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What you get is what you see: Decomposing Epistemic Planning using
Functional STRIPS

by Guang HU

Epistemic planning — planning with knowledge and belief — is essen-
tial in many multi-agent and human-agent interaction domains. Most state-
of-the-art epistemic planners solve this problem by compiling to proposi-
tional classical planning, for example, generating all possible knowledge
atoms, or compiling epistemic formula to normal forms. It is noted that the
compilations are typically exponentially larger than the original problem.
However, these methods become computationally infeasible as problems
grow. In addition, those methods only works on propositional variables in
discrete domains.

In this thesis, we decompose epistemic planning by delegating epis-
temic logic reasoning to an external solver. We do this by modelling the
problem using functional STRIPS, which is more expressive than standard
STRIPS and supports the use of external, black-box functions within action
models. Exploiting recent work that demonstrates the relationship between
what an agent ‘sees’ and what it knows, we allow modellers to provide
new implementations of externals functions. These define what agents see
in their environment, allowing new epistemic logics to be defined with-
out changing the planner. As a result, the capability and flexibility of the
epistemic model itself are increased, as our model is able to avoid expo-
nential pre-compilation steps and handle logics from continuous domains.
We ran evaluations on well-known epistemic planning benchmarks to com-
pare with an existing state-of-the-art planner, and on new scenarios based
on different external functions. The results show that our planner scales
significantly better than the state-of-the-art planner which we compared
against, and can express problems more succinctly.
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Chapter 1

Introduction

Automated planning is a model-based approach to study sequential de-
cision problems (Geffner and Bonet, 2013). Planning model describes the
environment and the agents with concise planning languages, such as
STRIPS (Fikes and Nilsson, 1971) or PDDL (Haslum et al., 2019). They then
submit the description of the model to a general problem solver in order
to find a sequence of actions to achieve some desired goal states. The de-
scription of the problem, in general, tracks the changes in the state of the
environment. However, in many scenarios, an agent needs to reason about
the knowledge or beliefs of other agents in the environment. This concept is
known as epistemic planning (Bolander and Andersen, 2011), a research topic
that brings together the knowledge reasoning and planning communities.

Epistemic logic is a formal account to perform inferences and updates
about an agent’s own knowledge and beliefs, including group and com-
mon knowledge in the presence of multiple agents (Hintikka, 1962). Epis-
temic planning is concerned about action theories that can reason not only
about variables representing the state of the world, but also the beliefs and
knowledge that other agents have about those variables. Thus, epistemic
planning intends to find the best course of action taking into account prac-
tical performance considerations when reasoning about knowledge and be-
liefs (Bolander and Andersen, 2011). Bolander and Andersen (2011) first
used event-based models to study epistemic planning in both single and
multi agent environments, and gave a formal definition of epistemic plan-
ning problems using Dynamic Epistemic Logic (DEL) (Bolander, 2017).

There are typically two frameworks in which epistemic planning are
studied. The first is to use DEL. This line of research investigates the decid-
ability and complexity of epistemic planning and studies what type of prob-
lems it can solve (Bolander, 2014; Bolander, Jensen, and Schwarzentruber,
2015; Bolander, 2017) The second is to extend existing planning languages
and solvers to epistemic tasks (Muise, Belle, et al., 2015; Muise, Miller, et
al., 2015; Kominis and Geffner, 2015; Kominis and Geffner, 2017; Wan et al.,
2015; Huang et al., 2017; Wu, 2018; Le et al., 2018). In this thesis, we take
the latter approach.

The complexity of epistemic planning is undecidable in the general case.
Thus, one of the main challenges of epistemic planning concerns com-
putational efficiency. The dominant approach in this area relies on com-
pilations. These solutions pre-compile epistemic planning problems into
classical planning problems, using off-the-shelf classical planners to find
solutions (Muise, Belle, et al., 2015; Muise, Miller, et al., 2015; Kominis
and Geffner, 2015; Kominis and Geffner, 2017); or pre-compile the epis-
temic formulae into specific normal forms for better performance during
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search (Huang et al., 2017; Wu, 2018). Such approaches have been shown to
be fast at planning, but the compilation is computationally expensive. For
example, from Muise, Belle, et al. (2015)’s result, the planner takes less than
a second to solve a problem, but the compilation time is more than half a
minute when as the problem size increases.

This thesis departs from previous approaches in two significant ways.
First, we propose a model that exploits recent insights by defining what an
agent knows as a function of what it “sees” (Cooper et al., 2016; Gasquet,
Goranko, and Schwarzentruber, 2014). Cooper et al. (2016) define “seeing
relations” for agent i as modal operators Si that “see” whether a proposi-
tion is true, and then define knowledge K for agent i of a proposition p as
Kip ↔ p ∧ Sip; that is, if p is true and agent sees p, then it knows p. Thus,
the seeing modal operator is equivalent to the ‘knowing whether’ opera-
tor (Fan, Wang, and Ditmarsch, 2015; Miller et al., 2016). We generalise the
notion of seeing relations to perspective functions, which are functions that
determine which variables an agent sees in its environment. The domain
of variables can be discrete or continuous, not just propositional. The basic
implementation of perspective functions is just the same as seeing relations,
however, we show that by changing the definition of perspective functions,
we can establish new epistemic logics tailored to specific domains, such as
Big Brother Logic (Gasquet, Goranko, and Schwarzentruber, 2014), a logic
about visibility and knowledge in two-dimensional Euclidean planes, or
Social-media Network, a logic about abstract “seeing” relation of who be-
friends with whom.

Second, we show how to integrate perspective functions within func-
tional STRIPS models as external functions (Francès et al., 2017). External
functions are black-box functions implemented in any programming lan-
guage (in our case, C++), that can be called within action models. Epis-
temic reasoning is delegated to external functions, where epistemic formu-
lae are evaluated lazily, avoiding the exponential blow-up from epistemic
formulae present in other compilation-based approaches. This delegation
effectively decomposes epistemic reasoning from search, and allows us to
implement our approach in any functional STRIPS planner that supports
external functions. Further, the modeller can implement new perspective
functions that are tied to specific domains, and our model will use those
functions to evaluate desired epistemic relations, effectively defining new
external solvers. While perspective functions can be generic and imple-
ment e.g. Muise, Belle, et al.’s finite-depth, propositional epistemic logic
Muise, Belle, et al., 2015 or Le et al. observability relations Le et al., 2018,
our experience suggests that tailoring to specific domains results in more
understandable and elegant models and perspective functions.

In our experiments we use a width-based functional STRIPS plan-
ner (Francès et al., 2017) that is able to evaluate the truth value of epistemic
fluents with external solvers, and solve a wide range of epistemic prob-
lems efficiently, including but not limited to, nested knowledge, distributed
knowledge and common knowledge. We also show how modellers can im-
plement different perspective functions as external functions in the func-
tional STRIPS language, enabling the use of domain-dependent epistemic
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logics. Departing from propositional logic give us flexibility to encode ex-
pressive epistemic formulae concisely. We compare our approach to a state-
of-the-art epistemic planner that relies on a compilation to classical plan-
ning (Muise, Belle, et al., 2015). We implement two benchmarks problems,
Corridor (Cooper et al., 2016) and Grapevine (Muise, Belle, et al., 2015) to
compare the computational performance, and choose another two complex
domains, Big Brother Logic and Social-media Network, to examine the ex-
pressiveness of our model. The results show that, unlike in the compilation
based approaches, the depth of nesting and the number of agents does not
affect our performance, which means our approach avoids the exponential
blow up due to our lazy evaluation of epistemic formulae.

In the following chapters we give a brief background on both epistemic
logic and epistemic planning (Section 2). We then introduce a new model,
the agent perspective model (Section 3). We discuss implementation details
using a functional STRIPS planner (Section 4), and report experiments on
several well-known benchmarks, along with two new scenarios to demon-
strate the expressiveness of the proposed approach (Section 5).
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Chapter 2

Background

In this work, we target Multi-Agent Epistemic Planning (MEP) problems, in-
spired by Muise, Belle, et al. (2015)’s definition. The formal definition is
given in Section 4.2. As for preliminaries of this work, we briefly intro-
duce the three main areas: (1) classical planning; (2) epistemic logic; and (3)
epistemic planning.

2.1 Classical Planning

Planning is the model-based approach to action selection in AI, where
the model is used to reason about which action an agent should do
next (Geffner and Bonet, 2013). Models vary depending on the assump-
tions imposed on the dynamics of the world, from classical where all ac-
tions have deterministic instantaneous effects and the world is fully known,
up to temporal or POMDP models, where actions have durations or be-
lief distributions about the state of the world. Models are described con-
cisely through declarative languages such as STRIPS and PDDL (Fikes and
Nilsson, 1971; McDermott, 2000), general enough to allow the encoding
of different problems, while at the same time revealing important struc-
tural information that allow planners to scale up. In fact, most planners
rely on exploiting the structure revealed in the action theory to guide the
search of solutions, from the very first general problem solver (Simon and
Newell, 1963) up to the latest computational approaches based on SAT,
and heuristic search (Rintanen, 2012; Richter and Westphal, 2010). On the
other hand, declarative languages have limited the scope of planning, as
certain environments representing planning models are difficult to encode
declaratively, but are easily defined through simulators such as the Atari
video games (Bellemare et al., 2013). Consequently, a new family of width-
based planners (Lipovetzky and Geffner, 2012; Lipovetzky and Geffner,
2014; Lipovetzky and Geffner, 2017a) have been proposed, broadening the
scope of planning and have been shown to scale-up even when the plan-
ning model is described through simulators, only requiring the exposure
of the state variables, but not imposing any syntax restriction on the action
theory (Francès et al., 2017), where the denotation of some symbols can be
given procedurally through simulators or by external theories.

In this thesis we focus on epistemic planning, which considers the clas-
sical planning model as a tuple S = 〈S, s0, SG, Act, A, f, c〉 where S is a set of
states, s0 ∈ S is the initial state, SG ⊆ S is the set of goal states,Act is the set
of actions, A(s) is the subset actions applicable in state s, f is the transition
function so that f(a, s) represents the state s′ that results from doing action
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a in the state s, and c(a, s) is a cost function. The solution to a classical plan-
ning model S , called a plan, is a sequence of actions that maps the initial
state into a goal state, i.e., π = 〈a0, . . . , an〉 is a plan if there is a sequence of
states s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si) for i = 0, . . . , n and
sn+1 ∈ SG. The cost of plan π is given by the sum of action costs c(ai, si)
and a plan is optimal if there is no plan with smaller cost.

As one of the language that can model classical planning, STRIPS can
represent any classical planning problem as a tuple P = 〈F,O, I,G〉, where:
F is the set of all possible facts or propositions,O the set of all actions, I ⊆ F
a set of all true facts in the initial situation, and G ⊆ F a set of facts that
needs to be true as the goal conditions. Since there is no operator cost in
STRIPS, the plan is optimal if there is no plan with less operators taken.

Besides the model, a solver, which is also called a planner, plays another
important role in planning. One of the most successful computational ap-
proaches to planning is heuristic search. Besides a search algorithm, the
key feature which distinguishes planners is the heuristic function (Helmert
and Domshlak, 2009). To achieve good performance, the heuristic functions
should be as informed as possible. For example, one of the current best-
performing planner, LAMA, uses a landmark-based heuristic derived from
the model (Richter and Westphal, 2010) along with other delete-relaxation
heuristics (Geffner and Bonet, 2013). The downside is that most heuristics
require the model to be encoded in STRIPS or PDDL, but this restricts the
expressiveness of the models significantly.

The standard planning languages and solvers do not support the use of
procedures or external theories. One exception is the FS planner (Frances
and Geffner, 2015), that supports the Functional STRIPS language (Geffner,
2000), where the denotation of (non-fluent) function symbols can be given
extensionally by means of atoms, or intentionally by means of procedures.
Procedures also appear as an extension of PDDL under the name of seman-
tic attachments (Dornhege et al., 2009). The reason why procedures are not
“first-class citizens” in planning languages is that there was no clear way
to deal with them that is both general and effective. Recently, a new fam-
ily of algorithms called BFWS(R) have been proposed in classical planning
known as Width-based planning (Lipovetzky and Geffner, 2012).

The BFWS(R) family of planners (Francès et al., 2017) have been shown
to scale up even in the presence of functional symbols defined procedurally.

The F-STRIPS planner using BFWS(R) has been compared over 380 clas-
sical planning problems with respect of the performance of FF* (Helmert,
2006), LAMA-11 (Richter and Westphal, 2010), and BFWS(f5) (Lipovetzky
and Geffner, 2017b) in their work (Francès et al., 2017). The results show
that the F-STRIPS BFWS(R∗G) planner performs as good as BFWS(f5), which
relies on a STRIPS model, and slightly better than LAMA-11. It is worth to
mention that FF and LAMA have been the top-performing planners for last
15 years, and BFWS(f5) has been shown to win the agile track in the last
International Planning Competition 2018, and is a state-of-the-art planner
for classical planning. The F-STRIPS BFWS(R) planner thus can cope with
externally defined functional symbols while performing well with respect
to other planners. In addition, they compare among five planners within
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BFWS(R) family, each of them using different R(s) functions. Since the fo-
cus of this thesis is not on evaluating performance with different R(s) func-
tion, we choose the simplest BFWS(R0) planner as our developing tool1.

2.2 Epistemic Logic

In this section, we give the necessary preliminaries for epistemic logic – the
logic of knowledge. Knowledge in a multi-agent system is not only about
the environment, but also about the agents’ knowledge about the environ-
ment, and of agents’ knowledge of others’ knowledge about the environ-
ment, and so on.

Fagin et al. (2003) provides a formal definition of epistemic logic as fol-
lows. Given a set of countable set of all primitive propositions Prop =
{p1, p2, ...} and a finite set of agents Agt = {a1, a2, ...}, the syntax for epis-
temic logic is defined as:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kiϕ,

in which p ∈ Prop and i ∈ Agt.
Kiϕ represents that agent i knows proposition ϕ, ¬means negation and

∧ means conjunction. Other operators such as disjunction and implication
can be defined in the usual way.

Fagin et al. (2003) define the semantics of epistemic logic using Kripke
structures, as standard in modal logic. A Kripke structure is a tuple M =
(S, π,K1, . . . ,Kn) where:

• S is a non-empty set of states;

• π(s) is an interpretation function: Prop 7→ {true | false}; and

• K1 . . .Kn represents the accessibility relations over states for each of the
n agents in Agt.

Given a state s and a proposition p, the evaluation of p over s is π(s)(p).
If and only if p is true in s, then π(s)(p) is true. Ki for agent i is a binary re-
lation over states, which is the key to reason about knowledge. For any pair
of states s and t, if (s, t) ∈ Ki, then we can say agent i cannot distinguish
between t and s when in state s. In other words, if agent i is in the current
real-world state s, the agent can consider t as the current state based on all
the information it can obtain from state s. With this definition of Kripke
structure, we can define the semantics of knowledge.

