excluding tautology and contra-

diction:

(1) If (M¥%,s) £ S; v, then (M,s) E S; v, except when |D(v)| = 1 and i

cannot see v.

(2) If (M¥,s) E S; R(vi,...,v), then (M,s) E S; R(vy,...,vy), except
when R(vi,...,vx) LV T, and Jvy € {v1,..., v}, (M, s) E =S;v;.

(3) If (MX . s) E S;=p, then (M,s) E Si—, except when o - LV T, and
(M,S) F o= iP-

(4) If (MK, s) E S; (pAY), then (M,s) E S; (pAVY), except when (pA) F L,
and (M,s) E =S; (g AY).

(5) If (M¥,s) E S; S; o, then (M,s) E S; S; ¢, except when Sj o+ T, and
(M,s) E —S; S; o.

(6) Both (M¥X,s) £ S; S; ¢ and (M,s) E S; S; ¢ are always true.

(7) If (M%,s) E S; K; ¢, then (M,s) F S; K; ¢, except when K; ¢ = T,
and (M,s) E =S; K; ¢.

(8) If (MK ,s) E K; o, then (M,s) E K; o, except when ¢ - TV L, and
(M,s) E —K; .

They prove the above theorem as follows:

Quoted text:



Epistemic Planning

70

Proof. Following the definition of seeing formula in Kripke structure given above,
(M¥ . s) E S; v means for all worlds that i considers possible given the current
world s, the value of v is the same. According to the steps to build corresponding
M¥E from M, all of the unseen variables will result in accessible worlds with all
possible values. Therefore, if v is agreed on some value for all i’s possible worlds
given s, v must be seen by 4 in s, unless the domain for v contains only one value,
which means in all accessible worlds v would be agreed on that one value. For
example: let v be a variable with domain {e}, which means “v = €” is a validity.
Even if agent ¢ cannot see v, but in all possible worlds, the value of v agree on
e. Therefore, (M¥,s) E S;v holds, while (M,s) F S;v does not. However,
if the domain of v becomes {e, e}, then, all possible worlds that accessible for i
will not agree on v, because in half of the worlds v is e, while in other half, v is
¢/. Therefore, v=e will be in f;(s) if (M¥,s) F S; v holds and the size of v’s
domain is larger than 1. Then, following the definition of (M,s) E S; v, v=e
exists in f;(s), then (1) holds.

For example in Figure 2.5: if the C; contains only (s, s1), (s, s2) and (s, s3) in MK
then there exists an assignment as v=1, v=2, v=3, respectively in f;(s) according
to s, which makes (M,s) E S; v hold (K3 in the figure). If the K; contains
other accessible relations, such as, shown in k; from the figure, {(s1, s1), (s1, s2),
(s1,53), (s2,51), (s2,52), (52,53), (53,51), (53,82), (53,53)}. Then, (MK, s) F
S; v does not hold as the value of v can be any of 1 or 2 or 3, as well as

(M, S) = Sz v.

Because (1) holds and 7(s) are almost identical in both M¥ and M, then (2)
holds. Item (7) is proved in the same way as in Theorem 2.20. The proof for (3),
(5) and (8) are straightforward by using (1) and (2), given (4) holds. Therefore,

we prove (4) first.

We show (4) by following the definition of the seeing operator in Kripke semantics:
if (MX s) E S; (¢ A1) holds, which means all worlds that i consider possible
in (M*,s) agree on the truth value of ¢ A 1. There are only two scenarios such
agreement can be achieved: either, (M% s) E S; ¢ and (M¥,s) £ S; 1 hold;
or, ¢ A1 is false (¢ A9 is a contradiction). If both ¢ and ¢ can be seen by ¢ in
(M%), following (2), both (M, s) E S; ¢ and (M,s) E S; ¢ will hold, which



Epistemic Planning 71

means S;(p A1) holds. However, if ¢ A 9 is a contradiction, then ¢ A 1) is false.
Following Definition 2.5, (M %, s) E S; (¢ A1) holds. However, if agent i cannot
see all variables in ¢ and v, then one of (M,s) F S; ¢ and (M,s) E S; ¢ will
not hold, which means (M,s) F S; (¢ A ) will not hold. Therefore, (4) holds

if (¢ A1) is not a contradiction.

Item (3) holds as S;—¢p = S;¢, and S;p holds by induction. Items (5), (7)
and (8) are straightforward by induction. Item (6) holds as Theorem 2.19 and
item (g) in Definition 2.15. Therefore, our model is complete for all situations
except in which formulae inside seeing operators that contain non-seen variables

are validities. O

They explained the reason that Kripke semantics can handle tautologies and contradic-
tions is that the semantics checks whether all possible worlds agree on the truth value
of the formula, while their model reduces reasoning on uncertain (unseen) variables by
ignoring them in the agent’s local perspective. They claimed they could handle tau-
tologies and contradictions by checking formulae using resolution. But it is an NP-hard

problem to solve, and they believe it would be unnecessary for most problems.

2.4.2.4 Agent’s Perspective Model for Group Knowledge

Based on the foundation and similar intuition of their single-agent’s knowledge seman-
tics, they defined language and semantics for group operators, including distributed and

common visibility or knowledge.

They extend the syntax of their language with group operators:

pu=v| @ |eNp| ESqga| EKgyp | DSqga | DKgy | CSga | CKge,

in which G is a set (group) of agents, v is any formula in our language for a single agent
defined in this, and « is a variable v or formula ¢. In addition, this explained their

language by:
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Quoted text: “ Group formula ESga is read as: everyone in group G sees a

variable or a formula «, and EKgy represents that everyone in group G knows
p. DKg is the distributed knowledge operator, while DSg is its visibility coun-

terpart: someone in group G sees. Finally, C K¢ is common knowledge and C'Sg

9

common visibility: “it is commonly seen”.

They defined their group semantics as follows:

Quoted text:

Definition 2.22 (Quoted from Hu [4]). Let G be the set of agents, ¢ a formula,
and « either a formula or a variable, the semantics of these group formulae can

be defined as follows:

(M,s)E ESqg aiff Vi € G, (M,s) F S; «

(M,s) E EKg ¢ iff (M,s)E ¢ and (M,s) E ESg ¢

o (M,s)EDSqg aiff (M,s") E «, where s = | fi(s)
i€eG
(M,s)E DKg ¢ iff (M,s) E g and (M,s) E DSg ¢

(M,s) ECSg aiff (M,s") E a, where s’ = ¢f (G, s)

(M,s) ECKg ¢ iff (M,s)F ¢ and (M,s) E CSqg ¢,

in which ¢f (G, s) is the state reached by applying the composite function [ f;
1€G
until it reaches its fixed point. That is, the fixed point s’ such that ¢f(G,s’) =

cf (G, ) fils))-

ieG

They explained their group seeing and knowledge semantics and proposed a theorem
to show their fix-point state can be found in polynomial time (specifically in at most s

steps).
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Quoted text: “ Reasoning about common knowledge and common visibility is

more complex than other modalities. Common knowledge among a group is not
only that everyone in the group shares this knowledge, but also that everyone
knows others know this knowledge, and so on, ad infinitum. The infinite nature

of this definition leads to definitions that are intractable in some models.

However, due to our restriction on the definition of states as variable assignments
and our use of perspective functions, common knowledge is much simpler. This
is based on the fact that each time we apply the composite perspective function
() fi(s), the resulting state is either a proper subset of s (smaller) or is s. By
Zticl;s intuition, we can limit common formula in finite steps.

For each of the iterations, there are |G| local states in group G that need to be
applied in the generalised intersection calculation, which can be done in polyno-

mial time, and there are at most |s| steps. So, a poly-time algorithm for function

cf exists.

2.4.2.5 A Brief Note on Expressiveness

At the end of their model section, they discussed the difference and links between their
model and the models that use Kripke structure. Firstly, they explained their intuition
and the connection and difference between their model and first-order Kripke struc-
ture [3]. Then, they showed their model has the capability to model any problem that is
modeled by Kripke structure. That is, reducing from first-order logic into propositional

logic.

As they discussed, although this could model disjunction (same as Kominis and Geffner
[115]), this could easily result in an exponentially large model and would not add the
expressiveness required for most of the epistemic planning problems. They also sum-

marised the expressiveness of their approach with others in Table 2.1.
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Continuous Disjunctive
Depth CK DK  Domains  Knowledge
Perspective Model Unlimited Y Y Y Possible
PDKB [88] Bounded N N N N
K & G [115] Bounded N N N Y
MEPK [7] Bounded I N N N
EFP & PG-EFP [6] | Bounded I N N N

TABLE 2.1: Expressiveness Comparison over Epistemic Planning Approaches [4].

They summarise the differences between their approach and others as the following four

major points:

Quoted text: “ (1) Our model can handle domains in which the depth of epis-

temic relations is unbounded. Each level of nesting is handled by a set operation
from the perspective function iteratively when checking desired epistemic rela-
tions; while in other approaches, the nested epistemic relations are changed due
to actions, which means they need to specify the effects on all epistemic relations
in operators. However, since Le et al. [6], Kominis and Geffner [115] keeps the
Kripke structure in their approach, we are unsure about whether their approaches
are practically capable of modeling unbounded domains or not. In Muise et al.
[88]’s work, the depth also needs to be defined first as they need to generate all

possible epistemic relations as atoms.

(2) Reasoning about group knowledge is handled by our model using a union
operation on the agent’s perspective of state for distributed knowledge; and the
fixed point of intersections on nested agents’ perspectives for Common Knowl-
edge. Therefore, distributed and common knowledge result naturally from the

visibility of variables.

(3) Our model has the potential to handle continuous domains in both logic

reasoning and problem describing. While the functional STRIPS planner we use

for experiments allows only discrete variables, the external functions reason about
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continuous properties in the Big Brother domain. Further, our approach would

work on function STRIPS planners that support continuous variables [134].

(4) Our model does not handle disjunctive knowledge, but could do so by mod-
eling pairs of each variable and all its possible values as propositions, such as
“x=5V x=4". However, by doing so, we would lose the efficiency and some other

expressiveness, such as continuous variables.

One possible objection is that it may be difficult to model perspective functions,
because one must understand epistemic effects. However, it is important to note
that in existing approaches, the modeller either needs to model epistemic effects
as part of action effects, or must understand and be restricted to the assumptions
in the underlying epistemic planning language; or both. Either way, the details
of how actions affect knowledge must be modeled somewhere. In our case, we
delegate these to perspective functions, which are more flexible than propositional
approaches, because at the base case, one can implement a perspective function

that has the same assumptions as any existing propositional approach. This can

”

then be used for many domains.

2.4.3 Implementation & Experiments

To validate their model and test its capabilities, they encoded it within a planner and
solved some well-known epistemic planning benchmarks. They used BFWS(f5) [63] as
the planner and used F-STRIPS with external functions, which allow them to decompose

the planning task from the epistemic logic reasoning.

In this section, they explained the F-STRIPS encoding for their model and the imple-

mentation of the agent’s perspective function.

2.4.3.1 F-STRIPS Encoding

They explained their intuition that, with the perspective model, they only need a plan-
ning language to describe the ontic states and how it changes. Then, for every epistemic
relation reasoning, they used the external functions from F-STRIPS. That is, the epis-

temic logic reasoning task is moved from the planner to the external functions.
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They show how they model the problem with F-STRIPS as follows:

Quoted text: ¢ Our reasoning is conducted in the model M =
(V,D,7m,fi,...,fn). In order to combine F-STRIPS with our model, we now
give a proper definition of all the epistemic planning problems that can be han-
dled as a tuple (Agt,V,D,0,Z,G,F) in our approach, where: Agt is a set of
agent identifiers; V is a set of variables that covers the physical and the epis-
temic state; O, Z and G differ from their counterparts in F-STRIPS only by

adding epistemic formulae in preconditions and goals; the external functions F

contain all the epistemic logic reasoning parts (our model). ”

Then, they showed how the epistemic formulae can be integrated into the planning
language: by in planning action’s precondition; or, by in goal conditions (in the format
of external function calls). They explained this by using the example in Figure 2.4 as

follows:

Quoted text: “ Defining G with desirable epistemic formulae is straightforward.

For example, in Figure 2.4, if we want “agent a; knows as sees b1” to be true, we
could simply set the goal to be K,, S,,b1. However, there are some other scenarios
that cannot be simply modeled by epistemic goals: temporal constraints, such
as, “agent a; sees by all the time”, or, “target by needs to secretly move to the
other side without being seen by any other agent”; and, epistemic formulae that
cannot be achieved by one state, such as, “agent a; needs to know values for

both b; and by (under the assumption a; is stationary)”.

Both above scenarios can be modeled by adding epistemic formulae to O. Tem-
poral constraints can be inserted in the precondition of the operators directly.
For example, in Figure 2.4, if the scenario is continued surveillance on by over
the entire plan, then the operator turn(a;, d) could have that either “Sg,, by after
ay turns d degree” or “S,, b after a; turns d degree” as one of the preconditions.
As for the latter, we simply use a boolean query variable to indicate whether

each desired epistemic relation is achieved or not, and update the truth value of

all query variables as conditional effects in O. ”
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2.4.3.2 Agent’s Perspective Function

As they mentioned in their model definition (Definition 2.14), the perspective function,
fi + S — S, is a function that takes a state and returns the local state as the perspective
of agent i. Compared to the intuition of Kripke structures, their intuition is to only
define which variables an agent sees. Individual and group knowledge all derive from

agents’ perspectives.

They have developed a library of external functions that implement the semantics of \S;,
K;, DSq, DK, CSq, and CK g, using the underlying domain-specific perspective func-
tions. In addition, with the planner from Frances et al. [63], they provide an epistemic
planning framework that the model simply needs to provide the perspective function for

their domain (if a suitable one is not already present in their library).

They show two examples based on BBL to demonstrate their implementation. The
first one follows the example in Figure 2.4, where the blue area, yellow area and their
intersection represent agent ai’s, agent as’s and their common local perspectives of the
global world. The implementation of the perspective function in this example follows
Fuclidean geometric calculation. Given the current state is s, the agent is ¢ and target

is j, whether i sees j is the evaluation of the following equation:

360° — s(ang;)
2
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Following the above seeing relation evaluation, their perspective function for this exam-
ple takes the current state (including all agents’ locations, directions, and vision angles,
along with all other variables’ locations; and it could be a local state when the epistemic
relation evaluating has nesting) as input, and returns all the variables belonging to those

agents and variables that fall inside these regions.

Their second example is a complicated version of the first one, in which they take
obstacles into consideration. They show two scenarios with different sizes of the wall as

shown in Figure 2.6. They explained this example as:
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Quoted text: “ In Figure 2.6a, since the wall blocks the vision between agent
a; and ag, in standard BBL, we would have f,,(s) = {a1,b1,w} and f,,(s) =
{ag,b1,w}. But we must also check whether there is an obstacle-free line of
sight. Since the wall blocks line of sight between a; and as, then as must be
removed from f,, (s). So, in agent a1’s perspective, agent as’s view of the world

is fa, (fay (8)) = 0, as agent a; cannot see as.

A slightly more complex example would be in the Figure 2.6b. This is the same
as the previous scenario, except that the wall is resized so that agents a; and ay
can see each other. In the figure, the perspective of agent a; is blue. However,
the wall prevents a1 from seeing line of sight between ay and b. We do not have
b1 € fu,(fa, (s)) if our perspective function is modelled so that when we apply fa,
on b; in the local state f,, (s), the line of site (ag,b;) is not fully in the blue area
(a1’s perspective of the world s), which means agent a; cannot see if agent as

sees by. 7

(72.6,171.5) Ty (26,-15)
C(0.0.-2.2) -

a: Scenario 1 b: Scenario 2

FIGURE 2.6: Examples for Big Brother Logic with Obstacle [4].

To sum up, those examples show that they can expand to new logics by providing
different implementations of f;. From this, the logic of knowledge is provided using their
implementation of the semantics in Definition 2.15. That is, the modeller only needs to
provide: a classical planning model that uses epistemic formulae, and implementation
for fi, ..., fi for each agent to specify how the seeing rule works in the modeled domain.
Their library is able to use those perspective functions to evaluate the truth value of the

epistemic formulae when solving the modeled epistemic planning problem.
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2.4.3.3 Experiments

At last, authors demonstrated their approach by modeling and conducting experi-
ments on various example domains, including benchmark domains such as Corridor
and Grapevine, as well as challenging domains like BBL, Social Media Networks, and

Gossip.

Their results show that the agent’s perspective model approach outperforms the state-
of-the-art PDKB approach [87] on the benchmark domains. Additionally, they show-
cased the expressiveness of their method by successfully modeling and solving problem

instances in the challenging domains.

2.5 Research Questions and Thesis Outline

2.5.1 Research Questions
Recall that, in Chapter 1, we proposed our research question:

How can we enable expressive modelling and efficient solving of epistemic

planning problems?

As discussed in Section 2.3.3, the current approaches in epistemic planning face limita-
tions on their scalability, efficiency, generalizability, and expressiveness. Although Hu
[4]’s approach is an initial effort to address these limitations, it presents some problems:
1) their semantics are neither sound nor complete; and, 2) their model only models

knowledge (both individual nesting knowledge and group nested knowledge).

Thus, the main research question of this thesis can be broken down into a few less-general

research questions as follows:

RQ1 : How can we use the perspective model to define a fragment of sound and complete
epistemic planning model? Is this model more efficient than existing epistemic

planning tools?

RQ2 : How do we extend this into a single coherent model that allows mixing of belief

and knowledge?
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RQ3 : How do we extend this into a group coherent model that allows mixing of group

belief and group knowledge?

The details about how each research question is addressed in this thesis can be found in

the outline of this thesis (in the following section).

2.5.2 Thesis Outline

The starting point and intuition of this work is from the master thesis by Hu [4] (Sec-
tion 2.4), in which they proposed a novel state-based approach to model and solve
epistemic planning problems with efficiency and expressiveness. We revise their work by
proposing a formal definition with a clarification of their model and naive semantics. In
addition, we propose two forms of definition on its semantics and show their soundness
and completeness. Then, we extend their model to handle agent’s beliefs as well as group
beliefs, including common and distributed beliefs. In addition, we also formalised the
planning model, planning language and viable search algorithms. Furthermore, we did
large-scale experiments on one distinct domain to show the performance of the search
algorithms as well as how the epistemic planning problem instances change through al-
tering features of those instances. The detailed content breakdown of this thesis is given

as follows.

To address research question RQ1, in Chapter 3, we revise how the knowledge (group
knowledge) is modeled by the agent’s justified perspective model with premature se-
mantics (based on Hu [4]’s work). The issue of Hu’s model, mainly from its premature
semantics, is that it is neither sound nor complete. Thus, we propose two new forms
of semantics and show their soundness and completeness along with the proofs. At the
end, we clarify the implementation of this approach, show the experiments and results,

and conclude this approach with some discussions.

To address research question RQ2, in Chapter 4, we discuss the motivation for raising
a new model, namely Justified Perspective (JP) model,to handle both knowledge and
beliefs instead of just knowledge. In addition, we provide the background by showing
this difference from an epistemic logic level. Then, we formally give our definition of the

JP model and two forms of semantics, followed by a demonstration of its expressiveness
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and efficiency with some epistemic planning benchmarks and a primitive implementa-
tion. At last, we formalize the planning models for the JP model as well as providing
definitions of two planning languages (a theoretical one and a practical one) for model-
ing corresponding epistemic planning domains. Since the planning models we proposed
do not follow the assumptions of classical planning, especially the Markovian assump-
tion (Assumption 6), some mechanisms of classical search algorithms are not applicable,
such as duplication elimination and most of the heuristic functions. Thus, we designed
our planner with an adapted duplication elimination mechanism and search algorithms
that still work with the Non-Markovian assumption. Finally, we apply the JP model on
benchmarks to show its efficiency and expressiveness and conduct extensive experiments
on the chosen domain with varying instance settings, including the number of agents,

the number of desired epistemic relations, and their depth.

To address research question RQ3, in Chapter 5, we extend the JP model to handle
group beliefs. Compared to the relation between the single-agent’s knowledge and belief,
which effectively is that belief is past or present knowledge, the relation between group
knowledge and belief is trickier. The group belief can be formed even if the group
knowledge has never occurred. Then, we proposed the Group Justified Perspective (GJP)
Model, which models group beliefs, including distributed beliefs and common beliefs.
Similarly, at last, we show the expressiveness and efficiency of the GJP model through

some epistemic planning domains with primitive implementation.

At the end, in Chapter 6, we summarize our work and discuss its contribution, as well

as potential future directions.



Chapter 3

Planning with Perspectives:
Decomposing epistemic planning

with perspective

All men by nature desire to know. An
indication of this is the delight we
take in our senses, for even apart
from their usefulness they are loved
for themselves; and above all others

the sense of sight.

—Aristotle and Aristotle

In this chapter, we firstly revise the first state-based approach on modeling and solving
the epistemic planning problem. Then, we pointed out critical shortcomings in that
work. Especially, their Naive semantics is neither sound nor complete. Thus, we propose
two new forms of semantics, Complete Semantics and Ternary Semantics and show the
proofs for the soundness and completeness. At the end, we revise their implementation

with more example domains and performed experiments based on ternary semantics.

82
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3.1 A Revision on Planning with Perspective (PWP)

In this section, we revise the syntax and semantics of the agent perspective model
from Section 2.4, including distributed and common knowledge. We named this model

Planning with Perspective (PWP) Model for future referencing.

3.1.1 Signature

First of all, we need to define the signature of the PWP model, which specifies the

“vocabulary” of our logic model.

Definition 3.1 (Signature). A signature ¥ is described by the tuple ¥ = (Agt,V, D, R),
with Agt being a finite set of agent identifiers (of size k), V as a finite set of variables
(of size m) such that Agt C V and m < k, implying agent identifiers serve as variables.
Furthermore, D denotes the set of all domains, where each D, corresponds to a possibly
infinite domain of constant symbols for each variable v; € V. Lastly, R denotes a finite

collection of predicate symbols. Domains can be discrete or continuous.
To demonstrate the PWP model in the following parts of this thesis, we provide an
example signature using the NIB domain.
Example 3.1. The signature of the given example NIB domain (Example 1.2) can be
represented by YNTB = (Agt,V, D, R), where:

o Agt={a,b}!

o V = {peckingi;,j | i € {a, b}, € {p.a}}

e D= {Dpeek:ingijaDj | (S {aab}7j € {pa Q}}:

© Dpeekingap = Dpeekingaq = Dpeekingbp = Dpeekingbq = {truev false}

o Dy=D, ={0,...,99}

o R: Includes all logical relation predicate symbols, such as “>”" or “<17.

As previously noted, the PWP model is state-based; herein, we offer the formalization

and associated notations for its states.

'In this example, the agent identifiers can be any of peeking; , or peeking; 4. For readability, we still
use a and b to represent agent identifiers instead of peekinga,, and peekings p
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b q
S, p=4 q=6

FIGURE 3.1: State so in NIB domain.

Definition 3.2 (State). Given a signature ¥ = (Agt, V, D, R), any state s in the PWP
can be represented as a set of variable assignments (V' — D), mapping the variables v

to a value in their domains.

The set of all valid states is denoted as the state-space S, while a complete state is a
complete set of assignments for all variables in V' (s € S A |s|=|V|), while a local state
is a partial set of assignments (some variables may not be assigned). The set of all
complete states is denoted as S.. We use s(v) to represent the value of v in s. If variable

v is not in the local state s, then s(v) = null. The set of all models is denoted M.

Following the above signature example (Example 3.1) for the NIB domain, its state

space SNB and complete state space Sév IB can be represented as follows:
SNIB — {s|sc s s € SNBY | where:
peeking,p,=n1, peekingqq=na, ni,ng,ng,ng € {true, false},
NIB . .
S, 7 =4 peekingy,=ns, peekingp, =na, ny T ng,ng T ng,ny T ng,ng T ng,
p=1i,q=7j i,7€40,...,99}

In the above representation, “1” is used as “NAND” (not both). Those NAND relations

ensure: neither a nor b can peek at both p and ¢ at the same time; and, neither p nor ¢

can be peeked by both a and b at the same time (as it is outlined in Example 1.2). The

initial state described in Figure 2.2 is the state sg in the above state space, where:
peekingqy, = false, peekingy, = false, p=4,

S0 —
peekingqq = false, peekingy, = false,q=6

From the initial state, after agent a performed action “(peek a p)” and agent b

performed action “(peek b q)” (as shown in Figure 3.1), the new state (denoted as s2)
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can be represented by:

peekingqy =true, peekingy, = false, p=4,

S9 =
peekingqq = false, peekingyy =true, g=06

3.1.2 Language

With the signature in place, we can now define the language permitted in the PWP
model by specifying its grammar. While this definition aligns with Definition 2.13, the

use of the signature clarifies the structure of the language as outlined below.

Definition 3.3 (Language Lx(X)). Given a signature ¥ = (Agt, V, D, R), the language
Lk (Y) is defined by the grammar:

pu=r(Vy) | e lene|Sul| S| Kip,

in which r € R, terms V,, CV, i € Agt, and v € V.

A n-ary predicate symbol r € R becomes a proposition by taking a set of variable V.
as input. In addition, intuitively speaking, only the ontic parts of the world should
be modeled by our model as variables in the state. Thus, normally, r(V;) could be
any propositional ontic relation (exceptions will be discussed in Section 3.3). S is a
visibility formula that means agent i sees the truth value of formula ¢, while S;v is a
visibility formula that means agent ¢ sees the value of the variable v. K;¢p is a knowledge
formula that means agent ¢ knows formula ¢ holds. Operators — and A are defined in
the standard way. We call a formula with no conjunction a modal literal. The function

vars(yp) returns all variables in ¢.

The ontic relations that can be modeled by the PWP model have been discussed in
Section 2.4.2.1. Here, we just clarify some intuitions about the relation between seeing
formulae and knowledge formulae. The important concept in this logic, adapted from
Cooper et al. [1] and [2], is “seeing a proposition”. Let ¢ be a proposition, “agent i
knows whether ¢” can be represented as “agent ¢ sees ¢”. The interpretation on this
is: either @ is true and ¢ knows that; or, ¢ is false and ¢ knows that. With higher-order

observations added, it gives agent ¢ the ability to reason about whether other agents
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know whether proposition ¢ is true, without ¢ knowing whether ¢ is true itself; e.g.

S;Sje.

We include K;p in the grammar, but in fact, it is simply shorthand and can be defined

as:
Kip < ©ASip

That is, agent ¢ knows ¢ if agent ¢ sees ¢ and also ¢ is true. Similarly, if agent ¢ knows
¢, then it means that it is true (because it is knowledge, not belief), and that they
must be able to see that it is true. This definition of knowledge is consistent with the

relationship between knowledge and seeing identified by Cooper et al. [1].

Consider the example Big Brother Logic domain in Figure 2.4 and assume value(b;) is
false and all objects’ (b_) positions are commonly known to all agents. The formula
Sa,value(by) can be read as “agent as sees variable value(b;)”, and it means agent a
knows by’s value, whatever that value is. The formula K,, value(b;)= false can be read
as “agent as knows variable value(by) is false”, which represents ao knows by’s value is
false. Further, agent a; does not know b;’s value, so we can say =K, K,, value(by)=
false. However, with the seeing relation, the formula K, S,, value(b;) holds, since both

SaySa, value(by) and Sy, value(by) hold.

3.1.3 PWP model

Now, we can give a formal definition of the PWP model as follows.
Definition 3.4. Given the signature ¥ = (Agt,V,D,R), a model M is defined as
M = (A.gta V,D,ﬂ',fl, s 7fk)

e Agt, V and D are from the given signature ¥;

e 7 is an interpretation function 7 : S x R — {true, false} that determines whether
the predicate (V) is true in s. 7 is undefined if any of its arguments ¢; is a

variable in V that is not also in s.

e Finally, fi,..., fi are the agents’ perspective functions, one for each agent in Agt.

A perspective function, f; : S — S, is a function that takes a state and returns
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a subset of that state, which represents the part of that state that is visible to

agent i.

The following properties must hold on f; for all i € Agt and s € S:

(1) fis) s
(2)  fils) = fi(fi())
(3) If s C &, then fi(s) C fi(s)

The above definition of the model is almost the same as in Definition 2.14. We added

the domain for each variable v as D,.

The definition of the perspective function requires some discussion. We can only provide
a high-level definition as the perspective function is domain-specific. Each agent has their
own domain-specific perspective function f; that, for any given state in this domain, the
perspective function returns a subset of the given state containing all the assignments

that are visible to agent 1.

For example, given a state s = {v; =ej,v2 =e32}, then fi(s) = {va =e2} specifies that
agent 1 cannot see variable v or, by definition, its value, but can see variable vo and its
value. These functions can be nested, such that fo(f1(s)) represents agent 1’s perspective

from agent 2’s perspective, which can be just a subset of agent 1’s actual perspective.

We provide 3 meaningful properties as constraints for the modeler to develop their own
domain-specific perspective function. Property (1) ensures that each agent can only see
true values of variables. Later, we see that this ensures that knowledge is always true.
Property (2) ensures that an agent sees what it sees. Property (3) is a monotonicity

constraint.

Using the NIB example (Example 1.2), the perspective functions for agent a and agent
b are identical. Given a state s € SV/B | the perspective function for agent i (either a or

b in this example) is:

{peekingx:s(peek:ingx) | z € {ap, aq, bp, bq}} base case
FNTB (s) = U{p=s(p)} if peeking;, =true

U{g=s(q)} if peeking;q =true
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That is, agents see whether each other is peeking into the box and they see the value of
the number if they are peeking. Using the example states sy and sy (in Section 3.1.1),

we have:

peekingq, = false, peekingy, = false,
fa(s0) = fo(s0) = ’ ’

peekingqq = false, peekingy, = false

peekingqy, =true, peeking,, = false,
fa(s2)= peekingqq = false, peekingyy =true, ¢ fo(s2) = fa(s2) \ {p = 4} U {q = 6}

p=4
3.1.4 Naive Semantics for Individual Knowledge

Given the new definition of the model, we first formalised the following definition of
semantics for language Lx (X), which we called the Naive semantics. The intuition of

this semantics is from Definition 2.15.

Definition 3.5 (Naive Semantics for PWP model on Lx(X)). Given a PWP model
M = (Agt,V,D, 7, fi,...,fr), the naive semantics of the language Lx (X) is defined as:

) Er(V)  iff w(s,r(Vy)) = true

SV EGAY iff (M, s)FE ¢ and (M,s)F

S E-p  iff (M, s)H o

FSw  iff v e f(s)

,8)FE S it (M, fi(s)) F g or (M, fi(s)) F-p

,8) F Ko ifft (M,s)EpASip

The semantics for relational terms and propositional operators are straightforward, but
the semantics for seeing is worth discussion. The semantics for S;v, which means agent ¢
sees variable v, is defined by stating that agent i sees v iff v is in the domain of state
fi(s). The semantics for S;p is defined as: either ¢ is true from agent i’s perspective,

or - is true from agent i’s perspective.

Compared to the original semantics from Hu [4] (Definition 2.15), our new naive defini-

tion is simpler, clearer, and has less explicit treatments, such as S;5;¢ or S;—p. With
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the recursive grammar of the language (¢ in the above definition could be any formula
in Lk (), including a seeing formula or knowledge formula), this new definition can
also be nested arbitrarily. The semantics of: (a), the ontic predicates; (b) seeing a
variable; and, (i) knowing a formula in the original naive semantics are item (a), (d)
and (f) in this definition respectively. Item (c), and (e)-(h) from Definition 2.15 are
modeled recursively by item (e) in this definition. The remaining item, item (d), from
the original definition is modeled by item (e) in this definition. Intuitively, seeing a
formula means either knowing the formula is true or knowing the formula is false, which

indicates S;p = S;—p.

Let us illustrate the naive semantics with more details using the following example.

SNIB

Example 3.2. In accordance with the NIB example, consider the state space and

perspective functions fiNIB. Two states, so and sz, are used as illustrative examples (see
Section 3.1.1). Epistemic formulae ? from Ezample 2.2 serve as the epistemic relation

for evaluation.

The evaluation of those formulae is as follows:

1. Kqo(p=4):

e M, sy F K,(p=4) does not hold because of M, sy & S,(p=4);

o M, sy E Kq(p=4) holds because M, sy = S,(p=4) and M, s2 F (p=4).
2. K,Ky(p=4): Both are false since M, sg 7 Kp(p=4) and M, sy ¥ Kp(p=4).

3. K.(p x ¢g=4): Both are false since S,(p x ¢g=4) does not hold in neither states

(a does not see q).
4. Kq(p x g <992): Both are false for the same reason as Item 3.
5. K.Kp(p x ¢ < 99%): Same as above.
However, the naive semantics suffers from two problems (hence the name ‘naive’), both

related to the problem of having local states. First, the semantics are ill-defined. For

Sip, fi(s) can be a local state, which is only a partial assignment of variables. If a

2For clarity, throughout this thesis, we display r(V;) in its typical notation. For instance, (p=4) from
K.(p=4) denotes the predicate =4([p]); similarly, (p X g=4) corresponds to the predicate x =4([p, q]).
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variable v is not visible in f;(s), then any proposition that uses v will default to false.
It is reasonable to say that if an agent cannot see a variable in a predicate, then it
cannot see (prove) the truth value of that predicate. However, this causes problems
with formulae such as seeing tautologies (item 4 and item 5 in the above example) or
contradictions. For example, the formula M, s F S; (v =eV(v= e)) will evaluate to
false if v is not in f;(s). However, v = e V =(v =€) is clearly a tautology, so agent i

should always see that it is true.

Second, the semantics of = uses a closed-world assumption. However, when s is a local
state (partial), for any formula ¢ that refers to a variable not in s, we should be unable
to prove @ or —p. Defining —p as the inability to prove ¢ means that .S;p is a tautology:

either ¢ or -y will always be true.

3.1.5 Naive Semantics for Group knowledge

The signature and model for modeling and reasoning group knowledge are the same as
described above. In addition, the grammar of the language is the same as defined in

Section 2.4.2.4. We copy the grammar here for reference.

Definition 3.6 (Language Lgx(X)). Given a signature X = (Agt,V, D, R), the lan-

guage Lok (X) is defined by the grammar:
=Y |- |leANp|Sia| Kip| ESqga| EKgyp | DSga | DKgy | CSga | CKge,

in which v is 7(V;) and » € R, G is a set (group) of agents (G C Agt), and o is a

variable v or formula .

Group formula ESga is read as: everyone in group G uniformly sees a variable or formula
a, and EKqgp represents that everyone in group uniformly G knows ¢. We named ES
and FK as uniform seeing operator and uniform knowledge operator respectively. DK ¢
is the distributed knowledge operator, equivalent to D¢ in Section 2.2.3.2, while DSg
is its visibility counterpart: someone in group G sees, or the group sees by merging the
view of sight from each member. Finally, C'Ks is common knowledge and C'S¢ common

visibility: “it is commonly known” and “it is commonly seen” respectively.

3We use « for simplicity
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As with the equivalence K;p <+ ¢ A S;p, we define the following equivalences:

EKgp < ©NESgp < NiegKips
DKgy < ¢ ADSge,
CKgp <+ @©ANCSgp.
The group semantics in Definition 2.22 needs formalization and clarification. In order

to do so, firstly, we need to propose a formal definition for the common perspective

function cf.

Definition 3.7 (Common Perspective Function). Given a group of agents G' and the

current state s, the common observation of the group can be defined as:

s if s = Nica f(5)

cf(G,Nijeq f(s)) otherwise.

cf(G,s) =

This is a recursive function, while the base case is when the input is equal to the
intersection of all agents’ local states. This means the common observation of this
group G has converted into a partial state (could be empty). The variables that are not
visible to any agent in the group G are filtered out until the remaining set becomes a

fixed point set. That is, every variable in the set is commonly seen by the group G.
Then, we give the definition of the Naive Semantics for Group Knowledge as follows.

Definition 3.8 (Naive Semantics for PWP model on Lgx(X)). Given a PWP model
M = (Agt,V,D,x, fi,...,fx), the naive semantics of the language Lg i (X) is defined as:

,$)E ESqga iff forallie G, (M,s)FE Sia

s)E EKge iff (M,s)FE (¢ A\ ESgyp)

s)EDSqu iff veE Uieq fils)

)
)
)
s)E DSgy iff (M,s')E g or (M,s') F —p, where s' = U,cq fi(s)
)
)
)
)

s)E DKgye iff (M,s)E (¢ A DSgy)

s)E CSquv iff v e ¢f(G,s)

s)E CSgp iff (M,s')E @ or (M,s') E —p, where s’ = ¢f (G, s)

T 25k E%Ek

,S)E CKgp iff (M,s)E (oA CSgp)
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where items (a)-(f) are inherited from Definition 3.5, and « represents a variable v or a

formula .

The above definition of the semantics is similar to that defined in Hu [4]. This defini-
tion follows the intuition that knowledge can be derived from an agent’s observation,
while in the case of group knowledge, it becomes group observation. For the uniform
observation of group G, it can be reasoned by either checking each agent’s individual
perspective or obtaining the intersection of all agents’ perspectives ([, fi(s)). While
for the distributed observation of group G, the set union operator is needed to “pull”
all agents’ observations together. Since all local states are a subset of the global state at
a given timestamp, there is no conflict on those assignments. Here, the conflict means

given an input state s and any two agents ¢ and j, no variable v that is in f;(s) and also

in fj(s) makes f;(s)(v) # fj(s)(v), since fi(s)(v) = s(v) and f;(s)(v) = s(v).

Compared to other modalities, the group’s common observation and knowledge are more
complex to reason about. Common knowledge in a group is not only that everyone in
the group shares this knowledge, but also everyone knows others know this knowledge,
and so on, ad infinitum. The infinite nature of this definition leads to definitions that
are intractable in some models. Therefore, many researchers choose to add a specific
notation and definition for common knowledge that sets apart from their definitions of

agent’s individual (nested) knowledge.

However, in our perspective logic, common knowledge is much simpler. This is based
on the fact that each time we apply the composite perspective function (), fi(s) (to
get uniform perspective of a group), the resulting state is either a proper subset of s or
s itself. By this intuition, we can evaluate common visibility /knowledge in a bounded

number of steps.

The fixed point is a recursive definition. However, the following theorem shows that this
fixed point always exists, and the number of iterations is bounded by the size of |s|, the

state to which it is applied.

Theorem 3.9. Function cf(G,s) (in Definition 3.7) converges to a fized point s’ =

cf (G, s") within |s| iterations.
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Proof. In each iteration of cf, either (), fi(s) = s or ;. fi(s) € s because of the
property that f;(s) C s. If the former, we have reached the fixed point. For the latter,
a maximum of |s| such iterations are possible, by which point the fixed point has been

reached, even if it is empty, in which there is no common knowledge. O

For each of the iterations, there are |G| local states in group G that need to be applied
in the generalised intersection calculation, which can be done in polynomial time, and

there are at most |s| steps. So, a poly-time algorithm for function cf exists.

Analogous to the individual naive semantics, we illustrate the group naive semantics

with an example.

