
Count-Based Novelty Exploration in

Classical Planning

by

Giacomo Rosa

ORCID:0009-0009-6403-6356

Under the Supervision of

Professor Nir Lipovetzky

A thesis submitted in partial fulfillment for the

degree of Master of Computer Science

in the

Department of Engineering and Information Technology

School of Computing and Information Systems

THE UNIVERSITY OF MELBOURNE

June 2024

THE UNIVERSITY OF MELBOURNE

Abstract

Department of Engineering and Information Technology

School of Computing and Information Systems

Master of Computer Science

by Giacomo Rosa

ORCID:0009-0009-6403-6356

Under the Supervision of

Professor Nir Lipovetzky

Count-based exploration methods are widely employed to improve the exploratory be-

havior of learning agents over sequential decision problems. Meanwhile, Novelty search

has achieved success in Classical Planning through recording of the first, but not succes-

sive, occurrences of tuples. In order to structure the exploration, however, the number

of tuples considered needs to grow exponentially as the search progresses. We propose

a new novelty technique, classical count-based novelty, which aims to explore the state

space with a constant number of tuples, by leveraging the frequency of each tuple’s ap-

pearance in a search tree. We then justify the mechanisms through which lower tuple

counts lead the search towards novel tuples. We also introduce algorithmic contributions

in the form of a trimmed open list that maintains a constant size by pruning nodes with

bad novelty values. These techniques are shown to complement existing novelty heuris-

tics when integrated in a classical solver, achieving competitive results in challenging

benchmarks from recent International Planning Competitions. Moreover, adapting our

solver as the frontend planner in dual configurations that utilize both memory and time

thresholds demonstrates a significant increase in instance coverage, surpassing current

state-of-the-art solvers, while also maintaining competitive planning time performance.

Finally, we introduce two solvers implementing alternative count-based heuristics and

provide promising results for future developments of the ideas presented in this study.

Declaration of Authorship

I, Giacomo Rosa, declare that this thesis titled, ‘Count-Based Novelty Exploration in

Classical Planning’ and the work presented in it are my own. I confirm that:

■ The thesis comprises only my original work towards the Master of Computer Sci-

ence except where indicated in the preface;

■ due acknowledgement has been made in the text to all other material used; and

■ the thesis is fewer than the maximum word limit in length, exclusive of tables,

maps, bibliographies and appendices as approved by the Research Higher Degrees

Committee.

Giacomo Rosa

June 2024

ii

Preface

The majority of the work and contributions included in Chapters 3, 4, 5, 6, and 7 have

been submitted for publication to the 27th European Conference on Artificial Intelligence

(ECAI) on April 25th, 2024, in collaboration with Nir Lipovetzky, and are under review

at the time of writing. Chapter 8.2.1 and results in Section 3.6 constitute unpublished

material that has not been submitted for publication.

Modifications to the IPC problem files for domains ‘Storage’, ‘Tidybot’ and ‘GED’,

required to make them amenable for execution with the ‘Approximate-BFWS’ solver

adopting the ‘Tarski’ grounder, were provided by Anubhav Singh.

Information and commands for running the “First” variant of the ‘Scorpion-Maidu’

solver as described in Section 6.2 were provided by Augusto B. Corrêa.

This research was supported by the Melbourne Research Cloud.

iii

Acknowledgements

I extend my sincere appreciation to my supervisor, Professor Nir Lipovetzky, for sharing

his knowledge and enthusiasm for the subject, and for supporting my ideas from the

very start. Your guidance helped me build the confidence to tackle this project.

My most heartfelt gratitude goes to my mother, Anna, father, Marco, and brother,

Tommaso, for their unwavering support throughout all the decisions in my life that have

led me to this point. As I grow, I learn to be humbled by your strength and wisdom.

A special acknowledgement goes to my friends, who keep welcoming me back no matter

how bad I may be at keeping in touch. I am blessed to have you in my life.