Given a state s, a proposition p, a propositional formula ϕ and a Kripke
structure M , the truth of two basic formulae are defined as follows:

• (M, s) � p iff π(s)(p)=true

• (M, s) � Kiϕ iff (M, t) � ϕ for all t such that (s, t) ∈ Ki

(M, s) � p represents p is true at (M, s), which means, the evaluation of
p in state s, π(s)(p) must be true. Standard propositional logic rules define

1The planner is available through https://github.com/aig-upf/
2017-planning-with-simulators. We used options -driver sbfws -options
bfws.rs=none

https://github.com/aig-upf/2017-planning-with-simulators
https://github.com/aig-upf/2017-planning-with-simulators
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conjunction and negation. (M, s) � Kiϕ is defined by formula ϕ being
true at all worlds t reachable from s via the accessibility relation Ki. This
allows knowledge to be nested; for example, KaKbp represents that agent a
knows that agent b knows p, which means p is true at all worlds reachable
by applying accessibility relation Ka followed by Kb.

From these basic operators, the concept of group knowledge can be de-
fined. For this, the grammar above is extended to:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kiϕ | EGϕ | DGϕ | CGϕ,

in which p ∈ Prop, i ∈ Agt, and G is a non-empty set of agents such that
G ⊆ Agt.

EGϕ represents that everyone in group G knows ϕ and CGϕ represents
that it is commonly known in group G that ϕ is true, which means that ev-
eryone knows ϕ, and everyone knows that everyone knows ϕ, ad infini-
tum. DGϕ represents distributed knowledge, which means we combine the
knowledge of the set of agents G such that G knows ϕ, even though it may
be that no individual in the group knows ϕ.

The semantics for these group operators are defined as follows:

• (M, s) � EGϕ iff (M, s) � Kiϕ for all i ∈ G;

• (M, s) � CGϕ iff (M, t) � ϕ for all t that are G−reachable2 from s

• (M, s) � DGϕ iff (M, t) � ϕ for all t such that (s, t) ∈ ∩i∈GKi

By definition, (M, s) � EGϕwill be true, if and only if, ϕ is known by all
agents in G. Common knowledge in world s, (M, s) � CGϕ is defined as:
in all worlds t, which are reachable by following the accessibility relations
of all agents in G, ϕ is true. For distributed knowledge, (M, s) � DGϕ is
true, if and only if, in all the possible worlds that all agents fromG consider
possible, ϕ is true. It might be easier to think in the reverse direction: if and
only if, we eliminate worlds that any agent in G knows to be impossible,
and ϕ is true in all the remaining possible worlds, then we say DGϕ is true
in (M, s).

2.2.1 Seeing and Knowledge

Recently Gasquet, Goranko, and Schwarzentruber (2014) noted the rela-
tionship between what an agent sees and what it knows. They define a
more specific task of logically modeling and reasoning about cooperating
tasks of vision-based agents, which they called Big Brother Logic (BBL). Their
framework models multi-agent knowledge in a continuous environment of
vision, which has great potential applications such as reasoning over cam-
eras inputs, autonomous robots and vehicles. They introduce the semantics
of their model and its extensions on natural geometric models.

In their scenario, agents are stationary cameras in a Euclidean plane R2,
and they assume that those cameras can see anything in their sight range,
and they do not block others’ sight. They extend Fagin et al. (2003)’s logic
by noting that, at any point in time, what an agent knows, including nested
knowledge, can be derived directly from what it can see in the current

2We say t is G−reachable from s if t can reach s with K steps of accessible relations,
where K ≤ 1 (Fagin et al., 2003).
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a1
(0.0, 0.0)

a2
(4.2, 0.0)

b1
(−2.1, 0.0)

b2
(2.1, 0.0)

b3
(6.2, 0.0)

b4
(2.1, 1.9)

FIGURE 2.1: Example for Big Brother Logic

state. In brief, instead of Kripke frames, they define a geometric model as
(pos, dir, ang), in which:

• pos : Agt→ R2

• dir : Agt→ U

• ang : Agt→ [0, 2π)

where U is the set of unit vectors of R2, the pos function gives the position
of each agent, the dir function gives the direction that each agent is facing,
and the function ang gives the angle of view for each agent.

A model is defined as (pos, ang,D,R), in which pos and ang are as
above, D is the set of possible dir functions and R is the set of equivalence
relations, one for each agent a, defined as:

Ra = {(dir, dir′) ∈ D2 | for all b 6= a, dir(b) = dir′(b)}

The definition above shows the equivalence relation for agent a between
the worlds (pos, dir, ang) and (pos, dir′, ang), as all the agents that a can see
are considered as the same.

In this context, standard propositional logic is extended with the binary
operator a . b, which represents that “a sees b”. This is defined as:

• (pos, ang,D,R), dir � a . b iff pos(b) ∈ Cpos(a),dir(a),ang(a) ,

in which Cpos(a),dir(a),ang(a) is the field of vision that begins at pos(a) from
direction dir(a) and covers ang(a)

2 degrees in both clockwise and counter-
clockwise directions.

From this, they show the relationship between seeing and knowing. For
example, Ka(b . c) is defined as a . b ∧ a . c ∧ b . c.

Figure 2.1 shows an example with two agents, a1 and a2, and model
((0.0, 0.0), 60◦, D,R) and ((4.2, 0.0), 60◦, D,R) respectively, along with four
objects, b1, b2, b3 and b4. Based on the current state, for agent a1, we have:
(pos, ang,D,R), dir � a1 . a2; (pos, ang,D,R), dir � a1 . b2; and,
(pos, ang,D,R), dir � a1.b3. In addition, a pair of directions (0◦,−5◦) ∈ Ra

shows that for agent a, the seeing relations stay unchanged, meaning that
((0.0, 0.0), 60◦,−5◦, R) is accessible from ((0.0, 0.0), 60◦, 0◦, R) in their logic.

Gasquet, Goranko, and Schwarzentruber (2014) also define a common
knowledge operator, in a similar manner to that of Fagin et al. (2003)’s
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definition based on G−rearchable worlds. In Figure 2.1, the formula
C{a1,a2}a1 . b2 holds by their definition, because a1 and a2 can both see b2,
and can both see each other. From those, we can deduce based on geomet-
ric law that a1 can see “a2 can see b2” due to a1 can see both a2 and b2, and
a2 can see b2. Furthermore, from previous sentence and a2 can see a1, we
get that a2 can see “a1 can see ‘a2 can see b2’ ”, and etc. Thus, a common
knowledge has been formed.

Cooper et al. (2016)’s idea of modelling an agent’s knowledge bases on
what it sees, and generalise it to seeing propositions, rather than to just to
seeing other agents in a Euclidean plane. They extended Fagin et al. (2003)’s
definition by adding an extra formula α that describes formula (proposi-
tion) that can be seen:

α ::= p | Sip | Siα
ϕ ::= α | ϕ ∧ ϕ | ¬ϕ | Kiϕ,

in which p ∈ PV ar (the set of propositional variables) and i ∈ Agt. The
grammar of α defines visibility relations. Siα reads as “agent i sees α”.
Note the syntactic restriction that agents can only see atomic propositions
or nestings of seeing relationships that see atomic propositions.

From this, they define knowledge using the equivalences Kip ↔ p ∧
Sip and Ki¬p ↔ ¬p ∧ Sip. This tight correspondence between seeing and
knowledge is intuitive: an agent knows p is true if p is true and the agent
can see the variable p. Such a relationship is the same as the one between
knowing something is true and knowing whether something is true (Miller
et al., 2016; Fan, Wang, and Ditmarsch, 2015). In fact, in early drafts of the
work available online, Cooper et al. (2016), Si was written as KWi, aptly
named the “knowing whether” operator.

Comparing these two bodies of work, Gasquet, Goranko, and
Schwarzentruber (2014) use a geometric model to represent the environ-
ment and derive knowledge from this by checking the agents’ line of sight.
Their idea is literally matching the phrase “Seeing is believing”. However,
their logic is constrained only to vision in physical spaces. While in Cooper
et al. (2016)’s world, the seeing operator applies to propositional variables,
and thus visibility can be interpreted more abstractly; for example, “seeing”
(hearing) a message over a telephone.

This thesis generalises seeing relations to perspective functions, which
are domain-dependent functions defining what agents see in particular
states. The result is more flexible than seeing relations, and allows Big
Brother Logic to be defined with a simple perspective function, as well
as new perspective functions for other domains; for example, Big Brother
Logic in three-dimensional planes, or visibility of messages on a social net-
work.

2.3 Epistemic Planning

Bolander and Andersen (2011) introduce the concept of epistemic planning,
and define it in both single agent and multi-agent domain. Their planning
framework is defined in dynamic epistemic logic (DEL) (Van Ditmarsch, Der
Hoek, and Kooi, 2007), which has been shown to be undecidable in gen-
eral, but with decidable fragments (Bolander, Jensen, and Schwarzentruber,
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2015). In addition, they also provided a solution to PSPACE-hardness of the
plan verification problem. This formalism has been used to explore theo-
retical properties of epistemic planning; for example, Engesser et al. (2017)
used concepts of perspective shifting to reason about other’s contribution
to joint goals. Along with implicit coordination actions, their model can
solve some problems elegantly without communication between agents.

Since epistemic planning is formalized in DEL, there has been substan-
tial works on DEL-based planning. However, in this thesis, our focus is on
the design, implementation, and evaluation of planning tools, rather than
on logic-based models of planning. Therefore, in this section, we focus on
research in those works which are providing practical solutions and eval-
uating their model and planning algorithm on computational results on
benchmarks.

A handful of researchers in the planning field focus on leveraging ex-
isting planners to solve epistemic problems. Muise, Belle, et al. (2015) pro-
posed an approach to multi-agent epistemic planning with nested beliefs,
non-homogeneous agents, co-present observation, and the ability for one
agent to reason as if it were the other. Generally, they compiled an epis-
temic logic problem into a classical planning problem by grounding epis-
temic fluents into propositional fluents and using additional conditional
effects of actions to enforce desirable properties of beliefs.

Muise, Belle, et al. (2015) define MEP as a tuple 〈P,A, Ag, I,G〉, where,
similar to STRIPS, P is the set of propositions (facts), A is the set of actions
(operators), I is the initial state, G is the goal-condition, and Ag is the set of
agent. They handle epistemic relation as epistemic literals following gram-
mar: “φ ::= p | Biφ | ¬φ”. The literal “Biφ” reads “agent i believes φ”. Two
limitations of this approach are: a finite depth of nested beliefs; and, no dis-
junction. Then, they take three processes to convert their model to STRIPS
and keep their solution sound and complete. Firstly, they maintain the de-
ductive closure by removing negations and adding logical consequences of
all positive effects. Then, they address the uncertainty by removing belief
l of negation of an unsure effects and any other beliefs that can be used to
deduce l. At last, they apply conditioned mutual awareness to conditional
effects to enrich their model to handle beliefs update on different level.

They evaluate their approach on the Corridor (Kominis and Geffner,
2015) problem and the Grapevine problem, a combination of Corridor and
Gossip (Herzig and Maffre, 2015). Their results show that their approach is
able to solve the planning task within a typically short time, but the com-
pilation time to generate fluents and conditional effects is exponential in
the size of the original problem. In particular, the compilation time is expo-
nential in both the number of agents and the maximum depth of epistemic
relations.

Kominis and Geffner (2015) adapt methods from partially-observable
planning for representing beliefs of a single agent, and convert that method
to handle multi-agent setting. Their idea is to maintain the problem’s
Kripke structure. By their definition (adapting STRIPS), an epistemic plan-
ning problem P is a tuple 〈A,F, I,O,N,U,G〉. In their model, A is the set of
agent identifiers, I is a set of possible initial states rather than just one ini-
tial state in STRIPS. Then, instead of tracking the problem by only updating
actual states, they combine the Kripke structure with the state at time step
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t and possible initial states by using beliefs, B(t). A set of beliefs B(t) con-
tains a set of B(si, t) for each possible initial state si. And in each B(s, t),
there are the actual state v(s, t) and indistinguishable relations ri(s, t) be-
tween current state and possible initial state for each agent i. By doing so,
they are able to construct the Kripke structure from the initial state for each
agent.

To keep the Kripke structure during the search, they define three kinds
of action sets: O, N and U . O represents all physical actions, which is the
same O as in classical planning. The operator updates the actual current
state s base on deterministic transition function. The action set N denotes
a set of sense actions, which can be used to infer knowledge. The sense
actions will iterate on each agent and remove the inconsistent belief rela-
tions according to the given formula. The last action set U is used to update
beliefs according to the fact ϕ. The update will keep the possible previous
state that agrees with ϕ and delete the rest.

Overall, they are able to use their model to encode epistemic planning
problems, and can convert their model to a classical planning model using
standard compilation techniques for partially-observable planning. They
evaluated their model on the Muddy Children, Sum and Word Rooms (Ko-
minis and Geffner, 2015) domains. As far as we can tell from their experi-
ments, they keep the depth of the epistemic relation fixed at one and vary
the number of agents or the number of rooms. Their results show that their
model is able to solve all cases presented with different suitable planners.
However, from their result, there is a exponential growth on the time con-
sumption due to the increase scale of the problems. In addition, following
their approach, the modeller must specify the sense action for each pair of
(i, ϕ) and update action for each ϕ.

Since Kominis and Geffner (2015), and Muise, Belle, et al. (2015)’s ap-
proach the problem in a similar way (compilation to classical planning)
their results are similar in general. However, the methods they used are
different. Therefore, their work and results have diverse limitations and
strengths. For Muise, Belle, et al. (2015)’s work, they managed to model
nested beliefs without explicit or implicit Kripke structures, which means
they can only represent literals, while Kominis and Geffner (2015)’s work is
able to handle arbitrary formulae. Furthermore, Muise, Belle, et al. (2015)’s
model does not have the strict common initial knowledge setting found in
Kominis and Geffner (2015), and does not have the constraint that all action
effects are commonly known to all the agents. Therefore, Muise, Belle, et al.
(2015)’s model allows them to model beliefs, which might be not what is
actual true in the world state, rather just model knowledge. In other words,
they can handle different agents having different beliefs about the same flu-
ent.

More recently, rather than compiling epistemic planning problems into
classical planning, Huang et al. (2017) built a native multi-agent epistemic
planner, and proposed a general representation framework for multi-agent
epistemic problems (Huang et al., 2017). They considered the whole multi-
agent epistemic planning task from a third person point of view. In addi-
tion, based on a well-established concept of belief change algorithms (both
revision and update algorithms), they design and implemented an algo-
rithm to encode belief change as the result of planning actions. Catering to
their ideas and algorithms, they developed a planner called MEPK. They
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evaluated their approach with Grapevine, Hexa Game and Gossip, among
others. From their results, it is clear that their approach can handle a variety
of problems, and performance on some problems is better than other ap-
proaches. While this approach is different from Kominis and Geffner (2015)
and Muise, Belle, et al. (2015), it still requires a compilation phase before
planning to re-write epistemic formula into a specific normal form called
alternating cover disjunctive formulas (ACDF) (Hales, French, and Davies,
2012). The ACDF formula is worst-case exponentially longer than the orig-
inal formula. The results show that this step is of similar computational
burden as either Kominis and Geffner (2015) or Muise, Belle, et al. (2015).
In addition, building a native planner to solve an epistemic planning prob-
lem makes it more difficult to take advantage of recent advances in other
areas of planning.