Example 3.3. In accordance with the NIB example, consider the state space SN'B and
perspective functions fiNIB. One state sy (as all formulae do trivially not hold for sg)
is used as an illustrative example (see Section 3.1.1). Group epistemic formulae from
Ezxample 2.3 serve as the epistemic relation for evaluation. We list them here as the

language in that example is different from ours (Lok ):

1. EKg(p=4)
2. DK¢g(p x q=4)

3. CK g(peeking,p=true)

Item 1 does not hold due to M, sy i Kp(p=4). This can be reasoned by evaluating either
Vie G, M,sy F Ki(p=4) or M,(,cq; fi(s2) F (p=4). The intersection f,(s2) N fy(s2) is
{peeking,p, =true, peekingy, = false, peekingq,q = false, peekingy, =true}, which means

M, (Nieq fi(s2) F (p=4) does not hold.

Item 2 does not hold due to M, sy i (p x g=4). However, if ¢ = 1, then Item 2 will hold
because of f,(s2) U fy(s2) = s2 and M, so F (p X ¢g=4).

Item 3 holds. As mentioned in reasoning about Item 1, the intersection of f;(s2) and
fo(s2), namely s, is {peeking,, =true, peekingy, = false, peekingqq = false, peekingy, =
true}, which is not the same as input ss. In the next iteration, we have f,(s') =
H(s") = fu(8) N fy(s’) = s’. Thus, the common perspective of group G with the given
state sy has converged on s'. We have M, s’ E (peeking,, = true), indicating M, sy F

CSc(peekingq, =true). With M, so E (peekingq,=true), Item 3 holds.
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3.1.6 Discussion

Now, we discuss the contribution and limitations of Hu [4]’s work, in which we can raise

the motivation for proposing new semantics and proofs.

3.1.6.1 Remarks

In their work, they introduced a novel epistemic logic reasoning model in planning called
agent’s perspective model (Section 2.4.2, which we refined in previous parts of this
section) driven from the intuition: “what you know is what you see”. This perspective
model allows them to evaluate epistemic relation formulae (knowledge), including nested,
distributed, and common epistemic relations, based on the simple concept of defining
an agent’s local state. Then, by using F-STRIPS, they separated the planning task
from epistemic relation reasoning (with an external function), which is an expressive
and flexible solution for most of the epistemic planning problems. Compared to the
Kripke structure based approach, their approach does not require specifying explicitly
how epistemic formulae are updated as each action affects, which is done by the external
function automatically with a given perspective function. In addition, compared to the
pre-compilation approach, their approach allows lazy evaluation on epistemic relations

without an expensive pre-compilation step.

Overall, their work is the first to: (1) reason about knowledge only based on the ob-
servable parts of the world; (2) separate epistemic logic reasoning from planning by

delegating epistemic reasoning to an external solver.

3.1.6.2 Limitations

First of all, the semantics defined in Definition 2.15 and Definition 2.22 are neither sound
nor complete. As we mentioned when refining their semantics in Section 3.1.4, this is
caused by the closed world assumption (Assumption 10). The modeled problem follows
this closed world assumption at the level of global perspective (global states), while this
assumption no longer holds in the agent’s local states, as the agent’s local perspectives

could be partial states.
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In addition, the generalisability of their perspective (observation) function is another
controversy that needs to be explained with more examples (Section 3.4). Besides, as
one of their main contributions, their planning process of the problem is novel and valid,

but needs more clarification with detailed examples (Section 3.5 and Section 3.6).

At last, their approach works well when modeling epistemic planning domains that
epistemic relations can be reasoned from all (ontic) variables from the state, while for
domains that contain unbounded epistemic relations in the action precondition, even
with their approach, it still cannot be modeled. One typical example is the Gossip do-
main [136]. This requires some further work to model and solve those domains following

their intuitions (Section 3.6.4).

3.2 Complete Semantics

In this section, we provide a Complete semantics of our model. As the name indicates,
the complete semantics is both sound and complete. Similarly, as in Hu [4]’s work, the
key part of the semantics is the use of states of the form {v; = ej,..., v, = e}, rather
than possible worlds found in Kripke semantics, and the use of perspective functions
rather than Kripke relations. All preliminaries are given in Section 3.1, where a signature
Y = (Agt,V, D, R) is defined in Definition 3.1 and a model M = (Agt,V,D, 7, fi,..., fx)

is defined using perspective functions f;.

3.2.1 Complete Semantics for PWP model on Knowledge

First of all, since all states in the PWP model are sets of assignments, we need to define
a state override function ( ) to locate all states that are consistent with the given state.
Definition 3.10 (State Override Function). A state override function s'(s) : S xS — S

for a given state s overrides a state s’ is defined as:

s'(s) =sU{v=5'(v) |[ves nv¢s}

Intuitively, overriding a state s’ with state s means that the new state is the same as

sU s, but if v has a value in both s and s, the value in s is used. Using this, we can
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extend the nalve semantics in Definition 3.5 into a semantics that is both sound and

complete, but has exponential time complexity.

Definition 3.11 (Complete Semantics for PWP model on Knowledge). Given a PWP
model M = (Agt,V,D, 7, fi,...,fx), the complete semantics of the language Ly (%) is
defined as:

,8)Er(Vy) it w(s,r(V;)) = true

a)
b)

r(
,S)EoNY iff (M,s)E ¢ and (M, s) F
s)

M
M,s) % ¢

d)

(a) (M,s)

(b) (M, s)

() (Mys)F=p iff
(d) (M,s)ESuw iff vefi(s)or |Dy|=1
(e) (M;s)

e) ,8) E Sjp iff VgeS,, (M,g(ﬁ(s))) Eo
or, Vg € Se, (M, g{fi(s))) F —p

(f) (M,s)EK;p iff (M,s)Fe@ASip

The seeing operator S needs some clarification. Based on the truth value of the seeing
formula defined in Definition 2.18, S;v is true if and only if: either, agent i syntactically
sees v, which is v in agent i’s perspective (observation) of the given state; or, agent i
semantically sees v, which follows the closed-world assumption (Assumption 10). The
latter condition triggers when v is not in f;(s). If and only if v is consistent (has the
same value) in all worlds agent i considers possible, which effectively means v only has
1 possible value, we have agent ¢ semantically sees v. As for seeing a formula S;p, the
effect of evaluating ¢ (and —p) under g(f;(s)) for every g in the complete-state space
means that ¢ (and —¢) is evaluated under f;(s), but quantifying over every possible
value for variables not in f;(s). This complete semantics solves the issues with the naive

semantics.

The time complexity of the naive semantics is ©(n x |¢|), in which n is the maximum
depth of a nested query in ¢, and || is the size of the formula. However, for the complete
semantics for S;p, we need to iterate over all S global states, meaning the worst-case
complexity is ©(n x |Sg|). Note that for models with infinite domains (e.g. continuous
variables), S¢ is infinite. Of course, in practice, we need only iterate over any variables
in ¢ that are not in f;(s), and we can also re-write the formula into CNF and solve for

any unreferenced variables.
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As already noted, the naive semantics is unsound and incomplete; however, the complete
semantics is both sound and complete. Using item 4 (K,(p x ¢ < 99?)) and item 5
(KoKp(px q < 99%)) from Example 3.2 as examples, both do not hold in naive semantics
due to agent a not seeing ¢ in neither sg nor so. However, with the complete semantics,
in all the worlds (Vg € S, g(f.(s))) agent a considers possible given the current state s
(works for any reachable state, not only so and s2), we have M, g F (p x ¢ < 992). Thus,
M,sE S,(pxq<99%) and M, s F (px g < 992), which results in item 4 holding. Item 5

also holds and can be proved in the same way.

Both example and theorem above show that, unlike the naive semantics, the complete
semantics handles epistemic formulae that hold only because of the closed-world assump-
tion. The example above shows that, unlike the naive semantics, the complete semantics
handles epistemic formulae that hold only because of the closed-world assumption. In
other words, the complete semantics is sound and complete. This is straightforward to
show by simply defining Kripke structures corresponding to our models, which is also

aligned with Theorem 2.17.

For each model M = (Agt,V,D,m, fi,...,fx), we can map to a corresponding Kripke
structure M’ = W, 7, Rq,...,Ry). First, we map states to worlds: each global state
g € S, corresponds to a world in W. Second, perspective functions are mapped to
Kripke relations: given a perspective function f;(s), the corresponding Kripke relation
R; can be constructed by taking each global state g and its corresponding world w, and
defining (u, w) € R; for every u € W such that u and w agree on all variables in f;(s).
Effectively, this means that for any variable v € f;(g), all reachable worlds in R;(w) will
agree on v, and for any variable v ¢ f;(g), there will be at least one reachable world for
every e € D,. So, an agent can either know the value of a variable, or know nothing

about the value of the variable.

Therefore, the set of reachable worlds R;(w) corresponds to the set of states {g(fi(s)) |
g € S}, which is precisely the set of states that are evaluated in the semantics of S;p.
Given that the Kripke-based semantics for K¢ assesses all reachable worlds in R;(w),
and given the equivalence S;p < (K;p V K;—¢), our complete semantics are sound and

complete.
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3.2.2 Complete Semantics for PWP model on Group Knowledge

Then, we can extend the complete semantics from Lx(X) to Lox(X).

Definition 3.12 (Complete Semantics for PWP model on Group Knowledge). Given
a PWP model M = (Agt,V,D,n, fi,...,fr), the complete semantics of the language
Lak(X) is defined as:

,s)E ESqa  iff forallie G, (M,s)E S;a
,S$)F EKgyp iff (M,s)E (@ A ESgy)
,8)F DSqu it v e Ueq fi(s) or |Dy| =1
,$)EDSqye iff Let ' be ;e fi(5),
Vg € Se, (M, g(s")) F g or (M, g(s')) F
(k) (M,s)EDKgyp iff (M,s)E (oA DSgyp)
)  (M,s)E CSqv iff vecf(G,s)or |Dy| =1
(m) (M,s)E CSgp iff Let s be ¢f(G,s),
Vg € Se, (M, g(s")) E p or (M, g(s)) E ~p

(n) (M,s)E CKgye iff (M,s)E (pACSqyp)

where items (a)-(f) are inherited from Definition 3.11, and « represents a variable v or

a formula .

From the complete semantics above, the definition for uniform seeing and knowledge
formulae are the same as in naive semantics (Definition 3.8). This is because the evalu-
ation of each individual S;a handles possible values (Definition 3.11). For group seeing
a variable in items (i) and (1), similarly as in individual semantics, if the set of all pos-
sible values of v only contains one value, then the group semantically sees v. Items (j)
and (m) consider all possible values for the unobserved variables. And, if formula ¢ is
consistent in all of them, which means ¢ holds in all possible worlds, or ¢ does not hold

in all possible worlds, we have corresponding group seeing relation.
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3.3 Ternary Semantics

In this section, we show how to implement this logic using a ternary logic semantics.
This semantics aims to overcome the weaknesses of the naive semantics, while providing
a polynomial-time complexity for entailment. All preliminaries are given in Section 3.1,
where a signature ¥ = (Agt,V, D, R) is defined in Definition 3.1 and a model M =

(Agt,V,D,m, fi,...,fi) is defined using perspective functions f;.

We take the concept from Levesque [137] for reasoning about knowledge bases with

incomplete information, in which they used the Kleene [5]’s three-valued logic. The

1

truth value in this logic are 1 (true), 0 (false), or 3 (unknown), in which 3 is interpreted

as: unable to be proved as either true or false. In our semantics, proposition statements
about variables that are not in a local state are given the value % Like Levesque, we
prove that the semantics are complete for a wide class of formulae based on logically

separable formula.

Following the notation by Levesque, we define the semantics using a function T' €
(M x 8) x £ — {0,1,1}, which takes the knowledge base (a model and state pair
(M,s) where s can be local or global) and a formula ¢ in the given language, and
returns 1 for true, 0 for false, and % for unknown. In order to systematically handle
unknown seeing relation in a partial state, we request one variable in V' acts as the
agent’s identifier, which means agents’ identifiers are parts of the state. For example,
in the BBL domain, this identifier could be the variable representing locations of each

agent or the variables representing agents’ facing directions.

In addition, following Levesque, our semantics also use the three-value truth table as

shown in Table 3.1.

=1 q=35 q=0]-p
p=1] 1 3 0 0
_ 1 1 1 1
pP=3| 2 2 0 |2
p=0] 0 0 0 |1

TABLE 3.1: Three-valued truth table for two proposition p and ¢ in Kleene’s logic.
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3.3.1 Ternary Semantics for PWP model on Knowledge

Now, we can define the ternary semantics for individual observation and knowledge
(language Lk (X)).

Definition 3.13. Given a PWP model M = (Agt,V,D,r, fi,...,fr) and the current
state s, Function T for the language L (X) is defined as (omitted M for readability):

(a) T[s,v(V})] = 1ifw(s,r(V,)) = true
0if (s, 7(V;)) = false

% otherwise

(b) T[s,ony] = min(T[s,¢],T[s, ¢])

() Tls,=g] = 1-T[s,¢]

(d) T[s,Sv] = Llifi¢gsorvgs
0ifv ¢ fi(s)

1 otherwise

(e) T1Is, Siy] = LifT[s,p| =T[s,~p] =% ori¢s

1 otherwise

() Tls,Kip] = TIs, 0 ASig]

The definitions of (d) and (e) deserve some discussion. For (d), we cannot reason about
whether agent i sees variable v or not if at least one of the following holds: v is not
visible in the current state, or the agent ¢ is not visible in the current state. In both
cases, T[s,S;v] is 5. Otherwise, T[s, S;v] is 1 or 0 depending on whether v is in 4’s

perspective f;(s) or not respectively.

As for (e), T'[s, Si¢] = % in a local state s if and only if not both ¢’s visibility and agent
i’s observability can be evaluated. In short, we cannot prove that ¢ sees the value of ¢
if we cannot prove ¢ ourselves; or alternatively, we cannot see if ¢ sees ¢ if the agent
itself cannot reason about 4’s visibility. If we reflect on the definition of (M, s) E S;¢,
we note that any evaluation of S;p is done in a global state that is ‘anchored’ by the
‘for all g € S.” in the complete semantics. This first part of the definition handles this

for local states.
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The second part of the definition says that T'[s, S;p] = 0 when T'[f;(s), ¢| = T'[fi(s), ~¢] =
%. What this means is that S;p is false when neither ¢ nor - can be proved in f;(s),
because one or more variables in ¢ are not visible. In fact, we need only test one of
these: if ¢ cannot be proved (T[s, ] = 1), then by definition, T'[s, ~p] = 1—T[s,¢] = 1
as well. Note that in both the first and second parts, not all variables in ¢ need to be
visible for ¢ or —¢ to be proved. For example, S;j(v =1V u = 2) where f;(s) = [u = 2].
Even though v is not visible, the truth value of (v = 1V u = 2) can be seen because

u = 2 can be proved.

Finally, the third part of the definition says that T'[s, S;¢] = 1 if neither of the first two
cases holds. So, if either ¢ or —¢ can be proved in state f;(s) (one of them returns 0 or

1), then ¢ can be seen, as in the complete semantics; otherwise, it cannot be seen.
Definition 3.14. (Soundness and completeness, adapted from Levesque [137]) Consider
a function h: (M x 8) x £ — {0,1,3}. Then:
e h is sound iff for every M € M,s € S, and ¢ € L, if h[(M,s),p] = 1 then
(M, s) E ¢ and if h[(M,s),p] = 0 then (M, s) E —¢;
e h is complete iff for every M € M,s € S, and ¢ € L, if (M,s) E ¢ then

hl(M,s),p] =1 and if (M, s) ¥ ¢ then h[(M,s),¢] = 0.

Clearly the function T is incomplete compared to the complete semantics, because it
returns % for some queries. However, in the remainder of this section, we show that this

logic is sound, and we characterise precisely when the logic is complete.
First, we introduce the following lemma.

Lemma 3.15. Given a formula ¢ € L, then:

1

e if T[s,p] = 5, then there exists a global state g € S,, such that T[g(s), ] # 1;

o if T[s, ] =1, then for all global states g € S, T[g(s), ] = 1; and
o if T[s, ] =0, then for all global states g € S, T[g(s),¢] = 0.

Effectively, this lemma means that T returns 0 or 1 for any global state. If T' cannot

prove ¢ is true or false, then it must be due to reference to a variable that is not visible
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in some partial state, as this is the only way that % is introduced by T'. By ‘completing’
the state, we make ¢ (or =) provable. The latter two propositions state that, once ¢

is proved, even in a partial state, adding more information cannot change the outcome.

Theorem 3.16. (Soundness of T'). Let M € M be a model, s € S be a (local or global)
state, and ¢ € L a formula. If T[(M,s),p] =1 then (M,s) E ¢, and if T[(M, s), ] =0
then (M, s) ¥ .

Proof. We prove this inductively on the structure of ¢.

Case (a): The case of r(t1,...,tx) is straightforward as the semantics of T and F are
both defined using 7. The only case where they disagree is then T[s, r(t1,...,t)] = %,

which can only happen when s is a local state.

Case (b): Assume T'[s, A 9] = 1. Therefore, T'[s,p] = 1 and T[s,9)] = 1 from the
definition of 7. By induction, (M, s) E ¢ and (M, s) F 1. Therefore, from the definition
of F, we have that (M,s) E ¢ A .

Now, assume T'[s, ¢ A1 = 0. Therefore, T'[s, o] = 0 or T'[s, 1] = 0 from the definition of
T. By induction, (M, s) # ¢ or (M, s) i 1. Therefore, from the definition of F, we have
that (M, s) ¥ ¢ A1p. This holds even if either T'[s, ¢]| = % or T[s,y] = %, and the other
is 0. That is, provided that one of ¢ or ¥ evaluates to 0, we know that ¢ A i evaluates

to 0 irrelevant of the other.

Case (c): Assume T'[s,—p] = 1. Therefore, T'[s,| = 0 from the definition of T. By
induction, (M, s) ¥ ¢ and therefore from the definition of F we have that (M, s) F —.

The case for T' = 0 is just the reverse.

Case (d): The definitions of S;v for T is follows the same definition in . The only case

, which can only happen in a local state.

they disagree is when T'[s, S;v] = %

Case (e): Assume T'[s,S;¢p] = 1. Therefore, from the definition of 7', we have that
T[s, ] € {0,1} (recall that T'[s, ~¢] =1 —T's, ¢] by definition), and T'[fi(s), ¢] € {0,1}
(so T[fi(s),mp] =1 —=TI[fi(s),¢]). From Lemma 3.15, this implies that for all g € S,
Tlg{fi(s)),¢] € {0,1} or for all g € S, T[g{fi(s)), ~¢] € {0,1}. By induction, this means
that for all g € S, either (M, g(fi(s))) E ¢ or (M,g{fi(s))) F ~¢. Therefore, from the
definition of F, we have that (M, s) E S;p.
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Now, assume T'[s, S;¢| = 0. Therefore, from the definition of T', we have that T'[fi(s), ¢| =
T[fi(s),~¢] = 3. From Lemma 3.15, it must be that there exists g € S, such that
Tlg{fi(s)),¢] € {0,1} and there exists g € S., such that T[g(f;(s)), ] € {0,1}. By
induction, this means that there exists g € S, such that (M, g(fi(s))) F ¢ and there
exists g € S, (M,g(fi(s))) F —p. Therefore, from the definition of F, we have that

(Ma S) E{ SzSD

Next, we characterise when the logic is complete. To show this, we first introduce the

concept of logical separability.

Definition 3.17. (Logical separability) Adapted from Levesque [137], a set of formulae
I is logically separable iff for every satisfiable set of literals L, if L U T is unsatisfiable,

then L U {p} is unsatisfiable for some literal ¢ € T'.

This property captures whether there are any joint logical relations hidden in a set of for-
mulae. Intuitively, given a logically-separable set of formulae, we cannot infer anything

new by combining the formula in that set than we can from those items individually.

A contradiction is a simple example of a non-logically-separable formula. For example,

let T be {p, —p}, and L be a singleton set containing any proposition g other than p or
Clearly, both {p, ¢} and {q, —p} are satisfiable, which means I" is not logically separable.
Definition 3.18. (Normal form NF, adapted from [138]) We define the normal form

NF C L as the smallest set of formulae where each formula ¢ € £ adheres to the

following grammar:

pu=rty, .., t) | ~p oA | Sivl| S,

=1ty .. ty) | 0 | W AY,

where the set {p, ¢’} is logically separable. This represents a normal form in which non-
separable formulae are only permitted outside of S; operators, and S; operators cannot

be nested. For any query, such as S;p in NF, ¢ must be non-separable.
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Theorem 3.19. (Completeness of T'). Let M € M be a model, s € S be a (local or
global) state, and o € NF. Then, if (M,s) E ¢ then T[(M,s),p] =1, and if (M, s) H ¢
then T[(M, s),¢] = 0.

Proof. We prove this inductively on the structure of ¢.

Case (a): As with soundness, the case of r(t1, ..., 1) is straightforward as the semantics

of T and F are both defined using , and they disagree only when T[s, r(t1, ..., ;)] = 3.

Case (b): Assume that (M, s) E ¢ A1. From the definition of F, we have that (M, s) F ¢
and (M,s) E 1. By induction and that ¢ A ¢ € NF, we have that T[s,¢] = 1 and
T's,®] = 1. Therefore, from the definition of T', we have that T'[s, p A ¢] = 1.

Now, assume that (M, s) & ¢ A 1. From the definition of F, we have that (M, s) ¥ ¢ or
(M, s) # 1. By induction and that ¢ Ay € NF, we have that T[s,¢] = 0 or T[s, 4] = 0.
There, from the definition of T, we have that T'[s, ¢ A 9] = 0.

If o Ay ¢ NF, then the completeness does not hold because there are cases when, for

example, (M, s) H ¢ but T[s, @] = %; for example, if o = p A —p, but p is not visible in s.

Case (c): Assume (M, s) F —. From the definition of F, we have that (M, s)  ¢. By
induction, this means that T'[s, ¢] = 0, and therefore from the definition of 7', we have

that T'[s, 7] = 1. The case for (M, s) i —¢p is just the reverse.

Case (d): Similar to soundness, the definitions of S;v for T' is follows the same definition

in F. The only case they disagree is when T'[s, S;v] = %

Case (e): Assume that (M,s) E S;p. Note that ¢ € NF, therefore it must be that s
is global for the case S;. From the definition of F, we have that either for all g € S,
(M, g(fi(s))) Eporforallg € S, (M,qg(fi(s))) E ~¢. By induction and ¢ € NF, we have
that for all g € S, T[g(fi(s)),¢] =1 or for all g € S;, T'[g(fi(s)), 7] = 1. If one of these
two expressions hold for all g € S,, then they must also hold for all g(s) because f;(s) C s.
Therefore, either T'[s, ] = T[s, =¢] = %, in which case T'[s, S;p] = 3; or T'[s, ¢] € {0, 1},
in which case T'[s, S;] = 1. In this first instance, if T'[s, ¢| = T'[s, ~¢] = %, then s must

be a partial state, in which case, S; must be occurring within another S; operator, so

Sigo ¢.N‘.7:
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Now, assume that (M,s) ¥ S;p. From the definition of F, we have that there exists
g € Sc, such that (M, g(fi(s))) F ¢ and there exists g € S, such that (M, g(fi(s))) F —¢.
By induction and ¢ € NF, we have that there exists g € S., such that T[g(f;(s)),¢] =1
and there exists g € S,, such that T[g(f;(s)), 7] = 1. From Lemma 3.15 and ¢ € NF,
it must be that T'[f;(s), ¢| = T[fi(s), ~¢] =

Therefore, from the definition of T, we

1
5-
have that T'[s, S;¢] = 0; therefore case (e) and the theorem hold. O

Definition 3.20. (Normal form NF*) We define the normal form NF* C L as the

smallest set of formula where each formula ¢ € £ adheres to the following grammar:

=7ty ) | e oA | Siv| Sitp,

w:zzr(tlv"'vtk) | _‘¢|¢/\¢/|51U|Sz¢a

where {1, ¢’} is logically separable. This is the same as NF, except that seeing operators

can be nested.

Theorem 3.21. (Soundness and completeness of T in global states). Let M € M
be a model, g € S, be a global state, and ¢ € L be a formula in NF*. Then, if
T(M,g),¢] = 1 then (M,s) E ¢, and if T[(M,g),p] = 0 then (M,s) ¥ ¢; and if
(M,s) E @ then T[(M,s),p] =1, and if (M, s) ¥ ¢ then T[(M,s),¢] = 0.

Proof. This is a small extension to the proofs of Theorems 3.16 and 3.19, which prove
the case for local and global states in NF. Thus, we just need to prove the case for
nested seeing operators, which is the only difference between NF and NF*. The proof
for Theorem 3.16 already holds for this. However, not in the proof for completeness
where if T'[s,¢] = T[s,~¢] = 3, then T[s, S;¢] = 1, but that this can only occur in a
local state, which implies S; must be within another seeing operator. For the global
case, however, we have that T'[g, ¢| = T[g, ~¢] = % From the definition of T', this can
only occur if ¢ refers to a variable not in g, which is not possible because g is global.

Therefore, the theorem holds. ]

Finally, we discuss the potential implementation of our ternary semantics. Classical
planning languages do not support ternary propositional logic. However, as proven in

Theorem 3.21, our semantics is complete and sound for global states. Therefore, for

a global state, our semantics always returns true or false; and never returns % This
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admits a wide class of formulae suitable for many planning tasks, which are a superset
of admissible formulae in planning languages such as PDDL. That is, epistemic relations
are modelled as propositions in the planning language, and their truth values are rea-
soned externally with our ternary semantics (including value % when nested relations
are reasoned.) Therefore, the completeness and soundness of solving a planning task is

equivalent with the completeness and soundness of our ternary semantics.

3.3.2 Ternary Semantics for PWP model on Group Knowledge
Then, extending the ternary semantics to handle the group operators (language Lo i (X)),
we defined T as follows.

Definition 3.22. Given a PWP model M = (Agt,V,D,x, fi,...,fr), G be a group of

agents, and the current state s, function T for the language Lo (X) is defined:

(g) T[s,ESqga] = min({T[s,S:a]|i€ G})
(h) Tis,EKay] = Tls,oNESip]
(i) T[s,DSqv] = 3ZifvdsorVieG,i¢s

0if v & ;e Oil(s)
1 otherwise
() T[s,DSqy] = 3ifT[s,p]=T[s,~p]=3%o0rVieG,i¢s
0if TUseq 0i(3), ¢ = T Ujeq Oi(s), ~] = 5
1 otherwise
(k) Tls, DEgy] = Tl[s,p A DScy]
(i) T[s,CSqv] = 3ifvdsorIieqGid¢s
0ifv ¢ cf(G,s)
1

otherwise

(G) Ts,CSqp] = 3ifT[s,p]=T[s,~p]=3%o0rJieG,i¢s
0if T[Cf(Ga 5)7 QD} = T[Cf(Ga S)a _'QD] = %
1 otherwise

(k) T[s,CKayp] = T[s,po N CSay]
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where the model M is omitted in representation for readability; a can be any formula
@ from the language or any variable v € V; and c¢f is the common perspective function

defined in Definition 3.7.

The items (a)-(f) are inherited from the ternary semantics in Definition 3.13.

Theorem 3.23. (Soundness and completeness of T' for group operators) Let M € M be
a model, g € S, be global state, and p € L be a formula in NF*. Then, if T[(M,g),p] =
1 then (M,s) E ¢, and if T[(M,g),¢] = 0 then (M,s) ¥ ¢; and if (M,s) E ¢ then
T(M,s),p] =1, and if (M,s) 7 ¢ then T[(M,s), ] = 0.

Proof. We prove this inductively on the structure of ¢.

Soundness, case (f): Assume T'[s, ESga] = 1. From the definition of 7', the minimum of
all T'[s, S;a] for i € G is 1, which means that T'[s, S;a] = 1 for all i € G. By induction,
this means that for all i € G, (M, s) F S;a. Therefore, from the definition , we have
that (M, s) E ESga.

Now, assume T'[s, ESga] = 0. This means that for some ¢ € G, T[s,S;a] = 0. By
induction, we have that (M, s) ¥ S;a for some i € G. Therefore, from the definition of
F, we have that (M, s) ¥ ESga.

Completeness, case (f): Assume (M,s) F ESga. From the definition of F, this means
that for all i € G, (M, s) F S;a. By induction, we have that for all i € G, T[s, S;a| =
1. Clearly, the minimum of T'[s, S;a| for any ¢ € G is 1, therefore, we have that

T[S, ESGOz] = 1.

Now, assume (M, s) ¥ ESga. From the definition of F, this means that there exists an
i € G, such that (M, s) ¥ S;a. By induction, this means that there exists an i € G, such
that T'[s, S;a] = 0. If T[s, S;a] = 0 for at least one i € G, then the minimum 7'[s, S;a]

must be 0, therefore, we have that T'[s, ESga] = 0.

Cases (g)-(j) are all straightforward mappings from the proofs of Theorems 3.16, 3.19,
and 3.21. The unknown relation which is caused by agent now becomes none of agent’s
observability (g, h) and all agents’ observability (i, j) respectively. Besides the unknown
relation, the structure of proofs is identical, with just the replacement of f;(s) with

Uiec fi(s) and c¢f (G, s) respectively. 0
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3.4 Representing Existing Epistemic Logic Models using

Perspective Function

In this section, we show the expressiveness of our logic by using it to represent several

well-known epistemic logics.

3.4.1 Kripke Semantics

We can simulate Kripke semantics as follows. The set of variables V' = W, where W is
the set of worlds in a Kripke model. Therefore, a state s represents the set of possible
worlds. The domain of variables is not relevant. The perspective function f;(s) returns
the set of possible worlds according to agent 4, so it is just equivalent to &C;. The
evaluation function 7 (s)(r(t1,...,tx)) is then just defined as being true if and only if

Yw € s, r(t1,...,tx)) holds in the world corresponding to w.

The downside of this is that while the complexity is still polynomial in the number
of states, the number of states is exponentially larger than the set of propositions (or
variables) in the underlying problem, which is as difficult to solve as if using Kripke

semantics. Instead, using a domain-specific representation would often be more suitable.

The reader may have noted that if s is a global state, then s only contains one world and
if the perspective function f;(s) returns the set of possible worlds according to agent ¢,
then the property fi(s) C s on perspective functions is violated. A trick around this is
to use the set of impossible worlds in the state representation. That is, a global state is
s = {w} U =W, where the w represent the one actual world and =W represents the set

of all impossible worlds *.

Using the same example from Figure 2.5, where V' = {z} and D, = {1,2,3}. For
simplicity, we use z1 to represent a world that is equivalent to the state {x = 1} in our
original model. The impossible worlds are represented by {—x1, —xe, —z3}. Using z1 as
the initial world as an example, the initial state is s = {x1, 7x1, ~xe, ~z3}. The logic

works as follows:

e If agent a has no knowledge of z: f,(s) = {—x1, ~x2, ~x3}.

41t is just the possible worlds with an impossible indicator each.
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e If agent a knows exact z: f,(s) = {—x2, 723}, which means the only world a

thinks is possible is x;.
e If agent a knows something about z: using x < 3 as example, f,(s) = {—z3}.

e If agent a knows x < 3 and b knows = > 1: f,(s) = {-z3} and fy(s) = {-z1},

while their distributed knowledge would still be the union {—zs, ~z3}.

The evaluation function on the impossible worlds (local perspective) is defined as V—w ¢
s, 7(V;) holds in w (note the € replaced by ¢ and the corresponding relation between

—w and w).

3.4.2 Proper Epistemic Knowledge Bases (PEKBs) and Cooper et al.
[1]’s Seeing Logic

PEKBs [87, 88, 138] and Cooper et al. [1]’s seeing logic are closely related, and our logic

can represent both using the same representation as Cooper et al.’s.

In this representation, V is the set of all modal literals up to a maximum depth of
k. If & = 2, there is just one proposition p, and two agents ¢ and j, then V =
{p, Sip, Sjp, SiSip, SiSjp, SjSip, S;S;p}. A state s represents the set of propositions that
are true. Since the domains of all variables are not relevant (it can be any domain that
contains more than one value), we only use variable names in states in this example for
simplicity. The perspective function f;(s) = {a, S;a | S;a € s}. The reader might find
this is less intuitive and might lead to unwanted common knowledge between agents
in domains like the Byzantine Generals domain. We ensure it is not the case and pro-
vide an example in Appendix A. The evaluation function m(s)(p) is true if and only if

p € dom(s).

For Cooper et al. [127]’s JS« operator, which means that all agents jointly see literal
a (the operator C'S¢ in our logic), we can use the same encoding by adding a variable

JSa for each literal a. We then define f;(s) = {«, S;a | S;a € s} U{a, JS;a | JSa € s}.

A compact way to represent this logic is to have one variable ip for each proposi-
tion p. The domain of each variable is a bit vector that represents each value in

{p, Sip, Sjp, SiSip, SiS;p, SjSip, SjS;jp, JSp}. An example can be found in Section 3.6.4.
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In their PEKB-based planner, Muise et al. [87] introduce the concept of ‘always known’
propositions, which are propositions that are common knowledge in a problem. This
reduces the size of the compiled classical planning problem because these propositions

do not have to be expanded.

Common knowledge can be represented in the PWP approach by ensuring that any
commonly-known variable is included in all agents’ perspective functions; or at least,
all agents who are part of the group. For any agent a € G, where G is the group who

commonly know some proposition about variables vy, . ..v,, we can define f,(s) as:
fa(s)={v]avv,vestU{v,...,v,}, where a>v means a sees v.

Any propositions about the variables vy, ... v, are commonly known by all agents in

a € G because they are part of the fixed point for cf.

3.4.3 Big Brother Logic (BBL) by Gasquet et al. [2]

In BBL, the set of variables V' is z;,y; € R, dir; € U and ang; € (0, 2m) for each agent i
where U is the set of unit vectors for R?. These variables represent the Cartesian
coordinates, the direction the agent is facing, and its angle of vision, respectively. The

perspective function is defined as:
fi(s) = {v=s(v) € s|ivv}U{v=5(v) | v € {zj,y;,ang;}, j € Agt}, where:

i> v is defined as in Section 2.4.1 and e is the value of v in s. i>v can be implemented
using the following, assuming that (z;,y;) represents the location of the target agent j:
Is(ys)—s(y;)] - s(ang;)

(| arctan(m) — 5(dZ7"7,)| S T)
V (3.1)

) —s(y; . 360° — ;

(] arctan(i‘j((gigiz%))‘) — s(dir;)| > 73((1”9 ))

Therefore, perspective function f;(s) takes all agents’ locations, directions, and vision
angles, and returns all the variables that belong to those agents that fall inside these
regions. The set on the right side of the set union operator in the perspective function

captures that the locations and angles (the angular range) of all agents are common
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knowledge, as in the original Big Brother Logic. Therefore, for all agents j, we have

that x;,y;,ang; € fi(s), and therefore x;,y;, ang; € fi(s) C cf(G,s).

As we outline in the following section, in our planning framework, perspective functions
are implemented using external functions in F-STRIPS. In our case, the external func-
tions are implemented in C++. This brings flexibility, such as the ability to implement
the expression in Equation 4.1. If it were possible to encode this function using propo-
sitions in classical planning, we assert that the resulting encoding would be difficult,
error-prone, and hard for a reader to understand. However, implementing the above in
C++ is straightforward for the modeler to implement and straightforward for a reader

to understand.

3.5 Implementation

In this section, we define the problems that can be modelled by our PWP model, provide
an encoding for a working planner, and show some examples. Two key aspects in
planning are the planning language and solver (planner). The encoding we provided is a
combination of F-STRIPS and PDDL (as dicussed in Section 2.1.3.3), and the planner
used is the BEWS planner by Frances et al. [63]. Using this encoding with external

functions allows us to decompose the planning task from the epistemic logic reasoning.

The intuition behind the PWP model is that the action model is specified using a
planning language, and queries specified in epistemic logic are implemented as F-STRIPS
external functions. External functions are functions that can be called from within an
F-STRIPS model, but whose semantics are defined external to the PDDL model and

can be implemented in languages outside of the planning language.

3.5.1 F-STRIPS Encoding

External functions are arbitrary functions that can be written in any language. Thus,
verifying the correctness and termination of the external function is the task of the mod-
eller. In our implementation, external functions are programmed in C++4 for scalability

and flexibility.
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To show how to implement F-STRIPS with our model, we now give a proper definition of
all the epistemic planning problems that can be handled as a tuple (Agt,V, D, 0,Z,G,F)
in our approach, where: Agt is a set of agent identifiers; V' is a set of variables that covers
the physical and the epistemic state; D = D,, U...UD,,  is the domain of variables; O,
7 and @G differ from their counterparts in F-STRIPS only by adding epistemic formulae
in preconditions and goals, which will be interpreted in the following part of this section;

and [ are the set of external functions.

In the PWP approach, the main external functions are of the form (Qcheck vy ...7v, 7q),
where ¢ is the epistemic relation and vy, ..., v, are variables. These evaluate the truth
value for ¢ based on the given current state. For readability, we represent the valida-
tion of the epistemic relation by using (Qcheck ?q) only for the remainder of the thesis,
omitting the variables. In the implementation, the modeller decides which variables are

needed as the input to the external functions.

The core logic implemented in the external function formalizes a PWP model instance
M = (Agt,V,D, 7, fi,..., fr) (as defined in Definition 3.4). Then, it uses the inputs to
construct the current state s and the formula needed to be evaluated . It applies the
ternary semantics (Definition 3.22) based on M, s, and ¢, and returns the ternary value

as output.

There are two major ways to embed epistemic formulae in a planning problem: using
the formulae as preconditions and conditions (on conditional effects) in operators O;
or using the formulae as epistemic goals in G. Defining preconditions and goals with
desirable epistemic formulae is straightforward. For example, in Figure 2.4, if we want

“agent a; knows as sees b;” to be true, we could simply set the goal to be K, Sg,b1.

An important part of the modelling is to represent the state with a planning language,
and update it accordingly with each action taken. Particularly important is to update
the state with information that is sufficient to determine what each agent sees, such as
the position, direction, and angle in Big Brother Logic. For non-visual domains, using
encodings similar to the PEKB encoding in Section 3.4.2 is possible as this is a general
encoding. In this case, the update will need to ensure that the relevant seeing variables

are updated correctly.
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3.5.2 External Functions

External functions in F-STRIPS take variables as input, and return a result based on
that input. This is the key aspect that allows us to separate epistemic reasoning from

planning.

Recall from Section 3.1 that each agent ¢ has a perspective function, f; : S — &, which
takes a state and returns the local state as agent ¢’s perspective. In most problems we
have modeled, the perspective function is the same for all agents, but the framework

allows each agent to have its own perspective function implementation.

Given f; for each agent, our library of external functions has implementations for K; and
S;, their group knowledge counterparts, and propositional logic operators. The modeller
simply needs to provide the perspective functions for their domain, if a suitable one is

not already present in our library.

As an example, consider the Big Brother Logic domain. Here, the state of the world
includes the x-y coordinates of each agent, the direction they are facing, and the angle
they can see. The perspective function in Equation 4.1 is implemented in C++. The
semantics of the epistemic logic are implemented as external functions and remain the

same regardless of the perspective function that is used.