iv

Contents

Abstract i

Declaration of Authorship ii

Preface iii

Acknowledgements iv

List of Figures viii

List of Tables x

Abbreviations xii

1 Introduction 1

1.1 Classical Planning . 1

1.2 Novelty Search in Classical Planning . 2

1.3 Summary of Contributions . 3

1.4 Thesis Structure . 4

2 Background and Related Work 6

2.1 Classical Planning . 6

2.1.1 The Classical Planning Model . 6

2.1.2 Classical Search Algorithms . 7

2.2 Complexity of Planning Domains . 9

2.3 Concepts of Width in Classical Planning 10

2.3.1 Hamming Width and Variants . 11

2.3.2 Novelty Width . 12

2.4 Novelty . 14

2.4.1 SIW and BFS(f) . 15

2.4.2 Analysis and Explanations of Novelty Performance 16

2.5 Novelty Limitations and Variants . 17

2.5.1 Partitioned Novelty . 18

2.5.2 Approximate Novelty . 21

2.5.3 Novelty as Heuristic Search . 23

2.5.4 Novelty Forgetting and Open List Reset 24

v

Contents vi

2.5.5 Sketches . 25

2.6 Count-based Exploration . 26

2.6.1 The Exploration-Exploitation Dilemma 27

2.6.2 Epsilon-Greedy Exploration . 28

2.6.3 The UCB1 Algorithm in the Multi-Armed Bandit Problem 29

2.6.4 Count-based Exploration in Reinforcement Learning 30

2.6.5 Relation to Novelty in Planning . 34

3 Count-Based Novelty in Classical Planning 36

3.1 Motivation . 36

3.2 Preliminaries . 40

3.3 Classical Count-Based Novelty . 40

3.4 Theoretical Analysis . 43

3.4.1 Parent-Child Average Distance Bounds 45

3.4.2 Estimating Novel k -Tuples . 49

3.5 Comparison with Novelty in Planning . 51

3.6 Connections to Count-Based Exploration 53

3.6.1 RL Setting Notation . 53

3.6.2 Minimum Empirical Count Distribution 54

3.6.3 Connection to Pseudocounts . 54

4 Trimmed Open List 56

4.1 Motivation . 56

4.2 Trimmed Open List . 59

4.2.1 Single Trimmed Open List . 59

4.2.2 Double Trimmed Open List . 59

4.3 Trimmed Open List Analysis . 61

5 Count-Based Search Algorithms 63

5.1 Count-Based Solvers . 63

5.2 Hybrid Solvers . 66

5.2.1 Memory Thresholds . 66

5.2.2 Hybrid Count-Based Solvers . 67

6 Implementation Details 69

6.1 Implementation of Count-Based Solvers 69

6.1.1 Planning Engine . 70

6.1.2 State Nodes . 71

6.1.3 Count-Based Novelty Heuristic . 71

6.1.4 Trimmed Open List . 72

6.2 Implementation of Hybrid Configurations 72

6.2.1 LAMA-First . 73

6.2.2 “First” Variant of IPC2023 Scorpion-Maidu 73

6.3 Experiment Implementation . 74

7 Experimental Evaluation 76

7.1 Experimental Setup . 76

7.2 Count-Based Solvers . 77

Contents vii

7.2.1 Coverage Results . 77

7.2.2 Search Efficiency . 79

7.2.3 Search Time . 80

7.2.4 Plan Length . 83

7.3 Hybrid Solvers . 84

7.3.1 Coverage Results . 84

7.3.2 Frontend Failure Analysis . 86

7.3.3 Backend Contribution and Threshold Analysis 87

8 Conclusion and Future Work 91

8.1 Conclusion . 91

8.2 Future Directions . 93

8.2.1 Alternative Count-Based Novelty Heuristics 93

8.2.2 Other Future Directions . 99

A Atomic Width of Domains 101

B Extended Proofs 102

C Extended Tables of Results 107

Bibliography 111

List of Figures

2.1 Classical planning search algorithms. Image from Lipovetzky [1]. 8

2.2 Comparison of states expanded and pruned by IW(1) and IW(2). Fluents
belong to set F = {A,B,C,D}, IW visits from left to right. For instances
N1 and N2 with initial state I = {A} and goal formulas g1 = {B,C} and
g2 = {D} respectively, then N1 has width 1, and N2 has width 2. 14

2.3 Example of partitioned novelty. H represents the heuristic value of states,
the tables are the fluent history for a width of 1. Fluent B in Figure 2.3c
is not novel in the partition of novelty reserved for states with H=2, thus
the node is pruned. 19

3.1 Each circle represents a visited nodes. Circles contain variables (left)
and the node’s count-based novelty over size-1 tuples (right), for a BrFS
expansion ordering from left to right. 41

3.2 Parent-child average Hamming distance example scenarios. 48

3.3 E[# novel k -tuple] according to Theorem 3.11. In (A) N is a variable,
and in (B) α(s) is a variable. Otherwise, parameters are set as L = 100,
t = 50000, N = 5, α(s) = 0.3. A realistic α(s) value was determined
through simulation1. 50