Le et al. (2018) build two prototypical epistemic forward planners,
named EFP and PG-EFP. They define their planning language as a tuple
(AG,F , A,O), where AG is the set of agent identifiers and F is the set of
fluents. Action set A and observability statement set O compose the ac-
tions and effects. In their A, they specify preconditions and three possible
effects: ontic, sensing and announcement, which work as follows: ontic
effects change the state (actual world); sensing action reveals truth value
of some fluent f ; and, announcement action announces the truth value of
some fluent f , which affects set O. In the set O, they propose two kinds of
observation: fully observable actions by observes; and partiallyobservable
by aware_of. Their semantics are defined by transition functions, which can
handle three types of agents awareness of the execution of one action: fully,
partially and oblivious. They implement those two planners based on their
model with two different search algorithm, BFS and heuristic search for
EFP and PG-EFP respectively. They propose the definition of epistemic plan-
ning graph, and use it as their main data structure in the search. As for the
PG-EFP, they derive heuristic values directly from the structure of the epis-
temic planning graph. They compared their planner against Muise, Belle,
et al. (2015)’s and Huang et al. (2017)’s solution on Corridor, Collaboration-
and-communication (Kominis and Geffner, 2015), and Assemble Line (Huang
et al., 2017). From their comparison, we find EFP does not suffer from the
exponential blow up on depth of the epistemic relations, but it is affected
by the length of the plan. As for PG-EFP, it does perform better than EFP
on several problems, but the expressiveness is not as good as EFP.

Overall, our work is different from traditional epistemic planning ap-
proach as we do not have to convert epistemic planning problems into clas-
sical planning problems (Muise, Belle, et al., 2015; Kominis and Geffner,
2015), which means our model does not require a costly pre-compilation
step. Compared to more recent work (Huang et al., 2017; Le et al., 2018),
our approach works on any F-STRIPS planner. Further, our approach
approach can work on continuous domains, supports common and dis-
tributed knowledge, and has no limit on the depth on epistemic formula.
Moreover, the key concepts and semantics of our model are different from
all current solutions in epistemic planning, although some parts of our in-
tuition are from the latest works in epistemic logic reasoning field (Gasquet,
Goranko, and Schwarzentruber, 2014; Cooper et al., 2016).
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Chapter 3

A Model of Epistemic Planning
using Perspectives

In this chapter, we define the syntax and semantics of our agent perspective
model. Our idea is based on that of Big Brother Logic (Gasquet, Goranko,
and Schwarzentruber, 2014) and Cooper et al. (2016)’s seeing operators. The
syntax and semantics of our model are introduced, including nested knowl-
edge for single agent and distributed knowledge and common knowledge
for group of agents. Then, we show the soundness and completeness of our
logic.

3.1 Language

Extending Cooper et al. (2016)’s idea of seeing propositional variables, our
model is based on a model of functional STRIPS (F-STRIPS) (Francès et al.,
2017), which uses variables and domains, rather than standard propositions
found in classical planning. We allow agents to see variables with discrete
and continuous domains.

3.1.1 Model

We define an epistemic planning problem as a tuple (Agt, V,D,O, I,G), in
which Agt is a set of agents, V is a set of variables, D stands for domains
for each variable, in which domains can be discrete or continuous, I and G
are the initial state and goal states respectively, and both of them are also
bounded by V and D. Specifically, they should be assignments for some
or all variables in V , or relations over these. O is the set of operators, with
argument in the terms of variables from V .

3.1.2 Epistemic Formulae

DEFINITION 3.1.1:
Goals, actions preconditions, and conditions on conditional effects, are epis-
temic formulae, defined by the following grammar:

ϕ ::= R(v1, . . . , vk) | ¬ϕ | ϕ ∧ ϕ | Siv | Siϕ | Kiϕ,

in which: R is k-arity “domain-dependent” relation symbol, which takes
k grounded values and returns true or false indicating whether the rela-
tion R(v1, . . . , vk) with v1, . . . , vk ∈ V is true or not in the current state; Siv
with v ∈ V and Siϕ are both visibility formulae, and Kiϕ is a knowledge
formula.
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3.1.3 Domain Dependent Formulae

Domain-dependent formulae do not only include basic mathematical re-
lations, but also relational terms defined by the underlying planning lan-
guage, which means it can have relations between variables. For example,
based on the scenario from Figure 2.1, “pos(a1)=(0, 0)” is a true formula
expressing the position of agent a1, while “pos(a1)=pos(a2)” is false. In
Chapter 4, we discuss the use of external functions in F-STRIPS, which al-
lows more complex relations, or even customized relations, as long as they
are defined in the external functions. For example, we can define a domain
dependent relation in an external function to compare distance between ob-
jects, called @far_away(pos(i), pos(j), pos(k)). This external function takes
three coordinates as input, and returns a Boolean value, whether distance
between i and j is longer than i and k. In the scenario displayed in Figure
2.1, the relation @far_away(pos(a1), pos(b4), pos(b2)) would be true, while
relation @far_away(pos(a1), pos(b1), pos(b2)) would be false, since b1 and b2
are at the same distance to a1. The definition of this function is delegated
to a function implemented in a programming language such as C++, and
the planner is unaware of its semantics. However, for the remainder of this
chapter, we will ignore the existence of external functions, and return to
them in our implementation chapter.

3.1.4 Visibility Formula

An important concept adapted from Cooper et al. (2016) is “seeing a propo-
sition”. Let p be a proposition, “agent i knows whether p” can be repre-
sented as “agent i sees p”. Their interpretation on this is: either p is true
and i knows that; or, p is false and i knows that. With higher-order obser-
vation added, it gives us a way to reason about others’ epistemic viewpoint
about a proposition without actually knowing whether it is true. Building
on this concept, our “seeing” operator allows us to write formulae about
visibility: Siv and, Siϕ.

The seeing formula represents two related interpretations: seeing a vari-
able; or seeing a formula. The formula Siv can be understood as variable v
has some value, and no matter what value it has, agent i can see the vari-
able and knows its value. On the other hand, seeing a relation is trickier.
The formula Svϕ can be interpreted as: for formula ϕ, no matter whether it
is true or false, agent i knows whether it is true or not. To make sure i knows
whether ϕ is true or not, the evaluation for this seeing formula is simply
that agent i sees all the variables in that relation.

For example, in Figure 2.1, using the notation defined in Section 3.1.1,
Sa1pos(b2) can be read as “agent a1 sees variable pos(b2)”, and it means
agent a1 knows b2’s location, wherever that location is. In the case of seeing
a domain-dependent formula, Sa1(far_away , pos(a1), pos(b4), pos(b2)) can
be read as “agent a1 sees the relation far_away(pos(a1), pos(b4), pos(b2))”,
which is: “agent a1 knows whether b4 is farther away from a1 than b2”.

3.1.5 Knowledge Formula

In addition to the visibility operator, our language supports the standard
knowing operator Ki. Following Cooper et al. (2016)’s idea on relation be-
tween knowledge and visibility, we define knowledge as: Kiϕ ↔ ϕ ∧ Siϕ.
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That is, for i to know ϕ is true, it needs to be able to see ϕ, and ϕ needs to
be true. In other words, if you can see something and it is true, then, you
know it is true.

3.2 Semantics

Our model decomposes the planning model from the knowledge model,
and as we will see in our implementation, our planner delegates the knowl-
edge model to an external solver. Therefore, in this section, we define the
semantics of that knowledge solver. The novel part of this model is the use
of perspective functions, which are functions that define which variables
an agent can see, instead of using full Kripke structures. From this, a rich
knowledge model can be built up independent of the planning domain.

DEFINITION 3.2.1:
A model M is defined as M = (V,D, π, f1, . . . , fn).

V is a finite set of variables and D is a function that maps each vari-
able to its (non-empty) domain. One example is D(v1) = {e1, . . . , en} for
variable v1. From V and D, we define a state s ∈ S as a set of variable
assignments, denoted as {v1=e1, . . . , vk=ek}. We use s(vi) to represent the
value of vi in state s. There are two kinds of states, namely global state and
local state. A global state is a complete assignment for all variables in V .
Whereas, a local state, which represents an individual agent’s perspective
of the global state, can be either a partial or a complete assignment. If vi
is not in a local state, s(vi) = null. The set of all states (local and global)
is denoted as S . π is a set of evaluation functions, such that for πk ∈ π,
πk : R→ S → {true | false}, where Rk is a set of atomic relational symbols
of the form R(v1, . . . , vn). If πk is applied to a local state in which a variable
vi occurs in R(v1, . . . , vn) but is not in the local state, then πk must be eval-
uated to false. Finally, f1, . . . , fn : S → S are the agents’ perspective functions
that given a state s, will return the local state from agents’ perspectives.

A perspective function, fi : S → S is a function that takes a state and
returns a subset of that state, which represents the part of that state that
is visible to agent i. These functions can be nested, such that fj(fi(s)) rep-
resents agent i’s perspective of agent j’s perspective, which can be just a
subset of agent j’s actual perspective. The following properties must hold
on f1, . . . , fn for all i ∈ Agt and s ∈ S:

1. fi(s) ⊆ s

2. fi(s) = fi(fi(s))

3. If s ⊆ s′, then fi(s) ⊆ fi(s
′)

First, we give the semantic for propositional formulae. Let any variable
be denoted as vi, and R any k-ary domain dependent formula:

(a) (M, s) � R(v1, . . . , vk) iff π(R, s(v1), . . . , s(vk))=true

Relations are handled by the evaluation function π(s). The relation R is
evaluated by getting the value for each variable in s, and checking whether
R holds or not. Other propositional operators are defined in the standard
way.

Then, we have the following formal semantics for visibility, where i 6= j:
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(b) (M, s) � Si v iff ∃ x ∈ D(v), such that, (v=x) ∈ fi(s)

(c) (M, s) � Si R(v1, . . . , vk) iff ∀v ∈ {v1, . . . , vk}, (M, s) � Siv

(d) (M, s) � Si¬ϕ iff (M, s) � Si ϕ

(e) (M, s) � Si (ϕ ∧ ψ) iff (M, s) � Si ϕ and (M, s) � Si ψ

(f) (M, s) � Si Sj ϕ iff (M, fi(s)) � Sj ϕ

(g) (M, s) � Si Si ϕ is always true

(h) (M, s) � Si Kj ϕ iff (M, fi(s)) � Kj ϕ

In (b), Siv, read “Agent i sees variable v”, is true if and only if v is visible
in the state fi(s). That is, an agent sees a variable if and only if that variable
is in its perspective of the state. Similarly in (c), an agent knows whether
a domain-dependent formula is true or false if and only if it can see every
variable of that formula. For example, in Figure 2.1, Sa1b1 is false and Sa1b2
is true, which is because b2 is in a1’s perspective (blue area), while b1 is
not. The remainder of the definitions simply deal with logical operations
in our language. It is worth noticing that in (d) Si ¬ϕ is in fact equivalent
to Siϕ, because both ϕ and ¬ϕ contain the exactly same variables. Besides,
the semantic of Si ¬ϕ is “i knows whether ¬ϕ is true or not”, which is
the same as semantics of Siϕ: “i knows whether ϕ is true or not”. This
effectively just defines that “seeing” a formula means seeing its variables.
Furthermore, seeing a conjunction Si(ϕ ∧ ψ) in our model is equivalent as
(Siϕ ∧ Siψ) in (e). We can simply prove this by constructing a (m + n)-ary
relation θ for any m-ary relation ψ and n-ary relation ϕ following the truth
value of ϕ ∧ ψ. We validate soundness and completeness of our definition
in Section 3.3. Disjunction works the same due to “ψ ∨ ϕ ≡ ¬(¬ψ ∧ ¬ϕ)”.

The above items (f) and (g) are both about nested seeing relations. In
the case of (f), whether SiSjϕ (i 6= j) is true is equivalent to whether Sjϕ
holds in agent i’s perspective of the world s. However in the case of SiSiϕ,
as noted by Cooper et al. Cooper et al., 2016, an agents always sees what it
sees, to SiSiϕ is a validity. We also prove it in Theorem 3.3.3.

Then, the truth condition for knowledge is:

(i) (M, s) � Ki ϕ iff (M, s) � ϕ and (M, s) � Siϕ

The definition as shown in (i) follows the idea in Cooper et al. (2016)’s
paper on the relation between knowledge and seeing: agent i knows ϕ
if and only if the formula is true at (M, s) and agent i sees it. Using
the same example as previously, Ka1@far_away(pos(a1), pos(b2), pos(b3))
is false, even if a1 does see b2 and b3, b2 is not farther than b3 to a1.
While, Ka1@far_away(pos(a1), pos(b3), pos(b2)) is true. In addition, com-
bining negation semantic from seeing relation, we have Kiϕ ∨ Ki¬ϕ ↔
(ϕ ∧ Siϕ) ∨ (¬ϕ ∧ Si¬ϕ)↔ Siϕ, which is also similar as the idea of “know-
ing whether” Kw in Miller et al. (2016)’s paper.
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3.3 Validation

In this section, firstly, we discuss some basic properties of our logic. Then,
we prove the soundness of our model, following by showing the complete-
ness of our model except for validity (tautology and contradiction) for-
mula. Hereafter, we use this as an example in our proofs: a state s contains
two variables x and y, and domain for both x and y is {1, 2, 3}. Therefore,
all the possible states S in this example for our model contains s1={x=1},
s2={x=2}, s3={x=3} or s0={}. This example is visualized in Figure 3.1,
where k1 and k2 represent two Kripke structures: agent i does not know
value of x in any world; and, agent i knows value of x in all three worlds,
respectively.

k1 k2

s1

s2

s3

i

i

i

i

i

i
s1

s2

s3
i

i

i

FIGURE 3.1: Two Examples of Kripke Structure

Theorem 3.3.1. The S5 axioms of epistemic logic are valid in this logic. That
is, the following axioms hold:

(K) Ki(ϕ→ ψ) → Kiϕ→ Kiψ
(T) Kiϕ → ϕ
(4) Kiϕ → KiKiϕ
(5) ¬Kiϕ → Ki¬Kiϕ

Proof. We first consider axiom (T). By our semantics, (M, s) � Ki ϕ is true,
if and only if, both (M, s) � ϕ and (M, s) � Siϕ are true. Therefore, it is
trivial that axiom (T) holds.