When an epistemic formula needs to be evaluated, the planner calls the epistemic logic
external function. In other words, the epistemic logic reasoning task is moved from the
planner to the external functions. The underlying planner has no concept of epistemic
logic and simply uses its search algorithm to find the goal. In addition, the external
function allows us to deploy lazy evaluation. That is, instead of generating all truth
values for all epistemic queries at the pre-compilation phase or storing entire knowledge

structures, the planner evaluates them only when they appear in the searching process.

Despite having general representations such as PEKBs (in Section 3.4.2), in our experi-
ence, using a domain-specific perspective function results in shorter, more elegant models
that are more straightforward to specify and verify. We give the external function for

the BBL domain here, and several examples in the following section (Section 3.6).

Example 3.4. FEaxternal function for BBL domain is explained as follows.
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In Figure 2.4, global state s covers the whole flat field. Local state f,, (s) is the blue area,
and f, (s) is the yellow area, which means in agent a;’s perspective, the “visible” world is
the blue area, and for agent as, the “visible” world is only the yellow area. Furthermore,
in agent ai’s perspective, what agent ao sees can be represented by the intersection
between those two coloured areas, which is actually f,,(fs,(s)). The interpretation is
that agent a; only considers state [ = f,, (s) as the “global state”, and inside that state,

agent ag’s perspective is f,, ().

Specifically, assume the global state s in the BBL example contains all variables for
{a1, as, b1, b2, b3, bs}>, such as locations, the directions agents are facing, and etc. Based
on the current setup, we can implement f; for any agent ¢ with the Euclidean geometric
calculation given in Equation 4.1. By applying this perspective function on all variables
in the given state (could be a local state when evaluating nested perspective), we can
filter out all unseen variables for the agent and get its perspective based on the given

state.

Then, for any epistemic query ¢, such as S, ba, the external function (Qcheck 7¢)
takes all variables {a1,as2,b1,b2,b3,bs} and the query ¢ as input. By applying the
above perspective function f;, on the given state, we can retrieve agent a;’s perspective
{a1,a2,ba,b3,bs} over the current state. Since by is in the perspective, the external
function will return 1, which means (Qcheck ?¢) will be evaluated as 1 (true) by the
F-STRIPS planner. Let another query i be S,,b1. Following the exact same approach,
since b; is not in agent a;’s perspective, the external function will return 0 (false), so 9

is false.

3.5.3 Expressiveness

Now, we discuss the expressiveness of our planning framework. The intuitive idea about
the agent’s perspective model is based on what agents can see, as determined by applying
the seeing rules (perspective function f) on the current state. The relation between
t = fi(s) and s corresponds roughly to Kripke accessibility relations (s,t) € R;. However,

rather than generating a set of worlds that ¢ considers possible, the perspective function

5a1,az, b1, ba, b3, by here in the set are not variables. They are simplified representations of the group
of variables that belong to that agent or that object, such as a; represents z_ai,y_-ai,dir_ai,ang_ai.
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only returns the one partial world that the agent is certain about. This advantage (one

state, rather than multiple states) prevents the explosion in model size.

However, the reduced complexity loses information on “uncertain” variables. That is,
variables that an agent has some information about, but not complete information.
Theoretically, f;(s) is equivalent to ﬂtewy( st)er, U from Kripke semantics. This eliminates
disjunctive knowledge about variables; the only uncertainty being that an agent does
not see a variable. For example, in the Muddy Children problem (Example 2.4), the
knowledge is not only generated by what each child can see by the others’ appearance,
which is modeled straightforwardly using perspective functions, but also can be derived
from the questions made by their teacher and the response by other children. From their
perspective, they would know exactly m children are dirty, which can be handled by our
model, as they are certain about it. While by the k-th time the teacher asked and no
one responds, they can use induction and get the knowledge that at least k children
are dirty. By considering that there are two possible worlds, where the number of dirty
children is m or m + 1, Kripke structures keep both possible worlds for m + 1 steps. If
we use a variable to represent the number of possible muddy children, our model cannot
keep these two worlds. Therefore, although our model can handle preconditions and
goals with disjunction, such as K; [(v = e1) V (v = e2)], it cannot store such disjunction

in its “knowledge base”.

Despite this, we can still represent the muddy children problem in our logic. Instead
of m representing the number of dirty children, we can model it as a series of proposi-
tions indicating the number of dirty children, such as mg, ..., m,. To model uncertain
information about m, the underlying perspective function could eliminate all the propo-
sitions that the agent is certain to be false. To be specific, if propositions msz and my
remain in agent i’s perspective of the world, then, ¢ knows m is either 3 or 4. Therefore,
the children asking their teacher for the kth time will result in the removal of my from
the state until all the children only have m,, in their local state. This is similar to
how Kripke semantics are encoded in Section 3.4.1 but also shows that being able to

customize perspective functions to specific domains can be useful.

A comparison on expressiveness between our model and other approaches is given in
Table 3.2. This table is similar to Table 2.1; the difference is some clarification we

made. The explanation of the detailed differences is the same as in Section 2.4.2.5.
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Nested Depth CK DK Continuous Disjunctive
Domains  Knowledge
PWP Model Y U Y Y Y Y/N
Muise et al. [87] Y B N N N N
Kominis and Geffner [115] Y B N N N Y
Huang et al. [7] Y U I N N Y
Le et al. [6] Y U I N N Y

TABLE 3.2: Expressiveness Comparison over Epistemic Planning Approaches, where

CK and DK represent whether the model supports common and distributed knowledge.

‘I’ means this approach can handle common knowledge indirectly, such as modeling

common knowledge by public announcement [6], or using a group of nested knowledge

to approximate common knowledge [7]. For depth, ‘U’ means no bound on the depth
of queries, while ‘B’ means there is a fixed bound.

3.6 Experiments & Results

Now, we evaluate our approach on several domains: Corridor [115], Grapevine [87],
BBL [2], Social-media Network (SN) and Gossip [136]. Corridor, Grapevine, and Gossip
are well-known epistemic planning problems, which we use to compare the actual perfor-
mance of our PWP model against two state-of-the-art approaches in epistemic planning.
BBL is a model of the Big Brother Logic in a two-dimensional continuous domain, which
we use to demonstrate the expressiveness of PWP. The Social-media Network problem
demonstrates group knowledge operators, modeling information sharing over a digital
social network platform. PWP has an advantage in those epistemic planning problems
where knowledge can be derived from the ontic states. We also evaluate PWP on prob-
lems in which agents can have ‘memory’ about knowledge, such as the canonical ‘Gossip’

domain.

The source code of our implementation, along with all experiments, can be found at

https://github.com/guanghuhappysf128/benchmarks.

3.6.1 Benchmarks

In this section, we briefly describe the corridor and grapevine problems, which are bench-
mark problems that we use to compare against Muise et al. [87]’s epistemic planner,

which is currently the state-of-the-art in epistemic planning.

Corridor domain was originally presented by Kominis and Geffner [115]. It models

selective communication among agents. The setup is several agents (3-7) located in a


https://github.com/guanghuhappysf128/benchmarks
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corridor of rooms, and there is a secret in one of the rooms. Only one agent is able to
move between rooms, sense the secret, and share the secret. The rule of communication
is that when an agent shares the secret, all the agents in the same room or adjacent
rooms then know the secret. The goals in this domain are to have some agents knowing
the secret and other agents not knowing the secret. The perspective function is simply
that a secret variable is ‘visible’ to an agent (which models it hearing the secret) if they

are in the same room or adjacent rooms when the secret is shared.

Grapevine, proposed by Muise et al. [87], is a similar problem to Corridor. With only
two rooms available for agents, the scenario makes sharing secrets while hiding from
others more difficult. In this domain, each agent has their own secret. The agents can
move between two rooms and share their own secret or others’ secrets once they know
them. Since there are only two rooms, the secret is only shared within the room. The
emphasis of this domain is on sharing one’s secret with others without being noticed.
This is the same as in the Corridor domain, except we change the seeing rules so that an

agent sees a variable if and only if they are in the same room when the secret is shared.

3.6.1.1 Encoding

Both the Corridor and Grapevine domains are modeled similarly to standard proposi-
tional planning problems. The only difference is that the locations for movable agents
are modeled by functions (variables in the BWFS planner) rather than propositions,
which increases the readability and flexibility for the external functions. The desired
epistemic formulae are modeled by Boolean query ‘indicators’. Each of the indicators
is a Boolean variable that records the truth value for an epistemic formula which is
in the format of a JSON string. For example, a query entry in the Grapevine domain
‘{"query_info":{"id":"pl","query":"ck a,b sct._a:value:2"}}  represents the com-
mon knowledge of agent a and b that the value of a’s secret is 2 (C K,y sct,=2). This
separates the epistemic language from F-STRIPS. The truth values for query indicators
can be modified by conditional effects in actions, such as shout in Corridor and share
in Grapevine. For example, in those actions, all query indicators are evaluated by call-
ing external functions. We only update the corresponding indicators if the epistemic

formulae hold in the current state. An example action shout is listed as below:



Planning with Perspectives 118

action shout(x)
prec sct=1, loc(a)=x

effs (forall (7q - query) (when (= (@Qcheck 7q) 1) (assign (fact 7q) 1))

The conditional effects assign the truth value to each query ?q to record its value. That
is, for any positive epistemic relations, its query variable should be 1 when checking
the goal state, while for any negative epistemic relations, its query variable should keep
being 0. While this is somewhat inelegant, it would be straightforward to take any

existing epistemic planning language and compile it into this format.

3.6.1.2 External Functions

The input of the @check function would be the location of each agent and the query
itself. The agent’s perspective function for Corridor and Grapevine is similar. The visi-
bility of secrets for both domains depends on the location of the agent whose perspective
is modeled. Therefore, both rules take the location of the speaking agent and the hearing
agent, and return all variables whose locations are the same location (for the Grapevine
domain); or the locations are the same or in adjacent rooms (for the Corridor domain).
Given the function loc(i) that returns the location of an agent using the rooms as a

sequence of numbers, we can define this formally as follows:

Corridor domain:  fi(s) = {v' | v' € s A |loc(v') —loc(i)] < 1}

Grapevine domain:  fi(s) = {v' | v' € s A loc(v') = loc(i)}.

3.6.1.3 Results

To evaluate the computational performance of PWP, we compare it to Muise et al.
[87)’s PDKB planner. Their planner has been used to compare on the Corridor and
Grapevine domains against many other solutions [6, 115]. From their results and results
from Huang et al. [7] and Le et al. [6], it is fair to say that PDKB is a state-of-the-
art planner. Although the PDKB approach is for belief, rather than knowledge, it can
still be used as a suitable baseline for problems in which the agent’s belief cannot be
incorrect, and thus can simulate knowledge for these domains. In addition, to test how

the performance is influenced by the problem, we create new problems that varied some
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of the parameters, such as the number of agents, the number of goal conditions, and

also the depth of epistemic relations.

The PDKB planner converts an epistemic planning problem into a classical planning
problem, which generates a significant number of propositions when the depth of epis-
temic relations or the number of agents increases. We tried to submit the converted
classical planning problems to the same planner that is used by our PWP model, the
BFWS(Ry) planner, to maintain a fair comparison. However, in this domain, there was
not a significant performance difference with respect to the original planner used by

Muise et al. [87], the FF' planner.

We ran the problems with both planners on a Linux machine with 8 CPUs (Intel Core
i7-7700K CPU @ 4.20GHz x 8) and 16 gigabytes of memory. We measured the number
of atoms (fluents) and the number of nodes generated during the search to compare the
size of the same problem modeled by different methods. We also measured the total time
for both planners for solving the problems, and the time they take for reasoning about
the epistemic relations, which corresponds to the time taken to call external functions for
our solution (during planning), and the time it takes to convert the epistemic planning

problems into classical planning problems in the PDKB solution (before planning).

Table 3.3 shows the results for the Corridor and Grapevine problems, in which |Agt]|
specifies the number of agents, d the maximum depth of a nested epistemic query, |G|
the number of goals, |Atom| the number of atomic fluents, |Gen| the number of generated
nodes in the search, and |Calls| the number of calls made to external functions. The

b

symbol “—” represents that there is no result within a 10-minute time limit. In the
Grapevine tests, to eliminate any influence from the different lengths of the plan on the
computation time, we increase the depth of the goal while keeping the solution the same.
Therefore, with the same number of agents and size of the goal condition, the problems

have the same solution. Evidence of this is that the number of search nodes generated

and the number of external function calls remains static across problems.

From the results, it is clear that the complexity of the PDKB approach grows expo-
nentially on both the number of the agents and the depth of epistemic relations (the
planner went over the 10-minute time boundary in the final Grapevine problem). The
complexity of the pre-compilation for the PDKB planner is O(2/494'P) in which |Agt|

is the number of agents and D is the maximum depth of any modal formula in the
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Parameters PWP PDKB
TIME(s) TIME(s)

|Agt| d |G| |Atom| |Gen| |Calls|

618 1068 4448 0.257 0.269 4408 4371 54.900 228.100
618 1068 4448 0.460 0.466 — — — —

Calls Total Total

Corridor
3 1 2 15 8 24 0.001 0.002 54 21 0.148 0.180
7 1 2 15 15 72 0.002 0.004 70 21 0.186 0.195
3 3 2 15 8 24 0.002 0.004 558 21 0.635 0.693
6 3 2 15 15 72 0.006 0.007 3810 21 5.732 6.324
7 3 2 15 15 72 0.007 0.008 5950 21 9.990 11.130
8 3 2 15 15 72 0.008 0.009 8778 21 14.140  15.680
3 4 2 15 8 24 0.003 0.004 3150 21 3.354 3.752
3 5 2 15 8 24 0.002 0.003 18702 21  25.690  29.540

Grapevine

4 1 4 358 23 144 0.003 0.005 96 11 0.428 0.468
4 2 4 358 23 144 0.005 0.007 608 11 2.885 3.178
4 1 8 370 270 2144 0.044 0.048 96 529 0.381 0.455
4 2 8 370 270 2144 0.077 0.079 608 1234  3.450 4.409
4 3 8 370 270 2144 0.136 0.138 4704 14  28.660  30.720
8 1 2 600 18 24 0.001 0.006 312 5 3.025 3.321
8 2 2 600 18 24 0.001 0.007 4408 5 54.350  58.800
8 1 4 606 43 144 0.005 0.011 312 11 2.546 2.840
8 2 4 606 43 144 0.009 0.014 4408 11  55.330  59.780
8 1 8 618 1068 4448 0.158 0.171 312 2002 2.519 3.752

8 2 8

8 3 8

TABLE 3.3: Results for the Corridor and Grapevine domain.

modal. The search complexity is then the same as classical planning, which we model
as O(|Gen|), in which Gen is the set of states that are generated to solve the problem.
Using PWP, the number of features and depth do not have a large impact. However,
epistemic reasoning in our approach (the number of calls to the external solver) has a
significant influence on the performance. Since the F-STRIPS planner we use checks
each query in goal conditions at the generation of each node in the search (O(|Gen|)),
the time complexity for epistemic logic reasoning is in O(|Gen| - |G| - |Agt| - [V ]?), in

which G is the set of goals and V is the size of the stateS.

Although the search part of the problem is still NP-hard, the empirical computational
cost of epistemic reasoning is significantly lower than the compilation in the PDKB

approach in most of the test cases. In fact, using our encoding, none of the problems

5Tn the worst case, we need to check common knowledge on a state, there are at most |V| (maximum
size of the state) iterations, and each iteration contains |Agt| amount of set operations on the global
state or a local state (maximum |V]).
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exceed even half a second, while for the PDKB approach, many do, some running for

close to a minute.

3.6.2 Big Brother Logic

Big Brother Logic (BBL) is a problem first discussed by Gasquet et al. [2]. The basic
environment is in a two-dimensional space called “Flatland” without any obstacles.
There are several stationary and transparent cameras; that is, cameras can only rotate
and do not have volume, so they do not block others’ vision. In our scenario, we allow

cameras to also move in Flatland.

3.6.2.1 Encoding

Figure 3.2 visualizes the problem setup. Let a; and as be two cameras in Flatland.
Camera a; is located at (5,5), and camera ag at (15,15). Both cameras have a 90°
range. Camera a; is facing north-east, while camera as is facing south-west. There are
three objects with values 01 = e1, 0y = e, and 03 = eg, located at (1,1), (10, 10), and
(19,19), respectively. For simplicity, we assume only camera a; can move or turn freely,
and a9, 01, 02, and o3 are fixed. The locations of these stationary objects and agents

are common knowledge.

03
(19,19)

15,15)

(10,10)

%

ay
01 (5,5)
(1,1)

FI1GURE 3.2: Example for Big Brother Logic setup.
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Let all the desired epistemic relation queries be a set of propositions ), this problem

can be represented by the tuple (V, D, O,Z,G, F), where:

V = {x,y,dir,q} for i € Agt;

o D : D(z)=D(y)={-20,...,20}, D(dir)={—180,...,180}, and D(q) = {0,1},
where ¢ € Q;

e O : move(dr,dy) and turning(d), where dz,dy € {—2,...,2}and d € {—45,...,45};
e 7 = [x=05, y=>5, dir =45|;

e G = {¢g=1}; and

F: (Q@check q) — {true, false};

in which ¢ is a goal query, which we describe later. Variables x and y represent co-
ordinates of camera ai, and dir determines which way aq is facing. Since as and all
other objects are fixed, we can model them in an external state handled by the external
functions, which lightens the domain and reduces the state space. However, we could

also model the positions of these as part of the planning model if desired.

We need to check the knowledge queries in the actions (precondition) or goals. Both
action move(dzx, dy) and action turning(d) can change all of agents’ perspectives, and

therefore, can influence knowledge.

3.6.2.2 External Functions

Inputs to the external functions would be the query (in the format of our language Lox®
described in Section 3.6.1.1) and current state (z, y and dir are the only changing
variables in this case). The output is the evaluated truth value of the query. The
perspective function is similar to the one in Equation 4.1, except that because the angle

and position of all agents except a; are known, it can be simplified to just:
BBL domain: f(s) = {v/=5(v') | v/ € sAixv'} U{v=5(v) | v € {zp, ys, angs, diry} }

Since the BBL domain is in a two-dimensional continuous environment, encoding in other

epistemic planners would not be straightforward. First, a propositional approach could
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not be taken because there are an infinite number of propositions corresponding to the

continuous variables in the domain. Second, the arithmetic operators and trigonometric

functions would need to be encoded propositionally, which we believe would prove tedious

and error-prone.

3.6.2.3 Goal Conditions

As for the goal conditions, some queries ¢ can be achieved for the problem in Figure 3.2

without executing any actions because they hold in the initial state, such as the following,

assuming that o1, oz, and o3 have values e, ez, and eg respectively:

1. Single Knowledge query:
Nested Knowledge query:
Group Knowledge query:
Distributed Knowledge query:

ANl R o

Common Knowledge query:

K, 03=e3 N ~Ky,03=e€3
SaISa203 A —Kq, Sa203
EKal’aZOQZQQ AN ﬁEKal,a203:€3
DK, g,01=€1 N DKgy, 4,01 =63
CKa17a202 =eg A CKah@SalOg

From goal 2, although S,, S,,03 is true because a; can see as’s location, range of vision

and direction, so a; knows whether as can see o3, the formula K, S,,03 is false because

as cannot see os.

For goal 5, CK,, 4,54,03 holds in the initial state because the common local state for

a1 and as would be the location of all three values, both a; and as and the value of 0s.

Then, S,, 03 holds based on the common local state.

In addition, there are some queries that can be achieved through valid plans:

1. EK4 a01=€1:

2. CKal,szl:el:

3. S4,54,01 move(—2,2), move(—2,2)

4. 84,03 A 84,54,03: move(—2,1), move(—2,2), move(—2,2), move(—2,2),
move(—2,2), move(—2,2)

5. K4, S4,54,03 N\ Sg,03: move(—2,1), move(—2,2), move(—2,2), move(—2,2),
move(—2,2), move(—2,2), turning(—45)
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The first plan is clear. There is more than one way to let both of them know value
o1, and the planner returns the optimal solution. The second plan is also intuitive: to
achieve common knowledge in a BBL problem, they need to both see the item and both
see each other. The difference between the next two is not straightforward. To avoid as
seeing whether a1 can see o1, the cheapest plan returned by the planner was for a; to
move out of as’s eye sight. The last one is the most difficult to solve. Not only should
a1 see oz, but also a; should know that originally as cannot see that a; sees 03. This is
done by decomposing the query into three facts: “a; sees 03”; “as cannot see whether

ay sees 03”; and, “a; can see that whether as can see whether a; sees o03”.

3.6.2.4 Results

Table 3.4 shows the results for our problems in the BBL domain, where | Ezp| represents
the number of nodes expanded and |p| indicates the length of the plan. The length of
a plan is “oco” means that the problem instance is unsolvable — no plan exists. The
perspective function in this domain depends on a geometric model based on the agent’s
position, direction, and facing angle (as defined in Equation 2.3). This shows that with

proper usage of our F-STRIPS planner, we can represent continuous domains.

Our epistemic solver is able to reason about other agents’ epistemic states (vision) and
derive plans based on these for non-trivial goals that we believe would be tedious and
error-prone to encode propositionally, if possible at all given the continuous domain. As
far as we know, there is no current epistemic planner that can handle problems at this

level of expressiveness.

Moreover, this expressiveness bridges the gap between high-level abstract planning
spaces and low-level motion spaces, which has great potential for application in hybrid-

planning [134].

3.6.3 Social-media Network

The Social-media Network (SN) domain is an abstract network based on typical social

media platforms, in which agents can befriend each other to read their page, post on
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Parameters Performance
TIME(s

|Agt| d |G| |p| |Gen| |Exp| |Calls| calls (T(ztal Goal
BBLO1 2 1 1 0 1 0 2 0.000 0.001 K, 09
BBLO2 2 1 1 2 115 2 232 0.007 0.009 K, 01
BBL03 2 1 1 oo 605160 all 1210320 39.822 87.126 K,,o03
BBLO4 2 2 1 2 115 2 232 0.015 0.017 Ku Kg,01
BBLO5 2 1 1 0 1 0 2 0.000 0.002 DK, 4,{01,02,03}
BBLO6 2 1 1 0 1 0 2 0.000 0.002 EKg, 0,02
BBLO7T 2 1 1 2 115 2 232 0.018 0.020 EK,, q,{01,0}
BBLO8 2 1 1 0 1 0 2 0.000 0.002 CKg, q,02
BBL09 2 1 1 2 115 2 232 0.034 0.037 CKg, q,{01,02}
BBL1I0O 2 2 1 2 115 2 232 0.026 0.028 K,, DK, p{o1,02,03}
BBL11 2 2 2 6 4559 120 17807 0.592 0.620 S,,03 A 1S4, 54,03
BBL12 2 3 2 7 5254 127 30196 0.969 1.011 S, 03 A K4 Sa,S4,03

TABLE 3.4: Results for the BBL domain.

a friend’s page, and view their friend list. The observation in this domain is evaluated
based on the communication channels constructed as the friendship networks. This
communication channel is a two-way and all-time communication, which is an extension
of the two-way one-time communication channels from the Gossip domain [125, 136].
In addition, to make it more challenging, we add sharing a secret without it being fully
revealed to an agent or a group of agents as one of the objectives. By decomposing
secrets into messages and posting through an agent’s friendship network, we model how
secrets can be shared between a group of individuals not directly connected without
anyone else on the network knowing the secret, and some secrets can be shared within
a group excepting some individuals. The former could be spies sharing information
with each other through the resistances’ personal pages, and the latter could be a group

arranging a surprise party for a mutual friend.

3.6.3.1 Example and Encoding in F-STRIPS

There are five agents, a, b, c,d, and e, with their friendship networks as shown in Fig-
ure 3.3. Their friend relations are represented by full lines between each agent. The

dotted lines are referenced later for illustration purposes.

Assume there is another agent g (the global agent), who is friended with all agents. This
agent ¢ is the only acting agent in this domain, which means the friendship network is

fixed. In addition, to make it more challenging, agent ¢ is only allowed to post on one
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FI1GURE 3.3: Example for Social-media Network.

of the other agents’ home pages. Let the epistemic queries be the set of propositions
Q, and p1,p2,p3 be three parts of the secret P. Any problems in this setup can be
represented by a tuple (A,V,D,0,Z,G,F), where:

A ={a,b,c,d,e}

o V = {(friended i j), (post p) (q) |i,j € A, p€ P, ¢ € Q}

D : D(friended i j) = D(q) = {0,1}, D(post p) = A, wherei,j € A, pe P, g€ Q

O : post(i,p), wherei € A, pe P

Z = { (friended a b) = 1, (friended a c) =1, (friended a d)=1, (friended b e)=1,
(friended ¢ d)=1, (friended d e)=1 }

G: see below

e [ : (Qcheck q) — {true, false}

The variable (friended i j) represents whether ¢ and j are friends with each other. Action
(post i p) specifies that the message p is posted on agent i’s page. The initial state Z
represents the friendship relations in Figure 3.3, with no message posted yet. Similarly,

the action post is the only source for epistemic relation changes.



Planning with Perspectives 127

3.6.3.2 External Functions

Each agent is able to view all posts on their friends’ pages and also view the friend list of
their friends. In this example, agent a is able to read every post on agent ¢’s homepage,
and a knows c is friended with a and d. With this information, a is able to deduce that
any post p on a’s or d’s homepage is also readable for ¢, which in another format is

CLKaKCp” .

The perspective function depends on the friendship network. For example, consider the
global state s = {a,b,c,d, e, (post p1) = b}, where for simplicity, a,b,c,d,e represents
whether the respective agent’s page is visible, p; is a social media post from b, and the
friend relationship is as shown in Figure 3.3. We have f,(s) = {a,b, ¢, d, (postp;) = b};
fa(s) = {a,c,d,e}; and d’s perspective in a’s perspective of world s will be f;(f.(s)) =
{a, c,d}, since e is not in a’s perspective. Similarly, fo(f,(s)) will be empty. We formally

define the perspective function as:

SN domain: fi(s)={v' | v €s A (friend i j) A ((post v')=3 Vv =j)}

We have not seen this domain or anything similar modelled in any existing approach.
The epistemic relation would be a problem for most approaches, as it involves distributed
knowledge and common knowledge. The network itself could be modelled by other ap-
proaches; however, the group knowledge that we reason about depends on the network.
It is not clear to us how existing approaches could compactly model the effect on knowl-
edge when the friendship network changes. In our approach, the perspective function

gives us this information and is straightforward to implement in C++.

3.6.3.3 Goal Conditions

Goals that we tested are shown in Table 3.5. For some epistemic formulae between a
and b, since they are friends, simply posting the message on either of their personal
pages is sufficient to establish common knowledge about the information in that post.
But for goals about the shared knowledge between a and e (they are not befriended
with each other), for example, EK, p1, the message needs to be posted on the page of
a mutual friend, such as agent b. In addition, since a and e are not friends, in each of

their perspectives of the world, there is no information (variables) describing each other.



Planning with Perspectives 128

Therefore, neither EK, . F K, (p1 nor CK,¢p1 is possible without changing the network

structure.

Some goals are secretive:

1. Goal: Kq(p1 Ap2 Ap3) A—Ky(p1 Ap2 A ps3)
Plan: post(a,p1), post(a,p2), post(c,ps)
2. Goal: K,(p1 Ap2 Aps) A—Ky(pr Apa Aps) A—Kc(pr A p2 Aps)

Plan: post(a,p1), post(b,p2), post(c,ps)

The aims are to share the whole secret (p; Ap2 Aps) with a without b knowing the whole
secret — it can know at most two out of three propositions p1, p2, and p3. Some parts of
it, such as p3, need to be shared in the page that b does not have access to. In the second
example, agent ¢ must also not know the secret, the secret now needs to be posted in a

way that b and ¢ do not see some parts respectively, while a sees all the parts.

Finally, we look into those two desired scenarios in the introduction of SN for sharing

with a spy (goal 3) and organizing a surprise party for agent a (goal 4):

3. Goal:  Ky(p1 Ap2 Aps) A—=Kp(pr Ap2 Aps) A—Kc(p1 Ap2 Aps) A
—K4(p1 Ap2 Ap3) AN =Ke(p1 Ap2 A ps3)
Plan: post(a,p1), post(b,p2), post(c,p3)
4. Goal: —|Ka(p1 N p2 /\p3) AN Kb(pl N p2 /\pg) A Kc(pl N p2 /\p3)/\

Kq(p1 Ap2 Ap3) A Ke(p1 Ap2 A ps3)

Plan: unsolvable

Sharing a secret to some specific individual without anyone else knowing the secret can
be done with the current network. However, if we alter the problem by adding a friend
relation between b and ¢, and apply the same goal conditions as above, no plan would
be found by the planner, because ¢ sees everything a can see, and there is no way to

share some information to a without c¢ seeing it.

For sharing a secret surprise party for agent a among all the agents without a knowing it,
the messages need to be shared in such a way that a is not able to get a complete picture
of the secrets. In the setup of the problem from Figure 3.3, since a sees everything seen

by ¢, there is no way to hold a surprise party without a knowing it. However, by adding
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a friend relation between e and ¢ (SN14 in Table 3.5), the planner returns with the plan:

pOSt(€,p1), POSt(€7p2)a pOSt(eap3)~

3.6.3.4 Results

Parameters Performance

TIME(s)

Agtl d 1G] [pl |Gen| |Eap| |Calis) M)

Goal

SNOT 5 1 1 1 16 2 84 0.003 0.004 Kip:

SN2 5 2 1 1 16 2 84 0.005 0.006 K;K;p

SNO3 5 1 1 1 16 2 84 0.005 0.006 EK; p

SNo4 5 1 1 3 216 92 6572 1.007 1.015 EK,;Ps

SNOs 5 1 1 3 216 92 6572 1.048 1.056 DK, ,Ps

SNO6 5 1 1 1 16 2 84 0.008 0.009 CK,;p

SNO7 5 1 1 oo 216  all 15552 1.030 1.050 CK,up:

SNO8 5 1 1 3 216 92 6572 0420 0.429 K;Ps

SNO9 5 1 2 3 232 93 13288 0.815 0.829 K;PsA—K;Ps
SNI00 5 1 3 3 565 175 37644 2484 2530 K,PsA—K,Ps
SNI1 5 1 5 3 816 251 90100 5.720 5.810 K;PsA ~KoiherPs
SN12 5 1 5 oo 2160  all 777600 53.191 54.004 K;Ps A —KoperPs
SN13 5 1 2 oo 432  all 62208 9.809 9.895 —K;PsA KuyperPs
SN14 5 1 2 3 216 92 13144 2436 2454 —K;Ps A KoperPs

TABLE 3.5: Results for the Social-media Network domain.

Table 3.5 shows the result for our problems in the social-media network domain, where

Ps represents (p1 A p2 Aps) and Ky means [, Kip. The results show that our PWP

icg
model can handle a variety of knowledge relations at the same time within reasonable
time complexity. Although we acknowledge that the lengths of the plans are not long
by comparison to some classical planning benchmarks, it is clear that the computational
burden comes from the epistemic reasoning. In addition, our results show the correlation

between the number of expanded/generated nodes and the number of external function

calls, which correlate with each other as well as total time.

3.6.4 Gossip

The Gossip problem is a canonical epistemic planning problem proposed by Baker and
Shostak [136]. The original version contains a group of people, with each knowing
a secret. They can communicate with each other by telephone. At each call, they
will learn what each other knows at that moment, including direct knowledge about a

secret and nested knowledge about others’ knowledge. The key problem is: what is the
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minimum number of telephone calls that have to be performed before everyone knows
all the secrets? We also experiment with other goals, such as everyone knowing that

everyone knows all the secrets.

Different from the previous epistemic planning problems we experiment with in this
thesis, the knowledge generated in the gossip problem depends on the current knowledge
of each agent, rather than just the current world state itself. As such, we need to encode
this knowledge in our state. We demonstrate two different encodings with a simple
example (suppose there are three agents a, b and ¢, each of them has their own secret o/,
b’ and ¢ respectively): one similar to the PEKB encoding in Section 3.4.2, and a novel

encoding based on actions.

3.6.4.1 State-based Approach Encoding

The Gossip problem can be represented by a tuple (V,D,0,Z,G,F), where:

V = {IS}

o D : dom(I,) = {0,... 2As"*" _ 1y

O : call(z,y), where z,y € Agt
e 7 = discussed below

e G = discussed below

e F = (Q@check I, q) — {true, false}

The problem contains one variable, Iy, and the domain is a set of bit vectors of size
| Agt|l¥*+1in which d is the maximum depth of nested knowledge. Each bit in the vector
represents a single proposition, such as .S;p, as outlined in Section 3.4.2. I, represents all
knowledge about secret s. In our implementation, the set is described by a large binary
integer. To query a seeing formula, we simply look at the bit at the corresponding index

in the bit vector I.

For the call operator, we implement the handling of ‘seeing update’ to an external func-

tion, which is more compact and elegant than encoding directly in the actions, which
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would be equivalent to the encoding outlined by Muise et al. [87]. Therefore, the exter-
nal function would update the state based on the current state and the current action.
Consider the example of update in Table 3.6, where the number of agents is 3 and the
depth is 2, and I represents the truth value of:

{Kud, Kb, Ko, KoKpd, Ko Kpb', KoKy, Ko Kead', KoK Ko Kol ) KpKqd ) KpKQl
Ky K., Kyd', Kpb', Ky, KpKed', Ky Kb, KyKod, KcKqa', K Kb, K Koy K Kpad',
K. Ky, K Ky, K.d', Kb, K.c'}.

Index Action I; in binary I, in decimal
0 Initial State 100000000000010000000000001 67117057
1 call(a,b) 110110000110110000000000001 113467393
2 call(a,c) 111110111110110000111110111 132080119
3 call(b,c) 11111011111111111111111111111 132120575
4 call(a,b) 1111111111111111111111111111 134217727

TABLE 3.6: An example for S; updating.

The size of the state space depends on the number of possible epistemic relations, which
is bound by |Agt|?. Although this approach is naive, the computational complexity of
the solution would be the same as the approach proposed by Muise et al. [87]. However,
we found a limitation when we experimented with this: the grounding of actions by the

planner was prohibitively expensive, in some cases running out of memory.

Can we do better? It seems unnecessary to store propositions that are never used to
solve the problem. Therefore, we propose another approach, which takes advantage of

the F-STRIPS planning language.

3.6.4.2 Action-based Approach Encoding

The intuition behind the action-based encoding is that we can calculate the epistemic
effects of actions using external functions. In this solution, we store the sequence of
actions (calls) that have been made, and then calculate the epistemic state from this

sequence.

The Gossip problem can be described as a tuple *, (V, D, 0,Z,G,F), where

o V = {4}

"The bound of the D depends on the length of the plan, while the maximum length of the plan, Ipl,
is bound by (d 4+ 1) - (JAgt| — 1) according to Cooper et al. [125]’s proof.
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e D+ dom(As) = (0.....(|Agt] - (|Agt] ~ /2 ~ 1)
e O : call(x,y’), where z,y € Agt
[} I = {AS ey 0}

e G = discussed as below

F = { (@Qcheck A; q) } — {true, false}

The set of variables V' in this approach is a bit vector (represented as an integer) used to
record the action sequence that the planner has applied to reach the current expanding
node. Since Cooper et al. [125] proves that even with one-way communication, any
gossip problem with |Agt| and d depth can be solved with (d + 1)(|Agt| — 1) calls, we
know that this is the upper bound of plan length. Using the same example as above, for
a gossip problem based on the above setup and depth of 2, the domain for Ay is from 0

to 3%. Therefore, the initial state would be A, = 0, since no one has made any call yet.

The effect of the action is encoded using an external function I" : S x A — S, which
is a visibility update function. The planner calls I'(As, a), where A is the bit vector
representing the history h of actions so far, and a is the current action. Then, I'(As, a)

returns a new bit vector A/ that represents h - (a) — the concatenation of h and a.

For an epistemic query, the perspective function applies ‘actions’ encoded in Ag to

calculate the current epistemic state.

We implemented two versions of this. The Full implementation naively implements the
scheme above. The Relative implementation takes advantage of the ability to parame-
terise perspective functions f; by only encoding Ag with propositions that are relevant
for the epistemic goal formula. For example, consider the epistemic goal K.Kpa'. This
would result in [Agt|l¥+! = 27 epistemic relations in the Full encoding. When generat-
ing epistemic formula, we start with the secret first. Since any epistemic formula related
to b’ or ¢ will be irrelevant to the query, we need not encode any epistemic relations
about those secrets. So, the maximum number of epistemic relations at level 1 is |Agt],
because with one secret a’ and |Agt| agents, the greatest number of epistemic formulae

that can be generated is in the case of each agent sees that secret.

Iteratively, we do the same for the next level, from |Agt| amount of formulae, we select

the one, Kpa' (1/|Agt|). There are at most |Agt| new epistemic formulae that can be
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generated to know this one formula. With each depth, we drop all the old formulae
except the one relative formula and generating |Agt| amount of new epistemic formulae.
Therefore, the complexity for a single modal literal would be in O(|Agt| - |depth|). The
worst case is all agents knowing all agents’ secrets, and nested up to the level of depth,

which would be equivalent to the Full representation.

In our experiments, we compare these three methods — state-based, action-based (full)
and action-based (relative) — with the baseline of Cooper et al. [125]’s method using
their tool for generating their Gossip Generator ®. Their generator compiles Gossip
problems into classical planning problems, but is not a general epistemic planning tool.
However, this is a suitable baseline as it allows us to evaluate solving Gossip problems
using a state-of-the-art approach. To compare the performance directly, we use the

BFW S(Ry) planner to generate the results.

Parameters State Action (full) Action (relative) Gossip Generator
TIME(s TIME(s TIME(s TIME(s

d g1 Ipl lealls] calls TE)t)al |ealls| calls (Tc))tal [ealls| calls (Tgtal Ip| Compile( )Total
G1-3 2 1 2 12 0.00 0.00 12 0.00  0.00 44 0.00 0.00 2 0.00 0.01
G2-3 2 9 4 126 0.00 0.00 102 0.00 0.01 989 0.02 0.02 2 0.00  0.02
G3-3 3 1 3 M M M 12 0.00 0.01 266  0.00 0.01 1 0.00  0.06
G4-3 3 27 5 M M M 422 037 0.37 3644 0.11 012 5 0.00  0.06
G5-3 4 1 4 M M M 34  0.06 0.07 724 0.01 0.02 3 0.01  0.26
G6-3 4 81 6 M M M 1625 15.54 1555 13624 069 0.72 7 0.01 0.24
G7-3 5 1 4 M M M 38 043 043 724 0.01 0.02 4 0.04 1.76
G83 5 243 7 M M M 4845 333.90 334.00 47194 3.58  3.67 11 0.04 0.96
Gl4 2 1 2 — — — — — — 18 0.00 0.00 2 0.01  0.05
G2-4 2 16 7 — — — — — — 1935 0.06 0.07 7 0.01  0.06
G3-4 3 1 3 — — — — — — 26  0.00 0.00 3 0.01 043
G4-4 3 64 7 — — — — — — 11848 0.63 0.66 10 0.01  0.26
G54 4 1 3 . — = — — — 104 0.00 0.01 3 0.10  2.60
G6-4 4 256 9 - - — - - — 54711 449 461 14 0.10  1.57
G7-4 5 1 4 - — — - - - 484  0.02 0.03 4 0.25 31.82
G84 5 1024 11 . — - . = — 286288 38.82 39.40 22 0.25 9.72
G1-5 2 1 2 — — - — = = 126 0.00 0.01 2 0.01  0.09
G252 125 9 — — — — . — 12911 0.60 0.63 10 0.01 0.11
G3-5 3 1 3 — - - — — — 2288 0.08 0.09 3 0.03 1.65
G4-5 3 625 11 — — — — — — 68531 551 5.68 15 0.03 091
G5-5 4 1 3 — — - — — — 3888 0.17  0.19 4 0.15 83.12
G6-5 4 3125 13 — — — — — — 400627 55.00 56.14 22 0.15 7.61
G7-5 5 1 6 — - - — — — 116030 753 797 4 0.99 450.63
G8-5 5 15625 15 — — - — — — 2370575 546.68 558.51 32 0.99 59.72

TABLE 3.7: Results for the Gossip domain, where M means the planner ran out of
memory, and — means we did not run it because it would clearly exceed the memory
limit.