5.1 Instance coverage vs. (A) memory usage, and (B) time, for solver BFNoSt
(f5(C1), f5(W2)). The curves show the diminishing returns on instances
covered with respect to time and memory. Measurements were conducted
over the set of benchmark planning problems described in Section 7.1. . . 66

7.1 Number of nodes expanded to solve instances by BFNoS and BFWSt(f5).
Blue crosses represent instances not solved by at least one planner. 80

7.2 Time (sec) to solve instances by BFNoS and BFWSt(f5). Blue crosses
represent instances not solved by at least one planner. 81

7.3 Plan cost over instances solved by BFNoS and BFWSt(f5). Blue crosses
represent instances not solved by at least one planner. 83

7.4 Coverage analysis of proposed solvers. Lines indicate the % of IPC bench-
mark domains where the % of domain instances solved is ≥ a given value. 85

7.5 Cumulative % of all failures attributed to memory failures vs. time of
failure (sec), for BFNoS solvers with 6 GB and 8 GB memory and 1800
sec time limits. 87

viii

List of Figures ix

7.6 Instance coverage vs. time (sec). Comparison of BFNoS with the three
presented hybrid configurations. The solvers are run in an identical con-
figuration to previous sections, with BFNoS using the full 8 GB memory
allowance when run on its own, and a 6 GB memory threshold when run
as the frontend of hybrid configurations. The vertical lines signal the 1400
sec (green) and 1600 sec (red) time thresholds. 88

8.1 Instance coverage vs. time (sec). Comparison of BFNoS variants dis-
cussed in this section, and the respective BFNoS-Maidu-h2 configurations.
BFNoS-V1 is BFNoSt(f5(C1), f5(W2)), BFNoS-V2 is BFNoSt(f5(C1), f5
(LFC))8:1, and BFNoS-V3 is BFNoSt(f5(AC1,2), f5(LFC))8:1. All BFNoS
variants use the full 8 GB memory allowance when ran on their own in
Figure (A), and 6 GB memory threshold and 1400 sec time thresholds
when ran as the frontend solver in the in BFNoS-Maidu-h2 configura-
tions in Figure (B). The red vertical line in Figure (B) signals the time
threshold. 97

A.1 Atomic width of solving serialized single atom subgoals over a set of bench-
mark planning domains. I is the number of resulting instances. Other
columns denote the number of solved atomic instances using iterative
width with width we. From Lipovetzky [2]. 101

List of Tables

2.1 Limitations of novelty search. 18

3.1 Size-1 tuple counts after visiting all nodes in Fig. 3.1. 41

7.1 % score and coverage comparison of proposed variants. % score is the
average of the % of instances solved in each individual domain, calculated
over all benchmark domains. The coverage is provided over the full set
of benchmark domains, as well as the subsets of domains corresponding
to those used in recent IPC 2023 and IPC 2018 competitions. Values
for solvers that use a trimmed open list show the mean and standard
deviation across 5 measurements. 78

7.2 % of instances across all IPC satisficing benchmarks where a node with
count ≥ N was recorded across generated and expanded nodes by a
BFCSt(f5) planner. This includes unsolved instances. 79

7.3 Comparative coverage analysis across benchmark domains. % score is the
average of the % of instances solved in each domain. BFNoS % coverage
share refers to the % of covered instances solved by the BFNoS frontend,
when run in a dual configuration. Domains which are fully solved by
all planners are omitted. Values for BFNoS variants and Approximate-
BFWS represent the mean and include the standard deviation across 5
measurements. The complete table of results is included in Appendix C. . 84

7.4 Comparative coverage analysis of tested and benchmark solvers across
IPC 2023 and IPC 2018 instance sets. 86

7.5 Coverage and % score comparison of hybrid planner variants adopting
only a memory threshold, and the usual configuration with both memory
and time thresholds. All memory thresholds are set at 6 GB for both
configurations of each planner. The BFNoS-Maidu planner is a variant of
BFNoS-Maidu-h2 that does not use the h2 preprocessor with its Scorpion-
Maidu backend. Values represent the mean and the standard deviation
across 5 measurements. 89

8.1 Coverage comparison of BFNoS and BFNoS-Maidu-h2 variants. % score
is the average of the % of instances solved in each individual domain, and
is provided for results calculated over the full set of benchmark domains.
The best results for each solver class are highlighted in bold. 97

x

List of Tables xi

C.1 Comparative performance analysis across the full set of benchmark do-
mains. % score is the average of the % of instances solved in each domain.
Front-end % coverage share refers to the % of covered instances solved
by the BFNoS front-end. Values for BFNoS variants and Approximate-
BFWS represent the mean and include the standard deviation across 5
measurements. 108