For (K), based on our definition of knowledge, we have (M, s) �
Ki(ϕ → ψ) is equivalent to (M, s) � Si(ϕ → ψ) and (M, s) � (ϕ → ψ).
Then, by our semantics, we have that (M, s) � Si(ϕ → ψ) is equivalent
to (M, s) � Si¬ϕ or (M, s) � Siψ. From propositional logic, ϕ → ψ is
equivalent to ¬ϕ ∨ ψ. We combine (M, s) � ¬ϕ with (M, s) � Siϕ to get
(M, s) � ¬Kiϕ and similarly for ψ to get (M, s) � Kiψ, which is equivalent
to (M, s) � Kiϕ→ Kiψ from propositional logic.

To prove (4) and (5), we use the properties of the perspective func-
tion fi. The second property shows, a perspective function for agent i on
state s converges after the first nested iteration, which means (M, fi(s)) ≡
(M, fi(fi(s))). Therefore, whenever (M, fi(s)) � ϕ, then ϕ also holds in
(M, fi(fi(s))), implying that Kiϕ holds too (4). According to (i) in our
semantics, we have Ki¬Kiϕ ↔ Ki(¬Siϕ ∨ ¬ϕ) ↔ (Si¬Siϕ ∧ ¬Siϕ) ∨
(Si¬ϕ ∧ ¬ϕ). In combining our semantics on seeing relation (g) and (d),
we have (M, s) � Ki¬Kiϕ ≡ (M, s) � (true ∧ ¬Siϕ) ∨ (Siϕ ∧ ¬ϕ), which
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is in fact equivalent to (M, s) � ¬Siϕ ∨ ¬ϕ and thus matches the premise
“¬Kiϕ↔ ¬Siϕ ∨ ¬ϕ”. Hence, (5) holds.

Theorem 3.3.2. LetM be any instance of our model, there exists at least one
corresponding Kripke structure MK .

Proof. We can prove this theorem by constructing one corresponding
Kripke structure MK for any M .

Let any instance from our model be M = (V,D, π, f1, . . . , fn) and its cor-
responding Kripke structure MK = (SK , πK ,K1, . . . ,Kn). As S in Kripke
structure syntax is a set of all possible worlds (states), we create a set of
propositions for all the variables v ∈ V by taking the Cartesian product
V × D(v), and then assigning true/false value to each proposition in that
product. Therefore, any global (complete) state s from M can find an iden-
tical s′ in MK by assigning false value to all the propositions except those
indicating assignments (v = e) in s. It is trivial that the evaluation function
π is identical to πK . So, we only have to define the accessibility relations in
the Kripke structures, K1, . . . ,Kn, to represent perspective functions. Since
Ki contains all the accessibility relations for agent i, and each relation is a
pair of possible worlds (states), we now construct K1, . . . ,Kn by following
steps:

• For each agent i, Ki is:

– For each possible state s in MK :

1. Find i’s perspective of world s by fi(s);
2. For each possible world s′ in MK where fi(s) = fi(s

′), add
the pair of accessibility relation (s, s′) in Ki

For each state s, we create accessibility relations (s, s′) into Ki by pairing
s with all possible worlds s′ that agree on all of the “visible” variables for
agent i. In other words, agent i considers s′ is possible given the current
world s, as i is unsure about value of those variables i cannot “see”. For
example in Figure 3.1: given any state s in S, if the agent i’s perspective
state fi(s) is one of s1, s2 and s3 according to the current state s, then, the
accessible relation of between current state s and possible world t in MK

would be added one of (s, s1), (s, s2), (s, s3), respectively, because there is
only one world possible when the value of x exists in fi(s). To be specific,Ki

is {(s1, s1), (s2, s2), (s3, s3)}, which is visualised as k2 in Figure 3.1. While
if fi(s) is s0, then Ki would be {(s, s1), (s, s2), (s, s3)} for any s from S \
{s0}. That is, agent i is not able to see x, which means i is not able to
tell which world i is in. Therefore, Ki is {(s1, s1), (s1, s2), (s1, s3), (s2, s1),
(s2, s2), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}, as visualised in Figure 3.1 (k1).

Although we can use our model to construct a Kripke structure, the re-
sulting Kripke structure does not contain any information that ignored by
our model. Our construction above is only a full structure without any dis-
junctive knowledge (information that implies on a constraint on the vari-
able value without identifying the value). We discuss this further in Sec-
tion 3.5

We need to define the seeing operator before we discuss soundness of
our logic on seeing relations. We adapt definition of “knowing whether”
relation as our understanding of “seeing” relation in Kripke structure. In
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epistemic logic, possibility relation Ki is usually required to be an equiva-
lence relation on S (Fagin et al., 2003), which means Ki has the following
properties: reflexive, symmetric and transitive.

DEFINITION 3.3.1:
(Seeing formula in Kripke structure). Let any Kripke structure be MK , any
agent be i and any formula in our grammar be ϕ:

• (MK , s) � Si v iff ∃e such that v=e ∈ s, and ∀t such that (s, t) ∈ Ki,
(MK , s) � v=e⇔ (MK , t) � v=e.

• (MK , s) � Si ϕ iff ∀t such that (s, t) ∈ Ki, (MK , s) � ϕ⇔ (MK , t) �
ϕ.

Deriving from Fan, Wang, and Ditmarsch (2015)’s definition of “know-
ing whether”, we define the seeing operator in Kripke semantics for Siv
and Siϕ. An agent i sees variable v in (MK , s), if and only if, there exists a
value e such that, v=e is agreed be true (v=e ∈ s) by all the worlds that i
considers possible given the current world is s. In other words, i sees v, if
and only if, in all the possible worlds, v has a constant value e. The defini-
tion for Siϕ is more intuitive: Siϕ holds, if and only if, for all of i’s possible
worlds from s agree on the truth value of ϕ. SinceKi is reflexive, symmetric
and transitive, ∀t such that (s, t) ∈ Ki should cover all the reachable worlds
for agent i at state s, which is the same definition as Fan, Wang, and Dit-
marsch (2015)’s “M, s � ∆iϕ ⇔ for all t1, t2 such that s →i t1, s →i t2 :
(M, t1 � ϕ⇔M, t2 � ϕ)”.

Theorem 3.3.3. (MK , s) � SiSiϕ is always true.

Proof. We prove this by contradiction. Assume SiSiϕ is false for some
(MK , s), and denote all worlds agent i consider possible at state s as Ki(s).
Then, by Definition 3.3.1, we have:

• (MK , s) � ¬SiSiϕ ≡ ∃t1, t2 such that (s, t1), (s, t2) ∈ Ki, (MK , t1) �
Siϕ ∧ (MK , t2) � ¬Siϕ

which means there exist worlds t1, t2 from Ki(s) such that Siϕ is true in t1
and false in t2. Separately, we have:

• (MK , t1) � Siϕ ≡ ∀t′1 such that (t1, t
′
1) ∈ Ki, (MK , t1) � ϕ ⇔

(MK , t′1) � ϕ and

• (MK , t2) � Siϕ ≡ ∃t′2, t′′2 such that (t2, t
′
2), (t2, t

′′
2) ∈ Ki, (MK , t′2) �

ϕ ∧ (MK , t′′2) � ¬ϕ

This means that for all worlds in Ki(t1) agrees on value of ϕ, and for
all worlds in Ki(t2), there exist t′2, t

′′
2 , such that ϕ is true in t′2 and false

in t′′2 . Since Ki is symmetric and transitive, we have (s, t1) ↔ (t1, s)
and (t1, s) ∧ (s, t2) → (t1, t2). Therefore, all of (s, t1), (s, t2) and (t1, t2)
are in Ki, which means Ki(s) ≡ Ki(t1) ≡ Ki(t2). Then, we have that
∀t1 ∈ Ki(t1), (MK , t1) � ϕ ⇔ (MK , t′1) � ϕ, which contradicts our
earlier assertion that ∃t′2, t′′2 ∈ Ki(t2), (MK , t′2) � ϕ ∧ (MK , t′′2) � ¬ϕ.

Therefore, there does not exist a model (MK , s) that makes ¬SiSiϕ sat-
isfiable, meaning that SiSiϕ is always true.



22 Chapter 3. A Model of Epistemic Planning using Perspectives

Theorem 3.3.4. (Soundness). Let s be the current state, M be our model
and MK be the corresponding Kripke structure defined using approach in
Theorem 3.3.2. The following hold, where i 6= j:

(1) If (M, s) � Si v, then (MK , s) � Si v

(2) If (M, s) � Si R(v1, . . . , vk), then (MK , s) � Si R(v1, . . . , vk)

(3) If (M, s) � Si¬ϕ, then (MK , s) � Si¬ϕ

(4) If (M, s) � Si (ϕ ∧ ψ), then (MK , s) � Si (ϕ ∧ ψ)

(5) If (M, s) � Si Sj ϕ, then (MK , s) � Si Sj ϕ

(6) Both (M, s) � Si Si ϕ and (MK , s) � Si Si ϕ are always true.

(7) If (M, s) � Si Kj ϕ, then (MK , s) � Si Kj ϕ

(8) If (M, s) � Ki ϕ, then (MK , s) � Ki ϕ

Proof. The proof for (1) is based on our semantics for visibility of a variable
v: agent i sees v in (M, s), if and only if, there exists some value e that
(v=e) ∈ fi(s). Due to the process of constructing a Kripke model outlined
in Theorem 3.3.2, the existing value e means (M, s) � Siv is consistent in all
states that i considers possible from Ki. By the definition of Siv in Kripke
semantics, for all the possible worlds, the value of v agrees on e if and only
if (MK , s) � Si v holds. Therefore, our semantics for Siv in (M, s) holds
for (MK , s) as well.

For example in Figure 3.1: for any state s in S, if (M, s) � Si v holds (k2
in the figure), which means fi(s) is equal to s in any of s1, s2, s3, (MK , s) �
Si v will hold, as there is only one accessible relation in Ki for each state s
which is one of (s, s1), (s, s2), (s, s3), respectively, and value of v is agreed as
1, 2, 3, respectively. If (M, s) � Si v is false (k1 in the figure), which means
agent i cannot see variable v and fi(s) is s0, then, (MK , s) � Si v will
not hold, as Ki would be {(s1, s1), (s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3),
(s3, s1), (s3, s2), (s3, s3)}, and variable v does not be agreed on one value in
all states.

The remaining proofs are straightforward. Since the evaluation function
π is almost identical for both M and MK , and each value in R(v1, . . . , vk)
is the same due to (1), the result for R(v1, . . . , vk) is the same in both both
M and MK . Therefore, (2) in this theorem holds. Then, all remaining in M
holds inMK because (1) and (2) hold, except (6) holds as Theorem 3.3.3 and
(g) in Section 3.2.

Theorem 3.3.5. (Completeness). Let s be the current state, M be any in-
stance in our model and MK be its corresponding Kripke structure con-
structed following steps in Theorem 3.3.2. The following hold, where i 6= j:

(1) If (MK , s) � Si v, then (M, s) � Si v, except when |D(v)| = 1 and i
cannot see v.

(2) If (MK , s) � Si R(v1, . . . , vk), then (M, s) � Si R(v1, . . . , vk), except
when R(v1, . . . , vk) ` ⊥ ∨ >, and ∃vt ∈ {v1, . . . , vt}, (M, s) � ¬Sivt.
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(3) If (MK , s) � Si¬ϕ, then (M, s) � Si¬ϕ, except when ϕ ` ⊥∨>, and
(M, s) � ¬Siϕ.

(4) If (MK , s) � Si (ϕ ∧ ψ), then (M, s) � Si (ϕ ∧ ψ), except when
(ϕ ∧ ψ) ` ⊥, and (M, s) � ¬Si (ϕ ∧ ψ).

(5) If (MK , s) � Si Sj ϕ, then (M, s) � Si Sj ϕ, except when Sj ϕ ` >,
and (M, s) � ¬Si Sj ϕ.

(6) Both (MK , s) � Si Si ϕ and (M, s) � Si Si ϕ are always true.

(7) If (MK , s) � Si Kj ϕ, then (M, s) � Si Kj ϕ, except when Kj ϕ ` >,
and (M, s) � ¬Si Kj ϕ.

(8) If (MK , s) � Ki ϕ, then (M, s) � Ki ϕ, except when ϕ ` > ∨ ⊥, and
(M, s) � ¬Ki ϕ.

Proof. Following the definition of seeing formula in Kripke structure given
above, (MK , s) � Si v means for all worlds that i considers possible given
the current world s, the value of v is the same. According to the steps to
build corresponding MK from M , all of the unseen variables will result in
accessible worlds with all possible values. Therefore, if v is agreed on some
value for all i’s possible worlds given s, v must be seen by i in s, unless
the domain for v contains only one value, which means in all accessible
worlds v would be agreed on that one value. For example: let v be a vari-
able with domain {e}, which means “v = e” is a validity. Even if agent i
cannot see v, but in all possible worlds, the value of v agree on e. Therefore,
(MK , s) � Siv holds, while (M, s) � Siv does not. However, if the domain
of v becomes {e, e′}, then, all possible worlds that accessible for i will not
agree on v, because in half of the worlds v is e, while in other half, v is e′.
Therefore, v=e will be in fi(s) if (MK , s) � Si v holds and the size of v’s
domain is larger than 1. Then, following the definition of (M, s) � Si v,
v=e exists in fi(s), then (1) holds.

For example in Figure 3.1: if the Ki contains only (s, s1), (s, s2) and
(s, s3) in MK , then there exists an assignment as v=1, v=2, v=3, respec-
tively in fi(s) according to s, which makes (M, s) � Si v hold (K2 in the
figure). If the Ki contains other accessible relations, such as, shown in k1
from the figure, {(s1, s1), (s1, s2), (s1, s3), (s2, s1), (s2, s2), (s2, s3), (s3, s1),
(s3, s2), (s3, s3)}. Then, (MK , s) � Si v does not hold as the value of v can
be any of 1 or 2 or 3, as well as (M, s) � Si v.

Because (1) holds and π(s) are almost identical in bothMK andM , then
(2) holds. (7) is proved in the same way as in Theorem 3.3.4. The proof
for (3), (5) and (8) are straightforward by using (1) and (2), given (4) holds.
Therefore, we prove (4) first.

We show (4) by following the definition of the seeing operator in Kripke
semantics: if (MK , s) � Si (ϕ ∧ ψ) holds, which means all worlds that i
consider possible in (MK , s) agree on the truth value of ϕ ∧ ψ. There are
only two scenarios such agreement can be achieved: either, (MK , s) � Si ϕ
and (MK , s) � Si ψ hold; or, ϕ ∧ ψ is false (ϕ ∧ ψ is a contradiction). If
both ϕ and ψ can be seen by i in (MK , s), following (2), both (M, s) � Si ϕ
and (M, s) � Si ψ will hold, which means Si(ϕ ∧ ψ) holds. However,
if ϕ ∧ ψ is a contradiction, then ϕ ∧ ψ is false. Following Definition 3.3.1,
(MK , s) � Si (ϕ ∧ ψ) holds. However, if agent i cannot see all variables in
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ϕ and ψ, then one of (M, s) � Si ϕ and (M, s) � Si ψ will not hold, which
means (M, s) � Si (ϕ ∧ ψ) will not hold. Therefore, (4) holds if (ϕ ∧ ψ) is
not a contradiction.