For the experiments, we run all approaches with 3 agents. Then, given that the perfor-
mance of the action-based (relative) approach dominates our other approaches, we only

run this encoding with the number of agents greater than 3.

8Downloadable from https://github.com/FaustineMaffre/GossipProblem-PDDL-generator
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From the Table 3.7, problems G2, G4, G6 and G8 are four types of test cases that
address classical gossip problem goals. Since the aim in the classical gossip problem is
to have each agent know about others’ knowledge, the size of the goal is ]Agt||depth‘.
The problem types G1, G3, G5 and G7 are for comparison to show how depth affects

single-goal problems.

For the results, the state-based approach is limited by the planner. The F-STRIPS
planner we use handles function variables as integers. Therefore, for the problem with
length larger than three, the possible state I,’s maximum value is 227 — 1. Because
the F-STRIPS planner we use grounded actions, this results in most of the problems
exceeding the maximum memory allocation on our Linux machine. These are indicated
by M. Both action-based approaches are able to handle gossip problems with larger
depth than the state-based approach. However, updating only relative knowledge prunes
a large amount of knowledge formulae that are not going to be checked, reducing total
execution time. Compared to Cooper et al. [125)’s approach, our approach has similar
performance on the problems with full goals, and performs slightly better on the problem

with single goals, as it will not generate irrelevant epistemic relations.

3.6.5 Discussion

Overall, the experiment results show that our solution outperforms Muise et al. [87]’s
encoding solution (the state-of-the-art). As it can be seen from the results in both the
Corridor and the Grapevine domains, the number of agents and the depth of epistemic

relations do not increase the computation time as rapidly as the PDKB planner.

In terms of expressiveness, our PWP approach can handle a variety of complex epistemic
relations, such as nested knowledge, distributed knowledge, and common knowledge, and
epistemic logic reasoning with continuous domains. This can be found in the scenarios
of the BBL and SN domains. In addition, even for the problem with epistemic relations
embedded in the state, such as the Gossip domain, our model also shows that it can

handle various problems regardless of the limitations from the planner itself.

The results show that the computation time depends heavily on how many times the
external functions are called, which is actually determined by the number of generated

nodes and expanded nodes during the searching process. Moreover, the amount of nodes
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involved in the search is affected by standard factors in search, such as the algorithm
used by the planner and the difficulty of the problem itself (reflected by the plan length
and the branching factor of the problem).

The results also show that the external solver takes up a large part of the execution time.
This is a prototype implementation, and this represents an opportunity for performance
optimisation of our code base and supports the claim that customisable perspective

functions are valuable.

3.7 Conclusion & Discussion

In this chapter, we revisited the agent’s perspective model outlined by Hu [4], referred
to as the PWP model, and introduced two novel semantics. We examined the soundness
and completeness of the entire semantics and anchored the set of formulae (NFT) that
is complete with the ternary semantics. Furthermore, we demonstrated how the PWP
model can represent established epistemic logic models, indicating that it is sufficiently
expressive to address problems solvable by those models. Additionally, we provided a
detailed explanation of the complete planning process implementation, including the use
of an external function for delegating epistemic reasoning to an external solver, as well
as the comparative expressiveness of our approach. Finally, we conducted experiments
on the same benchmarks used in Hu [4] and explored a challenging domain, Gossip,

which could not be modeled by Hu’s method.

However, there are still a few aspects that limit the significance of this work. The
first is our PWP model reasons about knowledge only, which means the PWP logic
is an S5 axiomatic system (discussed in Section 2.2.3). Extending the PWP model
to handle belief could significantly increase its expressiveness while being challenging.
Because the success of our PWP model is dependent on the property fi(s) C s for
perspective functions, which implies knowledge cannot be false. The second approach
(in Section 3.6.4.2) on the Gossip domain also provided us some intuition in terms
of implementing the above intuition, which is unnatural in the normal (traditional)

planning communities.

Secondly, the current implementation is inefficient in the number of external function

calls. All epistemic relations in one action’s preconditions or in the goals are evaluated
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separately, even if they are directly or closely related. Using goal conditions Sy ASq1p A
SaSpp as an example, in the current implementation, there are 4 perspectives being
generated to evaluate this goal, which are f,(s) for Syp, fo(s) for Sgip, and fi,(fu(s))
(fa(s) being generated first) for S,Spp. A more efficient way is to generate all relevant
local perspectives one. Using the example, to evaluate Sqpo A St A SaSpp, only f,(s)
and f,(f,(s)) are needed.

At last, although the current PWP model is valid (details can be found on the proofs of
soundness and completeness), its application in planning contains risks to the reader who
is not familiar with epistemic planning. Specifically, as described in the action example
of the benchmarks (Section 3.6.1.1), the truth values of the epistemic formulae in the
goal conditions are updated by the actions that could change agents’ epistemic states.
The assumption is that agents can only gain new knowledge while they cannot forget
what they knew. However, this implementation could result in that the goal conditions
can be met even if there are two contradicting epistemic formulae in the goal conditions,
such as K,z =1 and K,x=2. That is, each of these goal conditions is achieved (set to be
true) in different states. Although any modeler with a good understanding of epistemic
planning would not do that, it is still a risk for the new beginner in this field. Thus, we
need to extend the current PWP framework to make sure the epistemic formulae in the

goals are consistent.



Chapter 4

Planning with Multi-Agent Belief

using Justified Perspectives

A causal connection between earlier
belief (or knowledge) of p and later
belief (knowledge) of p is certainly a

necessary ingredient in memory.

—Goldman

This chapter presents a model, built on the PWP model, for KIDD45 belief over such plans,
with the ability to solve model-free problems. Instead of keeping track of all possible
beliefs (like Kripke structures and DEL-based existing semantic approaches, or updating
the knowledge base in syntactic approaches), we use a lazy-evaluation approach that
searches through previous states of the plan to re-construct what has been seen, and by
whom, to evaluate nested belief formulae. Our results show that we can efficiently solve
existing benchmarks in epistemic and doxastic planning, even with a simple prototype

planner.

4.1 Introduction and Motivation

In epistemic planning problems, agents need to reason about the ontic world and the

epistemic world. There is extensive research on epistemic logic reasoning and epistemic

137
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planning, each with its own strengths and limitations. As introduced in Section 2.3,
most epistemic planning approaches either explicitly maintain the Kripke structures
using DEL, or explicitly maintain the knowledge/belief database by using conditional
effects to update and revise it. Both approaches suffer from an exponential growth w.r.t.
the length of the action sequence for the former and the depth of the epistemic formula

used in the latter one (as discussed in Section 2.3.3).

In the previous chapter (Chapter 3), we formalised the lazy-evaluation approach, PWP,
which was originally proposed by Hu [4]. The PWP model (Definition 3.4) uses the
perspective function to define which variables each agent ‘sees’ in each state, and from
this, a multi-agent epistemic logic (knowledge) is built using the “what you get is what
you see” paradigm [1, 2, 140, 141]. By doing so, epistemic reasoning can be performed
without generating and reasoning over all epistemic relations. Section 3.6 shows PWP is
able to handle more expressive problems than standard PDDL-based epistemic planners
and avoids the costly pre-compilation [87, 88, 125] and maintenance of Kripke mod-
els [6, 106, 119]. In addition, their agent’s perspective model only depends on the state
variables’ valuation, so it can be applied to model-free planners as long as they expose

their current state, such as when planning with simulators [63].

The weakness of PWP is that it can plan only with knowledge, but not belief. By
following the discussion (in Section 2.2) of the difference between knowledge and belief,
in knowledge logic (axiomatic system S5), K;o — ¢ is an axiom, while in belief logics
(axiomatic system KD45), it is not. Thus, approaches such as PWP cannot model

problems in which agents can have incorrect beliefs.

In the following parts of this chapter, we extend the PWP approach to model justified
belief. We call this Planning with Multi-agent Belief using Justified Perspectives (JP).
The intuition is that when people reason about something they cannot see, they gen-
erate justified belief by retrieving information from their ‘memory’ that supports that
belief [35]. In our model, this information comes from the states they have observed in
the past. So, an agent believes something if they saw it in the past, and has no evidence
to suggest it no longer holds. This includes nested beliefs about other agents’ beliefs.
We illustrate this idea with the following state sequence in NIB domain (Example 1.2)

as an example, which intuitively follows the Sally-Anne Task (Example 1.1).



Planning with Justified Perspectives

139

B

"

“m

"

P p p
° b ° b a
a q a q a q b ¢ b ¢
Sy p=4q=6 S, p=4q=6 S, p=4q=6 S; p=4 q=6 S, p=4g=5

FIGURE 4.1: Plan 4.2 to solve Example 4.1.

Example 4.1. Following the same example setup as in Example 1.2, the task becomes
a false belief task, such that:

1. Number q is 5 (q=5);

2. Agent b believes that q is 5 (By(¢=5));

3. Agent a believes that q is 6 (Bg(q¢=6));

4. Agent b believes that agent a believes that q is 6 (ByBa(q=6)).
Recall that in the NIB domain, in Example 1.2, the agents are not allowed to peek into
the same box at the same time. Without this requirement, a valid plan would be:
Plan 4.1. “(peek a q)”, “(peek b q)”, “(return a)”, “(decrement q)”
Following the above plan (Plan 4.1), belief formula B,B,(q=6) is straightforward be-
cause agent b observed agent a peeking at ¢ after the action “peek b q” — where both

a and b peeked at g and saw each other doing so — while a wasn’t peeking when q

decreased by 1.

A more challenging plan, as shown in Figure 4.1, to reason about (given the premises

that agents cannot both peek into the same box) is:

Plan 4.2. “(peek a q)”, “(return a)”, “(peek b q)”, “(decrement q)”

In this plan, agent ¢ and b no longer peek into the box containing ¢ at the same time,
which means we do not have K, K,(q=06) in state sy. All desired epistemic formulae
are met for the same reason as in Plan 4.1, except item 4. For item 4, similarly, agent b
recalls that the last time it saw agent a peeking to see ¢ was s1, when peeking,q is true.

However, agent b holds no knowledge or belief on the value of ¢ from s1, which means b
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cannot generate the justified belief in s;. Fortunately, agent b gains belief of ¢ from sg3.

So, agent b still can justify its belief ByB,(¢=6):

1. agent b recalls that the last time agent a peeked inside of the box containing ¢ is

s1; and

2. after b saw a peek, the next time b saw the value of the (¢=6) is at state s3.

In a model-free setting, reasoning about this is particularly challenging. Agents do not
have access to the action model, so they cannot reason about what other agents have
seen. Instead, they can only partially observe states and re-construct belief by observing

states and who else observes each state.

4.2 Related Work and Background

Most of the background and related work is covered in Chapter 2. In here, we only cover

the works that are closely relevant to this section.

4.2.1 Background on Knowledge and Belief

Recall that the relation between knowledge and belief is not clearly defined (in Sec-
tion 2.2.6). Some authors state that knowledge is truthful belief [142-144], while others
claim that knowledge is truthful justified belief [145-148]. Bjorndahl and Ozgiin [149]
define the topology for knowledge and belief based on the different types of justification,
while Grossi and van der Hoek [148] states that belief is generated, endorsed, or justi-
fied by external arguments. However, there are no definitions of nested belief based on

agents’ previous observations.

Others use possible worlds to define both knowledge and belief [3, 150], which can be
found in Section 2.2.3 and Section 2.2.5. The idea in these logics is that the agents
have a possibility relation K; that models whether the agent ¢ can distinguish between
two states. Both the knowledge formula K;p and belief formula B;p are defined as
that ¢ holds in all the worlds that agent ¢ considers possible. The difference is that

the possibility relation IC; in modeling knowledge needs to be reflective and symmetric,

'Reflective means for all s € S, (s,s) must be in K, while symmetric means if there is a possibility
relation (s,t) in KC;, (¢, s) must also be in ;.
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while it is serial in modeling beliefs. Thus, such approaches have to maintain one
Kripke structure but two types of accessibility relations (one type for knowledge and
another type for belief) to model both knowledge and beliefs. The constraints on those
accessibility relations must hold to ensure a subset of axioms in the KB axiomatic system
(Definition 2.7) hold; e.g. if an agent knows something then it believes it. In this thesis,
knowledge is based on what an agent currently ‘sees’, while belief is based on what it

currently sees and has seen in the past.

The theoretical foundation [3] for knowledge is the S5 axiomatic system (Definition 2.2),
while for belief is the KID45 axiomatic system (Definition 2.2a). The difference between
these two sets of axioms is that: S5 includes the axiom K;o — ¢ (Axiom T), which
states that an agent’s knowledge must be the truth (reflexivity); while KD45 does not
have this axiom, so relations generated between possible worlds are derived from the
agent’s imperfect information of the world (could be false). Axiom D, replacing T in

KD45, captures K false, which is preserved by the serial possibility relation.

4.2.2 Related Work

Most DEL approaches do not support false-belief because they are built on S5 logics.
False-belief is challenging to model in DEL because it removes the ‘correct’ possibility
relation between worlds, which results in the agent’s belief state becoming isolated [116].
So, in order to allow agents to recover from false-belief, it requires special sensing or
announcing actions [6, 116, 151]. In addition, it is costly to maintain all agents’ possible

worlds.

As for the non-DEL-based approach, Muise et al. [88] define a proper epistemic knowl-
edge base (PEKB) that contains all epistemic formulae as literals. They convert an
epistemic planning problem into a classical planning problem using the precondition
and conditional effects in actions to update and revise the knowledge and belief literals
following some modal axiom, such as those of KD45,,. The advantage of their approach
is that the model can be solved by any existing classical planner that supports condi-
tional effects. The limitations are: it cannot handle disjunctive belief; the depth of belief
is bounded; and the number of literals grows exponentially on the depth of epistemic

formulae, so the pre-compilation step has exponential time complexity.
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4.2.3 KB Axioms

As claimed by Gochet and Gribomont [81], the epistemic logic systems that handle
knowledge and belief (KB systems) at the same time could contain the unwanted axiom
(BiK;jp — K; in Theorem 2.8). In order to avoid that, each epistemic logic system
needs to drop one of the three axioms from the KB axiomatic system (Definition 2.7):
KB1 (K;o — Bip), D (=B;false) and 5 (-B;p — B;—B;p). However, every one of
those three axioms is intuitive: Axiom KB1 means if agent ¢ knows ¢, then ¢ must
believe it; Axiom D (often in the form B;p — —B;—¢) means agent ¢ cannot believe in
a contradiction; and, Axiom 5 means if agent ¢ does not believe ¢, then ¢ should believe

he/she does not believe ¢.

Fortunately, the epistemic logic system we proposed in this chapter (the JP model)
follows the intuition of the PWP model, which is “what you see is what you know”
(Sip N < K;p). In addition, it is also intuited by Goldman [35]’s idea that for the part
you do not see, you believe in what you have seen, unless you see evidence suggesting
otherwise. Combining those two intuitions together, we can form two (intuitive but
might not be accurate) intuitions of the relation between knowledge and belief: 1)
Knowledge is transient (only makes sense for the current state); and, 2) Belief is past

knowledge.

In addition, the JP model follows the KB axiomatic system introduced in Section 2.7,
except Axiom KB2 as a KB logic system only needs one of the bridge axioms to hold
(KB1 or KB2). The unwanted axiom in Theorem 2.8 (B;K;p — K,p), arising from
combining Axioms KB1, D, and 5, is not unwanted in the JP model, considering its
strict definitions of knowledge and justified belief. The reason why the axiom in Theo-
rem 2.8 is the concern that agents believe they know something because they actually
know it. Intuitively, in our logic, B;K;p only holds when K;¢ holds, which means
that believing knowledge does not cause new knowledge. That is, agents know some-
thing is the premise of them believing they know it. A formalized proof is provided in

Section 4.3.3.4.
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4.3 Justified Perspective (JP) Model

In this section, we introduce the Justified Perspective (JP) Model. The related back-
ground, including the epistemic logic of knowledge and belief, and epistemic planning,

are introduced in Chapter 2.

High-level speaking, we add two belief operators, B; and H; compared to the language
(Definition 3.3) in the PWP model. The belief operator B; captures the intuition that
we believe something if we have seen it before, and we have seen no contradicting
evidence since. While the H; operator captures whether we have a (committed) belief
of something, no matter whether we believe it to be true or false. Here “H” can be read

as “has a belief about”.

The term, justified perspective, represents the combination of agents’ perspectives (what
they observe) of the world and their past perspectives (what they observed) of the
world. The intuition of the justified perspective model, as mentioned in Section 4.1, is
that agents reason about the unseen from their “memory”. Thus, instead of only using
the current state for reasoning, the JP model uses the state sequence. Similar to the
PWP approach, this section introduces the signature, language, and model of justified
perspectives. We then present two semantics: one complete semantics for soundness and
completeness, and a ternary semantics for computational efficiency. As a state could be
repeatedly appearing in the sequence (see Plan 4.2), theoretically, the sequence space
could be infinite. Thus, we use S" to represent the sequence space with the length of n.

A state in the sequence § at timestamp ¢ (beginning at 0) is denoted by s; or slt].

4.3.1 Signature and Language

The signature 3 = (Agt,V, D, R) of our model is exactly the same as the signature
defined in the PWP model (in Definition 3.1), as well as the definition of the state
(Definition 3.2). We also denote the state space and complete state space as S and S,
respectively. As previously noted, the JP model uses state sequences for reasoning rather

—
2

than individual states. A sequence is indicated by a lower-case letter with “ as its
header, where S and 5’; symbolize the sequence space and the complete-state sequence

space, respectively.
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In addition, the state override function ( ) (Definition 3.10) is also used in the JP model.
Moreover, since the JP model works with state sequences, we define the extensions of

state override function usage as follows:

Definition 4.1 (State Override Function with Sequences). Given a state sequence si
(with the length of n + 1) and a state sequence seq (with the same length) and a state
override function ( ) from Definition 3.10, the definition of overriding i with 3 is

defined as:
$1(8) = [s‘i [0](510]), ..., si[n](s n])]

That is, we allow the override function to override a sequence of states by another
sequence of states, given that those two sequences have the same length.

Definition 4.2 (Language). The language Lxp(X) is defined by the grammar:

pu=r(Ve) =0 loAp|Siv|Sip| Kip| Hip | Bigp,

where 7(V,.) represents a predicate symbol applied to terms V,, V., CV, and r € R.

Both B; and H; are belief operators. B;p means that agent ¢ believes that proposition ¢
is true, while H;p represents ¢ has a belief about ¢ (i.e. it means B;p V B;—). Seman-
tically, operator H; is to operator B; what operator S; is to K;. However, intuitively,
agents’ knowledge is generated from their observation, while this relation is different

between B and H. The details are explained in semantics’ definition.

4.3.2 Model Instances

In this section, we define the instances of the JP model, which need to be defined by the
modeller when they use our approach to reason about the knowledge and belief formulae

in our language Lxp(X).

Definition 4.3 (JP Model). Given a signature ¥ = (Agt, V, D, R), an instance of the

justified perspective model M is defined as:

M = (Agt,V,D,m, Oy,..., O),
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in which Agt, V, D are from the given signature, m is the evaluation function. The

detailed definition is given as follows:

e The domain of variable v € V' is D,, which is a set of all possible values of v (from
the definition of the signature). In here, a “None” value represented by symbol L
is included (D, := D, U {L}), which represents that the value of a variable is not
part of a particular agents’ observation. A state with all variables assigned with
1, denoted as s; (s; = {v=L| v € V}). Thus, a special sequence is a sequence

with all states as s, denoted as s] .

e The interpretation function 7 : § X R — {true, false} determines whether the
atomic term r(V;) is true in s. 7 is undefined if any of its arguments ¢; is a

variable v € V' that is not assigned a value in a given state s, i.e. v & sV v #L.

e Functions Oi,..., Oy are inherited from PWP model defined in Definition 3.4,
except we rename the perspective function f; into observation function O;, as f;
is our notation for the justified perspective function (Definition 4.6). In addition,
since the JP model evaluates epistemic relations based on state sequence, here

we allow the observation function to take input of a sequence as well. That is,

0i(5) = [0:(5]0]), . .., 0i(5[n])] for a sequence § with length of n + 1.

Since a state is a set (of variable assignments), the set operations are also applicable on
the state, such as set union operator “U” and set minus operator “\”. However, since we
have introduced a special value (assignment) for representing none value, some specific

rules of set relations and operators need to be clarified.

Lemma 4.4. For any variable v € V, we have v=L€ {v=e} and v € {v=e} for any

e€ D,.

The special none value is acted as a place holder for reasoning about nested epistemic
relations. The state could also be defined as a set of variable identifiers union with a
set of assignments, such as {v,v — e}. In this way, v=L could be represented by v only
without a valid assignment. Thus, it is straightforward for the above Lemma to hold.

But for simplicity, we model the state as a set of assignments only.

It is worthy to note that the observation functions in our Model (Definition 4.3), which

is from the PWP approach (Definition 3.4), also follow the above lemma. Specifically,
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from Lemma 4.4, we also have {v=L} C {v=e}, where e € D, \ {L}. Therefore, the
subset relation in Property 3 in Definition 3.4 also follows this, which we used later in

proofs for Theorem 4.9, 4.7 and 4.11.

4.3.2.1 Justified Perspectives

In this section, we propose two functions (a retrieval function in Definition 4.5 and a
Justified perspective function in Definition 4.6) which are critical to generating agents’

justified perspective with arbitrary nesting.

First, we define a retrieval function R to retrieve a variable’s value from the latest
timestamp (state) that the agent had an ‘eye’ on this variable. From this, we will define
the perspective function f; to construct the agent’s justified perspective, and reason

about the agent’s justified belief following the intuition discussed in Section 4.1.

Definition 4.5 (Retrieval function). Given a sequence of states §, a timestamp ¢s and

a variable v, the retrieval function, R : SXZxV — D, is defined as:

§max(LT)](v) if LT # {}
R(8,ts,v) = { §imin(RT)](v) else if RT # {}

1 otherwise

where:
LT = {j | v € ] A 51 (0) £L A < ts},

RT = {j | v € 8lj] A STj](0) AL Ats < j < [3]}.

Here, § represents the sequence of states of a plan from a particular perspective, which
could be an agent’s perspective or the global perspective. The sets LT and RT denote the
sets of timestamps in which variable v is observed (i.e., defined and not equal to L) to the
left and right of timestamp ts, respectively. Specifically, LT includes all timestamps less
than or equal to ts, and RT includes all timestamps strictly greater than s, assuming
timestamps are indexed as a sequential list of natural numbers. Intuitively, LT contains
all timestamps before and on ts that variable v is seen, while RT are all timestamps
after ts that variable v is seen. Recall that L is a special value ‘None’. If this function

returns 1, it means that the agent has never seen a not-‘None’ value of variable v.
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The function R plays a crucial role. If we see an agent i seeing variable v, we know that
agent ¢ learns the value of v. However, what value should we believe that i believes?
The function R determines this. If the value of variable v exists at time ts, then this is
in ‘our’ perspective, §, and we see the variable at the same time as ¢, so R returns the

value of v in state s;s. This is the straightforward case.

However, if we do not see variable v at time ts, what value should we assign to agent
i’s belief? The retrieval function R searches the timestamps before ¢s to find the most
recent reference to v. Intuitively, if we see that agent i sees v at ts, but we do not see
the value of v itself at time ts, then we believe that agent i believes the value is the same
as the last time we saw v. For example, if we peek at the coin in the box and see it is
a tail, and then we observe agent ¢ peeking at the coin, it implies B,coin =tail should

hold, because tail is the most recent observation of the coin.

If there is no value of v before ts, the function R retrieves the value by searching forward
(the timestamps after ¢s). Intuitively, if we believe that agent i sees v at ts, but we have
not seen variable v previously, then we assign i’s belief about v the next time we see v

after ts.

This is what we see in Plan 4.2 — agent b forms a belief about agent a based on agent
b’s observation after agent a’s observation. If there is no value found about v within 3,

then R function returns L, as the variable has not been seen from s.

Other design decisions could be made for R: searching forward first, then backwards;
finding the value closest to ts; or ‘forgetting’ the value of a variable after a certain
number of timestamps. Ultimately, there is no ‘correct’ design here and no design can

handle all possible cases, but we believe our choice above is intuitive and justified.

We can now give the definition of a perspective justified function f; for agent ¢. Intu-
itively, a justified perspective function models an agent’s perspective over the sequence
of states in a plan; specifically, an agent’s belief about each variable in each state from a
given state sequence, which can either be the sequence of global states or another agent’s

justified perspectives.

Definition 4.6 (Justified Perspective Function). Given the input state sequence § =

[S0,- .., Sn], a Justified Perspective (JP) function for agent i, f; : S, — é?c, is defined as
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follows:

Fi([505- -5 80)) = [805- -5 50

where for all t € [0,n] and all v € V:

Ity = max({j | v € Oi(s;) Nj <t}u{-1}),
e = R([so,--.,58¢t],lty,v),
si ={v=el|si(v) =eVuv¢ Oi(si({v=e}))},

sp = s1(s7)-

This definition is not so straightforward, so let’s give it a high-level intuition. The
justified perspective function requires input of a current perspective (assume it is our
perspective). To reason what an agent believes, a justified perspective is constructed as
a sequence of states with the same length as our perspective. In each timestamp, for
each variable, we: 1) recall the last time (“I¢,”) the agent saw the variable v, which is —1
if the agent has not seen this previously; 2) retrieve the value of the variable from ‘our’
memory using R (Definition 4.5); 3) form the state that the agent believes by removing
values that an agent has seen previously, but which are inconsistent with its current
observation; and 4) consider that the agents believe the value of all missing variables is
1 from the generated state (for future reasoning). Now, we explain the above steps in

detail.

First, recall that the sequence § = [so,..., S,| can be either the global state sequence
or the perspective of another agent. Any state from the global state sequence is a
complete state, while Line (4) in Definition 4.6 ensures any state from any perspective
of any agent is also a complete state — s is always a complete state (Definition 4.3).
By doing so, although we cannot reason about the other agent’s belief of the missing
variables for now, it keeps the information for us to reason about it in the future. The
outcome of overriding a complete state with another state (could be partial or complete)
is a complete state. Thus, both input and output for the JP function are a sequence of

complete states.

Intuitively, an agent’s belief should be consistent with the agent’s observation in the cur-

rent state: if an agent sees something, it must believe it. Thus, we propose Theorem 4.7

Theorem 4.7. For any timestamp t in a given state sequence §, O;(§t]) C f;(3)[t].
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Proof. This proof is straightforward. For any variable v € V such as v € O;(5t]),
we have lt, = t due to Line (1) in Definition 4.6. Then, if 3[t](v) #.L, we have
R([so,-..,st],t,v) = §[t](v), which means f;(3)[t](v) = e = O;(§[t])(v). If §t](v) =L,
based on Theorem 4.9, O;(5[t])(v) = fi(5)[t](v) =L. Therefore, O;(slt]) C fi($)[t]. O

The timestamp [t, is the last timestamp that agent i sees variable v by state s;, according
to the current perspective, which is —1 if agent ¢ has not seen v at all. This tells us
the last time that agent ¢ was seen observing variable v in the current perspective. This

evidence is used to justify belief [35].

However, if the current perspective represents an agent’s perspective, agent j, rather
than a global perspective, then agent 7 may not have seen variable v at time lt,—it may
have merely observed agent i seeing v, without seeing (knowing) v itself; e.g. the two
agents peek at the coin in the box at different times. We use R([so, ..., St],lty,v) (Def-
inition 4.5) to find what value agent j will believe variable v was in state s;. That is,
the most recent value before [t, or (if not found) the closest after It,, as defined by R.
Therefore, the value R([so, ..., St],lt,,v) is the value of v that agent j ‘believes’ agent i

saw (Line 2).

Line (3) in this definition forms a justified (complete/partial) state of the agent i at
timestamp t. The assignment of variable v is in this justified state if: the retrieved
value of v (R([so,...,st],ty,v) = e) is the same as the input perspective (s;(v) = e);
or (s¢(v) # e) and the agent i cannot prove the value changed. The latter condition

requires some further explanation.

There are two possible scenarios when s;(v) # e: either v € O;(s;) or v ¢ O;(sy). For
the first scenarios, v € O;(st), along with the premise (s:(v) # e), it is intuitive that if
s¢(v) is a non-none value, then agent j should believe that agent i believes (is seeing) v
equals to s;(v), which is what j believes v is. Thus, we propose Theorem 4.8 to prove, in
the first scenarios, s¢(v) =L. Then, even if the retrieval function R returns a non-none
value, agent j is still not able to believe the agent ¢ believes v is this value. Therefore,
we propose Theorem 4.9 and prove that even if e from Line 3 is not L, j is still not able

to believe others believe v = e due to the same reason j cannot believe v = e. That is,

vésy.
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Theorem 4.8. For any timestamp t in a given perspective 3, if v € O;(5]t]) and
R([s0, ..., 5st),t,v) # s[t](v), then we have st](v) =L.
Proof. Assume s[t](v) equal to some not-‘None’ value e € (D, \ {L}).

Since v € O;(5]t]) A5]t](v) #L, it must be that LT from Definition 4.5 is not an empty set

(contains t at least), which means max(LT) = t. Thus, referring to the first condition,

we have R([so,...,st],t,v) = s[t](v). This is not consistent with the given condition
(R([s0,---,5t],t,v) # s[t](v)), which means our assumption does not hold. Therefore,
we prove s[t](v) =L by contradiction. O

Theorem 4.9. For any timestamp in a given justified perspective 8, if v € O;(§[t]) and
Slt](v) =L, then we have f;(8)[t](v) =L.

Proof. First, the given premise ensures §[t](v) =L, which indicates that the given se-
quence is from another agent’s perspective (global sequence would not have any variable
with value of 1). Let this agent be j and the state sequence for the JP function to get

5 as sj. That is, fj(s;) = 5.

Then, s[t](v) = f;(si)[t](v) =L has two possibilities: either j has never seen the value
of v since the beginning of the input sequence si (R([s;[0],...,sk[t]],t,v) =1); or j
has seen the value of v, but j also sees v has been changed according to Line (3) in

Definition 4.6.

For the first case, it is intuitive. For all timestamps ¢’ € {0,...,t}, we have either
v ¢ 0j(si[t']) or v € 0j(si[t']) A si[t'](v) =L, which ensures for all ¢/, f;j(s;)[t](v) =
§t](v) =L. Thus, R([5]0],...,5[t]],t,v) =L= §[t](v), which means the first case will not

hold for the given premise.

As for the second case, j has seen some value e (R([s;[0],. .., si[t],t,v) = e) of v before,
but s[t](v) =L due to e # s;[t](v) Av € O;(si[t|({v=e})). Thus, there exists some
value e of v that is not none, which effectively means the retrieval function will get a not
none value of v. Assume the value returned by the retrieval function is e € D, \ {_L}, we
have e # 3[t](v), which means the left condition for Line (3) in Definition 4.6 is not met.
Then, based on §[t] C s[t|({v=e}) (set relation) and v € O;(5[t]) (the premise), we have
v € 0;(5]t]) € Oi(sTt]({v=e})) according to Property (3) of the observation function (in
Definition 3.4). Thus, the right condition of Line (3) in Definition 4.6 is also not met.
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That is, the assignment of v is not in s/ from Line (3), and a none assignment (v=L) is

added according to Line (4). O

Therefore, the latter condition (s¢(v) # e) can only be triggered by the second scenario
(v ¢ O;(st)). Based on our intuition in Section 4.1, agents believe v’s value stays
unchanged unless they see it otherwise [35]. Agents saw the value changed either by
direct observation, or by indirect inference (v ¢ O;(s¢)). Direct observation is trivial,
agents saw the value of the variable changed, while indirect inference is trickier. To

explain it, let us introduce another example as follows:

Example 4.2. Consider a corridor with 3 rooms, r1, r2, and r3. Three agents a, b, and
c are all located in r1. They can only observe the room that they are in. Let a plan be

agent b moving to ro.

The global sequence sy, agent a’s observations of the global sequence O,(s;) and a’s

justified perspective f,(s;) are as follows:

o sy is [{loca=r1,locy,=r1,locc=11}, {loca=11,locy=r2,locc=T1}];
o O4(sy) = [{loca=r1,locy=11,locc=r1}, {loca=r1,locy =12, loc.=11}];

o fu(sg) = [{loca=r1,locy=r1,locc=11}, {loca=11,locy =L, loc.=11}].

Intuitively, the justified perspective of a should be the same as the global state for so.
Since in s1, since a is in 71, we have locg, loc. € Og(s1), which means ltjoe, = ltipe, = 1
and R(sg, 1,loc,) = R(sg,1,loc.) = r1. As for locy, we have ltjo., = 0, which results in
e = R(sg,0,locy) = r1. However, we have s;(locy) = r2, which means s1(locy) = 71 does
not hold. Although it is perfectly fine for the agent to hold false beliefs in epistemic
planning, agent a should be able to reason that this belief is false (inconsistent with a’s

own observation), which is the indirect inference that we design to capture.

In order to capture indirect inference, firstly, agents assume the value e of v is un-
changed (e = R([so,.-.,st],{ty,v)), which means the state s; is overridden by the as-
signment v=e. In this case, agent a assumes loc, = r1. Formally, we have O, (s1{{locy,=
r1})) = Oy({locg = r1,locy = ri,locc =r1}) = {locg =711,locy =711,locc =71}. Then, if
v ¢ Oi(s¢({v=-e})), which means agents are not able to see v =e even if v’s value is

still e, then, it is reasonable to assume v’s value is still e. While, if v € O;(s({v=e})),
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which means agents will see v=e if v’s value is still e, it is not reasonable to assume the
value of v is still e (because the premise is that v ¢ O;(s;)). In this case, if loc, = r1,
agent a should still be able to see loc,. Thus, it is not reasonable to assume locy’s value
is still ;. Therefore, there is not going to be any assignment of v in s} (Line 3), while
sp(v) =L according to Line (4). In this case, the justified perspective of agent a is

fa(39) = [{loca=r1,locy=r1,locc=11}, {loca=11,locy =L, loc.=r1}].

Overall, a JP function f;(§) forms a justified perspective of agent ¢ under the input
justified perspective §. Thus, we can nest justified perspective functions arbitrarily to

form nested beliefs.

In addition, we also proposed the following theorems for nested justified perspective
function. Theorem 4.10 ensures if an agent believes something, then they must believe
themselves to see that belief, while Theorem 4.11 represents that if an agent believes

something, they believe that they believe it.

Theorem 4.10. For any timestamp t in any state sequence §, O;(§[t]) C O;(f(5)[t]).

Proof. According to Theorem 4.7, we have O;(5[t]) C f;(5)[t]. Based on the monotonicity
of the observation function (If s C s, then O;(s) C 0;(s’)), we have O;(0;(5]t])) C
Oi(f;(5)[t]). Given the idempotency of the observation function (O;(s) = 0;(0;i(s))),
(0:(0i(5Tt])) = Oi(5Tt])), we have O;(5]t])  Oi(£(5)[t])- ]

Theorem 4.11. For any justified perspective 3, we have f;(5) = f;(fi(5)).

Proof. The base case is a sequence with one state [sg]. We have f;([so]) = [s.(Oi(s0))]
based on applying the JP function in Definition 4.6. According to Theorem 4.7 and
the monotonicity of the observation function (Property 3), we have: O;(so) C fi([s0])[0]
and O;(0i(s0)) € O;(fi([s0])[0]); fi([so])[0] C so and Oy(fi([s0])[0]) € Oi(so), which are
effectively: Oi(so) C Oi(fi([s0])[0]) A Os(fi([s0])[0]) € Os(s0) = Oi(s0) = Oi(/i([s0])[0])-
Thus, fi([so]) = fi(fi([s0]))-

For a sequence of more than one element, any state (f;(5)[t]) at timestamp ¢ in agent ¢’s
justified perspective depends on the input state sequence and agent’s observation before

t, which are [5]0], ..., §t]] and [O;(5t]),. .., O:i(5]t])] respectively.

Any variable v € V' can be classified into one of the following conditions:
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L. v e O;(£i(3)])
2. v ¢ O:(fi(9t])

For Condition (1), according to Theorem 4.7, O;(f;(5)[t]) C fi(fi(5))[t]. Since v €
O;(fi(5)[t]), following the same proof for Theorem 4.7, f;(5)[t](v) = fi(fi(5))[t](v).

For Condition (2), v ¢ O;(f;(5)[t]) indicates v ¢ O;(5[t]) (Theorem 4.10). The value of
both f;(5)[t](v) and f;(f;(5))[t](v) depends on the values from previous timestamp ¢ — 1
(It is smaller than t in the process of generating both justified perspectives (f;(5) and
fi(fi(8))) according to Definition 4.6). Then, whether f;(8)[t — 1](v) and f;(f;(5))[t — 1](v)

are the same can be reasoned recursively until it reaches the base case.

Overall, f;(3) = f;(f;(5)) holds. O

4.3.3 Semantics

Now, we give two different KID45 semantics: complete semantics and ternary semantics,
which extend our respective S5 semantics for the PWP model from Chapter 3. The
complete semantics have an exponential worst-case time complexity, while the ternary
semantics have a polynomial time complexity (for a given plan length) and have the

same properties of incompleteness as the PWP semantics.

4.3.3.1 Complete Semantics

The complete semantics inherits the definitions of Items (a) - (e) in Definition 3.11, but
with three minor changes: (1) the frame is a pair M, § instead of M, s, i.e. it requires a
sequence of states instead of a single state s; (2) the S; operator uses O; instead of f; (our
function O; is equivalent to PWP’s f; perspective function, while our justified perspective
function f; generalises for belief); and (3) the evaluation of atomic propositions is based

on the final state of the sequence S.

Similarly as PWP, our complete semantics is to reconstruct the possible worlds and
evaluate epistemic logic formula accordingly. However, simply overriding the none value

variables in the agent’s justified perspectives would result in inconsistent perspectives,
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which is mainly caused by Line 3 in Definition 4.6. Thus, we propose a possible se-
quence function to generate the set of all possible sequences for agent i given a sequence

C(f;(8),1) as follows:

Definition 4.12 (Possible Sequence Function). Given a state sequence § for agent i
(could be either justified perspective of i, or a sequence of observations of i) with length
of n + 1, all possible sequences that agree with § can be generated by the possible

sequence function, C : & x Agt — P(S,), can be defined as:
C(5,1) = {[wo, ..., wy] |wo € Wo,...w, € Wy}
where for all ¢ € [0, n]:

Wy = {w' | w' € W[,Yv e O;(w') = v e O;(5[t]) }
Wi = {sc(lt] \ s1) |sc €Se}

Intuitively, this function identifies possible worlds W/ for each state in the agent’s jus-
tified perspective §t] by adding possible values to those variables that are equal to L.
However, some of the newly added values might be inconsistent with the agent’s justified
perspective function due to the indirect inference mentioned in Definition 4.6. This is
triggered by the agent i cannot see the variable v (v ¢ 0;(5]t])), but the agent i sees
v once the state is “filled up” with possible value e of v. That is, if the value of v is e
originally, then the agent ¢ should be able to see it. Thus, agent ¢ must not believe the

value of v could possibly be e.