C.2 Comparative performance analysis across the full set of benchmark do-
mains of ‘memory-only’ threshold dual-configuration BFNoS variants. %
score is the average of the % of instances solved in each domain. Front-
end % coverage share refers to the % of covered instances solved by the
BFNoS front-end. Coverage values represent the mean and include the
standard deviation across 5 measurements. 109

C.3 Comparative performance analysis across the full set of benchmark do-
mains of BFNoS variants. BFNoS-V2 is BFNoSt(f5(C1), f5 (LFC))8:1,
and BFNoS-V3 is BFNoSt(f5(AC1,2), f5(LFC))8:1. % score is the aver-
age of the % of instances solved in each domain. Front-end % coverage
share refers to the % of covered instances solved by the BFNoS front-end.
Coverage values represent the mean and include the standard deviation
across 3 measurements. 110

Abbreviations

BFCS Best First Count Search

BFNoS Best First Novelty Search

BFS Best First Search

BFWS Best First Width Search

IPC International Planning Competition

IW Iterative Width

LAPKT Lightweight Automated Planning ToolKiT

MDP Markov Decision Process

PAC Probably Approximately Correct

RL Reinforcement Learning

xii

Chapter 1

Introduction

1.1 Classical Planning

AI Planning is the field of Artificial Intelligence which explores the design of algorithms

to solve problems that are represented by large transition systems, where solutions con-

sist of plans: sequences of actions that map an initial configuration to a desirable out-

come. The Classical planning problem further restricts the problem to a discrete state-

space, where actions have deterministic effects and the initial configuration specifies a

single initial state. States are defined by a discrete set of variables, or atoms, which

are either true or false in a given state. An action is applicable in a state if the set of

precondition fluents is true, and modifies the state according to its effects.

A key characteristic which differentiates it from other fields of AI is the aim of employing

a single algorithm to solve all problem domains. Finding a valid solution, a plan, in

most domains is worst-case NP-hard [3], and yet modern planners can tractably handle

many such instances [4]. The prevailing technique has been that of guiding the search

of solutions through the use of heuristics, estimates of distance to the goal derived

automatically from the problem’s description.

1

Introduction 2

1.2 Novelty Search in Classical Planning

An alternative successful approach in recent years has seen the adoption of width-based

search methods [5], which prioritize an efficient exploration of the state-space over greed-

ily following legacy heuristics. The efficient exploration is achieved through Novelty

metrics that compare a state’s information content with previously visited states, priori-

tizing states with more novel information. The related concept of width characterizes the

difficulty of solving problems using these methods. For a given problem width, width-

based search methods achieve polynomial plan generation complexity without the need

for additional heuristics. Research on these methods has significantly impacted planning

by introducing algorithms that use novelty heuristics for efficient state-space exploration,

leading to the development of multiple state-of-the-art algorithms [6]. The performance

of these algorithms is often explained in terms of balancing exploration and exploitation,

where novelty drives exploration and traditional heuristics direct exploitation.

This does not come without limitations, as Lipovetzky and Geffner [5, 7] show that the

complexity of computing novelty metrics needed to solve planning problems is exponen-

tial in their cardinality − roughly speaking, the dimensionality of such heuristics. In

practice, this causes novelty metrics of cardinality greater than 2 to be computationally

unfeasible, limiting the technique’s effectiveness in domains that would benefit from a

higher cardinality. The cardinality is connected to a hardness measure for Classical

Planning known as classical planning atomic width.

Multiple contributions have sought to address this limitation. Lipovetzky and Geffner

[8] introduce partition functions, which subdivide planning problems into smaller sub-

problems through the use of partitioning heuristics to control the direction of search and

increase the number of novel nodes. Katz et al. [9] provide a definition of novelty of a

state with respect to its heuristic estimate, providing multiple novelty measures which

quantify the novelty degree of a state in terms of the number of novel and non-novel

state facts. More recently, Singh et al. [10] introduce approximate novelty, which uses

an approximate measurement of state novelty that is more time and memory efficient,

proving capable of estimating novelty values of cardinality greater than 2 in practical

scenarios. Analysing Novelty and problem width through connections to other concepts,

such as dominance pruning, also constitutes an active area of research [11, 12].