(3) holds as Si¬ϕ ≡ Siϕ, and Siϕ holds by induction. (5), (7) and (8)
are straightforward by induction. (6) holds as Theorem 3.3.3 and (g) in
Section 3.2. Therefore, our model is complete for all situations except in
which formulae inside seeing operators that contain non-seen variables are
validities.

By combining (3) and (4), it is straightforward to show that our model
is complete for disjunctive formulae Si(ψ ∨ ϕ) as long as (ψ ∨ ϕ) is not
a validity. In addition to (3) and (4), a validity or contradiction could also
arise in all the other semantics (5, 6, 8). For example on (5), (MK , s) � SjSiv
holds, while (M, s) � SjSiv does not, if MK ` Siv and agent i does not see
agent j sees ϕ.

A consequence of this theorem is that the necessitation inference rule is
not admissible. This rule, of the form ϕ ` Kiϕ, says that for any theorem ϕ,
every agent should know it. The reason that Kripke semantics can handle
validity is because the semantics checks whether all possible worlds agree
on the truth value of the formula. Any theorem will be true in every world
of the model, so also true in every world reachable by any Kripke structure.
However, our model reduces reasoning on unseen variables by ignoring
them in the agent’s local perspective. Any validity ϕ containing an unseen
variable will be a theorem of the logic, but Kiϕ will not hold in our model.
We do not believe this is such as major limitation. First, in planning, it is
neither typical nor efficient to expect models handle all valid propositions,
even in propositional models. Second, if a modeller is concerned that mod-
els contain validities, they could use techniques such as resolution to check
for validities and contradictions prior to planning, and encode these as con-
stants in perspective functions, which would makes agents see the validity
without seeing all its variables.

3.4 Group Knowledge

From the basic visibility and knowledge definitions, in this section, we
define group operators, including distributed and common visibility or
knowledge.

3.4.1 Syntax

We extend the syntax of our language with group operators:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | ESGα | EKGϕ | DSGα | DKGϕ | CSGα | CKGϕ,

in which G is a set (group) of agents, ψ is any formula in our language for
single agent defined in this chapter, and α is a variable v or formula ϕ.

Group formula ESGα is read as: everyone in group G sees a variable
or a formula α, and EKGϕ represents that everyone in group G knows ϕ.
DKG is the distributed knowledge operator, equivalent toDG in Section 2.2,
while DSG is its visibility counterpart: someone in group G sees. Finally,
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CKG is common knowledge and CSG common visibility: “it is commonly
seen”.

3.4.2 Semantics

Let G be a set of agents, ϕ a formula, and α either a formula or a variable,
then we can define the semantics of these group formula as follows:

• (M, s) � ESG α iff ∀i ∈ G, (M, s) � Si α

• (M, s) � EKG ϕ iff (M, s) � ϕ and (M, s) � ESG ϕ

• (M, s) � DSG α iff (M, s′) � α, where s′ =
⋃
i∈G

fi(s)

• (M, s) � DKG ϕ iff (M, s) � ϕ and (M, s) � DSG ϕ

• (M, s) � CSG α iff (M, s′) � α, where s′ = cf (G, s)

• (M, s) � CKG ϕ iff (M, s) � ϕ and (M, s) � CSG ϕ,

in which cf (G, s) is state reached by applying composite function
⋂
i∈G

fi until

it reaches its fixed point. That is, the fixed point s′ such that cf (G, s′) =
cf (G,

⋂
i∈G

fi(s
′)).

Reasoning about common knowledge and common visibility is more
complex than other modalities. Common knowledge among a group is not
only everyone in the group shares this knowledge, but also everyone knows
others know this knowledge, and so on, ad infinitum. The infinite nature of
this definition leads to definitions that are intractable in some models.

However, due to our restriction on the definition of states as variable
assignments and our use of perspective functions, common knowledge is
much simpler. This is based on the fact that each time we apply composite
perspective function

⋂
i∈G

fi(s), the resulting state is either a proper subset of

s (smaller) or is s. By this intuition, we can limit common formula in finite
steps.

The fixed point is a recursive definition. However, the following theo-
rem shows that this fixed point always exists (even if it is empty, in that case,
there is no common knowledge), and the number of iterations is bound by
the size of |s|, the state to which it is applied.

Theorem 3.4.1. Function cf (G, s) converges on a fixed point s′ = cf (G, s′)
within |s| iterations.

Proof. First, we prove convergence is stable; that is, when s′ = cf (G, s′),
further “iterations” will result in s′; that is, s′ = cf (G, cf (G, s′)). Let
si = cf (G, si), where i is the number of iterations. Then, we have si+1 =
cf (G, si) = si. Since si+1 = si, we have si+2 = cf (G, si), which means
si+2 = si. Via induction, we have that for all k ≥ i, sk = si. Therefore, once
we reach convergence, it remains.

Next, we prove convergence within |s| iterations. By the intuition and
definition of the perspective functions, fk(s) ⊆ s, and si+1 = (

⋂
k∈G

fk(si)),

we have si+1 ⊆ si. Then, as we prove for the first point, if si = si+1,
then we have reached a fixed point and no further iterations are necessary.
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Therefore, the worst case is when si+1 ( si and |si| − |si+1| = 1. There
are most |s| such worst case iterations until si converges on an empty set.
Therefore, the maximum number of iterations is |s|.

For each of the iterations, there are |G| local states in group G that need
to be applied in the generalised intersection calculation, which can be done
in polynomial time, and there there are at most |s| steps. So, a poly-time
algorithm for function cf exists.

3.5 A Brief Note on Expressiveness

The intuitive idea about perspective functions is based on what agents can
see, as determined by the current state. The relation between t = fi(s) and s
corresponds roughly to accessibly relations (s, t) ∈ Ki in Kripke semantics.
However, only focusing on what an agent exactly knows/sees means over-
looking those variables that agents are uncertain about. Perspective func-
tions return one partial world that the agent i is certain about, rather than
a set of worlds that i considers possible. The advantage is that applying a
perspective function provides us with only one state, rather than multiple
states in Kripke semantics, preventing the explosion in model size. In addi-
tion, our perspective-based model allows reasoning with group knowledge,
such that joint knowledge and distributed knowledge reasoning becomes
set operations over the agents’ local worlds.

However, the reduced complexity loses information on the “uncertain”
variables. Theoretically, t = fi(s) from our model is a set intersection from
all the t that (s, t) ∈ Ki. This eliminates disjunctive knowledge about vari-
ables; the only uncertainty being that an agent does not see a variable. For
example, in the well-known Muddy Childred1 problem (Fagin et al., 2003),
the knowledge is not only generated by what each child can see by the
others’ appearance, which is modelled straightforwardly using perspective
functions, but also can be derived from the questions made by their father
and the response by other children. From their perspective, they would
know exactly m children are dirty, which can be handled by our model, as
they are certain about it. While by the k-th time the father asked and no
one responds, they can use induction and get the knowledge that at least k
children are dirty. By considering that there are two possible worlds, where
the number of dirty children is m or m + 1, Kripke structures keep both
possible worlds untilm+1 steps. If we use a variable to represent the num-
ber of possible muddy children, our model cannot keep these two worlds.
Therefore, although our model can handle preconditions and goals with
disjunction, such as Ki [(v = e1) ∨ (v = e2)], it cannot store such disjunction
in its “knowledge base”. Rather, agent i knows v’s value is e1 or it knows it
is e2.

Despite this, possible worlds can be represented in our model, using
the same approach taken by Kominis and Geffner (2015) of representing

1There are n children, and m of them with mud on their forehead. They can see other’s
forehead except their own. In order to help them find out whether themselves are muddy
or not, their father can help them by asking one question to them all for k times: do you
know you are muddy or not?
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Kripke structures. We can then define perspective functions that imple-
ment Kripke semantics. However, this could easily result in an exponen-
tially large model and would not add the expressiveness required for most
of epistemic planning problems. For the the Muddy Children example, in-
stead of having m (the number of dirty children) as an integer variable,
we can model it as a series of propositions indicating the number of dirty
children, such as m0, . . . ,mn. To model uncertain information about m, the
underlying perspective function could eliminate all the propositions that
agent is certain to be false. To be specific, if propositions m3 and m4 remain
in agent i’s perspective of the world, then, i knowsm is either 3 or 4. There-
fore, the children asking their father for the kth time will result in removal
of mk from the state until all the children only have mm in their local state.

A comparison on expressiveness between our model and other works
are listed in Table 3.1.

Nested Common Distributed Continuous Disjunctive
Knowledge Depth Knowledge Knowledge Domains Knowledge

Our Model Y Unbounded Y Y Y Y/N
PDKB (Muise, Belle, et al., 2015) Y Bounded N N N N
K & G (Kominis and Geffner, 2015) Y Bounded N N N Y
MEPK (Huang et al., 2017) Y Unbounded I2 N N Y
EFP & PG-EFP (Le et al., 2018) Y Unbounded I2 N N Y

TABLE 3.1: Expressiveness Comparison over Epistemic
Planning Approaches

There are four major points of difference that we identify. (1) Our
model can handle domains in which the depth of epistemic relations are un-
bounded. Each level of nesting is handled by a set operation from perspec-
tive function iteratively when checking desired epistemic relations; while
in other approaches, the nested epistemic relations are changed due to ac-
tions, which means they need to specify the effects on all epistemic relations
in operators. However, since Kominis and Geffner (2015) and Le et al. (2018)
keep Kripke structure in their approach, we are unsure about whether their
approaches are practically capable of modeling unbounded domains or not.
In Muise, Belle, et al. (2015)’s work, the depth also needs to be defined first
as they need to generate all possible epistemic relations as atoms. (2) Rea-
soning about group knowledge is handled by our model using a union op-
eration on the agent’s perspective of state for distributed knowledge; and,
the fixed point of intersections on nested agents’ perspectives for Common
Knowledge. Therefore, distributed and common knowledge result natu-
rally from the visibility of variables. (3) Our model has the potential to han-
dle continuous domains in both logic reasoning and problem describing.
While the functional STRIPS planner we use for experiments allows only
discrete variables, the external functions reason about continuous prop-
erties in the Big Brother domain. Further, our approach would work on
function STRIPS planners that support continuous variables Ramirez et al.,
2018. (4) Our model does not handle disjunctive knowledge, but could do

2‘I’ means this approach can handle common knowledge indirectly, such as modeling
common knowledge by public announcement (Le et al., 2018), or using a group of nested
knowledge to approximate common knowledge (Huang et al., 2017).
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so by modeling pairs of each variable and its all possible values as propo-
sitions, such as “x=5 ∨ x=4”. However, by doing so, we would lose the
efficiency and some other expressiveness, such as continuous variables.

One possible objection is that it may be difficult to model perspective
functions, because one must understand epistemic effects. However, it is
important to note that in existing approaches, the modeller either needs
to model epistemic effects as part of action effects, or must understand
and be restricted to the assumptions in the underlying epistemic planning
language; or both. Either way, the details of how actions affect knowledge
must be modelled somewhere. In our case, we delegate these to perspective
functions, which are more flexible than propositional approaches, because
at the base case, one can implement a perspective function that has the
same assumptions as any existing propositional approach. This can then
be used for many domains. More details of implementing perspective
functions could be found in Section 4.3.1.

To summarise Chapter 3, we have defined a new model of epistemic
logic, including group operators, in which states in the model are con-
strained to be just variable assignments. The complexity of common knowl-
edge in this logic is bounded by the size of the state and number of agents.
In the following chapter, we show how to implement this in any F-STRIPS
planner that supports external functions.
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Chapter 4

Implementation

To validate our model and test its capabilities, we encode it within a plan-
ner and solve some well-known epistemic planning benchmarks. Two key
aspects in planning problem solving are the planning language and solver
(planner). As mentioned in Section 2.1, we use BFWS(f5) (Francès et al.,
2017) as the planner. Using F-STRIPS with external functions allows us to
decompose the planning task from the epistemic logic reasoning.

In this chapter, firstly, we reinforce our intuition on implementation.
Then, we introduce our F-STRIPS encoding for general MEPs.

4.1 Intuition

As mentioned in Chapter 3, our approach is built on the agents’ perspec-
tives of each state. Therefore, the key to implementing our model is to rep-
resent the state with a planning language, and change it accordingly with
each action taken. Then, by only calling the related external function for
evaluating the epistemic formula on request, instead of generating all truth
values at the pre-compilation phase or storing entire knowledge structures
(Kripke structure), the planner evaluates epistemic queries lazily. In other
words, the epistemic logic reasoning task is moved from the planner to the
external functions.

4.2 F-STRIPS encoding

Any classical F-STRIPS (Francès et al., 2017) problem can be represented
by a tuple (V,D,O, I,G,F), where V and D are variables and domains,
O, I, G are operators, initial state and goal conditions. The set of external
functions, F, allows the planner to handle problems that cannot be defined
as a propositional classical planning task, such as those whose effects are
too complex to be modelled by propositional fluents, or even those whose
actions and effects have some unrevealed corresponding relations. In our
implementation, external functions are programmed in C++ for scalability
and flexibility.

As mentioned in Section 3, our reasoning on epistemic logic is con-
ducted in the modelM = (V,D, π, f1, . . . , fn). In order to combine F-STRIPS
with our model, we now give a proper definition of all the epistemic plan-
ning problems that can be handled as a tuple (Agt, V,D,O, I,G,F) in our
approach, where: Agt is a set of agent identifiers; V is a set of variables that
covers the physical and the epistemic state; O, I and G differ from their
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counterparts in F-STRIPS only by adding epistemic formulae in precondi-
tions, conditions, and goals, which will be interpreted in the following part
of this section; the external functions F contains all the epistemic logic rea-
soning parts (our model).

There are two major ways to include epistemic formula in planning:
using the formula as preconditions and conditions (on conditional effects)
in operators O, or using as epistemic goals in G.

Defining G with desirable epistemic formulae is straightforward. For
example, in Figure 2.1, if we want “agent a1 knows a2 sees b1” to be true,
we could simply set the goal to beKa1Sa2b1. However, there are some other
scenarios that cannot be simply modeled by epistemic goals: temporal con-
straints, such as, “agent a1 sees b2 all the time”, or, “target b4 needs to se-
cretly move to the other side without being seen by any other agent”; and,
epistemic formulae that cannot be achieved by one state, such as, “agent
a1 needs to know values for both b1 and b2 (under the assumption a1 is
stationary)”.