Using Example 4.2, the sequence of agent a’s observation O,(sg) is [{loc, =11, locy, =
r1,locc=r1}, {loca=r1,loc.=71}] and a’s justified perspective f,(sg) is [{loca=11,loc, =
r1,locc =r1},{loc, =ri,locy =L, loc. =r1}]. The possible sequences that are consistent
with both can be generated by the sample process as follows: W) = Wy = {{loc, =
r1,locy=r1,locc=r1}} as the agent observes everything in the timestamp 0; W] contains
three possible states, as loc, has three not-‘None’ values (Djo, = {71,72,73,L}), while
W7 only contains two possible states due to loc, =11 not being consistent with a’s justified
perspective. This is because variable loc, is in the possible world {loc, = r1,loc, =
r1,locc=r1} from W, but it is not in neither Og(f,(s5)[1]) nor Ou(Oq(sy)[1]), which are
both {loc, =71,locc =r1}. Thus, C(fu(sg),a) = C(O4(Sy),a), which only contains two
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possible sequences: [{loc, =r1,locy =r1,locc =11}, {locg =11, locy, =12, loc. =11}] and

[{locg=r1,locy=r1,locc=r1}, {locg=11,locy=r13,locc=r1}].

Extending the intuition above, adding possible values to variables that contain no value
should not change agent i’s “observation”, because of indirect inference (discussed in
Definition 4.6), which is if some value e makes i sees v, while originally i cannot see v,
then ¢ would consider e is not possible based on the fact ¢ cannot see v. In here, the word
“observation” only refers to the variable symbols in agents’ observations, not the value.
That is, agent i observed a variable v € 0;(5]t]) while knowing or believing it’s none due
to lack of belief of this variable from its parent’s perspective (5[t](v) =L). In another
word, the newly added possible value does not make agent ¢ see any new variables, which
is ensured by Definition 4.12. In this case, by filling the possible values, agents could
update their observation (from O;(5[t])(v) =L), but only by the value of variables, not

the variables themselves. The formalization of this is proposed as the following lemma.

Lemma 4.13. Given a state sequence § for agent i (could be i’s observation sequence or
Justified perspective) with the length of n, for any g in C(8,i), we have ¥Vt € {0,...,|3]},V; =
V], where Vi = {v | Vv € O;(5]t])} and V] ={v | Vv € O;(g[t])}.

From its definition (Definition 4.12), we have any sequence generated by a possible
sequence function is consistent with the agent’s justified perspective. By consistent, we
mean Vg € C(§,4),Vt € {0,...,|5]},5t] C g[t]. This is straightforward as the possible

sequence ¢ is just adding a consistent possible value to §.

Then, does agent ¢ hold the consistent observations and beliefs under the possible world
g € C(8,1) (i believes possible) need some discussion. Thus, we propose the following

two theorems.

Theorem 4.14. Given agent i’s observations of a state sequence O;(§) with the length

of n+1, for any g in C(0;(8),1), we have ¥t € {0,...,n}, Oi(5)[t] C 0;(§)[t].

Proof. The proof for this is trivial. According to Definition 4.12, the possible sequences
are generated from W3, which is adding consistent possible values for variables v such

that f(5)[t](v) =L. With Lemma 4.13, we have O;(5[t]) C O;(g]t])- O
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Intuitively, one should think the above theorem should use “=" (vt € {0,...,n}, O;(3)[t] =
0i(g)[t]). The reason for using “C” has been mentioned in the paragraph above the the-
orem. The agent could update their observation of the variables equal to L with their
possible values. Those variables with value none L in the agent’s observation indicate
that the agent sees those variables, but does not “know” the value of them due to their

values being missing in the parent perspectives.

Theorem 4.15. Given agent i’s perspective of a state sequence f;(§) with the length of
n+ 1, for any § in C(£;(5),1), we have ¥t € {0,...,n}, f;(3)[t] C fi(9)[t].

Proof. We prove this by induction. For the base case (timestamp 0), we have f;(§)[0] =
51(0i(510])) and fi(7)[0] = s1(0i(g[0])). Since Oy(5[0]) S Oi(g[0]), we have f;(5)[0] <
F(@I0].

For any timestamp t € {0,...,|5]}, the justified perspective of g for agent 7 is generated
by Definition 4.6, in which the I, for all variables are the same as in f;(5)[¢t] due to
Lemma 4.13. To clarify this proof, let Condition 1, 2, and 3 be It, = ¢, 5[t](v) #L, and
fi(8)[t](v) #L in this proof. Then, if the last timestamp i sees v is the current timestamp
t, v has a not-none assignment and this assignment is consistent with i’s observation
(all conditions hold), we have f;(8)[t](v) = fi(§)[t](v); if the current value of v from 5]¢]
is not consistent with i’s observation (Condition 1 and 2 hold, while 3 does not), we
have f;(§)[t](v) = g(v) and f;(5)[t](v) =L; if v is none from the sequence (Condition 2
does not hold, while others hold), we have the same conclusion as the previous one; if
v is not observed by ¢ in the current timestamp, then both values are determined by
their values in the previous timestamp (¢ — 1), which are f;(3)[t](v) = f;(5)[t — 1](v) and
Hi(9)[t](v) = £i(g)[t — 1](v), based on Definition 4.6.

Then, recursively run this proof from ¢ to ¢ — 1 all the way until the base case, we have

vt €{0,....[51}, (3] < (9[- =

The intuition behind this theorem is that, in the possible worlds (sequences), generated
from agents’ justified perspectives, their original beliefs (in their justified perspectives)
must hold. That is, they cannot consider a world (sequence) possible, if what they
believe is not held in this world (sequence). In addition, we can push the above theorem

a little bit further. If the agents consider a world (sequence) § to be possible based
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on their justified perspectives, then, in this sequence (§), the agents should believe this

sequence (§) is possible. Thus, we proposed Theorem 4.16.

Theorem 4.16. For any possible sequence § € C(f;(5),1) that i considers possible given

a state sequence 8, we have g € C(fi(g),1).

Proof. This proof can be done by considering two conditions: (1) 3¢t € {0,...,|s}, fi(5)[t] #
fi(9)[t] and (2) vice versa.

The Condition (2) is trivial, as fi(5) = fi(g), we have C(fi(5),i) = C(fi(g),%), which
means § must be in C(f;(§),7). The Condition (1) can be proved by induction.

For the timestamp 0, this is trivial. Since §[0] is consistent with 0;(5]0]) (Lemma 4.13),
we have f;(§)[0] = 0;(g[0]) U s. Therefore, ¢[0] is a valid state in Wy when generating
C(fi(g),1) as O(fi(§)[0]) = O;(0;(g[0])). This is because: 0;(g[0]) C fi(§)[0] indicates
0i(04(g10])) € Oi(fi(9)[0]); and, fi(4)[0] < gl0] indicates O;(fi(7)[0]) S Oi(g0])-

Similarly as proof for Theorem 4.15, for any timestamp ¢ € {0,...,|5]}, the justified
perspective of g for agent 7 are generated by Definition 4.6, in which the [t, for all
variables are the same as in f;(5)[t] due to Lemma 4.13. Different from that proof, the
condition g[t](v) =L must not hold, as the § is a possible world (sequence), which does
not contain none value. Thus, the conditions required discussion are: (1) whether the
most recent timestamp agent ¢ sees v is t (It, = t); and, (2) whether agent i believes
a not-none value of v (f;(g)[t](v) #L). If the first condition holds (agent i sees v at t),
the second one must hold (the value of v that agent i believes at ¢ must not be none).
This is because the state has been filled with consistent possible values for the none
variables, which makes the condition for indirect inferences not exist. For this proof, if
the first condition holds, we have f;(g)[t](v) = §[t](v). This indicates the value of v at
timestamp ¢ will not be overridden by possible values when generating C(f;(g),7). If the
first condition does not hold, then the value of f;(g)[t](v) is equal to f;(§)[t — 1](v) based

on Definition 4.6.

Then, recursively run this proof from ¢ to t — 1 to the base case, we have § € C(f;(g),1).

O]

After constructing the possible worlds (sequences) for agent’s justified perspectives, we

can now provide a complete semantics for our model.
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Definition 4.17 (Complete Semantics). The complete semantics for the model M with

a given state sequence § (with n + 1 states) can be defined as:

() (M,8)Er(V,) i w(3ln),r(Vh)) = true

() (M) FAd i (M,5)E¢and (M,5)F

() (M,8)F i (M,5) ¢

@) (M,5)ESw iff ve 0;3n])

(e) (M,5)E Sip iff V§e C(0;(3),1),(M,g) E ¢ or
Vg € C(04(), ), (M. ) = ~p

(f) (M,5)EK;p iff (M,5)F@ASip

(g) (M,5)EH;p iff (M,s)E Bip, or (M,3)E Bi—y

(h) (MH;) F Bi(/) iff VgG C(J[Z(g)?Z)v (Mvg) F 2

where C' is the possible sequence function defined in Definition 4.12.

Any formula in our language L£(X) is always a relation in some perspectives, which
eventually are evaluated by the last state in that perspective. Therefore, Items (e), (f),
(g) and (h) are evaluated in the format of (a). Items (b) and (c) are straightforward for

logic operator A and — in the language £(X).

Items (d), (e) and (f) are the same as in PWP (see Definition 3.13), except the formula
is evaluated on a state sequence instead of a single state. While the definition of the
new belief operator, Item (h), requires some discussion, Item (g) is straightforwardly

dependent on it.

At a high level, the definition of B;p aims to capture is that agent i believes ¢ if in
its past (including present) it knew ¢: that is, K;¢ was true. However, this does not
capture situations where ¢ A S;p, such as S;¢p and ¢ are observed as true in different

past states, or even ¢ contains references to variables observed in different states.

For example, consider the proposition B,(z +y > 0), D, = D, = {—1,1} and agent
a observes x = 1 in state sy, then observes y = 1 in state s1, while not observing z in

state s1 at all. The complete state space for is S, = {{z=1,y=1},{z=1,y=—-1},{z=

—Ly=1}{z=-1,y=—1}}.

It is not the case that M, so F Sy(z +y > 0) or M, s1 F S,(x + y > 0) because agent a

does not see the value of y in state sg or the value of x in state s;. However, it seems
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valid to state that M, s; F By(z +y > 0) because it can remember z = 1 from state sg,
and has no evidence to suggest x has changed. Based on the Item (h), f,(3) is needed

to evaluate the proposition By (z +y > 0).

In the last state s1, the perspective function identifies the most recent timestamps in
which x and y are seen by agent a, which are 0 and 1 respectively. Then, the retrieval
function R retrieves the value of x and y, which are x = 1 and y = 1. So, the last state
in agent a’s justified perspective f,(5) at s; is {x=1,y=1}. Then, in the previous state
so (initial state), the it, and [t, (following Definition 4.6) identified by the perspective
function are 0 and —1. So that, R retrieves x’s value is 1, and a’s justified perspective at

timestamp 0 (fo(5) at sg) is {x=1,y=L}. That is, fo(5) = {z=1,y=L},{z=1,y=1}]

Then, according to Definition 4.12, for each complete state g € S., applying the function
override g() on each state from a’s justified perspective with none assignment removed
(fa(®)[t] \ s1), we have Wi = Wy = {{z=1,y=—1},{z=1,y=1}} and W] = W, =
{{z=1,y=1}}. That is, two possible sequences are formed as C(f,(5),a) = {5a1,5a3},

where: sa] = [{z=1,y=—1},{z=1,y=1}] and 503 = [{z=1,y=1},{z=1,y=1}].

Then, we have M, 5k B,(x +y > 0) is equivalent to M, 5a] E (z 4y > 0) A M, 503 E
(r+y >0). Then, based on Item (a) in semantics, both formulae hold, which means

M,5E By(z +y > 0) holds.

4.3.3.2 Ternary Semantics

Now, we show how to implement our model using ternary logic semantics, based on the
ternary semantics from the PWP model in Section 3.3. This semantics offers a polyno-
mial time complexity logic, compared to the complete semantics, which is exponential
in the number of states in the problem. It sacrifices completeness for efficiency. The
ternary values for propositions are: 0 denotes false, 1 denotes true, and % means the

truth value is unknown (unable to be proved).

Definition 4.18 (Ternary Semantics). The ternary semantics for the model M with a

given state sequence § (with n states) can be defined as:
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() TEAR)] = 1ifn(5lnl,r(V) = true
0 else if 7(s[n],r(V,)) = false;

% otherwise

(b) T oAyl = min(T[5 9], T8, ¢])
(€ TE-¢]l = 1-T[5¢]
(d) TI[5,Siv] = Lifv¢sn]oridsh]

0 else if v ¢ 0;(5[n])
1 otherwise
(e) TI[5Sip] = LifT[E ¢ =1ori¢sn];
0 else if T[0;(85), ] = T[0:(5), ~¢] = %;
1 otherwise
() T[5 K] = TI5@ASig
(8) TI[5\ Hip] = 5ifT[5¢l=13
0 else if T[S, Bip| = T[S, Bi~p] = %;

1 otherwise

(h) T[5 Bigl = TIfi(s1(5)), 4l

It is worthy to mention that, compared to the complete semantics, Item (h) in the
ternary semantics requires the input sequence § to be filled by a non-state sequence
s1. This ensures the input of the JP function is a complete state sequence, considering
Item (e) could result in a partial state sequence becoming the input of Item (h). While
this would not happen in the complete semantics, as the observations are filled in with

possible worlds (Item (e) in Definition 4.17).

This ternary semantics gives % value when the targeting state or sequence does not have
sufficient information to evaluate. This could cause some of the formulae (non-logical
separable formula in Definition 3.17) to be evaluated as ‘unknown’ (%) While we argue
that the agents might not have a pre-knowledge of all V' and D (all possible worlds) from
the model, it is reasonable for them to not know the unobserved part of the world. For

example, using our motivated problem (Plan 4.2 in Example 4.1), the state sequence §
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would be 2:

e 3[0] = {(false, false, false, false),p=4,q=6},

o 3[1] = {(false,true, false, false),p=4,q=6},

o 3[2] = {(false, false, false, false),p=4,q=6},

o 3[3] = {(false, false, false,true),p=4,q=6},

o 3[4] = {(false, false, false,true),p=4,q=>5}
Let sequence s only contain sy and s;, which is the state sequence at timestamp 1. The
seeing relation SpS,q, which is T [.s:_; , SpS4q| in ternary semantics, is evaluated as %

Agent b’s observation is generated by the observation function Oy, which is the same as

fiNIB defined in Section 3.1.1:

-

Oy(s") = [{(false, false, false, false)}, {(false,true, false, false)}]

From agent b’s observation, we can generate agent a’s observation as:

Oa(Ob(s_;)) = [{(false, false, false, false)}, {(false,true, false, false)}]

T[Oy(5), Saq] = 1 because ¢ ¢ Oy(s'[1]). Therefore, T[s, SpSacoin] = 0. Intuitively
speaking, agent b can only see agent a peeking into the box and b cannot see that
number ¢ is in the box. However, if this seeing relation is in the complete semantics

(M, sk SpSaq), the evaluation is true.

This is because, in the complete semantics, M, s’ E SpSaq is equivalent to V§ € C ( Ob(57 ),b),
M, G E Saq by applying item (e), where all worlds (sequences) agent b considers possible

are:

- {(false,false,false, false),p:nl,q:ng}, ni,n2,ns,
C(Op(s"),b) =

{(false,true, false, false),p=ns3,q=n4} ng € {0,...,99}

%In the following example, we denote the value of all peeking variables as a tuple of boolean value,
with the order as “peekingap,peekingaq,peekingyy,peekingy,” for readability. For example, the initial
state would be {(false, false, false, false),p=4,q=6}.
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Then, according to item (d), the set of all agent a’s observations for all sequences in

C(0y(5'),b) is generated as the following set:

{(false, false, false, false)},

{(false,true, false, false),q=n4}

n46{0,...,99}

Since ¢ is in the last state of all sequences in the above set, we have S,q holds for all

the sequences we generated for agent b. Thus, M, sk SpSaq holds.

As for a belief relation ByS,q with the same sequence, T[s_; , BpSqaq] = 1. This is because
belief is evaluated based on the justified perspective of agent b, according to item (h) in

Definition 4.18:

. {(false, false, false, false),p=L,q=L},
f(s) =
{(false,true, false, false),p=L,q=L}

Then, under b’s justified perspective, agent a’s observations are:

{(false, false, false, false)},
{(false,true, false, false),q=L}

Oa(fb(s_;)) =

Since ¢ is in Og(fy(s'))[1], we have T[fy(s'), Saq] = 1. Thus, T[s', BySaq] = 1.

4.3.3.3 Complexity

The time complexity for the complete semantics and the ternary semantics is similar
to the PWP approach. The only difference is the time complexity for the new justified

perspective function.

To evaluate M, §'F ¢, the worst-case scenario is that ¢ is a belief formula with the depth
of d. Then, the justified perspective function complexity is in ©(d - [V - |5]®), which
is for each variable, getting the It,, getting R(S,lt,,v), for s in § and for each level of
nesting from . In addition, if the history of all corresponding justified perspectives is
well-stored, this can be done in linear time in terms of |s]. That is, if all corresponding
justified perspectives (including all corresponding observations) from timestamp 0 to t—1

are stored and can be visited in constant time, then, to generate justified perspectives
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for timestamp ¢, besides generating O;(s]n|), only need to retrieve R(S,lt,,v) (It, is from

observations), which is linear in terms of |5].

For the complete semantics, in §, each state could have |V| x |D| possibilities. Thus,
the number of possible sequences is |V x D|I®l. So, the complexity of the query in the
complete semantics is in ©(d-|V|?-|5]3- |V - D|I¥), which is exponential on the input size.
While, in the ternary semantics (Definition 4.18), the complexity of epistemic formula
evaluation is in the same complexity class as generating the corresponding justified

perspectives, assuming Item (a) is in ©(1).

4.3.3.4 The Axiomatic System for the JP model

As noted in Section 4.2, there is no underlying definition for our justified belief. So,
there is no underlying model to which we can prove soundness or completeness. We can

only show our model is sound with respect to KD45 logic as follows.

Theorem 4.19. The following axioms hold, making this a KD45 logic:

K (Distribution): Bip A Bi(p — ¢) = B
D (Consistency): Bip — = Bi—p
4 (Positive Introspection): B;p — B;B;p

5 (Negative Introspection): —Bjp — B;—B;p

Proof. Based on the definition of B;, M, 5 E B;p is equivalent to for all § € C(f;(5),1),
such that M,d F . From this, Axiom K is: M,§ F ¢ and M,§ E (¢ — v) imply
M, g E 1, which holds trivially.

For Axiom D, M,§F B,y is equivalent to Vg € C(f;(5),i), M,gF . By induction, we
have Ag € C(fi(5),1), M, g o, which means M, §F —B;p. Thus, Axiom D holds.

For Axiom 4, M, §F B, is equivalent to for all § € C(f;(5), 1), such that M, 5 F ¢. Based
on Theorem 4.15, since f;(§) is consistent with any f;(§), we have C(fi(g)) C C(fi(5)).
Because § € C(fi(5),1), M, g F ¢, we have g € C(fi(g)),i), M,gF . That is, Axiom 4
holds.

For Axiom 5, M,§E =B,y is M, 5t B;p, which is effectively 35 € C(fi(5),4), M, g H ¢.
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This can be proved by considering two conditions: (1) 3§ € C(f;(5),4), M, # ¢ and
B € C(fi(3),i), Mg = »; (2) 3G € C(fi(3),4), M,§¥7 ¢ and 3¢’ € C(£(5),7), Mg’ F .

The first one is effectively Vg € C(f;(5),i), M, g% . According to Theorem 4.16, for all
g € C(fi(5),1), there exists a p’ (effectively p'= g as § € C(f;(g),)) such that M, p'H ¢.

The second one requires some discussion. It only happens when § # f;(§) and g7 £ £;(3).
Let the length of the sequence |5] be n. This is caused either by the possible values filled

in for the variables that are not in 0;(5[n]) or the variables such that 0;(5n])(v) =L.

The first condition is straightforward. The variables not in O;(s[n]) are also not in
0;(5]n]) (Lemma 4.13), which means the possible values that generated g is also valid
when generating all possible sequence for C(f;(¢'),4), which make this Axiom holds.
While, the second condition is not possible in complete semantics. The input sequence
for Item (g) and (h) are state sequence with complete not-none value assignments based
on Definitions 4.17 and 4.12. Thus, the observation of any variables v for any timestamp

t could not be none. Overall, Axiom 5 holds for all possible conditions. 0

Recall in Section 2.2.6, Voorbraak [93] proposed another bridge axiom (Theorem 2.8)
between knowledge and belief (B; K;pp — K;¢), which is claimed to be the unwanted
axiom by Gochet and Gribomont [81]. As reasoned at the end of Section 4.2, this
axiom becomes valid in our definition of knowledge and belief (justified belief). Here,
we formalised it by proposing the following theorem to show this unwanted axiom holds

for both the complete semantics and the ternary semantics.
Theorem 4.20. Given a sequence of states § with a length of n+1, we have O;(f;(5)[n]) =

0i(5[n]).

The above theorem is tricky to prove since f;(5)[n] does not guarantee to be a subset of

§n] (we cannot use the monotonicity of the observation function directly).

Proof. We prove this by contradiction.

Firstly, according to Theorem 4.10, we have O;(5[n]) € O;(fi(5)[n]). This means all

assignments in 0;(8[n]) are also in O;(f;(5)[n]).

Then, assuming there exists an assignment (v =e), such that v=e € 0;(f;(5)[n]) and

v=e ¢ 0i(3[n]).
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According to the definition of the JP function (Definition 4.6), this assignment (v=e)

must be in one of the following conditions:

1. ve OZ(§[n])

2. v ¢ O0i(8[n))

For Condition (1), since v € 0;(5n]), we have either O;(5[n])(v) = fi(5]n])(v) or
0i(5[n])(v) # fi(5In])(v). The former cannot be the case as fi(5[n])(v) = O;(fi(8)[n])(v)
(v=e € O;(fi(5)[n]) from our assumption), which results in O;(f;i(5)[n])(v) = 0;(5n])(v),
which violates our assumption (v=e ¢ 0;(5[n])). The latter (O;(5[n])(v) # f;(5[n])(v))
results in §[n](v) =L (Theorem 4.8), which means 0;(5[n])(v) =L. Then, according
to Theorem 4.9 (we have both v € 0;(5[n]) and 5[n|(v) =L), we have f;(5[n])(v) =L=
0i(5[n])(v), which violates our assumption (v=e ¢ 0;(5[n])).

For Condition (2), when v ¢ O;(5[n]), Line 3 in Definition 4.6 ensures the agent i has
a belief of v but still cannot see v in i’s justified perspectives. Thus, v is also not in

Oi(f;(8)[n]), which violates our assumption (v=e € O;(f;(5)[n])).

Therefore, we have considered all conditions for the above assumption and all of them
are proved to contain contractions. Thus, the assumption does not hold, which proves

Theorem 2.8. ]

Now, with the above theorem, we are able to show that the unwanted axiom (B;K;o —
K;p) in Theorem 2.8 holds. Using the ternary semantics as an example. For any
given sequence § with its length as n+ 1, T[S, B;K;p] = 1 equals T[f;(5), Sip AN ] =1,
which is T[0;(f;(8)),¢] = 1 and T[fi(5),¢] = 1. Based on Theorem 4.20, we have
Oi(fi(5))[n] = 0i(5)[n], which means T[0;(f;(5)),¢] = 1 indicates T[0;(5),¢] = 1. In
addition, since the observation function is contractive (O;(s) C s), m(O0;(5)[n],¢) = 1 (it
is not 1 means all variables needed to evaluate ¢ are in 0;(5)[n]) indicates m(5[n], ¢) = 1.

With both T[0;(5), ¢] = 1 and T[5, ¢] = 1 (from 7(5]n], ) = 1), we have T[S, K;p] = 1.

Then, to sum up, the axiomatic system that the JP model follows is all KB axioms

(except Axiom KB2) in Definition 2.7. The
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Quoted text:

Definition 4.21 (Axioms for KB in the JP model). Presented are 9 axioms:

(Knowledge) (Kigo ANKi(p — ¢)) — Ky

Knowledge

K:

T: (Knowledge) | Kip — ¢, ¢ = = K;—p
4: Kip — K;K;p

5:

( )
(Knowledge) | “K;p — K;—K;p

K: (Belief) (B A Bi(p = ) = B
D: (Belief) -B; false

4: (Belief) Bip — B;Biyp

5: (Belief) B = B;—B;p

KB1: Kip — Bip

Since the JP model is an extension of the PWP model, axioms for knowledge (KT45,
which is also known as S5) are proved to hold in Section 3.2 (for the complete semantics)
and Section 3.3. While axioms for belief (KD45) are proved in Theorem 4.19. The
bridge axiom K B1 holds trivially due to Theorem 4.7. As we argue above, having all of
Axiom KB1, Axiom D, and Axiom 5 (causing the unwanted axiom) is not an issue in
the JP model. This is because our definitions of the knowledge and (justified) belief are
more strict. If an agent justifiably believes that they know something, then they actually
know it. Otherwise (if they do not hold that knowledge), they should not justifiably
believe they hold that knowledge. In other words, the only way B;K;p can be true is
if K;p holds as well. That is, although the unwanted axiom in Theorem 2.8 holds in
our model, it does not represent a ‘causal’ relation between believing knowledge and

knowledge.

4.4 Implementation

In this section, we show how we model the epistemic planning problem, including the
encoding for epistemic logic formulae, and efficient pruning techniques that can enhance

the performance of the search algorithm.
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4.4.1 Problem Formalization

Since the JP model works with state sequences, the truth values of agents’ knowledge
or belief formulae do not depend only on the current state, but depend on the whole
state sequence. Thus, firstly, we have to define non-Markovian in planning. Then, we
can extend the formulation to incorporate the external function in F-STRIPS, similar
to how it is in the PWP approach (Section 3.5). At last, we provide a formal encoding
to represent any epistemic planning instance with a language that is extended from

Planning Domain Definition Language (PDDL).

4.4.1.1 Non-Markovain Fully Observable Deterministic Domain

There is no existing definition of classical planning with a non-Markovian setting, so
we have to define it on our own. We now introduce the basic semantics model of a
Non-Markovian Fully Observable Deterministic Domain (NMFODD). An NMFODD is
an extension of the classical planning problem introduced in Section 2.1.2.1, which is
inspired by the definition of Non-Markovian Fully Observable Non-deterministic Domain
(NMFOND) [47]. The action function, transition function, and goal function depend on

the entire track of history of the states.

An NMFODD problem is represented by a tuple:
P = (87 50, Aa CL_), t_)a g_>)7
where:

S is the state space (the set of all possible states), and S denotes the sequence

space;
e 50 is the initial state (sg € S);

e A is the set of all actions;

e o is the action function, which maps the current state sequence to a set of

available actions: o™ : § — {A};
t—)

is the transition function, which takes the current sequence and an action and

returns the next state: t7: S x 4 — S;
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e ¢ is the goal function, which determines whether the goal is achieved given the

current sequence: g~ : S — {true, false}.

4.4.1.2 NMFODD problems in F-STRIPS

Similarly to the PWP approach, in order to model an epistemic planning problem using
the JP model defined in the previous section, we have to introduce an external function
in NMFODD. Here, we provide an extended version of F-STRIPS (in Section 2.1.3.3),
namely Non-Markovian Functional STRIPS (NM-F-STRIPS). Any problem instance in
NMFODD can be represented with NM-F-STRIPS as a tuple:

P = ('CFv OF7IF7 gF—>),

where: Lr and Zp are the same as in F-STRIPS; OF represents all transitions and G
represents all goal propositions. Both O and G include non-Markovian propositions
(could be in both precondition and effect for the operators). Those non-Markovian
propositions are evaluated with the input of the whole state sequence in the search

path.

4.4.1.3 Epistemic Planning problem in NM-F-STRIPS

Now, we can provide a formal formulation for modeling any Epistemic Planning instance

using the JP model in NM-F-STRIPS, namely EP-NM-F-STRIPS.

Given any instance in EP-NM-F-STRIPS, let the signature of this instance be ¥ =
(Agt,V,D,R), the language as Lxp(X), and the JP model for this instance as M =
(Agt,V,D,m, O,..., O), this instance can be represented by a tuple:

P = (Agta V7D7E7 OFvl.Faganf*))v
where:

e Agent set Agt and variable V' are from signature ¥ (also the same as in model M);
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e All variable’s domain D is from model M (same D in ¥ with a special ‘None’

value L), where V' x D forms the state spaces S. € S, sequence space S and

complete sequence space Sg;

e F is the set of all involved epistemic formulae (e C Lxp(X));

—

e OF is the set of all operators 0™ (07 : Sc = S,);
e 7r is the initial state (Zr € S.);

e G is the set of goal conditions, which could contain variable assignments (ontic

goal conditions) and epistemic formulae (epistemic goal conditions from E);

e /7 is the external function that implements M and the ternary semantics (Def-
inition 4.18) to evaluate the epistemic formula based on the state sequence from

the current search path (f7 : S x E — {true, false}).

An epistemic formula € € E can be in the goal conditions (e € G;7) and preconditions

of an operator o € OF (ep € Pre(o™)).

4.4.1.4 Functional PDDL Encoding

Now, we propose a PDDL-like language encoding to describe any epistemic planning in-
stance P = (Agt,V, D, E, 07 ,Ir, Gy , 7). The base of this language used is PDDL2.1 [52],
which allows the usage of functions, while an external function (from F-STRIPS) is
added. Thus, we name this language Functional Planning Domain Definition Lan-

guage (F-PDDL).

The signature of V' is defined as functions. An example of functions in the NIB domain

(Example 4.1) is given as follows:

(:functions
(peeking 7i - agent ?n - number)
(value ?n - number)

CobpE EXAMPLE 4.1: F-PDDL Functions Example

The domain D for each variable is defined as ranges:

(:ranges
(value integer [0,99])
(peeking enumerate [‘t’,‘f’])
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CoDE ExXaMPLE 4.2: F-PDDL Ranges Example

The set of all actions (OF) is represented by action schema in PDDL. An example

(ontic) action “return” is given as follows:

(:action return
:parameters (7i - agent ?n - number)
:precondition (and
(= (peeking 7i ?n) ‘t’))
)
teffect (and
(assign (peeking ?7i ?n) ‘£f7)

)

CopE ExaAMPLE 4.3: F-PDDL Action Example: “return”

Although the given example is only related to ontic state, the action schema allows
epistemic formulae in the precondition and effect. More examples can be found in

Section 4.5.

An example goal conditions for the same coin example can be represented as follows:

(:goal
(and
(= (value q) 5)
(= (@ep ("+ b [b]") (= (value gq) 5)) ep.true)
(= (Gep ("+ b [al") (= (value q) 6)) ep.true)
(= (@ep ("+ b [b] + b [a]l") (= (value q) 6)) ep.true)
)
)

CoDE EXAMPLE 4.4: F-PDDL Goal Example using External Function Qep

The above goal conditions contain one ontic goal condition (¢=5) and three epistemic
goal conditions (Byq=>5, B,q=6 and ByB,q=06). The external function is represented
by (@ep ("<query>") (<p>)), where "<query>" is all epistemic operators (from S, K,
H and B in language Lx (X)) in the epistemic formula, where the ¢ is the r(V;), +

and — represent affirmation and negation.

Besides embedding a normal epistemic formula, epistemic planning would benefit more
from a more abstract representation. Compared to STRIPS language, PDDL provides
more flexibility using action schemas instead of specifying propositions in operators.
Specifically, in order to do so in PDDL, action effects can be modeled in the declarative
format in terms of updating the state variables based on the previous state (Marko-

vian). However, the actions when modeling problems in EP-NM-STRIPS could be
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non-Markovian. Some action’s effects might be updating the value of a variable to what
the acting agent believes (non-Markovian effects). Thus, we have to use another type
of external function (@jp) to retrieve the value from the agent’s justified perspective.

An example code for the same goal conditions as in Code Example 4.4 is provided as

follows.
(:goal
(and
(= (value q) 5)
(= (@jp ("b [bl") (value q)) 5)
(= (@jp ("b [al") (value q)) 6)
(= (@jp ("b [b]l b [al") (value q)) 6)
)
)

CobpE ExaMPLE 4.5: F-PDDL Goal Example using External Function @Qjp

This goal set checks goal conditions for a sequence § with a length of n + 1 by:

e 5lnl(q) = 5;

* /b(5)nl(q) = 5;

o fa(8)[nl(q) = 6;

o Ja(/s(5))[nl(q) = 6.

In the above examples, the usage of the external function @Qjp is similar to Qep, while

a more intuitive example can be found in Section 4.5.1.3.

4.4.2 Planner

As there is no existing planner that can directly solve an EP-NM-F-STRIPS instance,
we have to create one. Omne potential solution is to adapt a planner that can solve
F-STRIPS instances by: 1), fitting the input of the external function with the current
search path; 2), introducing the epistemic formula in language; 3), implementing the JP
model, including ternary semantics (with a history of all generated justified perspectives
for efficiency). However, all the classical search algorithms would not work on solving
an EP-NM-F-STRIPS instance because even the simplest pruning procedure, duplica-
tion elimination (pruning visited state), would not work due to the Non-Markovian

assumption. Therefore, we have to develop our own planner and algorithms. To ensure
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completeness, the basic search algorithm used is Breadth First Search (BFS) without
duplication elimination. Although duplicate elimination is impossible for solving a gen-
eral NM-F-STRIPS instance, as the searched path will never be repeated, there are
some optimizations we can use to solve EP-NM-F-STRIPS, as it is a subset of general

NM-F-STRIPS.

4.4.2.1 Duplication Elimination

Duplication elimination is important to our planner, not only because of the efficiency it
provides, but also because it allows the planner to prove a problem instance is unsolvable.
Since the JP model uses the sequence of the states, the search cannot use the current
state itself for duplication elimination. As the agent’s knowledge and belief are formed
from the state sequence through justified perspectives, a dictionary of perspectives is

used as the identification for this sequence.

We now define the dictionary keys of any epistemic formula as its corresponding per-

spective functions in a high-order function format.

Definition 4.22 (High-Order Epistemic Function). Given an agent set (size of k) from
the signature Agt € 33, let ¢ and j be any agents in Agt, O; be any observation function
in Oy, ..., O, f; be any justified perspective function in fy, .. ., fi, and empty as a special

function:

2. fi- 05(3) = 0;(fi(5))

w

- i f5(8) = £;(£(3))
4. 0;- £;(3) = f(s1(0i(5)))

ot

. empty(5) =3

This definition is straightforward. Since both the observation function O and the jus-
tified perspective function f take a state sequence as input, they can compact (nest)
freely, except the input of the justified perspective function needs to be a complete state

sequence. Thus, when compacting a justified perspective function on an observation
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function, we need to fill in the result sequence of the observation function (could be
a partial state sequence) with ‘None’ value L by using the state override function (in
Definition 4.1). The special function empty is introduced as the global perspective, as

well as the base case when generating all perspective keys in the following definition.

Definition 4.23 (Perspective Keys PK). Given any formula ¢, its perspective keys ,
PK(p) , is:

PK(p) = {pk(v)}, where:

O; - pk(v) @ is in the format of S;%
pk(v), O; - pk(v)) ¢ is in the format of K;v
pk(p) =
fi - k() @ is in the format of B;i or H;y
empty otherwise

Thus, any ontic formula will have the key as an empty string, which indicates the
global perspectives. The keys of any epistemic formula, using B;S,¢ as an example, will
perspective function names of all its corresponding epistemic operators, f; - O; - empty 3,
While the keys of a formula B;Kjp are {f; - O;, f;}. Since the keys of any epistemic
formula are a high-order function of its corresponding perspectives, we can use keys to

generate its perspectives.

Definition 4.24 (Duplication Pruning Set Function). Given an EP-NM-F-STRIPS
problem instance as P = (Agt,V, D, E, 07 ,Zr,G7 , f) and the current expanding se-
quence as §, let E' C E be E'=G; UPRE(OF), where PRE(OF) = UOHGO? pre(o™)
then we can define the Duplication Pruning Set (DPS) function (DPS : PK — P(PK x
S)) as follows:

DPS(3) = {key — key(8)[n] | key € U PK(e)}
eck’

Thus, the duplication pruning set for any given sequence § is a dictionary that contains

keys and the last state of corresponding perspectives based on these keys.

3The high-order function name f; - O, - empty is effectively the same as f; - O; (Definition 4.22). Thus,
for simplicity, we omit the compaction of -empty in the following content.
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Theorem 4.25. For any two given sequences $1 and $5 with length of n1+1 and ny+1
respectively, if DPS(s1) = DPS(s3), there does not exist a formula ¢ € Lxp(3) such
that T[s1, ] # T'[$3, ¢].

Proof. Proof by contradiction.

Assuming DPS(s1)=DPS(s3), there exists a formula ¢ € Lxp(X) such that, T'[s1, ¢] #
T'[s3,¢]. We prove this inductively on the structure of ¢ based on the cases in the ternary

semantics (Definition 4.18).

Firstly, let us discuss the base cases. For any epistemic formula ¢ in language Lxp(2),
after applying our ternary semantics for any amount of time, it would eventually come in

the format of (V}.) or S;v, which matches Case (a) or Case (d) in the ternary semantics.

Case (a): This is straightforwardly evaluated based on the last state of the sequence,
where the sequence is generated with some key pk(p) € PK(p). If Tpk(v)(s1),7(V,)] #
Tlpk(¢)(53),7(Vy)], then we have m(ph(g)(s1)[m1], (Vi) # m(ph()(53)lnal, r(V4)) . So
that, we also have ph() (7)) 7 k() (53)lna]. Due to pk(¢) (51)[m1] = DPS(51) k()]
and pk(¢)(s3)[n2] = DPS(s32)[pk(p)], we have DPS(s1) # DPS(s3), which is contra-

dictory to our assumption.