Introduction 3

1.3 Summary of Contributions

Existing novelty paradigms limit themselves to the original idea of measuring state

information content through the first occurrence of tuples in the search history. Instead,

we propose a count-based measure of state novelty, classical count-based novelty, which

seeks to induce efficient exploration of the state space by making use of the additional

information contained in the count of occurrences of tuples in the search history. This

addresses shortcomings of the current Novelty framework (see [6]), which we refer to as

width-novelty to distinguish from our contributions in this thesis.

Our first aim was to study what additional information is contained in tuple counts and

develop an extension of novelty which incorporates this knowledge. This is addressed in

our first research question:

What theoretical and empirical insights may be found by incorporating tuple

occurrence knowledge into existing novelty theory in the domain of classical

planning?

Our second aim was to study implementations of novelty search algorithms using the

metrics we derived in the theoretical component of our project, alongside complementary

techniques which improve their effectiveness, and analyze their performance on satisficing

classical planning tasks. Our second research question is focused on this aspect:

How can the performance of novelty search algorithms be improved by lever-

aging count-based novelty metrics?

Our proposed count-based metric is not limited by width-novelty’s binary classification

of novel information, providing a more fine-tuned separation of the degree of novelty of

a state and maintaining its informedness without the risk of exhausting novel nodes. A

key motivation behind our study is thus to obtain a more general novelty framework

that can maintain its efficacy across diverse sets of problems in Classical Planning, such

as domains that require higher atomic widths.

In this regard, we note that count-based exploration techniques are well studied in rela-

tion to the exploration-exploitation problem in Multi-Arm Bandits and Reinforcement

Learning (RL) settings. Such algorithms record state visitation to obtain an exploration

bonus used to guide the agent towards a more efficient exploration of the state-space,

Introduction 4

where algorithms such as MBIE-EB [13] achieve theoretical bounds on sample complex-

ity in tabular settings. The focus of our research diverges from these methods, as we aim

to discover a heuristic to control the order of state exploration in a Classical Planning

context. Instead of state counts, we base our approach on the frequency of tuple events,

inspired by work on width-novelty in the field of Classical Planning [5, 7, 14]. Still, our

contributions provide a useful basis to connect count-based exploration across the two

fields.

We also introduce algorithmic contributions in the form of a simple memory-efficient

trimmed open list. Polynomial width-based planning algorithms prune nodes whose

novelty cardinality is worse than a given bound to achieve a more efficient search [14].

Inspired on this idea, our contribution allows us to prune nodes with bad novelty values

with a gradual and self-balancing cutoff without maintaining an explicit threshold value.

Finally, we demonstrate the effectiveness of our proposed planning algorithms as fast

but memory-intensive frontend solvers through an effective use of a memory threshold,

which allows us to relate the progress of search directly to the amount of information

we store from the history of the search. Many successful solvers such as FF, Probe or

Dual-BFWS rely on a dual strategy [8, 15, 16], with the frontend of such solvers playing

a key role in their performance. The performance of our proposed frontend planner

could improve such solvers even further.

1.4 Thesis Structure

Our contributions include the development of a new novelty technique, accompanied by

theoretical analysis that connects it to existing width-novelty measures. Additionally, we

introduce the trimmed open list method and a planner called BFNoS, which integrates

these techniques. Finally, we propose a procedure to adapt BFNoS as an effective

frontend planner in a dual strategy. We structure our thesis as follows. In Chapter 3

we introduce classical count-based novelty metrics for Classical Planning and provide

related theoretical findings. We then propose a novel open list implementation to exploit

classical count-based novelty more efficiently in Chapter 4. Chapters 5 and 6 introduce

all our proposed count-based classical search algorithms, providing explanations and

implementation details for design choices. Here we also present the concept of memory

Introduction 5

thresholds, central to our hybrid planner contributions. Chapter 7 is divided into two

components: we first compare the performance of solvers incorporating our proposed

count-based novelty techniques, and then show the impact of our frontend solver when

used in conjunction with different time-and-memory thresholds and backend solvers,

achieving state-of-the-art performance. Lastly, in Section 8.2.1 we introduce preliminary

results for two alternative count-based heuristics, one of which diverges more markedly

from existing work on novelty than our other contributions. Results provided in this

chapter offer further insights into the potential of count-based novelty, and suggest

promising directions for future developments of the ideas presented in this thesis.

Chapter 2

Background and Related Work

In this chapter we characterize the foundational knowledge on which our study is based.