Both above scenarios can be modeled by adding epistemic formulae to
O. Temporal constraints can be inserted in the precondition of the operators
directly. For example, in Figure 2.1, if the scenario is continued surveillance
on b2 over the entire plan, then the operator turn(a1, d)could have that ei-
ther “Sa1b2 after a1 turns d degree” or “Sa2b2 after a1 turns d degree” as one
of the preconditions. As for the latter, we simply use a boolean query vari-
able to indicate whether each desired epistemic relation is achieved or not,
and update the truth value of all query variables as conditional effects inO.

As for the encoding of O, I and G, besides the classical F-STRIPS plan-
ning parts, all the formulae are encoded as calls to external functions.

4.3 External Functions

External functions in F-STRIPS take variables as input, and return the eval-
uated result based on the current input and initial state. It is the key aspect
that allows us to separate epistemic reasoning from planning. Therefore,
unlike compilation approaches to epistemic planning that compile new for-
mula or normal forms that may never be enquired, our epistemic reasoning
uses lazy evaluation, which as we show in Chapter 5, can significantly re-
duce the time complexity of most epistemic planning problems.

4.3.1 Agent Perspective Functions

As briefly mentioned in Section 3.2, the perspective function, fi : S → S, is
a function that takes a state and returns the local state from the perspective
of agent i. Compared to the intuition of Kripke structures, our intuition is
to only define which variables an agent sees. Individual and group knowl-
edge all derive from this.

Once we have domain-specific perspective functions for all agents, or
just one implementation for homogenous agents, our framework imple-
mentation takes care of the remaining parts of epistemic logic. We have
implemented a library of external functions that implement the semantics
of Ki, DSG, DKG, CSG, and CKG, using the underlying domain-specific
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perspective functions. The modeller simply needs to provide the perspec-
tive function for their domain, if a suitable one is not already present in our
library.

Example 1 In Figure 2.1, global state s covers the whole flat field. Local
state fa1(s) is the blue area, and fa2(s) is the yellow area, which means in
agent a1’s perspective, the “visible” world is the blue part, and for agent a2,
the “visible” world is only the yellow part. Furthermore, in agent a1’s per-
spective, what agent a2 sees can be represented by the intersection between
those two coloured areas, which is actually fa2(fa1(s)). The interpretation is
that, agent a1 only considers state l = fa1(s) is the “global state”, and inside
that state, agent a2’s perspective is fa2(l).

To be more specific about perspective functions, assume the global state
s in the BBL example contains all variables for {a1, a2, b1, b2, b3, b4} 1, such
as locations, the directions agents are facing, and etc. Based on the current
setup from Figure 2.1, we can implement fi for any agent i with the follow-
ing Euclidean geometric calculation given the current state is s and target
is j:

[| arctan(
|s(y_i)− s(y_j)|
s(x_i)− s(x_j)

)−s(dir_i)| ≤ s(ang_i)
2

]
⊕

[| arctan(
|s(y_i)− s(y_j)|
s(x_i)− s(x_j)

)−s(dir_i)| ≥ 360◦ − s(ang_i)
2

]

(4.1)
The perspective function takes all agents’ locations, directions and vi-

sion angles, along with variables’ location as input, and returns all the vari-
ables belongs to those agents and objects that fall inside these regions. That
is fa1(s) = {a1, a2, b2, b3} and fa2(s) = {a1, a2, b1, b2}. Our library can then
reason about knowledge operator.

While such an approach could be directly encoded using propositions in
classical planning, we assert that the resulting encoding would be tediously
difficult and error prone.

Distributed knowledge would be derived from the union over their
perspectives, which is the whole world s except all variables for b4. Both
agents would know every variable in the intersection of their perspectives
s′={a1, a2, b2}. Furthermore, all variables for themselves and b2 will also be
in the intersection of their perspective of s′. Since we reach a fixed point
with s′, we claim s′ is the world a1 and a2 commonly knows.

However, if we alter the scenario a bit by turning a1 180◦, then the EK
can be found by one level perspective functions, while CK is empty. In the
new scenario, fa1(s) becomes {a1, b1}, and EK becomes {a1, b1}. When we
are finding the converged perspective for a1 and a2, fa1({a1, b1}) stays the
same, but the perspective for a2 results in an empty world. The intersection
over their perspective does not have a2, which means a2 does not exist in
the perspective of at least one of the agent (a1, in this case) from the group.

However, the above implementation of the perspective function is only
useful for Euclidean planes with no obstacles. One of the novelties in this

1a1, a2, b1, b2, b3, b4 here are not variables. They are representations (used to simplify
the example) of the group of variables that belong to that agent or that object, such as a1

represents x_a1, y_a1, dir_a1, ang_a1. The same rules of representation is used in Example
2 as well.
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thesis is that we design our implementation to support arbitrary perspec-
tive functions, which can be provided by the modeller as new external func-
tions. Therefore, an agent’s perspective function would be able to handle
any problem with a proper set of seeing rules. Basically, in our implemen-
tation, a perspective function can take any state variable from the domain
model, and converts it into its agent’s perspective state. Then, following
the property that fi(s) ⊆ s, the function applies the domain-specific see-
ing rules to all the variables to gain the agent’s local state. From there, the
semantics outlined in Chapter 3 are handled by our library.

Example 2 Example 1 does not have obstacles to block the vision of
agents, which is not suitable in many domains. Therefore, we take a deeper
look on how we could model two dimensional spaces with obstacles. For
example, in Figure 4.1, the global state s is {a1, a2, b1, w}, where w is a thick
wall which blocks agent’s vision.

The seeing rules in this domain are different from original BBL domain.
Rather than only checking if an object is within an agent’s visible range,
we also need to make sure there is no object in between the agent and the
object. Therefore, the perspective function for this domain contains two
steps: using Formula 4.1 to check whether the agent i is facing the correct
direction to see target j; and, using algebraic geometry to check whether
the line of sight is obstacle-free. Let’s explain this perspective function by
evaluating b1 ∈ fa2(fa1(s)) with following examples:

In Figure 4.1a, since the wall blocks the vision between agent a1 and
a2, in standard BBL, we would have fa1(s) = {a1, b1, w} and fa2(s) =
{a2, b1, w}. But we must also check whether there is an obstacle-free line
of sight. Since the wall blocks line of sight between a1 and a2, then a2 must
be removed from fa1(s). So, in agent a1’s perspective, agent a2’s view of the
world is fa2(fa1(s)) = ∅, as agent a1 cannot see a2.

A slightly more complex example would be in the Figure 4.1b. This is
the same as the previous scenario, except that the wall is resized so that
agents a1 and a2 can see each other. In the figure, the perspective of agent
a1 is blue. However, the wall prevents a1 from seeing line of sight between
a2 and b. We do not have b1 ∈ fa2(fa1(s)) if our perspective function is
modelled so that when we apply fa2 on b1 in the local state fa1(s), the line
of site (a2, b1) is not fully in the blue area (a1’s perspective of the world s),
which means agent a1 cannot see if agent a2 sees b1.

a1
(−2.6, −1.5)

a2
(2.6, −1.5)

b1
(0.0, 0.0)

w1

(0.0, −0.8)

w2

(0.0, −2.2)

(A) Scenario 1

a1
(−2.6, −1.5)

a2
(2.6, −1.5)

b1
(0.0, 0.0)
w1 (0.0, −0.8)

w2

(0.0, −1.3)

(B) Scenario 2

FIGURE 4.1: Example for Big Brother Logic with Obstacle
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Those examples show that we can expand to new logics by providing
different implementations of fi. From this, the logic of knowledge is pro-
vided using our implementation of the semantics in Section 3. Our code
library contains perspective functions for many basic logics, but we find
that tailoring perspective functions to domains results in more elegant and
compact models. For example, the only difference between the external
function’s implementation on Corridor and Grapevine domain from Chap-
ter 5 is that, in Corridor, the seeing rules are that an agent can “see” within
the current room and the adjacent room, while in Grapevine, the agent can
only “see” within the current room. Changing the perspective function re-
sults in a new domain without having to change the planning model. More-
over, to implement epistemic planning problems, e.g. , a three-dimensional
Euclidean plane, we only need to modify the seeing rules of the perspective
functions based on the geometric model.

From a practical perspective, this means that modellers are requested to
provide: (1) a planning model that uses epistemic formulae; and (2) imple-
mentations for f1, . . . , fn if one does not already exist in our library. Linking
the epistemic formula in the planning model to the perspective functions is
delegated to our library. Existing approaches to epistemic planning spec-
ify the effects on epistemic logic directly in actions, or model the agents’
Kripke structures. Instead, we delegate reasoning to external functions by
applying seeing rules to all the variables in current state.

4.3.2 Domain dependent functions

Domain dependent functions are customised relations for each set of
problems, corresponding to R(v1, . . . , vk) in Chapter 3, and can be any
domain specific function that is implementable as external functions. In
words, as one of the advantages of using external functions, those domain
dependent formulae can be implemented to deal with complex relations,
such as logics in continuous domains.

Overall, the implementation of our model is not as straightforward as
other classical F-STRIPS planning problems or epistemic planning prob-
lems. However, as we demonstrate in the next section, it is scalable and
flexible enough to find valid solutions to many MEPs.
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Chapter 5

Experiments & Results

In this chapter, we evaluate our approach on several problems: Corri-
dor (Kominis and Geffner, 2015), Grapevine (Muise, Belle, et al., 2015), Big
Brother Logic (BBL) (Gasquet, Goranko, and Schwarzentruber, 2014), Social-
media Network (SN) and Gossip (Baker and Shostak, 1972). Corridor and
Grapevine are well-known epistemic planning problems, which we use to
compare actual performance of our model against an existing state-of-the-
art planner. BBL is a model of the Big Brother Logic in a two-dimensional
continuous domain, which we use to demonstrate the expressiveness of
our model. In addition, to demonstrate our model’s capability of reasoning
about group knowledge, we inherit the classical Gossip Problem, and create
our own version, called Social-media Network. Moreover, our model has
an advantage on those epistemic planning problem where the knowledge
can be derived from the ontic states. However, we do investigate the capa-
bility and performance for other classical epistemic planning problem that
the knowledge must be explicitly recorded by the states, such as Gossip.

The source code of our implementation along with all experi-
ments can be found at https://github.com/guanghuhappysf128/
benchmarks.

Hereafter, we assume any knowledge formulaKav is supplied with cor-
rect value e, which means its equivalent with Kav=e, unless the value is
specified.

5.1 Benchmark problems

To evaluate computational performance of our model, we compare to
Muise, Belle, et al. (2015)’s PDKB planner. Their planner has been used
to compare on Corridor and Grapevine domains against many others’ so-
lutions (Kominis and Geffner, 2015; Huang et al., 2017; Le et al., 2018). From
their results and results from Huang et al. (2017) and Le et al. (2018), it is fair
to say that PDKB is a state-of-the-art planner. In addition, to test how the
performance is influenced by the problem, we created new problems that
varied some of the parameters, such as the number of agents, the number
of goal conditions and also depth of epistemic relations.

The PDKB planner converts epistemic planning problems into classi-
cal planning problems, which results in generating a significant number of
propositions when the depth or the number of agents increase. We tried
to submit the converted classical planning problem to the same planner
that used by our model, BFWS(R0) planner, to maintain a fair comparison.
However, since the computational cost of the novelty check in BFWS(R0)

https://github.com/guanghuhappysf128/benchmarks
https://github.com/guanghuhappysf128/benchmarks


36 Chapter 5. Experiments & Results

planner increases with size of propositions, the planning costs was pro-
hibitively expensive. Therefore, for comparison, we use the default ff plan-
ner that is used by Muise, Belle, et al. (2015).

We ran the problems with both planners on a Linux machine with 8
CPUs (Intel Core i7-7700K CPU @ 4.20GHz 8) and 16 gigabyte memory.
As a matter of fact, both methods do not involve multi-threading or run
in parallel, which means the performance would be the same result as if
we use one CPU. We measure the number of atoms (fluents) and number
of nodes generated during the search to compare the size of same problem
modelled by different methods. We also measured the total time for both
planners to solve the problem, and the time they take to reasoning about the
epistemic relations, which correspond to the time takes to call external func-
tions for our solution (during planning), and the time takes to convert the
epistemic planning problem into classical planning problem in the PDKB
solution (before planning).

5.1.1 Corridor

The corridor problem was originally presented by Kominis and Geffner
(2015). It is about selective communication among agents. The basic setup
is in a corridor of rooms, in which there are several agents. An agent is able
to move around adjacent rooms, sense the secret in a room, and share the
secret. The rule of communication is that when an agent shares the secret,
all the agents in the same room or adjacent rooms would know. That is, as
shown in the Figure 5.1, the blue area is the “vision“ for agent b, which is
also the only rule that we implemented in the agent’s perspective function
as seeing rule.

The goals in this domain are to have some agents knowing the secret
and other agents not knowing the secret. Thus, the main agent needs to get
to the right room and communication to avoid the secret being overheard.

a bs c

r1 r2 r3 r4

FIGURE 5.1: Corridor Domain

Examples

As in Figure 5.1, let a, b and c be three agents, and r1, r2, r3 and r4 be 4
consecutive rooms on a corridor. Initially, the secret q is in the room r2, and
agent a, b and c are located in room r1, r2 and r3 respectively. And the goal
is: agent a needs to sense q and reveal it to agent cwithout agent b knowing
the secret. Then, this example can be defined as a tuple (V,D,O, I,G,F),
where
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• V = { agt_at(i), sct_at, sct, Kcq, Kbq| i ∈ {a, b, c}}

• D : D(agt_at(i)) = D(sct_at) = {1, . . . , 4}, where i ∈ {a, b, c};
D(sct) = D(Kcq) = D(Kbq) = {0, 1}

• O : move(x, x′), sense(x) and shout(x), where x, x′ ∈ {r1, r2, r3, r4},
and they are adjacent

• I = {agt_at(a) = 1, agt_at(b) = 2, agt_at(c) = 3, sct_at = 2, sct =
0}

• G = {Kcq = 1,Kbq = 0}

• F = { (@check Kcq), (@check Kbq) } 7→ {true, false}

Here, set V and D defines the state space. There are 3 agents and one se-
cret in this example, each should correspond to one variable to represent
its location. In addition, agent a needs to know the secret first to share
with others. And since we do not have to represent agent’s knowledge in
the state, we need a single binary variable sct to indicate disclosure of the
secret.