Case (d): In this case, we have two perspective keys to evaluate, pk(p) € PK(p)
and pk(p) € PK(p), where pk(p)' = pk(p) - O; . Firstly, if T[pk(p)'(si), Siv] or
T[pk(y)'(s3),S;v] is 3 and the other is not (assuming T'[pk(¢)’(s1), S;v] = 1), then,
we have either i ¢ pk(p)(51)[m] or v ¢ ph(p)(5i)m). Since TIpk(w)/(5), S] # 1,
both i and v are in pk(p)'(s3)[ne]. Thus, we have pk(p) (s1)[n1] # pk(e)'(s3)[nz2]. Due
to ph(p)(51)im] = DPS(50)[pk(w)] and pk(p) (5)[ns] = DPS(53)[pk(s)], we have
DPS(si) # DPS(s3), which is contradictory to our assumption. Secondly, if both
Tpk()'(s1), S;v] and T'[pk(p)'(s3), S;v] do not equal to 3, we have exact one of them
is 1 and another is 0 (assuming T'[pk(p)'(s1), Siv] = 1). Since T[pk(p)'(51), Siv] = 1
and T[pk(p)(s3), S;v] = 0, we have v € pk(p)(s1)[n1] and v ¢ pk(p)(s3)[n2]. Thus,
we have pk(p)(5i)m] # ph(9)(53)na] Due to ph(g)(s)[mi] = DPS(si)[pk(g)] and
pk(p)($32)[n2] = DPS(s3)[pk(v)], we have DPS(s1) # DPS(s3), which is contradictory

to our assumption.

Case (b) and Case (c): Conjunction and negation are trivial, we just apply the se-

mantics and it will match one of the other cases.
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Case (e) and Case (g): Those can be proved with the same reasoning process as

Case (d).

Case (f) and Case (h): Those can be proved by applying the semantics, Case (f)
becomes two formulae and Case (h) becomes one formula, which can be recursively
matched with any of the cases in this proof. Eventually, they will match the base

cases. O

4.4.2.2 Pruning by “Have No Belief” (HNB)

The justified perspectives of some epistemic planning domains can be reasoned with
direct observation, while others require indirect inference. To differentiate those two

types, a definition for the domains that require indirect inference is presented as follows:

Definition 4.26. Let all Epistemic Planning Domains be FPD, domains that require

indirect inference EP Dy can be defined as:

VM = (Agt,V,D,w, O, ...,0) € EPD,
where: ds. € S,
Jv eV,
Ji € Agt,
if v ¢ O;(se),
Jde € D, such that v € O; (sc({v=e}))

EPDpp=(M

In addition, the set of epistemic planning domains that only requires direct observation

EPDpo can be represented by EPDpo = EPD \ EPDyy.

The nature of any problem instance in EPDpo ensures that once the “have seen” rela-
tion H;p becomes true, it will never become false again. In other words, any epistemic
goal relation that contains “Have No Belief” (HNB) must stay true for all time. Once it
becomes false, it will never be true again. Thus, pruning by HNB is another optimization

that can be done.

The definition of the HNB goal formula is abstract. An epistemic formula that can be
considered as an HNB formula, if and only if, there is an odd number of negations that

appear before the last belief operator H, such as =H;p, or ~B;Hj.
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4.4.2.3 Search Algorithm

As the search space for any NM-F-STRIPS state space is unbounded, any depth-based
search algorithm, such as Depth First Search (DFS) would not be complete. Thus, we
choose BFS as our baseline, namely bfs. In addition, in order to prove unsolvability
for the unsolvable instances, we embedded duplication elimination (Section 4.4.2.1) into

bfs as bfsdc. Besides, pruning by HNB is also included in the search bfsdcu.

There is no existing efficient heuristic function for solving problems in NMFODD as far
as we know. The most common heuristic function, Delete Relazation Heuristic [72], is
not suitable to use, as it affects the justified perspective of agents. In the delete relaxed

problem, when an assignment is never false, it cannot form the desired false-belief.

Since relaxation is the principle to design a good heuristic function [40], the most effi-
cient and admissible general heuristic function we proposed is Precondition and Delete
Relazation (PDR) heuristic function (hppr). The idea is to remove the precondition list
and delete list for all actions in an EP-NM-F-STRIPS problem instance, which becomes
P.pregc-pet = (Agt,V,D,E,Of . Ip,Gg,f”). The summation of all actions’

costs in an optimal plan to solve P-p,cg—per is the value of hpg.

As Bonet and Geffner mentioned, calculating such a heuristic (hppr) is as hard as solving
the problem itself. Thus, we proposed Goal-Counting heuristic hgo to approximate

hpsr as follows:

Definition 4.27 (Goal-Counting Heuristic). Let P = (Agt,V,D,E,OF ,Zr, Gz, f7)
be the planning instance, Gepistemic € G be the set of epistemic goal conditions and
Gontic € G5 be the set of ontic goal conditions. The value of the goal counting heuristic

for a given sequence § can be defined as:
hood) = | {ele € Gepisemics =7 (50} + [{olv=e € Gantie, nl(v) # e},

where the length of the sequence §is n + 1.

Thus, we used hgo with two standard heuristic search algorithms, A* and Greedy Best

First Search, namely astar and greedy, which both are extensions from bfsdcu.
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4.5 Experiments

To demonstrate the effectiveness and expressiveness of our model, we run experiments
on both the existing benchmark problems for comparison with another state-of-the-art
approach and newly proposed benchmarks that are difficult to solve by other approaches.
In addition, we also design and run large-scale experiments on synthetic versions of prob-
lems to explore how the features, such as the number of agents, the depth of epistemic
formulae, the number of epistemic formulae in the goal condition and the length of the
solution, affect the performance of each proposed search algorithm (bfs, bfsdc, bfsdcu,
astar and greedy) of our planner as well as the performance of epistemic formulae

reasoning with the JP model in external functions (f7).

4.5.1 Benchmark Experiments

In this section, we experiment on the common benchmark epistemic planning problems
from the PDKB approach [88], as well as some trickier domains, which are either too
complex or impractical to be modeled by other approaches. The benchmarks we used
from PDKB approaches include Selective Communication in Grid (SCs), Corridor and
Grapevine. The domain Thief is omitted, since finding the plan itself in it cannot reflect
the full ability of epistemic reasoning. Since there are two roles in this domain, guard
and thief, and their objectives are conflictive, the plan that meets anyone’s objective
would make no sense to the other under the centralized planning setting (as discussed
in Assumption 8). The implementation of the benchmarks from the PDKB planner is

used as a comparison.

Besides, as one of the benchmarks in many works [117, 140], we also include the Coin
domain. Unfortunately, we did not find an attempt for the coin domain of the PDKB
approach. In addition, BBL is included besides the benchmarks. Similarly, as men-
tioned in Section 3.6.2, two-dimensional line of sight evaluation is not suitable to be

implemented in PDKB (propositional).

The viability experiments are performed on a Linux machine with 8 CPUs (Intel Core
i7-10510U CPU 1.80 GHz x 8) and 16 gigabytes (GB) memory. However, since the
planner does not have any parallel implementation, the full power of the machine is not

reached to eliminate outlier performance. The timeout is set to be 600 seconds, and the
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memory limit is 8GB for both approaches. The search algorithm used is greedy using
goal counting as a heuristic function (mentioned in Section 4.4.2.3). The source code,

benchmarks, and experiment results can be found online at:

https://github.com/guanghuhappysf128/bpwp

Throughout this section, we will use the following notation:

e Agt: the set of agents in the problem instance;

e d: the maximum depth of any nested epistemic formulae in the problem instance;

G: the set of goal conditions in the problem instance;

e p: the computed sequential plan; and,

|Gen| and |Exp|: the number of nodes generated and expanded during the search.

4.5.1.1 Selective Communication (SC)

The domains SCs were initially defined by Alshehri et al. [124] (inspired by Wu et al.
[132]) where agents’ task is cooperatively searching for survivors. They defined 5 different
scenarios — the first 4 are with different capabilities of moving and communication, while

the last one alters those agents’ ability of perception. Specifically, the 5 scenarios are:

1 Non-epistemic Goal (lepgoal) scenario: It is a simple scenario where the goal is

non-epistemic, requiring agents to search through the entire grid.

2 Epistemic Goal (epgoal) scenario: In addition to searching the entire grid, the
goal also requires all agents to believe the locations of all survivors. During this
process, the communication between agents are on a public channel that is visible

to everyone.

3 Broadcast Communication (board) scenario: In this scenario, a commander, an
agent who remains stationary, is designated. The communication is the same as
epgoal. The goal is to have the entire grid searched and only the commander to

believe the locations of all survivors.


https://github.com/guanghuhappysf128/bpwp
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FIGURE 4.2: Example layouts and initial states for Grid domain.

4 Non-Broadcast Communication (!board) scenario: All is the same as board, ex-

cept only one of the agent can communicate to the commander.

5 Blocked Cells (blocked) scenario: The communication is the same as epgoal,
while blocked cells are introduced. The agent has to sense the next cell and
believe it is unblocked before moving into it. Agents can communicate not only
the location of survivors but also whether a cell is blocked or not to improve
efficiency of overall plan (avoid every agent sense a room once, etc). In addition to
the epistemic goals that every agent believes the locations of all survivors, specific
ending location for each agent is design to verify the plan efficiency improvements

on communication of blocked cells.

They implement the above 5 scenarios on 2 different domains: Grid and Block World
for Team (BWA4T). Since the rule of communication, which is the rule of seeing for
the observation functions O; in our model, is the same, we only select one domain to
implement (Grid). In the Grid domain, there are k agents and 3 survivors located in a
x x y grid. They tested with 3 or 4 agents, in a 3 x 3 or a 3 x 4 grid respectively (4

instances per scenario) as shown in Figure 4.2.

The actions they modelled are: move, observe and communicate. Agents’ beliefs are
generated by either observing a cell or “hearing” from others’ belief by communicate.
Specifically, those beliefs are generated and updated by the action effects. While, in
our model, the belief is generated by state sequence. For example, agents’ belief of the
location of a survivor is generated either by: agents having been in the same room as
that survivor; or, agents having heard the location of that survivor from communication

with others. By doing so, we can delegate the epistemic reasoning to the external
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function f— instead of specifying the epistemic effects in action effects in any planning
language. Therefore, the different communication rules can be modeled as one single

domain file instead of different domain files.

Specifically, in the Grid domain, let Sur be the set of survivors, we have V' = {(loc i),
(movable i), (sharable i), (receivable i), (loc j), (shared j)|i € Agt,j € Sur}. The
observation function for each scenario can be represented by Table 4.1. For simplicity,
we only include visibility of the survivors’ location here. Agents can “see” the location
of the survivor j if: 1) the agent is in the same location as j (it is intuitive for the agent
to see survivors without a “sense” action if they are in the same location); and, 2) the
location of j is shared by others and agent ¢ can receive this message, which indicates it
is either in scenario 2 or 5 (where everyone can receive messages), or ¢ is a commander

(the only one that can receive).

Scenarios | (loc i) | (receivable i) | (loc j) | (shared j) | (loc j) € O;(5]n])
All X - X - True
2,3,4,5 - True - True True

TABLE 4.1: Clarification for seeing relation in difference scenario.

Due to the seeing rules for the grid problem, we have to make two changes (in both
methods for consistency) to the original goal conditions in PDKB, in which it is unsolv-
able by our modeling. Firstly, we have to remove —Bjy(loc sury) =74, because Agent b
locates in ry initially, it does not make sense for agent b not seeing sur; (it makes sense in
PDKB as they require a sense action to explicitly update the belief =By (loc sury)=ry).
Secondly, we have to remove the goal conditions that require Agent ¢ and d to be at
r3 in the blocked problem instances. The reason is that in the goal conditions, PDKB
instances also require =B, (loc sur;) =r4 and = By(loc sury) =r4. In blocked scenario
(Scenario IIT and IV in Figure 4.2), it is impossible in the JP model to have agents pass-
ing r4 (to reach r3) without having = B;(loc sur;) =74 no longer hold. For consistency in
comparing results, we also updated goal conditions in the PDKB instance accordingly

before running their solver.

The result is shown in Table 4.2.The JP approach has a better performance (shorter
solving time, as bold font in the table) compared to PDKB in most of the cases, except

for those trickier ones (larger amount of nodes generation in PDKB). This happened
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Problem Our approach PDKB
|Agt| |G7 | ‘ |Gen| |Exzp| JP Total |p] ‘ |Gen| |Exp| Pre Total  |p]
lepgoal:
3 9 56 6 0.05 0.10 6 161 27 0.83 0.94 15
3 12 92 9 0.11 0.20 9 287 37 1.18 1.33 21
4 9 53 5 0.03 0.08 5 193 26 1.13 1.27 14
4 12 84 8 0.13 0.22 8 341 45 2.18 2.36 20
epgoal:
3 18 74 10 0.95 1.05 9 2.7K 1.4K 0.69 0.81 42
3 21 358 48 11.58 12.30 16 | 4.8K 2.5K 1.24 1.43 53
4 21 507 49 13.82 14.79 13 | 1.0M 73.1K 1.1 9.25 44
24 506 46 23.49 24.86 17 | 10.2K 4.8K 2.00 2.42 43
broad:
3 12 39 7 0.12 0.16 7 155 25 6.95 7.69 19
4 12 49 6 0.12 0.17 6 155 25 0.81 0.93 19
3 15 61 10 0.32 0.41 10 | 243 38 1.75 1.99 25
4 15 65 8 0.32 0.40 8 374 54 2.84 3.10 25
'broad:
3 12 47 8 0.12 0.16 &8 | 300 58 8.83 943 23
4 12 59 7 0.15 0.20 7 300 58 9.54 10.14 23
3 18 68 12 0.76 0.84 12 | 502 70 34.95 37.90 30
4 18 88 11 0.95 1.07 11 | 502 70 38.88 40.59 30
blocked:
3 11 619 32 560 6.27 14 | 796 230 3.06 3.35 46
3 14 14K 64 28.18 30.31 20 | 1.0K 279 6.04 6.54 59
3 12 619 32 8.36 9.11 14 | 1.2K 397 4.97 5.42 49
4 16 2.2K 75 90.85 95.07 20 | 2.8K 1.2K 9.24 10.13 68

TABLE 4.2: Experimental results for Grid domain, where JP, Pre and Total represent
time (in seconds) took by external function (JP function) calls, pre-compilation step in
PDKB and total instance solving time.

due to the search algorithm and heuristic function that we used could be optimized, as

well as some implementation details.

4.5.1.2 Corridor
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FIGURE 4.3: The layout and example initial state for the Corridor domain.
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The corridor domain was originally presented by Kominis and Geffner, which is also
used in the experiments for the PWP approach in this thesis (in Section 3.6.1). Several
agents located in four rooms of a corridor try to learn a secret (Figure 4.3). One of the
agents (a) has the ability to move between rooms, sense the secret, shout and shout_lie.
The action shout announces the true value of the secret as long as agent a knows the
secret (by performing sense action before), while the action shout_lie announces the false
value of the secret. For both actions, agents in the same room or adjacent rooms learn
the shouted value of the secret. The objective is to find a plan for agent a that makes

some agents believe the secret while some other agents believe the secret is false.

The setup of the experiments in PDKB [88] is in terms of agents (3, 5 and 7) and
epistemic formulae depth (1, 3 and 5). The initial states for each instance are the
same as the 7T-agent one, except for having fewer agents, which is shown in Figure 4.3.
Muise et al. use the same goal conditions for every instance to show how the number
of agents and epistemic depth affect the performance. We follow their domain and
experiment design. The state space of the corridor domain can be modelled by V =
{loci, sensed, sct, shared_sct, locshared_set | © € Agt} and Dioe; = {1,2,3,4} (where j €

AgtU{sct} and others are boolean variables). The goal conditions are By—sct and B.sct.

An example implementation can be found in Appendix C.2.

Problem Our approach PDKB

|Agt| d | |Gen| |Exp| JP Total |p] | |Gen| |Exp| Pre Total |[p]
3 1 32 9 001 0.01 5 35 16  0.05 0.08 8
5 1 32 9 001 0.02 5 37 16 0.06 0.10 8
7 1 32 9 001 0.03 5 38 16 007 011 8
3 3 32 9 003 0.04 5 35 16  0.57 0.62 8
) 3 32 9 004 0.05 5 37 16 366 386 8
7 3 32 9 003 0.04 5 38 16 11.95 1274 8
3 5) 32 9 003 0.05 5 35 16 4248 45.64 8
) ) 32 9 005 0.07 5 - - - TO

7 5 32 9 005 0.06 5 - - - TO -

TABLE 4.3: Experimental results for Corridor domain.
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The results can be found in Table 4.3. Since the goal conditions and related initial
states are the same, the number of nodes generated and expanded is constant across all
problems, while only the number of agents and the depth of epistemic formulae affect
the execution time. We can see that those two features have a great impact on the pre-
compilation time in the PDKB approach, but not on our justified perspective evaluation.
Following the PWP approach (Section 3.5), the JP approach also uses lazy evaluation.
The epistemic formulae are evaluated only when the search node is being generated
rather than generating all epistemic formulae at the pre-compilation step (what PDKB

does).

In addition to efficiency, the expressiveness of two models is another interesting aspect
to compare. In PDKB implementation, [88] assume the agents know the location of all
other agents and the agents know where the secret has been shared as well as the shared
value of the secret (they just do not believe the value unless it was shared directly to
them). Therefore, we implemented the observation function following their assumption.
That is, agents see every variable all the time, except for sct, which has only been seen

by agent 7 if and only if Agent a shared or lied in the same or adjacent location as i.

We believe the first assumption is not necessary but reasonable, while the second as-
sumption is not reasonable. For example, one of the effects in the PDKB corridor domain
file for the action agent a lying in r4 is ByB.—sct, which we believe is not reasonable.
The effect of the action should only be viewed by those in 74 of r3, as r9 is not adjacent
to r4 (as shown in Figure 4.3). Therefore, we proposed a new observation function that,
in addition to sct, determining whether agents see both locspared set and shared_sct also
depends on whether their relative distance is smaller or equal to 1. The experimental
results are not presented here as it is exactly the same (Table 4.3), due to the current
goal conditions not being affected by this change. However, we are able to reason about
some nesting propositions, such as —HpB.sct (effectively, =By B.sct A —By—B,sct), while
the PDKB approach cannot. Both versions of the observation function implementation

can be found in Appendix C.2.

4.5.1.3 Grapevine

Grapevine, proposed by Muise et al. [87], is a similar problem to Corridor. The seeing

rule becomes that the secret will be known to everyone in the same room. With only
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FIGURE 4.4: The layout and example initial state for the Grapevine domain.

two rooms available, the scenario makes sharing secrets while hiding from others more
difficult. The basic setup is for each agent to have their own secrets (a propositional
variable). Initially, all agents are located in room r; (as shown in Figure 4.4). Agents
can move between those two rooms and share or lie about their own secret. In addition,

they can also share about others’ secrets based on what they believe.

For the observation function, firstly, agents see each other’s location. This is because
there are only two rooms, agents are either in the same room, or in the other room.
The visibility of the secrets is related to sharing and lying actions. In order to model
sharing and lying, we need three variables for each agent’s secret. Using agent a’s
secret as as an example, those three variables are: (truth_value ?7s) (denoted as
tas), (lying_value ?s) (denoted as las) and (shared_value ?s) (denoted as sas),
representing the secret’s truth value, lying value, and currently sharing value (could be
shared by any agent). tas and las are visible solely to their owner agent, agent a, while
the agents that perceive sas is determined by the room in which the secret as is being

shared.

The action agents share or lie about their own secret would have the effect:

e (assign (shared_value 7s) (truth_value 7s)), or

e (assign (shared_value 7s) (lying_value 7s)) respectively.

While the action sharing_others_secret needs some discussion. Intuitively, agents
could only share the value of others’ secret of the value that they believe. In existing
approaches, including PDKB and PWP, they have to specify the value of what agents
believe in the modeling language. Specifically, they model this action as the agent can
choose to share others’ secret as truth value or share others’ secret as false value. That

is, they have to enumerate all possible values of the secret for this action. Although
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the secret in grapevine is only boolean, both approaches miss the opportunity to model

variables with larger D, or even continuous D,,.

However, with the capability of introducing external function @Qjp, we are able to model

sharing_others_secret as one PDDL action:

(:action sharing_others_secret
:parameters (7a - agent, ?s - secret)
:precondition (
(= (own ?7a 7s) 0)
(= (sharing) 0)
(= (@jp ("b [7al") (shared_value 7s)) jp.none)
)
:effect (
(assign (shared_loc 7s) (agent_loc 7a))
(assign
(shared_value 7s)
(ejp ("b [7al") (shared_value ?7s)))
(assign (sharing) 1)

CoDE EXAMPLE 4.6: F-PDDL example action in Grapevine domain using external
function @jp.

The preconditions require that the agent does not own the secret (Line 4), there is no
other secret being shared at the moment (Line 5) and the agent has a not-‘None’ belief in
the secret (Line 6). The effects represent that the secret is shared in the same location as
the agent (Line 9), the secret is being shared (Line 13) and the shared value of the secret,
(shared_value ?s), is being shared as what the agent believes (Line 10-Line 12). This
representation models the agent’s belief as part of the language without specifying its

value, which allows the JP model to have the potential to model continuous domains.

The experimental results can be found in Table 4.4. As it shows in the table, PDKB
took a costly pre-compilation step when d becomes 2 (around 9 seconds when |Agt]|
is 4 and 200 seconds when |Agt| is 8). In other words, their solving times are highly
dependent on d and |Agt|. Although our approach could solve these problems within a
short period of time (a few seconds) independent of those features, it failed to solve the
final two problems because of the large number of nodes generated or expanded. This is
due to both the complexity of the problem (branching factors) and the lack of effective

heuristic functions.
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Problem Our approach PDKB

|Agt| |G#'| d | |Gen| |Exp| |JP| JP Total |[p] | |Gen||Exp|] Pre Total |p]

4 2 1 93 11 4.2 0.08 0.10 4 80 15 048 056 4
4 4 1 167 22 70 0.17 0.20 9 108 14 047 056 7
4 8 1 387 48 13.3 1.37 1.44 18 137 14 048 0.57 12
4 2 2 78 10 4.1 0.07 0.08 4 o7 13 916 11.22 5
4 4 21 90.5K 12.4K 10.2 - MO - 88 11 9.24 11.28 7
4 8 2| 41K 548 21.7 50.89 52.72 24 | 1.2K 330 9.18 11.75 23
8 2 1 189 15 4.3 0.26 0.30 4 112 16 3.7 469 4
8 4 1 343 30 7.1 0.86 0.93 9| 59K 194 3.75 5.68 11
8 8 1 807 60 13.5 7.28 7.48 18 970 260 3.72 4.67 16
8 2 2 158 14 4.1 0.29 0.33 4 169 31 199.60 481.85 5
8 4 2126.2K 23K 74 - MO - 355 34 202.56 483.75 9
8 8 2| 72K 524179 - MO - 561 51 200.78 496.39 15

TABLE 4.4: Experimental results for Grapevine domain, where |JP| is the average
length of the justified perspectives for all external function calls.

For branching factors, considering 8 agents examples, the agents are able to move be-
tween rooms (8 available actions), share or lie about their own secrets (16 available
actions), and share others’ secrets (56 available actions in the worst case). Since any
agent can share others’ secrets once they have belief about them, there is no direct

pruning that can be done regarding the branching factors.

As for the heuristic function, using the 5th instance as an example, the goal conditions
are: ByB.—), B, BgB.y and By, where ¢ is (= (shared as) True). The goal
counting heuristic for all successors of the root nodes is 4 except: 1) it becomes 3 when
agent a lies about as; and, 2) it becomes 1 when agent a shares the truth of as. Since
the search algorithm is greedy, it expands the latter condition first. A wvalid solution
would be to move d away and let a lie about as, however, the goal counting heuristic for
that node would be 2. This is because once a lies with b and ¢ in the room, both B.as
and Bpas become false. Having the heuristic value for the correct node as 2 means, with

the greedy search algorithm, this node will only be expanded when all the nodes with
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heuristic smaller than 2 have been expanded, which caused our planner to run out of

memory.

As for the last two instances with both 8 agents and d = 2, our planner failed to find a
solution for the similar reason as above. The number of nodes generated and expanded
is much higher for instances with |G| = 4 than |G| = 8, while the latter one has much
longer state sequences when evaluating epistemic formulae. This is expected due to the
duplication elimination procedure mentioned in Section 4.4.2.1. The size for duplication
elimination depends on G U PRE(O% ) according to Definition 4.24. Specifically, in
these two instances, the latter one contains more goal conditions, which results in the
latter one having a larger DPS key size. That is, the state sequence would be less likely
to be eliminated due to the larger DPS key size, resulting in the average length of the

search path being much longer.

4.5.1.4 Coin

The Coin domain is based on the problem described in Example 4.1. It was originally
inspired by the coin example in Baral et al. [117] and the false-belief task by Bolander
[140]. Even though there is no attempt from the PDKB approach on this domain,
since the scale of this domain is small (all instances can be solved within 0.01 seconds),
we still include this because it is our motivational example, and the results show the

expressiveness of our approach.

The coin domain contains two agents, a and b, and a coin ¢ could be either head or tazl.
The coin is in the box and not visible to all agents unless they are peeking into the box.
The actions that agents can take are either “peek” into the box or “return” to their
standing position. In addition, there is a secret hidden agent who can “flip” the coin
without either a or b noticing, unless they are peeking into the box. The task is to form

some false beliefs between agents as it is shown in Figure 4.5.

We used three variables to model it: (peeking a), (peeking b) and (face c), where c
could be Head or Tail, and peeking is a binary relation. Agents are able to see whether
the others are peeking into the box all the time, while the value of ¢ is only visible to

the agent that is currently peeking.
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FIGURE 4.5: A solution for the 5th instance in Coin domain.

|Agt| d |p] |Gen| |[Exp| JP Total Gy

1 4 1 0.00 0.00 Bgc=head
6 2 0.00 000 Bgc=tail
11 4 0.00 0.00 B,c=head N Byc=head
11 4  0.00 0.00 Bgc=head N Byc=tail
36 14 0.02 0.03 c=tail A\ Byc=tail N\ Boc=head N\ By,B,c=head
37 14 0.01 0.03 BpBsc=head N\ B,Byc=tail

NN NN
I N R e N e
o T N ORI O}

TABLE 4.5: Experimental results for Coin domain.

The results are shown in Table 4.5. Most of the results are trivial, while the last two

could use some explanation.

The 5th is the same as our motivating example (Example 4.1), which contains 4 goal
conditions. The plan returned is the same as Plan 4.2. The first three goal conditions
are straightforward, but not the last one (ByBgc = tail). In order to evaluate this
epistemic formula, we need to extract justified perspective for b first. The initial state

is { (peeking a)=False, (peeking b)=False, (face c)=head} *.

As shown in Figure 4.5, the global sequence of the plan is:

§ = [F-F-Head,T-F-Head,F-F-Head,F-T-Head ,F-T-Taill.

Agent b’s observations of the global sequence are:

Oy(5) = [F-F-_, T-F-_, F-F-_, F-T-Head, F-T-Taill,

4For similarity, in this section, we only use value to represent state. Therefore, the given initial state
will be represented as F' — F — Head
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where ‘_’ represents the variable not in b’s observation. Then, according to Definition 4.6,

we have agent b’s justified perspective as:

f»(8) = [F-F-L,T-F-L,F-F-1,F-T-Head,F-F-Taill.

Agent a’s observations in agent b’s perspective are:

O.(fy(3)) = [F-F-_, T-F-1, F-F-_, F-T-_, F-T-_].

Then, applying f, on f,(3) for timestamp 0, we have F-F-_1 since lt, = —1. For timestamp
1 and 2, although It. = 1 in both of them, the retrieved value of c is still 1, because,
for both cases, the value of ¢ in the input sequence for retrieval function R are all L

([K(3)[0], f(5)[1]] for timestamp 1 and [f(5)[0],. .., 4(5)[2]] for timestamp 2).

While, for timestamp 3 and 4, we still have [t, = 1 (as 1 is the last timestamp b sees a
sees coin). Then, due to LT = {} for both (agent b has not seen ¢ before or at timestamp
lte = 1) and RT = {3} for timestamp 3 and RT = {3,4} (agent b has seen c twice after
timestamp It = 1) for timestamp 4 in Definition 4.5, both R([[f,(5)[0], ..., /(5)[3]]], 1, ¢)
and R([[#(5)[0],...,/(5)[4]]],1,c) equal the value of ¢ in the timestamp 3 of the input
sequence, which is Head. Therefore, agent a’s justified perspective under agent b’s belief

(b’s justified perspective) is:

fu(fy(3)) = [F-F-L1,T-F-1,F-F- 1 ,F-T-Head,F-F-Head]

Therefore, the last goal condition for the 5th example is achieved.

In the last instance, the plan returned by our planner is “peek(a)”, “return(a)”,
“peek(b)”, “return(b)”, “peek(a)”, “flip(c)”,“return(a)”, “peek(b)”. However,
an optimal plan for that instance would be “peek(b)”, “return(b)”, “flip(c)” and
“peek(a)”. Intuitively, b believes a sees what b saw, and a believes b saw what a sees.
Both goal conditions are fulfilled at the last timestamp. However, due to the greedy
search algorithm with goal counting heuristic, the planner seeks to achieve any of the

goal conditions as soon as possible.

The first three actions in the first plan result in ByB,c = Head (although B,Byc =

Head). The following plan makes agent a believe b believes ¢ is Tail, while ByB,c =



Planning with Justified Perspectives 190

|Agt| d |p] |Gen| |Ezp| JP  Total Gz

2 1 3 37 9 0.01 0.02 Bpw=True

2 1 3 41 10 0.03 0.04 B,v=True N Byv=True

2 2 7 149 37 0.36 0.40 BpB,v=True A\ B,Byv=True
2 2 5 325 81 0.38 0.46 BpBsv=True

2 3 5 325 81 0.45 0.53 BpB.Byv=True

2 4 5 381 95 0.78 0.89 B,ByB,Byv=True

TABLE 4.6: Experimental results for BBL domain.

Head stays the same due to the design decision (checking past first) of the retrieval

function R (in Definition 4.5).

4.5.1.5 Big Brother Logic (BBL)

BBL [2] contains stationary cameras that can turn and observe a certain angular range
in a 2-dimensional plane. For example, camera a and camera b (agents) are located
in positions (3,3) and (2,2) respectively, while a propositional object v with value
True is located in position (1,1). Cameras have two actions: clockwise-turn and
anticlockwise-turn. For simplicity, we set the angle of turning to be enumerated from
the set {0°, £45°,+90°, +135°,180°} and the turning angle to 45°, but as the external
functions are implemented in Python, we can replace this with floating point numbers
to model continuous directions. We use the same problems as in the PWP approach

(Section 3.6.2.3), but with modified goals to support belief instead of knowledge.

The observation function is the same as the PWP approach: j € O;(s) iff

(| arctan(%‘zgfg))') — s(dir;)| < W)
% (4.1)
(! arctan(%) — s(dir;)| > w>

where (x;,y;) is the location of the agent ¢, while (z;,y;) is the location of the target

(could be an agent or an object).

An implementation (including both domain and problem file, as well as the observation

function) can be found in Appendix C.1.
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Results are shown in Table 4.6. Initially, camera a faces —135°, while camera b faces
90°. Since v € O4(sp), the plan for second instances is the same as the first one, which
is only to take three anti-clockwise turns. The optimal plan for the rest of the instances
should be to turn clockwise for 5 times, as they require b sees loc, (indicating b sees
a sees locy). However, due to the nature of greedy with goal counting heuristic, for
the 3rd instance, turning anti-clockwise for 7 times will achieve one of the goals first

(Byv=True), resulting in the goal counting heuristic becoming 1 instead of 2.

4.5.2 Large-Scale Experiments

In addition to the benchmark experiments, we perform a large-scale experiment in order
to examine the search algorithms, including the proposed two pruning methods, and the

complexity of the ternary semantics.

The search algorithms we explore are bfs, bfsdc, bfsdcu, astar, and greedy (defined in
Section 4.4.2.3). The number of problem instances solved (including proven unsolvable)
is chosen as a direct comparison between search algorithms. In addition, for the solvable
instances by all algorithms, the efficiency can be compared by the number of nodes that
have been expanded. On the other hand, for the proved unsolvable instances by all
algorithms (except bfs, which cannot prove unsolvability), the number of nodes that
have been expanded to prove the problem instance is unsolvable can also show the

algorithms’ efficiency.

The domain we selected for large scale experiments is BBL, since it is: firstly, not too
trivial to be solved in 0.1 seconds, such as the Coin or Corridor domain; secondly, not too
complex (easily becoming unsolvable due to the large branching factors), including the
Grapevine domain; lastly, not containing too many ontic goal conditions (which would

result in the ontic planning parts affecting the results), such as SC domains.

The whole experiment was conducted on three Nectar Research Cloud VMs with 64
VCPUs and 256GB RAM. The Nectar Research Cloud is a collaborative Australian
research platform supported by the NCRIS-funded Australian Research Data Commons
(ARDC). The experiments are performed in parallel within a Docker environment with

the 8GB memory limitation and 600 seconds time limitation.
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4.5.2.1 Experiment Design

We vary the following parameters in these experiments:

e The maximum depth of epistemic formulae from 1 to 4 in increments of 1;
e The number of agents between 2 to 4 in increments of 1;

e The number of goal propositions from 1 to 4, in increments of 1.

For this, we have 48 parameter combinations. For each setting, we ran up to 500 random
instances. The random factors are the epistemic goal formulae selected and the initial
state. The number of randomly selected instances is smaller than 500 for the first setting,
as there are only 384 instances for this setting (2-agents, maximum goal depth is 1 and
1 goal proposition). For simplicity, we set the randomness for the initial by randomizing
the initial direction for all agents, which means the location of the agents is the same as
in Section 4.5.1.5. The locations of the newly added agents ¢ and d are (0,0) and (0,1)
respectively. Since there are 8 possible directions, the number of possible initial states is
64 for 2-agents. The number of possible goal epistemic formulae with max depth of 1 is 6,
which are Byy, —H,Y, = Bg, By, ~Hptp and =By, where ¢ is (= (value v) True).
Therefore, the number of possible instances for the first setting is 64 x 8 = 384. Overall,

there are 23884 instances run for each algorithm.

For each instance in this experiment, we record the solvability of the instance, the search
time, the average external function call time, the number of nodes generated, the number
of nodes expanded, the max length of the search path, the average length of the search
path (which is the same as the average length of the input for the justified perspective
function). For readability, we merged the results of different maximum goal epistemic
formulae settings together, which means the result will have 12 subplots (2 — 4 agents

and 1 — 4 epistemic goals size).

Solvability is an important metric in planning. The status includes solvable, proven
unsolvable, time out and memory out. A problem instance is solvable means the search
algorithm has found a solution in time, while a problem instance is “proven unsolv-
able” means the search algorithm has successfully finished and failed to find a solution.
Both “time out” and “memory out” mean the search algorithm is unable to prove the

solvability of the problem instance.
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4.5.2.2 Results
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FIGURE 4.6: Solvability (in percentage) for all search algorithms of all instances.

The solvability results are summarized in Figure 4.6. As the nature of the plain BFS
search (without duplication elimination), bfs cannot prove unsolvability for any in-
stance. Because BBL belongs to EPDpo (defined in Section 4.4.2.2), pruning by HNB
is another optimization that can be used in any of the search algorithms. As can be
seen from the results, with the HNB pruning (bfsdcu) can prove unsolvability for a lot
more instances compared to bfsdc, except when the problem instances are too trivial
(2 agents and 1 goal condition). The performances for bfsdcu, astar and greedy are
quite similar in terms of proving unsolvability, because they all use the same duplica-
tion elimination and HNB pruning. This is because to prove unsolvability, the search
algorithm needs to expand all nodes (except those that can be safely pruned), which
might be slightly affected by the node expansion orders, but it is highly dependent on

the problem’s reachable state space itself. Therefore, some further analysis is needed.

We use the number of nodes expanded as the indicator to show the performance of the
search, rather than execution time, which can be affected by other jobs running on the

machine. Since the instances that are solved by the initial state would have the same
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F1GURE 4.7: The ratio of nodes expanded between bfs and other search algorithms
for the bfs-solvable instances.

number of nodes expanded, which is 1, we filtered out those instances when generating

results.

The first result (as shown in Figure 4.7) is from all instances that are solvable by bfs,
in which the ratio is generated by dividing the number of nodes expanded with the
search algorithm by the number of nodes expanded with bfs (our baseline in this case).
The performance of bfsdc and bfsdcu is similar as the solvable instances that contain
HNB formulae are not common, which is evaluated later in this section. With the
problem instances becoming more complex, astar has better performance than those
two blind search algorithms, while greedy has better performance than astar. It is
worth mentioning that the results are generated with all solvable instances, except one
outlier (problem_bbl_a2_g4_d3_34074_init_a2_00062.pddl) to increase readability.
That problem instance contains 4 goal conditions, 3 of which become true with one plan
while the other one needs a completely different plan to make it true. As mentioned in
Section 4.5.1, greedy has poor performance that is stuck in the local optimum, which
results in it expanding 4 times more nodes than the baseline. Despite this raw (1 out of

23884) outlier, greedy is the most efficient search algorithm on the solvable cases.
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F1GURE 4.8: The ratio of nodes expanded between bfsdc and other search algorithms
(excepts bfs as it cannot prove unsolvability) for the bfsdc-proven-unsolvable instances.

As for unsolvability, as shown in Figure 4.8, greedy has the same performance as bfsdc
for some subplots in all instances that can be proved unsolvable by bfsdc. For some
subplots, the numbers of instances that can be proven unsolvable by bfsdc are too few
(less than 10%, which is less than 50 instances). This can be shown from Figure 4.6.
When the number of agents is greater than 2, and the goal size is larger than 1, the
percentage of the problem instance that is proven to be unsolvable by bfsdc is less
than 10%. Thus, those results are not reliable. In addition, when the goal size is
1, the heuristic function goal counting has minimum effectiveness on improving the
search efficiency (hgeo(8) = 1 for any sequence before generated goal state). Thus, the

performances between bfsdc and others are almost the same.

Therefore, only the results in three subplots (with the number of agents and goal size
pairs as: 2-2, 2-3 and 2-4) are reliable. From those results, the number of nodes ex-
panded to prove the instance is unsolvable for the other three search algorithms (bfsdcu,

astar and greedy) is much fewer compared to bfsdc.

The HNB pruning cannot be evaluated directly from any of the above figures. We
have shown above that with HNB pruning, bfsdcu can prove unsolvability for a lot

more instances compared to bfsdc (in Figure 4.6). However, does this make the search
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FI1GURE 4.9: The ratio of nodes expanded between bfsdc and other search algorithms
that used HNB pruning for the bfsdc-solvable and HNB involving instances.

algorithm more efficient (expanding fewer nodes) for the solvable cases remain to be
evaluated. The ratio of the number of nodes expanded compared to bfs (as shown
in Figure 4.7) cannot reflect this, because many randomly generated goal conditions
do not contain HNB epistemic formulae. Moreover, even in those instances containing
HNB, many instances are solved without involving HNB pruning. This happens either
because the instance is too trivial, or the HNB relation(s) in the goal condition are too
complex to be negated. Therefore, we show the results in Figure 4.9 by filtering out

those instances.

This result shows that with HNB pruning, the search algorithm expands fewer nodes in
most of the cases when the problem is solvable. Therefore, the HNB pruning is efficient
no matter whether the problem is solvable or not. But it has a greater impact on proving

unsolvability.