We begin by providing an introduction to the classical planning model and to classi-

cal planners. We then provide a review of work characterizing domain complexity in

Classical Planning, with special focus on recent results on Width and Novelty, their

variants and the successful solvers which rely on these techniques. Finally, we discuss

the broader subject of count-based exploration and its relevance to addressing the explo-

ration/exploitation dilemma in related Multi-Arm Bandit and Reinforcement Learning

problems.

2.1 Classical Planning

2.1.1 The Classical Planning Model

The classical planning model is defined as S = ⟨S, s0, SG, A, f⟩, where S is a discrete

finite state space, s0 is the the initial state, SG is the set of goal states, and A(s) denotes

the set of actions a ∈ A that deterministically map one state s into another s′ = f(a, s),

where A(s) is the set of actions applicable in s. We adopt a notation whereby, in a

classical planning problem, a state is visited (generated) sequentially at each time-step

t. Let st ∈ S denote the tth visited (generated) state in a search problem. We use s0:t

to denote the sequence of t+ 1 states generated at time-steps 0, 1, ..., t. A solution to a

classical planning model is given by a plan, a sequence of actions a0, ..., axm that induces

6

Background and Related Work 7

a state sequence s0:xm+1 such that axi ∈ A(sxi), sxi+1 = f(axi , sxi), and sxm+1 ∈ SG.

Each action in a plan has a positive action cost, and summing the action costs for all

actions in a plan yields the plan’s cost.

A classical planning problem P defines a classical state model S(P) through a set of

variables in a planning language. We use the STRIPS planning language [17] to define a

classical planning problem P = ⟨F,O, I,G⟩, where F denotes the set of boolean variables,

O denotes the set of operators, I ⊆ F is the set of variables that fully describe the initial

state, and G ⊆ F is the set of variables that are true in the goal state. The preconditions

of an operator o ∈ O specify the subset of boolean variables which have to be true in

a state s in order for operator o to be applicable in that state. The effects of operator

o are then the state variables that o changes in the process of mapping state s to its

successor s′ when taken. We say that variables are added, when the boolean variable

value changes false → true, or deleted when the value changes true → false. A plan

for a classical planning problem is said to be optimal when there is no other plan that

can solve the same problem with lower cost. In absence of explicit cost information, it

is assumed all action costs are 1, and that the plan cost is thus equivalent to the plan

length, that is, the total number of actions in the plan. An optimal plan thus consists

of the shortest possible solution to a given problem P . In this research, we look at

satisficing planners, that is, planners which are not constrained to searching for optimal

plans, but rather aim for computing good-quality plans successfully and fast, if a plan

exists.

2.1.2 Classical Search Algorithms

Within the context of Classical Planning, search algorithms (also referred to as planners

or solvers), are algorithms which, provided a classical planning model description S(P),

automatically compute a solution to S(P) in the form of a valid plan. This is achieved

by exploiting the existing correspondence between S(P) and directed graphs, where

the nodes of the graph represent the states s in the model, and, for the considered

case of unitary costs, directed edges (s, s′) capture the transitions induced by operators

applicable in state s. Beginning from a root node corresponding to the starting state,

a search algorithm can then recursively generate, or visit, successor nodes by following

the directed edges, seeking to find a node corresponding to a valid goal. The plan can

Background and Related Work 8

then be obtained by extracting in order the operators corresponding to each edge in the

path from the root node to the goal node.

Figure 2.1: Classical planning search algorithms. Image from Lipovetzky [1].

Of particular importance is the distinction between blind search and heuristic (or in-

formed) search:

• A blind search algorithm searches the state space by only using the basic in-

formation obtained during a search, such as the overall cost of reaching a state s,

but without using nor requiring any additional information to determine whether

exploring certain states or actions is more useful to finding a solution. Well-known

examples include best-first search, depth-first search, as well as Dijkstra’s algorithm

[18].

• A heuristic search algorithm exploits heuristics, estimates of the distance, or

remaining cost, between a state s and the goal, in order to obtain information on

whether certain states or actions may be more useful towards finding a solution.

Such heuristics seek to estimate the optimal heuristic h∗, which represents the

true distance of the node to the goal. Using heuristics allows the search algorithm

to alter the order of visitation of nodes compared to a blind search, in order to

prioritize nodes which are expected to lead the search closer to the goal.