The basic action for agent a is move. Agent a can move from one room
to another as long as those two rooms are adjacent. And a also can perform
sense(x) or shout(x) action in room x. The sensing action will set sct to 1, if
agt_at(a) is equal to sct_at, which means if the a is in the same location as
secret, by preforming sensing action, a acquires the secret. Action shout is
a bit more complex. In both Kominis and Geffner (2015)’s work and Muise,
Belle, et al. (2015)’s work, this action does generate knowledge by making
one or several knowledge atoms true. However, as one of the advantages
of our model, we don’t have to generate knowledge atoms. The only effects
here is the result of seeing rules. Therefore, we invoke the external functions
as effects of this action, to update desired knowledge queries or visibility
queries. To be specific, action shout can be defined as:

shout(x):
pre: sct = 1, agt_at(a) = x
eff: (forall (?q - query) (when (= (@check ?q) 1) (= ?q 1))

To explain what this action does, we need to take a look on the goal
condition first. From the example, it is obvious that the goal contains two
epistemic relations: c knows q; and, b does not know q. Since in our work,
we only handle knowledge rather than beliefs, we assume that knowledge
will hold until it has been changed by other actions. Therefore, we can
interpret those two proposition in a more systematic way: the goal can be
achieved at the first time when “c knows q“ become true and for all the time
“b knows q“ needs to be false. Then, we can define those two queries that
are involved in this problem: “Kcq“ and “Kbq“1. Therefore, the action shout
needs to check those two queries by calling the external function @check,
and only update the value of the query if the corresponding result is true.
In other words, only the value 1 will overwrite the previous value for each
query, as the knowledge can not be “forget” in our assumptions. For any

1The domain of all queries are {0, 1}, which indicates whether the query has been
checked as true or not.
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action that makes Kbq true in its effects, the knowledge b knows q will be
preserved, and there is no way to achieve the goal, which means that action
would be excluded from the solution.

Then, by running the planner including external functions, a valid opti-
mal plan is found:

• move(r1, r2), sense(r2), move(r2, r3), move(r3, r4), shout(r4).

Parameters Our Model PDKB

|A| d |G| |Atom| |Gen| |Calls| TIME(s) |Atom| |Gen| TIME(s)
Calls Total Compile Total

3 1 2 13 15 48 0.001 0.004 54 21 0.148 0.180
7 1 2 13 15 48 0.002 0.005 70 21 0.186 0.195
3 3 2 13 15 48 0.003 0.007 558 21 0.635 0.693
6 3 2 13 15 48 0.005 0.008 3810 21 5.732 6.324
7 3 2 13 15 48 0.005 0.008 5950 21 9.990 11.13
8 3 2 13 15 48 0.006 0.009 8778 21 14.14 15.68
3 4 2 13 15 48 0.006 0.009 3150 21 3.354 3.752
3 5 2 13 15 48 0.006 0.009 18702 21 25.69 29.54

TABLE 5.1: Comparison Results for the Corridor Domain

5.1.2 Grapevine

Grapevine, proposed by Muise, Belle, et al. (2015), is a similar problem to
Corridor. With only two rooms available for agents, the scenario makes
sharing secrets while hiding from others more difficult. The basic setup
is each agent has their own secret, and they can share their secret among
everyone in the same room. That is, as it can be seen from the Figure 5.2,
agent a’s “vision“ is only in r1. The basic actions for agents are moving
between rooms and sharing his secret.

r1 r2

a b

c d

FIGURE 5.2: Grapevine Domain

Examples

Let a, b, c and d be four agents, and each of them have a secret, a′, b′, c′ and
d′ respectively. There are two adjacent rooms, r1 and r2, and agents are able
to move from one to another freely. In the initial situation, all the agents are
in room r1, and each of them only knows their own secret. The goal is to
achieve a circle of known and unknown relations. To be specific, the goal
conditions are: a′ is known to b but not to d; b′ is known to c, but not to a;
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c′ is known to d, but not to b; and, d′ is known to a, but not to c. Then, this
example can be defined as a tuple (V,D,O, I,G,F), where:

• V = { agt_at(i), sees(i)(j), Kab
′, Kbc

′, Kcd
′, Kda

′, Kad
′, Kba

′, Kcb
′,

Kdc
′ | i ∈ {a, b, c, d}, j ∈ {a′, b′, c′, d′}}

• D : D(agt_at(i)) = {1, 2}, and D(sees(i)(j)) = D(query) = {0, 1},
where i ∈ {a, b, c, d}, j ∈ {a′, b′, c′, d′}

• O : move_left(i), move_right(i) and share(i, j), where i ∈ {a, b, c, d},
j ∈ {a′, b′, c′, d′}

• I = {agt_at(i) = 1, sees(a)(a′) = 1, sees(b)(b′) = 1, sees(c)(c′) =
1, sees(d)(d′) = 1 | i ∈ {a, b, c, d}}

• G = { Kab
′ = 1, Kbc

′ = 1, Kcd
′ = 1, Kda

′ = 1, Kad
′ = 0, Kba

′ =
0, Kcb

′ = 0, Kdc
′ = 0}

• F = { (@check: ?q) 7→ {true, false}, where ?q ∈ {Kab
′, Kbc

′, Kcd
′,

Kda
′, Kad

′, Kba
′, Kcb

′, Kdc
′}}

It is obvious that we need variables to cover agent’s location, and sim-
ilarly as corridor problem, we also need a set of variables sees(i)(j) to in-
dicate whether an agent can “see“ the secret or not. Those seeing variable
are only for keeping track of whether an agent is able to share other’s secret
or not. In D, location variables can be value of 1 or 2, represents room r1
and r2 respectively, while seeing variables and query variables only have a
binary value.

As in Corridor, we use action share(i, j) to examine all the queries. The
new knowledge is generated only when agent i shares a secret j. This secret
can either be i’s own secret or others secret that i knows. As long as i sees
the secret, which means someone has shared the secret with i. We only
update the query variables when a query becomes true. So that, all the
negative queries, which are indicated by those query variables that required
to be 0 in goal conditions, keep being false at all the time; while, all the
positive queries will remain true after the first time they have been updated
to be true.

Then, after we implement external functions2, we can simply run the
planner and get a valid optimal plan as:

• move_right(a), share(d, d′), move_right(d), share(a, a′), share(c, c′),
move_right(b), share(b, b′)

Example (Extended)

The previous example seems only a complication version of Corridor prob-
lem. Let us introduce a different example to make full use of the Grapevine
problem. Consider the same situation and initial state. The only difference
is for the goal state, instead of reasoning agent’s knowledge about secrets,
we can take a look on agent’s reasoning about others’ knowledge about

2It is worth to mention that, the only change, which we make from the external functions
for Corridor domain, is to simply change the seeing rules from “same and adjacent rooms”
to “same rooms”.
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secrets. For example, let goal condition be: “agent a knows b’s secret b′ “;
and, “b does not know that a knows his secret“. As the depth of knowledge
goes further, the advantage of our model would emerge more prominently.
Rather than generating all the knowledge queries with depth up to 2, we
can simply replace the query variables, and use the same structure as pre-
vious examples. The only difference, G, is listed as follows:

• G = {Kab
′ = 1,KbKab

′ = 0}

And since none of the action asks knowledge queries as preconditions, we
can use the same domain. The solution for this example is:

• move_right(a), share(b, b′), move_right(c), share(c, b′)

Parameters Our Model PDKB

|A| d |G| |Atom| |Gen| |Calls| TIME(s) |Atom| |Gen| TIME(s)
Calls Total Compile Total

4 1 2 346 10 48 0.002 0.006 96 22 0.429 0.469
4 2 2 346 10 48 0.002 0.007 608 5 2.845 3.168
4 1 4 346 23 144 0.005 0.009 96 11 0.428 0.468
4 2 4 346 23 144 0.006 0.010 608 11 2.885 3.178
4 1 8 346 368 1200 0.040 0.047 96 529 0.381 0.455
4 2 8 346 368 1200 0.050 0.057 608 1234 3.450 4.409
4 3 8 346 368 1200 0.068 0.073 4704 14 28.66 30.72
8 1 2 546 18 48 0.003 0.010 312 5 3.025 3.321
8 2 2 546 18 48 0.003 0.010 4408 5 54.35 58.80
8 1 4 546 43 144 0.008 0.016 312 11 2.546 2.840
8 2 4 546 43 144 0.008 0.016 4408 11 55.33 59.78
8 1 8 546 1854 4528 0.238 0.268 312 2002 2.519 3.752
8 2 8 546 1854 4528 0.322 0.294 4408 4371 54.90 228.1
8 3 8 546 1854 4528 0.394 0.421 − − − −

TABLE 5.2: Comparison Results for the Grapevine Domain

5.1.3 Analysis

We show the results of the problems in Table 5.1 and Table 5.2, in which |A|
specifies the number of agents, d the maximum depth of a nested epistemic
query, |G| the number of goals, |Atom| the number of atomic fluents, |Gen|
the number of generated nodes in the search, and |Calls| the number of
calls made to external functions. The symbol “−” represents there is no
result within 10 minutes boundary time.

From the results, it is clear that the complexity of the PDKB approach
grows exponentially on both the number of the agents and the depth of
epistemic relations (the planner went over the 10-minute time boundary in
the final Grapevine problem). The complexity of the pre-compilation for
the PDKB planner is O(2|A|∗D), in which |A| is the number of agents and D
is the maximum depth of any modal formula in the modal. The search com-
plexity is then the same as classical planning, which we model asO(|Gen|)),
in which Gen is the set of states that are generated to solve the problem. In
our approach, the number of features and depth do not have a large im-
pact. However, epistemic reasoning in our approach (the number of calls
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to the external solver), has a significant influence on the performance for
our solution. Since the F-STRIPS planner we use checks each query in goal
conditions at generation of each node in the search (O(|Gen|)), the time
complexity for epistemic logic reasoning is in O(|Gen| ∗ |G| ∗ |a| ∗ |V |2)3,
in which G is the set of goals and V is the size of the state. Although this
search problem is still an NP-hard problem, the empirical computational
cost is significantly lower than the compilation in the PDKB approach in
most of the test cases.

5.2 Big Brother Logic

Big Brother Logic (BBL) is a problem first discussed by Gasquet, Goranko,
and Schwarzentruber (2014). The basic environment is on a two-
dimensional space called “Flatland” without any obstacles. There are sev-
eral stationary and transparent cameras; that is, cameras can only rotate,
and do not have volume, so they do not block others’ vision. In our sce-
nario, we allow cameras to also move in Flatland.

5.2.1 Example and Encoding in F-STRIPS

Let a1 and a2 be two cameras in Flatland. Camera a1 is located at (5, 5),
and camera a2 at (15, 15). Both cameras have an 90◦ range. Camera a1 is
facing north-east, while camera a2 is facing south-west. There are three
objects with values o1 = 1, o2 = 2 and o3 = 3, located at (1, 1), (10, 10)
and (19, 19) respectively. For simplicity, we assume only camera a1 can
move or turn freely, and a2, o1, o2 and o3 are fixed. In order to implement
that assumption, we set the locations of these to be common knowledge.
Figure 5.3 visualises the problem setup.

a1
(5,5)

a2
(15,15)

o2
(10,10)

o1
(1,1)

o3
(19,19)

FIGURE 5.3: Example for Big Brother Logic setup

3In the worst case scenario, which is checking common knowledge query on a state,
there are at most |V | (maximum size of the state) iterations, and each iteration contains |a|
number of set operations on the global state or a local state (maximum |V |).
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Let all the desired epistemic relation queries be a set of propositions Q,
this problem can be represented by the tuple (V,D,O, I,G,F), where:

• V = {x, y, dir, q | q ∈ Q}

• D : D(x)=D(y)={−20, . . . , 20}; D(dir)={−179, . . . , 180}; and,
D(q)={0, 1}, where q ∈ Q

• O : move(dx, dy) and turn(d)

• I = {x = 5, y = 5, dir = 45}

• G = {q = 1}

• F : (@check q) 7→ {true, false},

in which q is a goal query, which we describe later.
This is just a simple example to demonstrate our model. Variables x

and y represent coordinates of camera a1, and dir determines which way
a1 is facing. Since a2 and all other objects are fixed, we model them in an
external state handled by the external functions, which lightens the domain
and reduces the state space. However, we could also model the positions
of these as part of the planning model if desired. For the domain of the
variables, as part of the model, although the F-STRIPS planner we use does
not support using real numbers, using integers is enough to show that our
model can work on continuous problems, as the external function allows
us to use floating point numbers in the calculation.

We need to check the knowledge queries in the actions (precondition,
conditions), or goals. Both action move(dx, dy) and turn(d) can change
agents’ perspectives, and therefore, can influence knowledge. To simplify
the problem, instead of moving 1 or turning 1 degree per action, we can set
up a reasonable boundary for actions, such as turning [−45, 45] degree per
action and move at speed of 2 for each direction on x and y.

5.2.2 External Functions

External functions in the BBL domain are mainly focused on checking the
epistemic relations encoded as queries. The input would be the query (in
the format of our language described in Chapter 3) and current states (x,
y and dir are the only changing variables in this case), and the output is
the evaluated truth value of the query. The seeing rules are the same as
we introduced in Section 4.3.1. The formal definition of the perspective
function is4:

BBL domain: fi(s) = {v′ | v′ ∈ s ∧ i . v′}

Since BBL domain is in a two-dimensional continuous environment, we
do not see how it could be modelled by any existing propositional planning
approach, as there are an infinite number of propositions. Further, the arith-
metic operators and trigonometric functions would need to be encoded.

4The relation “i . v′” reads agent i sees v′, which implemented following Formula 4.1 in
Subsection 4.3.1.
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5.2.3 Goal Conditions

As for the goal conditions, some queries q can be achieved for the problem
in Figure 5.3 without doing any actions, such as:

1. Single Knowledge query: ¬Ka2o3; Ka1o3

2. Nested Knowledge query: ¬Ka1Sa2o3; Sa1Sa2o3

3. Group Knowledge query: ¬EKa1,a2o3; EKa1,a2o2

4. Distributed Knowledge query: ¬DKa1,a2(o1=3); DKa1,a2(o1=1)

5. Common Knowledge query: CKa1,a2o2; CKa1,a2Sa1o3

Most of them are intuitive. From goal 2, although Sa1Sa2o3 is true because
a1 can see a2’s location, range of vision and direction, so a1 knows whether
a2 can see o3, the formula Ka1Sa2o3 is false because there is no action that
a1 can perform to make a2 see o3.

For goal 5, CKa,bSa1o3 is true without any action, because, by calling
the external function, the common local state for a1 and a2 would be the
location of all three values, both a1 and a2 and the value of o2. Then, Sa1o3
would be evaluated true based on the common local state.

In addition, there are some query that would be achieved through valid
plans:

1. Ka1,a2o1: move(−2,−2), move(−2,−2)

2. CKa1,a2o1: move(−2,−2), move(−2,−2)

3. Sa2Sa1o1 : move(−2, 2), move(−2, 2)

4. Ka1o1 ∧¬Ka2Ka1o1(BBL115): move(−2, 1), move(−2, 2), move(−1, 2),
move(0, 2), move(0, 2), move(0, 2), turn(−45), turn(−44)

5. ¬Ka1Sa2Sa1o1 ∧ Sa1o1(BBL12): turn(−44), turn(−45), turn(−45),
move(1, 2), move(2, 2), move(2, 2), move(2, 2), move(2, 2), move(2, 2),
move(−1, 2)

The first one is clear. There is more than one way to let both of them know
value o1, and the planner returns the optimal solution. The second one is
also intuitive: to achieve common knowledge in a BBL problem, they need
to both see the item and both see each other. The difference between the
last two are a bit trickier. To avoid a2 that knows whether a1 can see o1,
the cheapest plan returned by planner was for a1 to move out of a2’s eye
sight. The last one is the most difficult to solve. Not only should a1 see o1,
but also a1 should know that originally a2 cannot see that a1 sees o1. This
is done by decomposing the query into three facts: “a1 sees o1“;“a2 cannot
see whether a1 sees o1“; and, “a1 can see that whether a2 can see whether
a1 sees o1“.