At last, the efficiency of the justified perspective function is shown in Figure 4.10. The
instances run by bfs are excluded, as they have the same performance for all unsolvable
cases and, with some noise from the server running, they show some strange straight
vertical lines (same average depth but slightly different average time) in the result. The

results show that, in solving each problem instance, no matter which search algorithm
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is used, the average time used to reason about epistemic logic in our implementation is

linear in terms of the search path length. This verifies our claim in Section 4.3.3.3.

num_of_goal_agents: 2 num_of_goal_agents: 2 num_of_goal_agents: 2 num_of_goal_agents: 2
max_goal_depth: 1 max_goal_depth: 2 max_goal_depth: 3 max_goal_depth: 4

num_of_goal_agents: 3 num_of_goal_agents: 3 num_of_goal_agents: 3 num_of_goal_agents: 3
max_goal_depth: 1 max_goal_depth: 2 max_goal_depth: 3 max_goal_depth: 4

| i S , o

: 4 s & 10 12 14 18 25 50 75 100 125 150 175 200

num_of_goal_agents: 4 num_of_goal_agents: 4 num_of_goal_agents: 4 num_of_goal_agents: 4
max_goal_depth: 1 max_goal_depth: 2 max_goal_depth: 3 max_goal_depth: 4

vl

10 3
s 20T . l:ﬂ
H e s o GhiR

FIGURE 4.10: The average length of the search path and average external function
calling time for all instances, where the x-axis represents the length and y-axis represents
the time (in milliseconds).

Overall, though massive experiments in the BBL domain, we have shown both opti-
mizations — Duplication Elimination and HNB pruning — improve efficiency. We also
believe this conclusion is general, since there is no reason why the results on the BBL
domain cannot be generalized to other epistemic planning domains. As for the search
algorithm, we believe in most of the cases, greedy (with goal-counting as heuristic)
would have better performance, except when the goal conditions could make it stuck in

the local optimal.

4.6 Conclusion and Discussion

In this chapter, we extend the S5 Logic of PWP to the JP model in order to handle
beliefs. The JP model reasons about the knowledge and belief relation by constructing a
corresponding justified perspective, built on the intuition that humans reason about the
unseen from their past observations unless they see (saw) evidence to suggest otherwise.

We give the definition of the retrieval function and justified perspective function. Along
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with the observation function from the PWP model, agents’ justified perspective can be

constructed with arbitrary nesting.

Then, similarly as in the PWP approach (Chapter 3), we provide two forms of the
semantics: the complete semantics (Definition 4.17) and the ternary semantics (Defini-
tion 4.18). Although it is not possible to prove the soundness and correctness of our
justified belief model, we prove that the new logic satisfies the principles of belief de-
scribed by the axioms of the logic KD45. In addition, we show the complexity of the

ternary semantics can be reasoned in polynomial time.

Besides, we formalised the epistemic planning problems that our model can handle as EP-
NM-F-STRIPS and provide a F-PDDL encoding to represent those instances. Moreover,
we develop the JP model as an (action) model-free (planning) tool and embed it as the
external functions in the F-PDDL encoding. By integrating classical planning search
algorithms, we are able to provide a planning tool to solve epistemic planning with

knowledge and beliefs.

At last, we show the expressiveness and efficiency of our planning tool through exper-
iments on standard benchmarks. In addition, we perform a large-scale experiment to
compare the efficiency of different search algorithms, as well as to verify our claim about

the complexity of the ternary semantics.

As for the concerns raised about the PWP model (mentioned in Section 3.7), by reason-
ing over all epistemic relations (including knowledge and beliefs) from agents’ justified
perspective, the JP model: 1) handles knowledge and belief; 2) improves the efficiency of
the external function (using DPS set); and, 3) handles inconsistency in the problem de-
scription for the modeler. The first concern is handled as one of the main contributions
of the work in this chapter. The second and third are solved by evaluating all epistemic
queries described in F-PDDL once when the node is generated (for goal conditions) and

expanded (for preconditions) instead of once for each query.

The only limitation compared to the JP model with the PWP model is for the group
epistemic relations. The PWP model is able to handle single-(nested-)knowledge and
group-(nested)-knowledge, while the JP model handles single-(nested)-belief. As for the
group belief, the approach used in the PWP approach would not work. For example, the

distributed knowledge in the PWP model uses set union to merge agents’ perspectives.
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While in the JP model, since agents’ justified perspectives can have false values (lead-
ing to justified false-beliefs), merging their justified perspectives would cause conflicts.
Therefore, how to model agents’ justified group beliefs becomes the next problem to

solve.



Chapter 5

Planning with Group Belief using
Group Justified Perspectives

In this chapter, we extend the single-agent (nested) justified beliefs model to the Group
Justified Perspective (GJP) model, to handle group justified beliefs. We follow the same
intuition as the JP model that when people reason about something they cannot see,
they generate justified beliefs by retrieving the information they have seen in the past,
unless they have seen evidence to suggest otherwise [35]. By defining group justified
perspective functions, we can reason about uniform belief, distributed belief, and com-
mon belief, even mixed with individual and group knowledge operators. Our finding is
that, different from the above intuition, when it comes to group beliefs, agents do not
have to form a group knowledge to generate a group belief. For example, a common
belief could be formed even though its corresponding common knowledge has not been

formed beforehand.

5.1 Introduction and Motivation

As introduced in the previous chapter (Chapter 4), the JP model is efficient and expres-
sive in handling single-agent (nested) belief. Following the intuition of ‘belief is past
knowledge’, they are able to construct the justified perspective for agents based on their
past observations. However, applying this intuition naively to group belief is neither

complete nor consistent. It is possible that some agents in a group see value changes

200
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that affect their own knowledge and belief while the group’s belief stays the same. In
addition, it is possible to form a common belief about a proposition even if there was no
prior common knowledge about this previously. For example, consider agent a looking
in a box and seeing a coin with heads, and then agent b looking into the box a minute
after agent a and seeing it is heads. At no point did they see the coin at the same time,
so they cannot form common knowledge that the coin is heads (it may have changed
in the minute in between). However, they can form a common belief that it is heads

because they each saw heads and have no evidence to suggest the value has changed.

We illustrate this idea with our motivating domain, NIB (Example 1.2), following the

same initial state as in Example 2.1.

Example 5.1. Recall that in Ezample 1.2, there are two agents, a and b, two numbers,
p and q in separate boxes. The agents have to peeck into the box to see the value of the

number in it, and each box can only be peeked at by one agent at a time.

Now, let’s consider the following two interesting and challenging group belief tasks:

1. a and b have a common belief that ¢ > 4 and:

e agent a and b believes that they have a common belief about q’s value;

o while q’s values in their believed common belief are different.
2. a and b have a common belief that ¢ > 4 and:

e agent a believes that they have a common belief about q’s value;
o while b believes they don’t have a common belief about q’s value;

e and b believes a believes that they have a common belief about q.

For the first task, the condition is that both a and b believe they have a common belief
on ¢’s value while ¢’s values in their believed common belief are different. This indicates
the common beliefs they have are false beliefs. Even though each of them holds a false
belief of their common belief, the common belief (about a formula that holds in both
agents’ believed common beliefs) can still be formed. As shown in Figure 5.1, a valid

plan to achieve Task 1 above would be:

Plan 5.1. “(peek a q)”, “(return a)”, “(decrement q)”, “(peek b q)”
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FIGURE 5.2: An example plan to solve Task 2 in Example 5.1.

In the plan, agents a and b do not peek into the box containing ¢ at the same time. So, at
no point neither the statement “agent a knows that agent b knows q > 4”7 (K,Kpq > 4)
nor KyK,q > 4 holds. Further, the common knowledge CK (, 319 > 4 does not hold.

However, we assert that the common belief CBy,3q > 4 should hold if agents have
memory. Since agent a sees ¢ = 6 at s; and agent b sees ¢ = 5 at sy, both B,qg = 6
and Bpg = 5 hold, which implies both B,q > 4 and Byq > 4. In addition, since agent a
sees agent b peeking into the box at s4 and B,q = 6, B, Bpq = 6 should hold. Similarly,
ByB.q = 5 should hold. Therefore, we have both B,Byq > 4 and ByB,q > 4. Given
that @ and b both saw that each other peeked in the box, and saw that each saw that
each peeked into the box, etc, both a and b believe each other believes ¢ > 4 with infinite

depth. From the definition by Fagin et al. [3], this constitutes common belief.

In addition, in the view of the agent a, ¢ = 6 is a common belief among a and b, since
agent a saw ¢ = 6 at s; and saw agent b see ¢ at s3. For the similar reasoning, agent b

believes CBy,31q = 5. Thus, Task 1 is achieved.
As for Task 2, as shown in Figure 5.2, a valid plan is as follows:

Plan 5.2. “(peek a q)”, “(return a)”, “(peek b q)”, “(decrement q)”
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The common belief CBy,;1q > 4 holds for the similar reason as above. Agent a holds
the same false belief (B, CB 4339 = 6), while agent b saw ¢ = 6 immediately after a saw
the number and saw ¢ = 5 in the last state, which indicates agent b no longer believes

there is a common belief among a and b on the value of q.

In the following parts of this chapter, we propose group perspective functions to reason
about uniform belief, distributed belief, and common belief (as in the GJP model).
We discuss an implementation that extends an existing epistemic planning tool, and
report experiments on key domains in epistemic planning. Our results show that we can
efficiently ! and expressively solve interesting problems with group belief, even with a

basic blind search algorithm.

5.2 Background

Most of the background and related works are introduced in Chapter 2. Thus, we only

include those that are relevant to this work and have not been mentioned earlier.

Recall that semantically speaking, if K;p (agent ¢ knows ¢ is true) holds (Axiom T), then
¢ holds; while if B;p (agent i believes ¢), it is not necessarily the case that ¢ holds. In
short: agents can have incorrect beliefs, but not incorrect knowledge. For group beliefs,
there are mainly three types: uniform beliefs, also known as shared beliefs; distributed

beliefs; and common beliefs.

Uniform belief, denoted E Bgy, is straightforward — it means that everyone in group
G believes proposition ¢. There are a number of approaches to model uniform belief [152,

153].

Distributed belief, denoted D Bgp, combines the beliefs of all agents in group G. It is,
effectively, the pooled beliefs of group G if the agents were to “communicate” everything
they believe to each other. Any model has to consider the pooled beliefs from each agent
and the pooled beliefs from the group that are not held by any of its individual agents,
but are held by the group. For example, if agent a believes x = 1 (and nothing else) and
agent b believes y = 1 (and nothing else), distributively, the group {a, b} believes that

x = y, even though no individual agent believes this. Distributed belief is challenging

Note: we do not have any existing approach to compare to.
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because agents can have conflicting beliefs: if agent a believes x = 1 and agent b believes

x = 2, what should the distributed belief be?

There are two main approaches to model distributed belief: (1) belief merging [154—
156]; and (2) merging the agents’ epistemic accessibility relations [90, 142, 157-162].
Typically, merging conflicting beliefs is solved using some form of ordering over agents
or propositions, meaning that some agents (propositions) receive priority over others. In
this chapter, we give two definitions of distributed belief: one that accepts inconsistent
distributed belief; and one in which conflicting beliefs are removed entirely, leading to
a modal operator that obeys the axiom of consistency (axiom D). In what is the most
closely related work to ours, Herzig et al. [163] combine the two approaches of belief
merging and the merging of accessibility relations to define a logic for modeling explicit
and implicit distributed beliefs. Explicit distributed belief is obtained from each agent’s
individual belief base; while implicit belief is derived from the group’s collective belief
base. In addition, they also introduce customized belief combination operators to model

consistent distributed beliefs.

Common belief, denoted C'Bg, is defined as: all agents in G believe ¢, all agents in G
believe that all agents in G believe ¢, all agents in G believe ..., up to an infinite depth
of nesting. The existing work [164-168] reasons for belief on belief bases or possible
worlds. The PWP approach (in Chapter 3) forms the common knowledge of a group
by finding the fixed point (see Definition 3.7) intersection of all perspectives from all
agents in the group, showing that this fixed point always exists within a finite bound.

However, this approach cannot handle justified beliefs.

5.3 Group Justified Perspective (GJP) Model

In this section, we formally propose our group justified perspective (GJP) model by
adding group operations for uniform belief, distributed belief, and common belief to the

JP model, inheriting the existing group modal operators from the PWP approach.
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5.3.1 Preliminaries

Firstly, recall the signature of both PWP and JP models as follows: A signature ¥ is
described by the tuple ¥ = (Agt, V, D, R), with Agt being a finite set of agent identifiers
(of size k), V as a finite set of variables (of size m) such that Agt C V and m < k,
implying agent identifiers serve as variables. Furthermore, D denotes the set of all
domains, where each D,, corresponds to a possibly infinite domain of constant symbols
for each variable v; € V. Lastly, R denotes a finite collection of predicate symbols.

Domains can be discrete or continuous.

In addition, we follow the same definitions and notations used in the JP model from
Section 4.3, including but not limited to, the definition of state (a set of variable assign-

—.

ments), the state space (S), the complete-state space (S.), the sequence space (S), the

complete sequence space (S.), and the override function for both state (Definition 3.10)

and sequence (Definition 4.1).
Then, the language of the GJP model can be defined by the following grammar:

Definition 5.1 (Language). Given a signature ¥ = (Agt, V, D, R), the language Loxp(X)
is defined by the grammar:

z= (Vo) [~eleAe| S| Siv| Kig,
= BSgy| DSay| CSay | EKay | DKay | CKay,
n= Bip| EBgy | DBgy | CBgey,

where r € R, V,, C V are the terms of r, r(V;.) are predicates and R is the set of all

predicates; i € Agt is any agent and G C Agt is a group of agents.

The group seeing operators, ES, DS and CS, and knowledge operators, FK, DK and
CK are from the PWP model (in Definition 3.6), while the B; operator is from the
JP model (in Definition 4.2). In this section, we add the operators EBgy, DBgy and
CBgy to represent that agents from group G jointly, distributedly and commonly believe

 respectively.

The definition of a model instance in GJP is the same as defined in Definition 4.3. We

copied it as follows for easier referencing:



Planning with Group Justified Perspectives 206

Quoted text:

Definition 5.2 (JP Model). Given a signature ¥ = (Agt, V, D, R), an instance

of the justified perspective model M is defined as:

M = (Agt7V7D77T) 017"'a0k’)a

in which Agt, V., D are from the given signature, 7 is the evaluation function.

The detailed definition is given as follows:

e The domain of variable v € V is D,,, which is a set of all possible values of v
(from the definition of the signature). In here, a “None” value represented
by symbol L is included (D, := D,U{_L}), which represents that the value of
a variable is not part of a particular agents’ observation. A special complete
state is that a state with all variables assigned with 1, which denoted as s
(s ={v=L] v € V}). Thus, a special sequence is a sequence with all state

as s, which denoted as s] .

e The interpretation function 7 : & x R — {true, false} that determines
whether the atomic term r(V,) is true in s. 7 is undefined if any of its
arguments t; is a variable v € V that is not assigned a value in a local state
s,le.vgsVuF£EL.

e Functions Oi,..., O are inherited from PWP model defined in Defini-
tion 3.4. In addition, O;(5) = [0;(5]0]), ..., O:i(5[n])] for a sequence § with
length of n + 1.

Similar, since a state is a set (of variable assignments), the set operations are also
applicable on the state, such as set union operator “U” and set minus operator “\”. In
addition, we also follow Lemma 4.4 in the JP model, in which: for any variable v € V,

we have v=L€ {v=e} and v € {v=e} for any e € D,,.

As for the functions, the retrieval function R and the justified perspective function f
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follow their original definitions (Definition 4.5 and Definition 4.6) in JP as well. Addi-

tionally, the function C' for possible sequences (Definition 4.12) is included.

The last part is the semantics. Similarly as in the PWP model and the JP model, we
provide both complete semantics and ternary semantics. Since we are only introducing
the group belief operators in this chapter, the semantics for other operators are inherited
from their original definition in the corresponding model. Specifically, for individual
knowledge (including seeing) and belief operators, item (a) to item (h) from the JP model
is inherited (in Definition 4.17 for the complete semantics and in Definition 4.18 for the
ternary semantics). In addition, for the group seeing and knowledge operators, item (i)
to item (p) are adopted from item (g) to item (n) in Definition 3.12 for the complete
semantics and in Definition 3.22 for the ternary semantics by converting the input from
a state to a sequence. Therefore, the item index for the group belief operators starts
from character ‘q’. The full definitions (including all epistemic operators that our model

can handle) of each semantics are provided at the end of this thesis (In Section 6.1).

5.3.2 Semantics for Group Belief

In this section, we define group justified perspective functions for uniform belief, dis-

tributed belief, and common belief, and add ternary semantics for them.

5.3.2.1 Uniform Belief

Uniform Belief is straightforward. Since a uniform belief of ¢ is that everyone in the
group believes ¢, the uniform justified perspective function is just a set union of every-

one’s individual justified perspectives.

Definition 5.3. (Uniform Justified Perspectives)

of o(5) = ()}

1eG

Definition 5.4 (Ternary Semantics for Uniform Belief). Omitting the model M for
readability, uniform belief EB¢g for group G is defined:

(@) T[5 EBcy]l = min({T[g,¢] | g€ efc(sL(5)})
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The ternary value of T[S, EBg ] depends on the agent that holds the most conservative

beliefs of .

While, for the complete semantics, whether all agents in the group uniformly believe ¢

depends on all possible sequences that any agent believes possible.

Definition 5.5 (Complete Semantics for Uniform Belief). Uniform belief EB¢ for group
G is defined:

(q) M,5E EBgy iff Vie G,V € C(fi(5),i), M, 0 F ¢

That is, for each agent ¢ in the group G, the set C(f;(5), ) contains all possible sequences
that agent ¢ believes possible. If and only if ¢ holds for all @ € C(f;(5),i), we have
M,5E EBge.

5.3.2.2 Distributed Belief

Distributed Belief is more challenging than distributed knowledge. The Knowledge
Axiom T : K;pp = ¢, which states that knowledge must be true, does not hold for belief.
This means that agents can hold incorrect beliefs. If we simply take the distributed
union of the perspectives for all agents i € G, as it is done in PWP, we could obtain
conflicting beliefs, so the implicit distributed belief would be inconsistent. To ensure
consistency, we form the group distributed justified perspective instead of just uniting
each agent’s justified perspective. Intuitively, agents follow their own observations and
“listen” to agents that have seen variables more recently. The distributed perspective

function df is defined as follows.

Definition 5.6 (Distributed Justified Perspectives). The distributed justified perspec-

tive function for a group of agents G is defined as follows:

dfc([80, -5 8n)) =[S0, -+ 50
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where for all ¢t € [0,n] and all v € dom(s;):

ity = max({j | v € Ujeq Oi(sj) Aj <ty U{-1}), (1)
e = R([so,.-.,58t),ty,v), (2)
s{ ={v=e|s(v) =eVv & Upq Oi(si{{v=e}))}, (3)

(4)

sy = s1(s{)

In this definition, the group distributed justified perspective follows everyone’s obser-
vation and uses the retrieval function R (in Definition 4.5) to identify the value of the
variables which are or were not seen by any agent from the group. Intuitively, given any
agent 7 in the group, the value from ¢’s observation in timestamp ¢, O;(s;), which leads
to knowledge, must be true (Axiom T) in s;. While, the value of an unseen variable is
determined by anyone in the group that saw it last. To be specific, the last timestamp
the group sees v, lt,, is determined by the group observation (formed by union), and
then, value e is retrieved by identifying the closest value that is consistent with it. Line
(3) ensures the “group memory” is consistent with the group observation, while Line
(4) ensures the group justified perspective is a sequence of complete states. So, this
definition mimics the definition of the JP function from Definition 4.6, except that the

variable’s value in a state s, are taken by the agent(s) that have the most recent view

X=1 H X=3 P X=5
¥=2 So Y=4 S1 Y=6 S2
X=1 X=? X=? X=? X=? X=? =?

Y=2 Y=? Y=? Y=? Y=4 Y=7? =?

of it.

TTT—X e T e
i 1 R . |
Distributed Union Observation Distributed Perspectives: dfc([s0,51,52])

x=1 | x=1 ] x=5
v=2 7| v=4 [V v=4

FIGURE 5.3: State sequence § and dfs(8) in Example 5.2.

Example 5.2. Let the set of variables be V = {z,y}, domains be D, = D, = {1,...,6},
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and a state® sequence be 5§ = [S0, 81, S2], where: so = 1-2, s1 = 3-4 and sy = 5-6. Assume
a sees x and y in so, while b sees y in s1 and ¢ sees x in s3. So, Ou(8)=[1-2,7-1,7-7],

Oy(8)=[r-1,7-4,7-1] and O.(8)=[r-T,7-7,5-T]. This is visualised in Figure 5.3.

So, we can see from Example 5.2 that forming distributed belief is about finding the
observation from each agent and deducing the value of group unseen variables, following
the same intuition as JP Model (In Section 4.1). Missing values in group observations
(noted as “?”) are retrieved from the “group memory” (previous group observation),
equating to retrieval from the agent who last observed this value according to the times-

tamp. Thus, df;(5) =[1—-2,1—4,5—4].

Definition 5.7 (Ternary Semantics for Distributed Belief). The distributed ternary

semantics are defined using function T, omitting the model M for readability:
(r) TI5,DBgy] = Tldf(s1(5)); ¢l

This semantics guarantees that the group distributed justified belief is consistent. That is
done by only merging agents’ observations into the group distributed observation, which
is consistent with the global state, and deducing the value of unseen variables from
it. This definition is particularly nice as many existing definitions of distributed belief
require us to define preference relations over e.g. agents or states, to resolve conflicts; see
e.g. [169]. In our definition, the preference relation is implicit — it prefers more recent

observations over older observations.

In order to give a definition for the complete semantics, identifying the possible sequences
that are distributedly believed by the group is necessary. Therefore, we propose the

following definition (adapted from the possible sequence function in Definition 4.12):

Definition 5.8 (Distributed Possible Sequence Function). Given a state sequence § for
agent i (could be either justified perspective of i, or a sequence of observations of i) with
length of n+ 1, all possible sequences that agree with § can be generated by the possible

sequence function, Cy : S x Agt — P(SZ), can be defined as:

Cd(g,G):{[wg,...,wn] |onW0,...wnEWn}

*We use the shorthand m-n to represent the state [x = m,y = n] and 7 to represent the ‘value’ of an
unseen variable.
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where for all ¢ € [0, n]:

Wi = {w' [ w' € W{,Vv € U;eq Oi(w') = v € Ueq Oi(51t]) }
Wi = {sc(slt] \ s1) | sc€ScH

This function is the same as the possible sequence function, which generates all possible
worlds in W} and filters out worlds containing inconsistent observations in W;. The only
difference is the observation used to ensure consistency becomes the group distributed

observations (e Oi(5t])).
Then, the complete semantics for the distributed belief can be defined as:

Definition 5.9 (Complete Semantics for Distributed Belief). Distributed belief DB¢

for group G is defined:

(r) M,5E DBgy iff VY€ Cy(dfs(5),G), M, W E ¢

An intuitive example (Example 5.3) is given, adapted from Example 4.2, which is used

to demonstrate that the past value is removed by indirect inferences in the JP function.

Example 5.3. Consider a corridor with 8 rooms, r1, r2, and rs3. Three agents a and b
are all located in r1, while agent c s located in r3. They can only observe the room that

they are in. Let a plan be agent b moving to ro.

The global sequence sg, each agent’s observations O;(sg) and justified perspective f;(sg)

are as follows:

g is [{loca =71, locy=71,locc=r3}, {loca=r1,locy, =72, loc. =13 }];

O4(3g) = [{loca=r1,locy, =11}, {loca=r1}];

fa(55) = {loca=r1,locy=11,loc.=L}, {loca=r1,locy, =L, loc. =L }];

Op(39) = [{loca=r1,locy =11}, {locy =721}];
o fi(sy) = [{loca=r1,locy=11,loc.=L}, {locg=r1,locy, =12, loc.=1}];
o O.(Sg) = [{locc=rs}, {locc=r3}];

o fo(sy) = [{loca=L,loc,=L,loc. =13}, {loc, =L, loc,=L,loc.=r3}].
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The reasoning about each agent’s justified perspective can be found after Example 4.2.

While for the distributed justified perspectives, df {a,c} Deeds some discussion.

Since the locations of a and c¢ are seen by themselves all the time, only the value of b
needs to be constructed. According to Definition 5.6, lt;,, is the latest timestamp that
variable locy is seen by any agent from the group {a,c}, which is 0 since no one sees b
in timestamp 1 and a saw b in timestamp 0. Then, following Line 2 in Definition 5.6,
R(sg,0,locy) returns rq, which is the value of loc, when a and b were both in 1. However,
based on Line 3, if locy is r1, then loc, should be in the distributed observation of a and

¢, which indirectly infers that locp should not be ;. Therefore, we have:

Af 14,c1(8g) = [{loca=71,locy=r1,loc.=r3}, {locg=r1,locy =L, loc.=T3}]

It seems there is no distributed belief in group {a, ¢} about b’s location. However, follow-
ing the complete semantics, we have M, §'F DB, ¢} (locy =12) since Cy(df 4 0} (5¢), {a, c})
is {[{loca=711,locy=11,locc =13}, {loca=11,locy=r3,loc.=r3}]}. Specifically, there are
three possible states in Wy from Cy(df (4. (55), {a, c}), which are:

o w) = {loc,=r1,locy,=r1,locc=r3}

o wh = {loc,=r1,locy,=ra,locc=r3}

o wh = {loc,=r1,locy=r3,loc.=r3}
While state wj and wj are removed when generating W1 from Cy(df (4. (55), {a, c})

because if locy =11 or locy =13, then the group of a and ¢ should distributively see locy

in timestamp 1.

5.3.2.3 Common Belief

Common belief is the infinite nesting of beliefs. Our definition avoids having to calculate

the infinite regression by calculating the fixed point of the group’s perspectives.
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Definition 5.10 (Common Justified Perspectives). Given a set of perspectives (that is,

a set of sequences of states) S , the common justified perspective is defined as:

Uses ¢/ c(5) if Usegefa(s) =5

cfc(Useg efa(5)) otherwise.

cfa(3) =

The function applies a set union on the uniform perspectives of the group for each input
perspective. Then, the common perspective function repeatedly calls itself by using the
output of one iteration as the input of the next iteration, until the input set and output
set are the same, which means a convergence of the common perspectives. Semantically
speaking, each iteration adds one level deeper nested perspectives of everyone’s uniform

belief for evaluation on whether everyone in the group believes.

The common justified perspectives function cf contains the fixed point of all agents’
perspectives, their perspectives about others’ perspectives, and so on to infinite depth.

Although the depth is infinite, the definition of ¢f converges in finite iterations:

Theorem 5.11. Given a state sequence of length n, the iterations needed for ch(g) to

converge are bounded above 2IV1*™.

Proof. Since for each variable in the last state of a justified perspective 0, its value is
either visible (same as its in the last state of the global perspective), or not visible (same
as its in the second-last state from ), the number of possible states in each index of
a justified perspective is 2Vl So, the number of possible perspectives given a global
state sequence § with a length of n is 2IVI*". In calculating cf o, either the base case
holds (that is, combining the perspective of the group for all § € S does not change the
common perspective), so it terminates and adds no new perspectives; or the recursive
step holds. In this case, the input of the ¢f function is a set that contains perspectives
from each agent in the format of S = {f;(5), f,(7'),--- | Vi € G}. Then, we apply f; for
each agent j in the group G on each perspective from S as 5 = Useg ef ¢(5). For each
fi(5) from S, we have fi(fi(8)) in S’ for each agent j in the group G. With Theorem 4.11,
we have f;(fi(5)) = fi(5) when i = j. Therefore, we have S C §. At worst, we add
one new sequence each iteration, meaning that ch(g) converges by at most 2/VI*"

iterations. O
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Although in the worst-case scenario, the maximum number of iterations is |cf 7 ({5})],
practically, in our experiments, we find that it converges after a few iterations (see

Section 5.4).

Definition 5.12 (Ternary Semantics for Common Belief). The group ternary semantics

are defined using the function 7', omitting the model M for readability:
(s) TI[5, CBayl = min({T[g,¢]|g€ cfc({sL(5)})})

Similar to the complete semantics for distributed belief, a new possible sequence function

is needed to identify all sequences that are commonly believed to be possible by the
group.

Definition 5.13 (Common Possible Sequence Function). Given a state sequence § for
agent i (could be either justified perspective of i, or a sequence of observations of i) with

length of n+ 1, all possible sequences that agree with s can be generated by the possible
sequence function, C. : S x Agt — P(‘S?C), can be defined as:

C.(5,G) = {[wo,...,wn] | wy € Wo, ... wy, € Wy}
where for all ¢ € [0, n]:

Wi ={v' | w € W/,Yv € cO(G,w") - v € cO(G, s[t])}
Wi = {sc(sTt] \ s1) | sc € Se}
cO(G, s) is defined in Definition 3.7

Compared to the distributed possible sequence function Cy, the common possible se-
quence function only removes a possible value when everyone in the group commonly
sees it in w’ but not in §[¢], which means everyone did not commonly see it before filling

in the missing variables with their possible values.
Then, the complete semantics for the distributed belief can be defined as:

Definition 5.14 (Complete Semantics for Common Belief). Common belief CB¢ for

group G is defined:

(s) (M,5)F CBap iff Vee ofg({5}), Vi € Ce(c, G), (M, W) F ¢
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An example for group justified perspective functions is provided using the same problem

in Example 5.1 2 as follows:

Example 5.4. For example with Plan 5.1, let G = {a,b} We have ef 4(5) is {[r,6,
6,6,6],[r,7,7,7,5]}. Then, since the current ef 7(5) is not equal to {5}, we nestedly
apply ef o to generate cf o({5}). From Theorem 4.11, we have f,(fa(5)) = fu(5) and
h(h(8) = /(3. f(foa(3)) is [r,7,7,7,6] and f(f,(5)) is [r,7,7,7,5]. So that, the current
cf g is a set that contains the following perspectives: 1: [1,6,6,6,6]; 2: [r,7,7,7,5]; 3:

[r,7,7,7,6]; 4: [7,7,7,7,5].

Since this is also not equal to ef +(8), we again apply ef o on each perspective. Item (1)
and (2) result in the same set, as the previous step, while both f, and f, on item (3)
result in item (3) itself and both fq, and fy on item (4) result in item (4) itself. Now,

we have that cf 5({5}) has converged.

For ternary semantics, following Example 5.4, we have ef;(5) = {[r,6,6,6,6], [, T,
7,7,5]}. The ternary representation T'[§, EBgn < 7| is evaluated as the minimum
value in {T[[r,6,6,6,6],n < 7], T[[r,7,,7,5],n < 7]}, which is {1,1} due to {m(6,n <
7, m(5,n<T7)}.

For the T'[§, CBgn < 7], the (converged) common group justified perspectives are {[r, 6,
6,6,6),[r,T,T,7,5], [, T,T,7,6], [, T, 7, T, 5]}, which is evaluated as {1, 1, 1, 1}. Therefore,
T[5,CBgn < 7] is 1.

To sum up, this section presents semantics for group joint, distributed, and common be-
lief. Given that joint belief evaluates each agent’s justified perspective, while distributed
belief synthesizes a justified perspective from a group’s collective observations, the time
complexity of these is polynomial, specifically scaled by the number of agents, analogous
to the JP model. Theorem 5.11 shows that the worst-case time complexity for common
belief is exponential, factoring in the iterations to identify the fix-point set (common

justified perspectives) of individual justified perspectives.

3For simplicity, we only show the value of number ¢ instead of the agent’s local state. The variables
(peeking a p), (peeking a q), (peeking b p) and (peeking b q) are visible to all agents at all times.
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5.4 Experiments

Since there are no planning benchmarks for group belief, we select three domains (Num-
ber, Grapevine, and Big Brother Logic) from the previous chapter and add several chal-
lenging problem instances (7 for each domain) that use group belief, including instances

with inconsistent or nested beliefs.

5.4.1 Implementation

The source code of the planner, the domain, the problem, and external function files, as

well as experimental results, are downloadable from:
https://github.com/guanghuhappysf128/bpwp/tree/aamas.

We use the F-PDDL encoding (in Section 4.4.1.4). To demonstrate the efficiency of
our model instead of the particular search algorithms, we use the BrFS (Breadth-First
Search) search algorithm with duplicate removal, which is bfsdc in Section 4.4.2.3.
The experiments are run on a Linux machine (Ubuntu 20.04) with 8 CPUs (Intel i7-
10510U 1.80GHz) and 16GB RAM. The external functions, implemented in Python,
evaluate the belief formulae (either in action preconditions or goals) as search nodes are
generated. We implement the group justified perspective model and its corresponding

ternary semantics. All results are shown in Table 5.1.

5.4.2 Number

Number is an adapted domain from the coin domain in Section 4.5.1.4. The problem
settings, as described in Example 5.1, are of agents taking turns to peek into boxes
containing one changeable number each. For simplicity, we only use one number ¢ in
the experiments. We created 7 instances to evaluate our group’s justified perspective
operators and ran these through our planner. As can be seen from the column Max and
Avg, the number of iterations in cf; that it takes to find a fixed-point for a common
perspective set is around 2 — 3, which is nearly the same as checking one of the nested
uniform perspectives. The planner was able to solve the problems with low time costs

even for a complex problem such as N4.
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Common External Total

D Exp Gen Max Avg |calls| AT (ms) T(s) lp| Goals

NO 39 140 0 0 207  0.085 0.048 4 EBgg<6

N1 7 25 0 0 33 0.095 0.006 2 DBgqg<6

N2 39 140 4 2.199 207  0.255 0.075 4 CBgg<6

N3 120 435 4 2.461 668 0.414 0.354 6 FEBgg<6A-CBgqg<6

N4 347 1273 52716 2041 0798 1.906 8 EBGEBaq<6A-CBgq<6

N5 31 111 32134 161  0.307 0.068 4 —EBgn=5A-EBgn=6A CBgq<6
N6 50 177 3 1.649 257  0.301 0.107 4 BeCBgn=6AB,CBgn=5

GO 5 35 4 3.028 41 3.17 0.149 1  CBgscta=t

G1 66 450 4 3.195 691 5.94 4.542 4 EBgsctq=t AN CBgsctq=t — %

Q2 240 1828 53496 3282 9.984 35764 6 EBGEBgscta=tA CBgscta=t — 1
G3 103 913 4 3.018 1138 4.882 6.14 3 ByCBgscta=f A CBq ¢ ayscta=t
G4 328 2959 42.664 3792 10717 42776 4 CByy . CBgscta=f A CByq ayscta=t
G5 66 450 4 3.195 691  6.469 4.89 4 DBgEBgscta=t AN CBgsctq=t — %
G6 70 455 0 0 734 1.326 1.396 4 DBgEBgsctq=t AN BqyEBgscto=t — %
BBLO 2 8 4 3.111 11 9.387 0.107 1 CBgox=2

BBL1 5 19 4 3.143 26 10.617 0.279 2 EBgox=2ANCBgoa=2— %

BBL2 177 708 4 3.492 1011 21.724  22.072 5 C(CBgoi1=1

BBL3 189 756 4 3.485 1067 42.853  45.841 5 CBg(o1=1AN02=2)

BBL4 1595 6380 0 0 10295 0.486 6.05 9 EBg(oi=1AN02=2A03=3)

BBL5 1595 6380 0 0 10295 0.39 5.007 9 EBgoi < o2

BBL6 2 8 0 0 11 0.663 0.009 1 DBgoi < o2

TABLE 5.1: Result for three domains (NO-N6, G0-G6, BBLO-BBL6 are instances for
Number, Grapevine and BBL respectively). G represents the group of agents — {a, b}
for Number and BBL; and, {a, b, ¢,d} for Grapevine. ‘Exp” and “Gen” are the number
of nodes expanded and generated during search, “Max” and “Avg” under “Common”
as the maximum and average level of nesting required to compute cf ;, |calls| and
“AT(ms)” under “External” as the number and average time of external function calls,
and |p| as plan length. Since we implement the ternary semantics, we denote the ternary
evaluation result T'[, ] equal to 0, % and 1 as ~p, ¢ — % and ¢ respectively.

Item (1) would be solved by just one agent peeking into the box and the number de-
creased by 1. Ttems (0) and (2) are solved by decrementing the number first and all
agents take turns to peek, as both of the agents a and b uniformly and commonly be-
lieve n = 5. Items (N3) and (N4) are more challenging and deserve some discussion. Item
(N3) means both a and b believe ¢ is smaller than 6, while they do not commonly be-
lieve it. The returned plan is: “(peek a)”, “(return a)”, “(peek b)”, “(decrement”,
“(return b)”, “(peek a)”. Intuitively, a sees ¢ first, and then b sees ¢ changed. When
a sees ¢ again, as the design decision made in the JP function (Definition 4.6), a will

assume when b sees ¢, ¢ is the value a believes (which is 6).

Item (N4) means both a and b believe that both of them believe ¢ is smaller than 6,
while they still do not commonly believe it. The returned plan is: “(peek a)”, “(return
a)”, “(peek b)”, “(subtraction)”, “(return b)”, “(peek a)”, “(return a)”, “(peek

b)”. It is simpler to show the perspectives of each agent *:

“Here, we also omit peeking, and peeking, for readability.



Planning with Group Justified Perspectives 218

£ (3)] = [r,6,6,6,6,6,5,5,5]
5(5)] = [r,7,6,6,6,6,5,5,5]
[fo(fa(5))] = [r,7,7,6,6,6,6,6,5]
Va(£6(5))] = [1,7,7,6,6,6,5,5,5]
Va(ho(fa(5)))] = [r,7,7,6,6,6,6,6,6]

In the last state in the perspective, a sees g , where the ¢ is f,(f5(5))[6] = 6. So that we
have FBGEBgq < 6 A -CBgq < 6. Item (5) and item (6) are the same as Task 2 and

Task 1 in our motivating example (Example 5.1) respectively.

5.4.3 Grapevine

Grapevine is a benchmark domain in epistemic planning [88]. In two adjacent rooms, 4
agents, in the same room, each have their own secret. All agents can move between the
two rooms and share or lie about a secret sct;, if either the secret is their own secret
or they have heard the secret from someone. That is, they need to believe the secret
(B;sct;) before they can share or lie about it. Initially, all agents a, b, ¢, d are located in

the left room, and they only know about their own secrets.

We created 7 instances inspired from the original non-group instances [88], which include
some formulae with arbitrary nesting, such as DB nested with EB. As outlined in the
table, the average number of iterations of cf used to find the fixed point of common

perspectives is around 2.5 — 3.5.

As for the specific group beliefs in the goal conditions, item (0) is trivial. To form a
common belief in the group about sct,, agent a just needs to share sct, when everyone

is in the same room.

Items (G1) and (G2) are more interesting. Item (G1) represents that everyone in a
group believes sct, but there is no common belief on sct,, while item (G2) represents
that everyone in a group believes that everyone believes sct,, but still no common belief
is formed. The plan to solve (G1) is still intuitive: “(move-right b)”, “(sharing a
scty)”, “(move-right a)” and “(sharing a sct,)”. One of the agents moves to the
other room first, then a shares sct,, and moves to the other room to share with that
agent individually. The plan for (G2) is the same as (G1) but with 2 extra actions:

“(move-left b)” and “(sharing b,sct,)”. Intuitively, after everyone knows sct,, agent



Planning with Group Justified Perspectives 219

b returns to the original room and tells others that it believes the sct, as well by sharing

scty.