A search algorithm progresses by selecting a node from an open list, a set of nodes visited

in the search which are candidates for expansion. A node is said to be expanded when it

is selected and removed from the open list, such that all operators whose preconditions

are satisfied may be applied to generate a set of successor nodes, which are inserted

into the open list. After being expanded, nodes are then inserted into a closed list,

allowing a search algorithm to avoid expanding duplicate nodes, as well as being useful

in practice for the implementation of lazy node evaluation, which allows a node’s state

to be evaluated as late as possible to save time and memory.

Of particular interest to our research are the families of best-first search (BFS) and

greedy best-first search (GBFS) planners. In heuristic search algorithms, heuristics for

Background and Related Work 9

successor nodes tend to be evaluated at node generation time, before being inserted

into the open list, which is often implemented as a priority queue that prioritizes nodes

with a lower heuristic value. A BFS algorithm is a planner that weights nodes through

a combination of cost, corresponding to the length of the path from the starting node

when adopting unit costs, and heuristic value of the node. When these quantities are

added, the algorithm estimates the overall length of the plan. GBFS algorithms, on the

other hand, constitute a subset of BFS algorithms that only weigh the heuristic value of

a given node, thus prioritizing nodes purely based on their estimated vicinity to the goal.

GBFS algorithms provide the basis for multiple modern planners, including well-known

state-of-the-art solvers [8, 19–22], which further extend the GBFS paradigm by ordering

nodes in an open list through a hierarchy of heuristics, where heuristic values are used

in order to break ties among higher-ranked heuristics.

2.2 Complexity of Planning Domains

Multiple studies have sought to formalize properties of planning domains - families of

problems with shared structures, actions, and rules, but varying initial states and goals

- which contribute to the underlying complexity of domain-independent planning, with

a focus on learning what separates tractable and intractable problems [23].

Bylander [3] found that the task of determining whether a planning instance admits any

solution is PSPACE-complete when placing restrictions on type of formulas, pre- and

post-conditions (effects) in propositional STRIPS, a foundational language for defining

planning domains [24]. Planning problems where variables extend over an infinite do-

main were found to be undecidable [25, 26]. NP-Complete and even polynomial time

results have been found for more constrained problem classes; however, these only hold

under specific conditions and do not apply to most practical problems, placing them at

odds with the overall goal of tractable planning across domains [3, 23, 27].

An alternative line of research has explored the impact that limiting heuristic complexity

has on heuristic quality across domains, helping to distinguish “easy” from “difficult”

domains [28–30]. Studies show that most domains are amenable to search with the

optimal delete relaxed h+ heuristic [28], and many are polynomial-time solvable using

h+ with the FF search algorithm [15]. The h+ heuristic is also found to approximate

Background and Related Work 10

h∗, the true goal distance, by a constant factor in multiple benchmarks [29]. Finding the

optimal delete relaxed plan, however, remains an NP-complete problem, thus precluding

tractability over arbitrary domains.

Other heuristic classes including pattern databases [31], the hk heuristic [32] and po-

tential heuristics [33] share the property of being capable of converging to the optimal

heuristic h∗ at the expense of computational complexity. The hk and pattern database

heuristics however perform poorly when the size of their representation is bounded, in

the worst case failing completely to converge to h∗ in all studied domains. Additive pat-

tern database heuristics, a class of heuristics obtained by assigning to each state a sum of

multiple pattern values, fare better, achieving worst case constant factor approximation

to the h∗ heuristic in all but one studied domain [29], Blocksworld.

Efficient potential heuristics based on 2-dimensional linear combinations of state fea-

tures have been found to induce state-spaces with no local minima in many benchmark

domains. This simplifies search by preventing an algorithm from getting stuck in states

whose value is lower than its surroundings, thus always pointing a way forward to the

global minimum heuristic value. The dimensionality of such a potential heuristic re-

quired to guarantee a solution with no local minima for a given planning domain induces

the concept of correlation complexity, which quantifies the degree of interrelatedness of

state facts and acts as a measure to separate simple from complex planning domains [30].

Furthermore, several benchmark domains have been evaluated and found to have a low

correlation complexity, guaranteeing efficient evaluation. However, the study relies on

manually-created potential heuristics for the analysis of planning benchmarks. As such,

it does not provide techniques to find valid features and weights for potential heuristics

automatically, nor does it address the existence of domain-independent feature classes,

limiting the techniques applicability in domain-independent scenarios.