5Problem index for BBL, used to refer to the result in Table 5.3 about the size of the
problem.
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5.2.4 Results

Table 5.3 shows the results for our problems in the BBL domain, where
|Exp| represents the number of nodes been expanded and |P | indicates the
length of the plan. A plan length of “∞” means that the problem is un-
solvable – no plan exists. While the perspective function in BBL depends
on a geometric model based on agent’s position, direction and facing angle,
the results show that with proper usage of our F-STRIPS planner, we can
represent continuous domains. Our epistemic solver is able to reason about
other the agents’ epistemic states (vision) and derive plans based on these
for non-trivial intricate goal that we believe would be tedious and error
to encode propositionally, if possible at all given the continuous domain,
demonstrating that our model can handle important problems in vision-
based domains. As far as we know, there is no current epistemic planner
can handle problems at this level of expressiveness. Another advantage of
our model is that epistemic formulae are evaluated lazily. Instead of gen-
erating all possible combination of positions, angles and directions, and
calculated visibility relation off-line, our model evaluate desired epistemic
relations online during the search. The non-solvable case BBL03 shows the
scale of the problem when the planner has to calculate and evaluate truth
value of epistemic relations with all possible combinations of the states.

Parameters Performance

|A| d |G| |P | |Gen| |Exp| |Calls| TIME(s) Goal
calls Total

BBL01 2 1 1 0 1 0 2 0.000 0.002 Ka1
o2

BBL02 2 1 1 2 115 2 232 0.007 0.009 Ka1
o1

BBL03 2 1 1 ∞ 605160 all 1210320 36.1 78.2 Ka2
o3

BBL04 2 2 1 2 115 2 232 0.015 0.017 Ka1Ka2o1
BBL05 2 1 1 0 1 0 2 0.000 0.002 DKa1,a2{o1, o2, o3}
BBL06 2 1 1 0 1 0 2 0.000 0.002 EKa1,a2

o2
BBL07 2 1 1 2 115 2 232 0.019 0.021 EKa1,a2

{o1, o2}
BBL08 2 1 1 0 1 0 2 0.000 0.002 CKa1,a2

o2
BBL09 2 1 1 2 115 2 232 0.048 0.050 CKa1,a2{o1, o2}
BBL10 2 2 1 2 115 2 232 0.016 0.018 Ka1DKa,b{o1, o2, o3}
BBL11 2 2 2 8 59260 7509 187332 7.650 8.382 Ka1

o1 ∧ ¬Ka2
Ka1

o1
BBL12 2 3 2 9 15842 592 47626 2.380 2.472 Sa1

o1 ∧ ¬Ka1
Sa2

Sa1
o1

TABLE 5.3: Experiments Results for BBL domain

5.3 Social-media Network

The Social-media Network (SN) domain is an abstract network in which
agents can befriend each other to read their homepage, post on friend’s
homepage and view their friend list, and etc., based on typical social media
models. We extend two-way one-time communication channels from a clas-
sical gossip problem (Cooper et al., 2016) into two-way, all-time communi-
cation channels, and add the concepts of secret messages. By decomposing
secrets into messages and posting through an agent’s friendship network,
we model how secrets can be shared between a group of individuals not
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a

b

c

d e

FIGURE 5.4: Example for Social-media Network

directly connected without anyone else on the network knowing the secret,
and some secrets can be shared within a group excepting for some individu-
als. The former could be spies sharing information with each other through
the resistance’s personal page, and the latter could be a group arranging a
surprise party for a mutual friend.

5.3.1 Example and Encoding in F-STRIPS

Let a, b, c, d, e be five agents in the SN, with friendship links shown in Fig-
ure 5.4. Their friend relations are represented by full lines between each
agent. The dotted lines are for later demonstration purpose.

Let g be a friend for all agents and g wants to share a secret. We assume
the social network is in g’s perspective directly, and the network is fixed
for simplicity. Let all the epistemic queries that we concern of be a set of
propositions, Q, and p1, p2, p3 as three parts of the secret P . Any problem
by this setup can be represented by a tuple (A, V,D,O, I,G,F), where:

• A = {a, b, c, d, e}

• V = {(friended i j), (post p) (q) | i, j ∈ A, p ∈ P, q ∈ Q}

• D : D(friended i j) = D(q) = {0, 1}, D(post p) = A,
where i, j ∈ A, p ∈ P, q ∈ Q

• O : post(i, p), where i ∈ A, p ∈ P

• I = { (friended a b) = 1, (friended a c) = 1, (friended a d) = 1,
(friended b e) = 1, (friended c d) = 1, (friended d e) = 1 }

• G: see below

• F : (@check q) 7→ {true, false}

The variable (friended i j) represents whether i and j are friends with
each other, which is a domain dependent relation, and q covers all the epis-
temic queries. Action (post i p) specifies that the message p is posted on
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agent i’s page. The I covers the friendship relations in Figure 5.4, and no
message has been posted yet. Similarly, the action post is the only source
for epistemic relation changes. Therefore, we update all desired queries Q
as conditional effects.

5.3.2 External Functions

The seeing rules in SN domain is based on the friend relations. The agent
is able to view all post on it’s friend’s homepage and also view the friend
list of its friend. To be specific with this example, agent a is able to read
every post on c’s homepage, and a knows c is friend with a and d. With this
information, a is able to deduce that any post p on a’s or d’s homepage is
also readable for c, which in another format is “KaKcp”, nested knowledge.

The perspective function depends on the friendship network. For ex-
ample, for a full state s = {a, b, c, d, e, p1}, assuming p1 is posted on b’s
homepage, then, we have fa(s) is {a, b, c, d, p1}; fd(s) is {a, c, d, e}; while, d’s
“vision“ under a’s perspective will be fd(fa(s)) = {a, c, d}, since e is not in
a’s perspective. Similarly, fe(fa(s)) will be empty. Formally:

SN domain: fi(s) = {v′ | v′ ∈ s ∧ (friend i j) ∧ ((post v′)=j ∨ v′=j)}

We have not seen this domain or anything similar modelled in any ex-
isting approach. The epistemic relation would be a problem for most ap-
proaches, as it involves distributed knowledge and common knowledge.
The network itself could be modelled by other approaches, however, the
group knowledge that we reason about depends on the network. It is not
clear to us how existing approaches could compactly model the effect on
knowledge when the friendship network changes. In our approach, the
perspective function gives us this information by default.

5.3.3 Goal Conditions

Goals that we have tested are shown in Table 5.4. For some epistemic for-
mulae between a and b, since they are friends, simply posting the message
in any of their personal page is sufficient to establish common knowledge
about the information in that post. But for the knowledge between a and
e, for example, EKa,ep1, the message needs to be posted on the page of a
mutual friend, such as agent b. In addition, since a and e are not friends, in
each of their perspectives of the world, there is no information (variables)
describing others. Therefore, both EKa,eEKa,ep1 and CKa,ep1 are not pos-
sible without changing the network structure.

Below are some of the sample goals that we have tested, with the iden-
tifying name from Table 5.4 and the plan that achieves that goal:

• Kap1 (SN01), KaKbp1 (SN02), EKa,bp1 (SN03) and CKa,bp1 (SN06):
post(a,p1)

• CKa,ep1 (SN07): ∞ (Unsolvable, since they are not friend.)

• Ka{p1, p2, p3} (SN08), EKa,b{p1, p2, p3} (SN04) and DKa,b{p1, p2, p3}
(SN05):
post(a,p1), post(a,p2), post(a,p3)

The other types of goals are secretive:
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• Ka{p1, p2, p3} ∧ ¬Kb{p1, p2, p3} (SN09): post(a,p1), post(a,p2),
post(c,p3)

• Ka{p1, p2, p3} ∧ ¬Kb{p1, p2, p3} ∧ ¬Kc{p1, p2, p3} (SN10): post(a,p1),
post(b,p2), post(c,p3)

The aims are to share the whole secret with awhile bmust not know the
whole secret, but can know some of it. Some parts of it, such as p3, needs to
be shared in the page that b does not have access to. Then, c must also not
know the secret, the secret now needs to be posted in the way that b and c
do not see some parts respectively, while a sees all the parts.

Finally, we look on those two desired scenarios in the introduction of
SN:

• Sharing with a spy (SN11):
Ka{p1, p2, p3} ∧ ¬Kb{p1, p2, p3} ∧ ¬Kc{p1, p2, p3} ∧ ¬Kd{p1, p2, p3}
∧ ¬Ke{p1, p2, p3}:
post(a,p1), post(b,p2), post(c,p3)

• Surprise party (SN13):
¬Ka{p1, p2, p3} ∧Kb{p1, p2, p3} ∧Kc{p1, p2, p3} ∧Kd{p1, p2, p3}
∧Ke{p1, p2, p3}:
∞

Sharing a secret to some specific individual without anyone else know-
ing the secret can be done with the current network. However, if we alter
the problem a bit by adding a friend relation between b and c (SN12), and
apply the same goal conditions as SN11, no plan would be found by the
planner, because c sees everything a can see, and there is no way to share
some information to a without c seeing it.

For sharing a secret surprise party for agent a among all the agents with-
out a knowing it, the messages need to shared in such a way that a is not
able to get a complete picture of the secrets. In the current setup of the
problem (SN13), since a sees everything seen by c, there is no way to held
a surprise party without a knowing it. However, by adding a friend rela-
tion between e and c (SN14), the planner returns with the plan: post(e,p1),
post(e,p2), post(e,p3).

5.3.4 Results

Table 5.4 shows the results for our problems in the social-media network
domain. The results show that our planner is able to reason about nested
knowledge and also group knowledge to achieve an intricate goal, which
means our model can handle a variety of knowledge relations at same time
within reasonable time complexity. In addition, this result also indicates
that the time our approach takes to solve the problem directly depends on
the number of external calls that the planner makes. Moreover, the number
of external function calls is related to the number of nodes that planner
generates and expands, which depends on the search algorithm. The test
cases with length of the plan |P | equal to ‘infinite’ (unsolvable) shows the
scale of that problem with BFWS(R0) planner.
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Parameters Performance

|A| d |G| |P | |Gen| |Exp| |Calls| TIME(s)
Goal

calls Total

SN01 5 1 1 1 16 2 42 0.002 0.004 Kip1
SN02 5 2 1 1 16 2 42 0.003 0.005 KiKjp1
SN03 5 1 1 1 16 2 42 0.003 0.004 EKi,jp1
SN04 5 1 1 3 216 92 3286 0.484 0.489 EKi,j{p1, p2, p3}
SN05 5 1 1 3 216 92 3286 0.566 0.571 DKi,j{p1, p2, p3}
SN06 5 1 1 1 16 2 42 0.006 0.007 CKi,jp1
SN07 5 1 1 ∞ 216 all 7776 0.825 0.838 CKi,kp1
SN08 5 1 1 3 216 92 3286 0.216 0.221 Ki{p1, p2, p3}
SN09 5 1 2 3 306 107 7652 0.759 0.767 Ki{p1, p2, p3} ∧ ¬Kj{p1, p2, p3}
SN10 5 1 3 3 614 189 20334 2.049 2.069 Ki{p1, p2, p3} ∧ ¬Kj∧k{p1, p2, p3}
SN11 5 1 5 3 901 265 47570 4.841 4.886 Ki{p1, p2, p3} ∧ ¬Kother{p1, p2, p3}
SN121 5 1 5 ∞ 2808 all 505400 57.5 58.0 Ki{p1, p2, p3} ∧ ¬Kother{p1, p2, p3}
SN13 5 1 2 ∞ 432 all 31104 5.589 5.629 ¬Ki{p1, p2, p3} ∧Kother{p1, p2, p3}
SN142 5 1 2 3 418 278 19964 4.049 4.073 ¬Ki{p1, p2, p3} ∧Kother{p1, p2, p3}

TABLE 5.4: Experiments Results for the Social-media Network domain
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5.4 Discussion

Overall, computationally, our solution outperforms PDKB, which is state-
of-the-art for epistemic planning problems. As it can be seen from the result
in both Corridor and Grapevine domains, the number of agents and depth of
epistemic relations do not increase the computation time as rapidly as the
PDKB planner.

In the terms of expressiveness, our solution demonstrates its capability
to handle variety of complex epistemic relations, such as, nested knowl-
edge, distributed knowledge and common knowledge, or epistemic logic
reasoning with continuous domain which can be found in the scenarios of
BBL and SN domains.

The results show that the computational time depends heavily on how
many times the external functions are called, which is actually determined
by the number of generated nodes and expanded nodes. Moreover, the
number of nodes involved in the search is impacted by some factors, such
as, the length of the plan, the algorithm that the planner uses, and also the
scale of the problem itself.

The results also show that the external solver takes up a large part of the
execution time. This is a prototype implementation and this represents an
opportunity for performance optimisation of our code base.
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Chapter 6

Conclusions

In this work, we introduced a new epistemic planning model called the
agent perspective model, driven from the intuition: “What you know is
what you see”. This perspective model allows us to evaluate epistemic for-
mula, even nested, distributed or common epistemic relations, based on the
simple concept of defining an agent’s local state. Then, by separating the
planning task from epistemic reasoning with F-STRIPS, we proposed an ex-
pressive and flexible solution for most of the epistemic planning problems
without an expensive pre-compilation step. We implemented our model
on well-known epistemic planning benchmarks and two new scenarios
based on different perspective functions. The results not only show that
our model can solve the epistemic benchmarks efficiently, but also demon-
strate a variety types of epistemic relations can be handled. Our work is the
first to delegate epistemic reasoning to an external solver.

For future work, there are three ways to extend our model. The first
is to extend the model to beliefs rather than knowledge. The success of
our model is dependent on the property fi(s) ⊆ s for perspective func-
tions, which implies beliefs cannot be false. Extending to beliefs would
increase certain expressiveness of our model. Second, we can improve our
model by allowing simplified disjunctive knowledge relations, such as that
proposed by Miller et al. (2016). In such way, we believe that our model
have the potential to handle the partial information on variables, such as
“value of x is small than 5”. Finally, investigating the relation between
event-model in modal logic and epistemic logic reasoning in our external
functions would be another direction. Instead of seeing variables and eval-
uating epistemic relations lazily based on those variables, we think it would
be possible to allow agents “seeing the action” from the planner and “gain-
ing certain knowledge” from the external functions, which might lead us
to a different perspective on decomposing and solving epistemic planning
problems.
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