Items (3) and (4) form different common beliefs. Item (3) is formed by agent a lying
about sct, while b is in the room and shares the actual secret value after b leaves. While

item (4) is formed by agent a doing the same process for both agent b and c.

Different from the plan of items (1) and (5), item (6) contains B, EBgsct, — 3. So that

a’s secret is shared by another agent to b in another room rather than a.

5.4.4 Big Brother Logic (BBL)

BBL [2] is a domain that stationary cameras can turn and observe with a certain an-
gular range in a two-dimensional plane. The cameras do not have any volume to block
others’ line of sight. For simplicity, we limit the camera’s angle of turning to a set
{0°,+45°,490°, £135°,180°} and the field is in a 5 x 5 grid. Initially, camera a and b
are located at (3,3) and (1, 1) with directions of —135° and 90°, while o1, 02, and o3 are
located at (0,0), (2,2), and (3,3), with values 1, 2, and 3 respectively. We have run 7
instances adapted from the origin group knowledge instance in the PWP approach (in
Section 3.6.2). The average number of iterations of ¢f ; needed to find a fixed-point com-
mon perspective is slightly higher than 3.0 — 3.5; and again, the main cost is evaluating

epistemic formulae, but the search algorithm also contributes to computation time.

Items (BBL5) and (BBL6) are worthy of discussion. For item (BBL5), both agents need
to turn around to see both o; and o3. While for item (BBL6), only agent b turns to see

o3. By “pulling” agent a’s and b’s justified perspective together, we have both o7 and

o3 in df ¢(5)[n].

5.5 Conclusion

In this chapter, we extend the JP model in Chapter 4 to handle group beliefs, namely
the GJP model; provide definitions for ef (Definition 5.3), df (Definition 5.6), and
¢f (Definition 5.10) to construct the group’s uniform justified perspectives, the group’s

distributed justified perspective, and the group’s common justified perspectives; define
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ternary (in Definition 5.4, Definition 5.7, and Definition 5.12) and complete (in Defi-
nition 5.5, Definition 5.9, and Definition 5.14) semantics for all group belief operators
(EB, DB, and CB); implement its ternary semantics as a model-free planning tool; and
demonstrate its expressiveness and efficiency on new domains. The results show that
our approach can effectively handle multi-agent epistemic planning problems with group
beliefs and do so efficiently, even with a simple prototype F-PDDL planner implementing

a Breadth First Search with duplication elimination.



Chapter 6

Conclusion and Future Directions

In this chapter, we first summarize our work, followed by stating its contributions. Then,

we discuss the limitations of our work and propose future directions.

6.1 Summary

This thesis has explored the challenges and advancements in epistemic planning, specifi-
cally addressing issues of scalability, generalizability, expressiveness, and efficiency through
novel planning approaches based on Justified Perspectives (JP). The epistemic relations
this work handles include agents’ individual or group (nested) knowledge and beliefs,
Given a signature X of the problem, those epistemic relations can be formally represented

by the following language:
Definition 6.1 (Language Lok p(X)). Given a signature ¥ = (Agt,V, D, R), the lan-

guage Lok p(X) is defined by the grammar:

s= (V) |~ loAe| S| Sip | Kip
= ESqyp | DSge| CSay | EKgy | DKgy | CKay

where r € R, V. C V are the terms of r, (V) are predicates and R is the set of all

predicates; i € Agt is any agent and G C Agt is a group of agents.

221
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Then, following our definitions of the state (Definition 3.2) and notation of the state
space (S), the complete state space (S.), the sequence space (g), and the complete

—

sequence space (S.), we can define an instance of our model as:

Definition 6.2 (Model). Given a signature ¥ = (Agt, V, D, R), an instance of our model
M is defined as:
M = (Agt,‘/,D,ﬂ', 017"‘7014))7

in which Agt, V, D are from the given signature, m is the evaluation function. The

detailed definition is given as follows:

e The domain of variable v € V' is D,, which is a set of all possible values of v (from
the definition of the signature). In here, a “None” value represented by symbol L
is included (D, := D, U{L}), which represents that the value of a variable is not
part of a particular agents’ observation. A state with all variables assigned with
1, denoted as sy (s; = {v=L|wv € V}). Thus, a special sequence is a sequence

with all states as s, denoted as s .

e The interpretation function 7 : & X R — {true, false} determines whether the
atomic term r(V;) is true in s. 7 is undefined if any of its arguments ¢; is a

variable v € V' that is not assigned a value in a given state s, i.e. v € sV v #L.

e Functions Oq,..., O are inherited from PWP model defined in Definition 3.4. In
addition, 0;(8) = [0;(5]0]),. .., 0;(5]n])] for a sequence § with length of n + 1.

Then, with the definitions of the sequence override function ( ) (Definition 4.1), the
retrieval function R (Definition 4.5), the justified perspective function f; (Definition 4.6),
the common observation function c¢O (Definition 3.7), the uniform justified perspective
function ef (Definition 5.3), the distributed justified perspective function df (Defini-
tion 5.6), and the common justified perspective function ¢f (Definition 5.10), we can

provide a ternary semantics for our model with language Lok p(X) as follows:

Definition 6.3 (Ternary Semantics). Give a signature ¥ = (Agt,V, D, R) and an in-
stance of our model M = (Agt,V, D, 7, Oy, ..., O) with the current state sequence as §
with n+1 states, the ternary semantics for language Lo i p(X) can be defined as (where

the model M is omitted for readability):
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()  TIs, Hiw]

(h) T3, Biy]

i) T[5 ESgal
() T[S, EKqyl
(k) T[5, DSc]

() TIs, DScyl

(m) T, DKyl

(n) T[5, CScv

(0) TI[5, CSayl

1if n(8[n], r(V;)) = true;

0 else if 7w(5[n],7(V;)) = false;

% otherwise

min(7'[5, ¢], T[5, ])

1-TI[3,¢]

1 if v ¢ 5n] or i ¢ 3n]

0 else if v ¢ O;(5[n])

1 otherwise

Lif T[S ] = & or i ¢ 5ln];

0 else if T[0;(5), ] = T[0:(5), 7] = 5;

1 otherwise

T[3, ¢ A Sig]

3 7[5, 0] = 5

0 else if T[5, Bip] = T3, Bi~g] = §;

1 otherwise

T[fi(s1(5)). ¢]

min({T'[s, S;a] | i € G}),

T[S, o N ESig],

1 ifv ¢ 5n] or Vi € G,i ¢ 5[n];

0if v ¢ Uieg Oi(81n]);

1 otherwise,

$if T8, ¢] =T[5, ~¢p] = 5 or Vi € G, i ¢ 3[n];
0if T[Useq 0i(3), 9] = TUieq 0i(5), ) = 35
1 otherwise,

T[8,¢ N DSa¢l,

1ifv ¢ sn]or Ji € G,i ¢ 3n);

0if v ¢ cO(G, s[n));

1 otherwise,

3 i T3, o] =T[5, ~p] = 5 or i € G, i ¢ 3[n;
0if T[cO(G, 5), ¢] = T[cO(G, 5), ~¢] = 5;
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1 otherwise,

(p) TI[5,CKael = TIs,0 N CSayl,

(@) T[5, EBayl = min({T[g,¢] | g€ efc(sL(5))})
(r) T[S, DBay] = Tldfg(sL(5)),¢]

(s) T[5, CBay] = min({T[g,¢]| g€ fc({sL(5)})})

Uieg 0i(8) s [Uieq Oi(810D), - - -, Uic Oi(5101)],
cO(G,3) is [cO(G, 5]0)), ..., cO(G, §n])].

Then, with the definitions of the possible sequence function C' (Definition 4.12), the
distributed possible sequence function Cy (Definition 5.8), and the common possible

sequence function C, (Definition 5.13), we can define the complete semantics as follows:

Definition 6.4 (Complete Semantics). Give a signature ¥ = (Agt,V,D,R) and an
instance of our model M = (Agt,V, D, m, Oy, ..., O) with the current state sequence as

§with n + 1 states, the complete semantics for language Loxp(2) can be defined as:

() (MSFErV) i (sl r (V) = true

b) (M,5)EoAd iff (M,5)F ¢and (M,35)F

(c)  (M,8)F o iff (M,5)F ¢

d) (M,5)ESwv it ve 0y(3n)])

(€) (M,5)ESip  iff VgeC(0i(8),4), (M,§)F ¢ or
Vg € C(04(35),1), (M, §) F —p

() (M,5EKye iff (M,5)F@ASip

(g) (M,5)EHy iff (M,3)E Bip,or (M,3)E B~

(h) (M,8)FBip it V§e C(fi(5),1),(M,g) F¢

(i) (M,5)EESca iff forallieG, (M,3)E S

()  (M,5)F EKgy iff (M,5)F (¢ ESqy)

(k) (M,5)EDSqgv iff veUq Oi(5n]) or [Dy| =1

1)  (M,5)EDSae iff Vi€ Ca(Uieq 0i(3),G), M, @ F ¢ or

RS Cd(UiEG Oz(gjaG)7 (M7 117) F e

(m) (M,85)E DKgp iff (M,3)E (pADSgyp)
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(n) (M,5)E CSqv iff v e cO(G,3n]) or |Dy| =1
(0) (M,5)E CSgp iff Vi € Co(cO(G, 5)), (M, ) F ¢ or
Vi € Ce(cO(G, 3)), (M, W) F —p
(M,3) F CKgp iff (M,3)E (o A CSqp)
(M,3)E EBgy iff Vie GV e C(f(3),4), (M,) F ¢
(M,5)F DBgy iff Vi € Cy(df o(5), G), (M, @) E ¢
(M,5)F CBgy iff Ve cfo({5)),Vib € Cu(@,G), (M, ) F ¢
Uice 0i(3) is [Uieq Oi(510]), - .. Ujee Os(510])],
cO(G, 3) is [cO(G, 50]), ..., cO(G, 5n])].

Moreover, we show the soundness and completeness of our logic, as well as the axiomatic
system it follows, by proposing and proving several theorems. In addition, we formalized
the epistemic planning problems that can be solved by our model as EP-NM-F-STRIPS
(in Section 4.4.1.3) and show its encoding with a PDDL-like language, F-PDDL (in
Section 4.4.1.4). As the problem becomes non-Markovian, we implement several search
algorithms (in Section 4.4.2.3) that also work for a non-Markovian setting, with duplica-
tion elimination (in Section 4.4.2.1) for EP-NM-F-STRIPS and ‘Have Not Seen‘ pruning
(in Section 4.4.2.2) for a subset of EP-NM-F-STRIPS (EPDpo).

Last but not least, to demonstrate the efficiency and expressiveness of our model, we
perform experiments on benchmark domains, including SCs (in Section 4.5.1.1), Coin (in
Section 4.5.1.4), Corridor (in Section 4.5.1.2), and Grapevine (in Section 4.5.1.3), as well
as some trickier domains, which are either too complex or impractical to be modeled
by other approaches, including BBL (in Section 4.5.1.5). Furthermore, we perform
comprehensive empirical experiments in Section 4.5.2 to compare the implemented search

algorithms and examine their performance (efficiency) on a large scale.

6.2 Contribution

This thesis answered the research question in Section 1.2, including the sub-research
questions in Section 2.5.1. The model we proposed is an efficient, expressive, gener-
alizable, and scalable framework for solving epistemic planning problems, unlike other

existing approaches. The efficiency is shown by our experimental results (in Section 3.6,
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Section 4.5 and Section 5.4), while the scalability is ensured as our model reasons about
epistemic relations in polynomial time (in Section 4.3.3.3). The usage of the exter-
nal function with PDDL-like encoding (F-PDDL), which can be implemented by any
programming language, ensures the expressiveness of our approach. As mentioned in
Section 3.5.2, in order to model problem instances in a domain, the modeler only has
to define the observation function (the seeing rule of this domain). This means the
user does not need to have a comprehensive understanding of epistemic logic to use our

framework, which ensures its generalizability.

Our primary contributions are summarized as follows:

¢ Extension of Agent’s Perspective Model: We developed multiple semantic
formats for it (named the new model as PWP model), balancing efficiency and

completeness in knowledge reasoning.

e Justified Perspective (JP) Model: We introduced a framework that integrates
justified beliefs, allowing agents to reason over unseen information using current

and past observations.

e Formalization of Epistemic Logic Encoding: A robust encoding schema was
proposed to model epistemic planning problems (EP-NM-F-STRIPS) in a struc-
tured planning language (F-PDDL).

e Development of an Efficient Planner: We implemented a F-STRIPS plan-
ner with state sequence as its external function input, and provided various search
algorithms, improving computational feasibility while preserving epistemic expres-

siveness.

e Expansion to Multi-Agent Group Beliefs: We extended JP to group epis-

temics, handling distributed belief and common belief efficiently.

e Comprehensive Empirical Evaluation: Our experiments demonstrated the
effectiveness of our approach over existing epistemic planning methods in terms of

scalability and expressiveness.

Together, these contributions push the boundaries of planning-based epistemic reasoning
in multi-agent systems and provide a foundation for applying these models in real-world

AT applications.
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6.3 Limitation

Despite the progress made, this research has certain limitations, which are mainly caused

by the planning assumptions.

Although our epistemic reasoning process is shown to be polynomial, the lack of an
efficient heuristic function is the bottleneck that limits the performance of our planner.
This was caused by the epistemic planning problem becoming non-Markovian, which
makes most of the state-of-the-art heuristic functions inapplicable, such as delete relax-

ation [72].

In addition, as classical planning is the basic fragment of planning-based techniques, the
assumptions it follows limit its potential for real-world application. For example, the
static assumption (Assumption 5) means the state only changes by the acting agent.
This assumption does not make sense in many applications such as robotics, in which
the environment in the real world could also change the state. For example, gravity

could change the position of a falling object.

Another limitation is that the epistemic planning is claimed to be useful in a multi-agent
cooperation setting or a human-agent interaction setting. However, most of the research
in epistemic planning is based on centralised planning, which is not suitable for either

setting.

6.4 Future Direction

This thesis provides a foundation for future work in epistemic planning, with several

promising directions for further exploration.

Firstly, an efficient heuristic function for non-Markovian problems (or just EP-NM-F-
STRIPS problems) would significantly improve the performance of our planner. We
believe the key to finding such a heuristic function lies in two aspects, the agents’
justified perspectives and the width-based search [80]. The agents’ justified perspectives
are used to evaluate epistemic formulae in the problem, which are used for duplication
elimination. It acts like extracted features of the state sequence. In addition, width-

based search algorithms can have decent performance without using any information
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from the action model [63], which means it only uses information from the current
state. Our potential idea is to use the last states of all justified perspectives as the state

representation to implement the width-based search algorithms.

Secondly, relaxing the assumptions of epistemic planning is another choice to improve
its potential for real-world applications. Using the static assumptions as an example,
currently, in the JP model, agents assume the unseen variables stay unchanged until they
see evidence to suggest otherwise. This intuition does not make sense when reasoning
about dynamic variables, such as the position of a falling object. Agents should assume
the changing pattern of the variable, h = % gt? for a falling object, and predict its height
based on the last observation and its changing pattern when they no longer see it. There
is an on-going work [170] (supervised by me) to address this assumption. By integrating
a model of evolution for state variables, the new Predictive Justified Perspective (PJP)
model is able to handle the changing variables through a value updated mechanism
based on existing observations. Although the newly generated perspectives (what agents
believe) are not necessarily subsets of originated observations (what agents see), the se-
mantics of the new model is proven to be still in KD45. In addition, by changing this
value updated mechanism (predictive model) into: a noise handling mechanism, such as
Kalman Filter [171]; or an outlier rejection mechanism, such as Random Sample Con-
sensus (RANSAC) [172], the updated JP model is able to handle the noisy observations

(relaxing Assumption 3), which is more suitable for a real-world application.

Last but not least, most of the existing work on epistemic planning follows a centralised
setting, which is not suitable for its application. Agents’ ability to reason about epistemic
logic is essential when it’s in a decentralised multi-agent setting to interact with other
agents preferably without a predefined communication protocol. Thus, investigating
decentralised epistemic planning is essential for its multi-agent applications. Besides,
whether the epistemic planning framework can be used in a human-agent interaction
setting is also important. Research in this setting is limited to a few instances [173, 174]
However, none of those works contain comprehensive human experiments to verify the
viability of using epistemic planning to model human belief inferences. Furthermore,
the recent explosion of research on Large Language Models (LLMs) allows the epistemic

planning model to potentially assess LLMs’ reasoning capabilities [175, 176].
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Byzantine (Generals Domain

The form of the common knowledge between two agents a and b does not only rely on
the intersection on both agents’ perspectives, but also relies on the intersection on both
agents’ nested perspectives over that intersection, etc. Until we reach a fixed point,
which one intersection [ of agents’ nested perspectives is the same as the intersection on

agents’ perspectives over [. A common example is provided as follows:

The classic example is the Byzantine Generals:

Example A.1. There are 2 generals who cannot directly communicate and must decide
on when to attack their common enemy. Each general will attack only if the 2 generals
have common knowledge of the time of the attack, but such (infinitely-nested) common
knowledge cannot be attained by sending a messenger back and forth k times between the

generals, since on the last trip the messenger could fail to arrive.

Let a and b be two generals, p, and p, be messages they want to send to each other.

For simplicity, let’s set the maximum nested depth is 4. The initial state is:

{Pa, KoKoKapa, Py, KpKpKppp}.

By sending the messenger from a to b, the current state now becomes:

{Pa, KaKoKapa, po, KyKyKypy, KyKyKypa, KpKpKapa, KeKoKapa}.

After that, let b send messenger back, the state becomes:

229
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{pa) KaKaKapm KaKaKapb) KaKaKbpb) KaKbepln KaKbKapaa KaKbepaa
KoKoKypa, py, KoKy Kypy, KyKyKypa, KyKyKopa, KeKoKapa}.

Then, let’s apply the perspective functions on the current state:
Oa(s) = {KaKapaa KoKapy, Ko Kypy, Ky Kppy, Ky Kopa, Ko Kppa, Ko Kppa, }

Oy(s) = { Ky Kppp, Ky Kppa, Ko Kopa, Ko Kapa}-

If we query common knowledge, we must evaluate the intersection between O,(s) and

Oy(s), denoting as s’, which is:

s = {Kbeplh Kbepm KbKapm KaKapa}-

But for common knowledge, we need to apply perspective functions until we reach

termination. Applying another layer of perspective function on s':

Oa(s/) = {Kapa} and Ob(sl) - {Kbpb, Kbpm Kapa}

Their intersection s” is {Kypa}-

Since s’ # s”, we must apply another layer of perspective function, and then we will
get their intersection becomes an empty set, which is their common knowledge. As the

fixed point is an empty set, there is no common knowledge between a and b.

Overall, their nth perspective function intersection would be the sender’s local perspec-
tive over k — nth messenger sending. Their perspectives are never the same between the
time k£ —nth and k£ — n — 1th, and it terminates as empty. Thus, they will never achieve

common knowledge by sending messenger back and forth.
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Appendix B

PDDL Examples

Here we give the example PDDL files representing classical planning problems mentioned

in the main body of this thesis.

B.1 Example NIB problem using PDDL 1.0

The NIB problem can be found in Example 2.1. Although it is in the main body of this

thesis, for easier reference, we copy the code example for the domain file as follows:

(define (domain NIB)
(:requirements :strips :typing :negative-preconditions)

(:types
agent num value

)

(:predicates
(peeking 7a - agent ?n - num)
(standing 7a - agent)
(free ?n - num)
(value ?n - num ?v - value)
(increasing ?7vl 7v2 - value)
(decreasing 7vl 7v2 - value)

)

(:action peek
:parameters (7a - agent 7n - num)
:precondition (and
(standing 7a)
(free 7n)
)
teffect (and
(peeking 7a 7n)
(not (free 7n))
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(not (standing 7a))
)

(:action return
:parameters (7a - agent 7n - num)
:precondition (and
(peeking 7a 7n)
)
teffect (and
(free 7n)
(standing 7a)
(not (peeking 7a ?7n))

)

(:action increment
:parameters (?n - num ?7vl ?v2 - value)
:precondition (and
(value ?n 7?7vl)
(increasing ?7vl ?7v2)
)
teffect (and
(value ?n ?v2)
(not (value ?n ?v1))

)

(:action decrement
:parameters (?n - num ?7vl ?v2 - value)
:precondition (and
(value ?n ?7v1)
(decreasing ?7vl ?7v2)
)
:effect (and
(value ?n ?7v2)
(not (value ?n ?v1))

CobpE ExAMPLE B.1: PDDL1.0 Domain: NIB

(define (problem NIB_example)
(:domain NIB)

(:objects
a b - agent
P 9 - num

vO vl v2 v3 v4 v5 v6 v7 v8 v9

vi0 v1i1 v12 v13 v14 v15 v16 v17 v18 v19
v20 v21 v22 v23 v24 v25 v26 v27 v28 v29
v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
v4d0 v41l v42 v43 v44 v45 v46 v4T7 v48 v49
vb0 v51 vb52 vb53 v54 vb5 vb66 v57 vb8 v59
v60 v61 v62 v63 v64 v65 v66 v67 v68 v69
v70 v71 v72 v73 v74 v75 v76 v77 v78 v79
v80 v81 v82 v83 v84 v85 v86 v87 v388 v89
v90 v91 v92 v93 v94 v95 v96 v97 v98 v99 - value

)

(:init
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19 (standing a)
20 (standing D)
21
22 (free p)
23 (free q)
24
25 (value p v4)
26 (value q v6)
27
28 (increasing v0 vl1) (decreasing vl vO0)
29 (increasing vl v2)(decreasing v2 vl)
30 (increasing v2 v3)(decreasing v3 v2)
31 (increasing v3 v4) (decreasing v4 v3)
32 (increasing v4 vb5)(decreasing v5 v4)
33 (increasing vb v6) (decreasing v6 v5)
34 (increasing v6 v7)(decreasing v7 v6)
35 (increasing v7 v8) (decreasing v8 v7)
36 (increasing v8 v9) (decreasing v9 v8)

37
38
39
40
41
42
43
44
45

75
76
7
78

(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing

v9

v10
vil
v12
v13
vid
vib
v1ié
vi7
v18
v19
v20
v21
v22
v23
v24
v25
v26
v27
v28
v29
v30
v31
v32
v33
v34
v35
v36
v37
v38
v39
v40
val
v42
v43
v44
v45
v46
vaT7
v48
v49
v50

v10) (decreasing v10 v9)

v1il) (decreasing
v12) (decreasing
v13) (decreasing
v14) (decreasing
v15) (decreasing
v16) (decreasing
v17) (decreasing
v18) (decreasing
v19) (decreasing
v20) (decreasing
v21) (decreasing
v22) (decreasing
v23) (decreasing
v24) (decreasing
v25) (decreasing
v26) (decreasing
v27) (decreasing
v28) (decreasing
v29) (decreasing
v30) (decreasing
v31) (decreasing
v32) (decreasing
v33) (decreasing
v34) (decreasing
v35) (decreasing
v36) (decreasing
v37) (decreasing
v38) (decreasing
v39) (decreasing
v40) (decreasing
v41) (decreasing
v42) (decreasing
v43) (decreasing
v44) (decreasing
v45) (decreasing
v46) (decreasing
v47) (decreasing
v48) (decreasing
v49) (decreasing
v50) (decreasing
vb1) (decreasing

vil
v12
v13
vid
v1lb
vié
vi7
v18
v19
v20
v21
v22
v23
v24
v25
v26
v27
v28
v29
v30
v31
v32
v33
v34
v35
v36
v37
v38
v39
v40
vél
v42
v43
v44
v45
v46
vaT7
v48
v49
v50
vb1

v10)
vil)
v12)
v13)
vi4d)
v15)
v16)
v17)
v18)
v19)
v20)
v21)
v22)
v23)
v24)
v25)
v26)
v27)
v28)
v29)
v30)
v31)
v32)
v33)
v34)
v35)
v36)
v37)
v38)
v39)
v40)
v4l)
v42)
v43)
vaa)
v45)
v46)
va7)
v48)
v49)
v50)




79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
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)

(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing
(increasing

(:goal (and
(not (free p))
(not (free q))

vb1
vb52
vb53
vb4
v55
vb6
vb7
v58
v59
v60
v61l
v62
v63
v64
v65
v66
ve7
v68
v69
v70
v71
v72
v73
v74
v75
v76
vT77
v78
v79
v80
v81
v82
v33
v84
v85
v86
v87
v88
v89
v90
vol
v92
v93
v94
v95
v96
vo7
v98

vb2) (decreasing
vb3) (decreasing
vb4) (decreasing
v565) (decreasing
v56) (decreasing
v57) (decreasing
v58) (decreasing
v59) (decreasing
v60) (decreasing
v61l) (decreasing
v62) (decreasing
v63) (decreasing
v64) (decreasing
v65) (decreasing
v66) (decreasing
v67) (decreasing
v68) (decreasing
v69) (decreasing
v70) (decreasing
v71) (decreasing
v72) (decreasing
v73) (decreasing
v74) (decreasing
v75) (decreasing
v76) (decreasing
v77) (decreasing
v78) (decreasing
v79) (decreasing
v80) (decreasing
v81) (decreasing
v82) (decreasing
v83) (decreasing
v84) (decreasing
v85) (decreasing
v86) (decreasing
v87) (decreasing
v88) (decreasing
v89) (decreasing
v90) (decreasing
v91) (decreasing
v92) (decreasing
v93) (decreasing
v94) (decreasing
v95) (decreasing
v96) (decreasing
v97) (decreasing
v98) (decreasing
v99) (decreasing

vb52
vb53
vb4
vb5
vb6
vb7
v58
vb59
v60
v61l
v62
v63
v64
v65
v66
ve7
v68
v69
v70
v71
v72
v73
v74
v75
v76
vT77
v78
v79
v80
v81
v82
v83
v84
v85
v86
v87
v88
v89
v90
vol
v92
v93
v94
v95
v96
vo7
v98
v99

v51)
v52)
v53)
v54)
v55)
v56)
v57)
v58)
v59)
v60)
v61)
v62)
v63)
v64)
v65)
v66)
v67)
v68)
v69)
v70)
v71)
v72)
v73)
v74)
v75)
v76)
v77)
v78)
v79)
v80)
v81)
v82)
v83)
v84)
v85)
v86)
v87)
v88)
v89)
v90)
v91)
v92)
v93)
v94)
v95)
v96)
v97)
v98)

CobpE ExAMPLE B.2: PDDL1.0 Problem: NIB
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Appendix C

F-PDDL Examples

Here we give the example PDDL files as well as the external function codes.

C.1 Example BBL problem using F-PDDL

The BBL problem can be found in Section 4.5.1.5. The domain file and example problem

file (using ByBov=True A ByByv=True as the goal) are given as follows:

(define
(domain bbl)

(:types ;todo: enumerate types and their hierarchy here, e.g.

car truck bus - vehicle

locatable

turnable askable - locatable
)

(:functions

(dir 7a - turnable)
(x 7a - locatable)
(y ?7a - locatable)
(v ?a - askable)

)

;define actions here
(:action turn_clockwise
:parameters (7i - turnable)
:precondition (
)
:effect (
; increase sth by 1
(increase (dir 7i) 1)
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)

(raction turn_anti_clockwise
:parameters (?7i - turnable)
:precondition (

)
teffect (

; increase sth by 1
(decrease (dir 7i) 1)

CobpE ExamMPLE C.1: F-PDDL Domain: BBL

(define
(problem bbl04)
(:domain bbl)

(:agents
a b - turnable

)

(:objects
p - askable

)

(:init
(assign (dir a) ’sw’)
(assign (dir b) ’n’)
(assign (x a) 3)
(assign (x b) 2)
(assign (x p) 1)
(assign (y a) 3)
(assign (y b) 2)
(assign (y p) 1)
(assign (v p) ’t’)

)

; the @ represent this is an epistemic evaluation

(:goal

(and
(= (@ep ("+ b [b] + b [a]l") (= (v p) ’t’)) ep.true)
(= (@ep ("+ b [al + b [b]") (= (v p) ’t’)) ep.true)
)
)

; D, domain of variables, in order to differentiate from the
domain, we use range as key word
(:ranges
(dir enumerate [’w’,’nw’,’n’,’ne’,’e’,’se’,’s’,’sw’])
(x integer [0,4])
(y integer [0,4])
(v enumerate [’t’,’f’])

)

(:rules

)
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CobpE ExAMPLE C.2: F-PDDL Problem: BBL

The observation function for BBL (Equation 4.1) is implemented in Python as follows:

def checkVisibility(self ,state,agent_index,var_name,entities:

typing.Dict [str,Entityl],
functions:typing.Dict[str,Function],
function_schemas:typing.Dict[str,
FunctionSchema]):
if not agent_index in entities.keys():
raise ValueError(f"agent_index [{agent_index}] not found
in entities")

if not entities[agent_index].enetity_type == EntityType.AGENT:
raise ValueError (f"agent_index [{agent_index}] is not an
agent")

if var_name not in functions.keys():
raise ValueError (f"var_name [{var_namel}] not found in
functions")

function = functions[var_name]
function_schemas_name = function.function_schema_name
target_list = function.entity_index_list

# for the bbl domain, all visibility function should be the
same
# based on whether the agents physically see the objects/
agents or not
# and all functions in bbl domain have only one entity
if len(target_list) != 1:

raise ValueError("all function in bbl should have only one
entity",var_name)

target_index = target_list [0]
try:
#extract necessary variables from state
# logger .debug(f"loading variables from state")
target_x = state[f"x {target_index}"]
target_y = state[f"y {target_index}"]
agent_x = state[f"x {agent_index1}"]
agent_y = state[f"y {agent_index}"]
agent_dir = dir_dict[state[f"dir {agent_indexl}"]]

# extract necessary common constants from given domain

# logger .debug(f"necessary common constants from given
domain")

agent_angle = common_constants[f"angle {agent_index}"]

# agent is able to see anything in the same location
if target_x == agent_x and target_y == agent_y:
return True

# generate two vector

vl = np.array((target_y - agent_y,target_x - agent_x))
vl = vl / np.linalg.norm(vl)

radians = math.radians(agent_dir)

v2 = np.array((math.cos(radians) ,math.sin(radians)))

# logger.debug(f’vl {v1}, v2 {v2}’)

cos_ = vl.dot(v2)
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d_radians = math.acos(cos_)

d_degrees = math.degrees(d_radians)

# logger .debug(f’delta angle degree is {round(d_degrees,3)
)

if d_degrees <= agent_angle/2.0 and d_degrees >= -
agent_angle/2.0:
inside = True
else:
inside = False
# logger.debug(f’visibility is {insidel}’)
return inside
except KeyError as e:
self.logger.debug(e)
self.logger.debug("state: %s",state)
return False
except TypeError as e:
self.logger.debug(e)
self .logger.debug("state: %s",state)
return False

CobpE ExAMPLE C.3: F-PDDL observation functions: BBL

C.2 Example Corridor problem using F-PDDL

The Corridor problem can be found in Section 4.5.1.2. The domain file and example

problem file are given as follows:

(define
(domain corridor)

(:types
secret agent

)

(:functions
(agent_loc 7a - agent)
(movable 7a - agent)
(secret_loc ?s - secret)
(sensed 7s - secret)

(secret_lying_value ?s - secret)
(secret_truth_value ?s - secret)
(shared_value ?7s - secret)
(shared_loc 7s - secret)

;define actions here
(:action move_right
:parameters (7a - agent)
:precondition (
(= (movable 7a) 1)
; (= (sharing) 0)
)
teffect (
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(increase (agent_loc 7a) 1)
)

(:action move_left
:parameters (7a - agent)
:precondition (
(= (movable 7a) 1)
)
teffect (
(decrease (agent_loc 7a) 1)
)
)

(:action sense
:parameters (7a - agent, 7s - secret)
:precondition (
; (= (sharing) 1)
(= (movable 7a) 1)
(= (agent_loc 7a) (secret_loc 7s))

)
ceffect (
(assign (sensed 7s) 1)

)

(:action shout_truth
:parameters (7a - agent, 7s - secret)
:precondition (
(= (movable 7a) 1)
(= (sensed 7s) 1)

)
teffect (

(assign (shared_loc 7s) (agent_loc 7a))

(assign (shared_value ?s) (secret_truth_value 7s))
)

)

(:action shout_lie
:parameters (7a - agent, 7s - secret)
:precondition (
(= (movable 7a) 1)
(= (sensed 7s) 1)

)
teffect (
(assign (shared_loc 7s) (agent_loc 7a))
(assign (shared_value ?7s) (secret_lying_value 7s))
)
)
)
CobpE ExamMpPLE C.4: F-PDDL Domain: Corridor
(define

(problem corridor09)
(:domain corridor)

(:agents
abcdef g - agent
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)
(:objects
S - secret
)
(:init

; valid locations are 1,2,3,4
; secret is at location -1 if not shared (avoid adjcent as
well)
(assign (agent_loc a) 1)
(assign (agent_loc b) 2)
(assign (agent_loc c) 3)
(assign (agent_loc d) 1)
(assign (agent_loc e) 3)
(assign (agent_loc f) 2)
(assign (agent_loc g) 4)

(assign (movable a) 1)
(assign (movable b) 0)
(assign (movable c) 0)
(assign (movable d) 0)
(assign (movable e) 0)
(assign (movable f) 0)
(assign (movable g) O0)

(assign (secret_loc s) 2)
(assign (sensed s) 0)

(assign (secret_truth_value s) ’t’)
(assign (secret_lying_value s) ’f’)

(assign (shared_value s) ’f?)
(assign (shared_loc s) -1)

(:goal (and
(= (@ep ("+ b [b] + b [b] + b [b] + b [b]l] + b [bI") (=
(shared_value s) ’f’)) ep.true)
(= (@ep ("+ b [c] + b [c] + b [c] + b [c] + b [cl") (=
(shared_value s) ’t’)) ep.true)
)
)

(:ranges
(agent_loc integer [1,4])
(secret_loc integer [1,4])
(movable integer [0,1])
(sensed integer [0,1])
(shared_loc integer [-1,4])
(secret_truth_value enumerate [’t’,’f’])
(secret_lying_value enumerate [’t’,’f’])
(shared_value enumerate [’t’,’f’])

)
(:rules

)
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CobpE ExAMPLE C.5: F-PDDL Problem: Corridor

We also provide two versions of the observation function for the corridor domain here.
One (Code Example C.6) is consistent with the PDKB approach; the other one (Code

Example C.7) is the one we believe is more meaningful.

def checkVisibility(self,state,agent_index,var_name,entities:
typing.Dict [str,Entityl],
functions:typing.Dict[str,Function],
function_schemas:typing.Dict[str,
FunctionSchemal):
if not agent_index in entities.keys():
raise ValueError (f"agent_index [{agent_index}] not found
in entities")

if not entities[agent_index].enetity_type == EntityType.AGENT:
raise ValueError (f"agent_index [{agent_index}] is not an
agent")

if var_name not in functions.keys():
raise ValueError (f"var_name [{var_namel}] not found in
functions")

function = functions[var_name]
function_schemas_name = function.function_schema_name
target_list = function.entity_index_list

if ’agent_loc’ == function_schemas_name:
# it means this is agent’s location
# based on the assumption from PDKB
# agent can see all the location all the time
return True

elif ’movable’ == function_schemas_name:
return True
elif ’secret_loc’ == function_schemas_name:
return True
elif ’sensed’ == function_schemas_name:
return True
elif ’secret_truth_value’ == function_schemas_name \
or ’secret_lying_value’ == function_schemas_name:

# it depends on whether agent has sensed the value if it
is agent a (movable)

movable = state[f’movable {agent_index}’]
if movable == 1:
sensed = state[f’sensed {target_list[0]}’]
return sensed == 1
else:
return False
elif ’shared_loc’ == function_schemas_name:

# it means this is a location variable

# agent will know the secret is been shared if they are in
the same room where the secret shared

# if state[var_name] == 0:

# return True

# return abs(int(state[var_name])-int(state[f’agent_loc {
agent_index}’])) <=1

### this 1is true becasue the assumption from PDKB
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return True

elif ’shared_value’ == function_schemas_name:
# it depends on whether agent sees that secret been shared
shared_loc = state[f’shared_loc {target_list [0]}’]
agent_loc = state[f’agent_loc {agent_index}’]
return abs(int(shared_loc)-int (agent_loc)) <=1
else:
raise ValueError (f"function_schemas_name [{
function_schemas_name}] not found")

CobpE ExAMPLE C.6: F-PDDL observation functions: Corridor (PDKB version)

def checkVisibility(self,state,agent_index,var_name,entities:
typing.Dict [str,Entityl],
functions:typing.Dict [str,Function],
function_schemas:typing.Dict[str,
FunctionSchemal) :
if not agent_index in entities.keys():
raise ValueError (f"agent_index [{agent_indexl}] not
found in entities")
if not entities[agent_index].enetity_type == EntityType.
AGENT :
raise ValueError(f"agent_index [{agent_index}] is not
an agent")
if var_name not in functions.keys ():
raise ValueError (f"var_name [{var_namel}] not found in
functions")

function = functions[var_name]
function_schemas_name = function.function_schema_name
target_list = function.entity_index_list

if ’agent_loc’ == function_schemas_name:
# it means this is agent’s location
# based on the assumption from PDKB
# agent can see all the location all the time

# this changes the assumption of all location are
known .
if state[f’agent_loc {agent_index}’] == statel[f’
agent_loc {target_list[0]}’]:
return True

else:
return False
elif ’movable’ == function_schemas_name:
return True
elif ’secret_loc’ == function_schemas_name:
return True
elif ’sensed’ == function_schemas_name:
return True
elif ’secret_truth_value’ == function_schemas_name \
or ’secret_lying_value’ == function_schemas_name:

# it depends on whether agent has sensed the value if
it is agent a (movable)

movable = state[f’movable {agent_index}’]

if movable == 1:
sensed = state[f’sensed {target_list [0]3}’]
return sensed == 1

else:
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return False
elif ’shared_loc’ == function_schemas_name:

# it means this is a location variable

# agent will know the secret is been shared if they
are in the same room where the secret shared

# if state[var_name] == O0:

# return True

# return abs(int(state[var_name])-int(statel[f’
agent_loc {agent_index}’]))<=1

### this 1s true becasue the assumption from PDKB
# return True

# change the agent know secret been sharing all the

time.
if state[var_name] == -1:
return True
shared_loc = state[f’shared_loc {target_list[0]}’] if
type(state[f’shared_loc {target_list[0]}’]) == int else -1
agent_loc = state[f’agent_loc {agent_index}’] if type(
state[f’agent_loc {agent_index}’]) == int else -3
return abs(int(shared_loc)-int(agent_loc)) <=1
elif ’shared_value’ == function_schemas_name:
# it depends on whether agent sees that secret been
shared
shared_loc = state[f’shared_loc {target_list[0]}’] if
type (state[f’shared_loc {target_list[0]}’]) == int else -1
agent_loc = state[f’agent_loc {agent_index}’] if type(
state[f’agent_loc {agent_index}’]) == int else -3
return abs(int(shared_loc)-int(agent_loc)) <=1
else:

raise ValueError (f"function_schemas_name [{
function_schemas_name}] not found")

CobpE ExAMPLE C.7: F-PDDL observation functions: Corridor (JP version)
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