2.3 Concepts of Width in Classical Planning

An alternative measure of the complexity of a planning domain, based on the interrela-

tion of state fluents, is found in the (distinct) concepts of width introduced by Chen and

Giménez [34], and Lipovetzky and Geffner [5]. Both interpretations of problem width

seek to capture domain-independent structural conditions that define domain complexity

Background and Related Work 11

and ensure practical tractability in various benchmark domains. Unlike previous work,

these width measures do not rely on heuristic-related information to classify domain

tractability. Their practical use has led to new search algorithms with strong theoretical

backing.

2.3.1 Hamming Width and Variants

Chen and Giménez [34] developed a basic notion of width alongside three related exten-

sions which bound the complexity of the domain. The width of an instance bounds the

number of variables that may be changed in a plan from every state s to another state

comprised of all satisfied goal variables in s plus an additional goal variable. It is said

to have width k if either there is no solution, or every state reachable from the initial

state can bring each one of its unsatisfied variables to a state where it is satisfied by

changing up to k variables. Persistent width, Hamming width, and persistent Hamming

width relax the initial notion of width by either requiring respectively that there exist

one unsatisfied variable, as opposed to every unsatisfied variable, which may be satisfied;

using Hamming width as a measure of distance; or a combination of the definitions of

persistent width and Hamming width (persistent Hamming width).

For all definitions of width, the plan generation problem for instances displaying bounded

width k is solvable in polynomial time using the width-k algorithm. Multiple planning

benchmarks demonstrate bounded width, thus achieving polynomial-time tractability

over multiple domains. A major limitation arises for domain instances containing dead-

ends - states from which no sequence of actions can reach a goal - because if such a

state is reachable, then it implies the existence of a reachable non-goal state where all

unsatisfied goal variables cannot be brought to their goals. Thus, k remains undefined

over such instances, precluding tractability of the underlying domains. Furthermore, the

width-k algorithm scales exponentially on the value of k, and in practice anything but

low polynomials are impractical to compute for non-trivial domain instances.

Background and Related Work 12

2.3.2 Novelty Width

2.3.2.1 Definition

Lipovetzky and Geffner [5] proposed a definition of problem width which, at a high

level, quantifies instance and domain complexity with respect to the size of variable

conjunctions required to achieve goals. This definition bounds the complexity of the

shortest, or optimal, plan search in many benchmark planning domains to a practical low-

polynomial complexity when considering goals comprised of size-1 variable conjunctions

(atomic goals).

This definition of width and the related notion of Novelty are central to our study as

they provide the foundational theory which we seek to extend through the incorpora-

tion of information pertaining to atom occurrences. From here on, when not explicitly

mentioned, we will be referring to Lipovetzky and Geffner’s [5] definition of width.

Width relies upon the concept of tuple graphs, where a tuple of size n refers to a con-

junction of n state variables, or atoms, and is true in a state s if said conjunction is

present among atoms that are true in s. Tuple graphs then define a reachability relation

over tuples t of bounded size.

Definition 2.1. For P = ⟨F,O, I,G⟩, Gi is the graph with vertices from Qi, where Qi

stands for the collection of tuples from P of size no greater than i, defined inductively

as follows:

1. q is a root vertex in Gi iff q is true in I,

2. q → q′ is a directed edge in Gi and for every optimal plan π for P (q) there is an

action a ∈ O such that π followed by a is an optimal plan for P (q′) [5].

In other words, given an integer i, the tuple graph Gi refers to a graph where nodes are

tuples of size no larger than i. Tuples that are true in the initial state represent the root

nodes of the graph, and tuple q′ is a successor of tuple q if all optimal plans for q can

be extended into optimal plans for q′ by adding one action.

Furthermore, we have that, if all the optimal plans to a goal formula g1 are also optimal

plans to a goal formula g2, {g1, g2} ⊆ F , then g1 is said to imply g2. This allows us to

then define the width of a planning problem:

Background and Related Work 13

Definition 2.2. For a formula ϕ over the fluents in P that is not true in the initial

situation I, the width of ϕ relative to P is the minw such that Gw contains a tuple that

implies ϕ. If ϕ is true in I, its width is 0 [5].

Definition 2.3. The width of a planning problem P , w(P), is the width of its goal G

relative to P [5].

2.3.2.2 The Complexity of Problem Width

The value of characterizing the “hardness” of a planning problem by its problem width

then lies in the capability to limit the complexity of resolving the problem based on its

width:

Theorem 2.4. If w(P) = i, P can be solved optimally in time that is exponential in i

[5].

Of course, the meaningfulness of Theorem 2.4 then lies in whether actual planning

problems exhibit low and tractable problem widths i. In this regard, Lipovetzky and

Geffner [5] find that most domain benchmarks do exhibit a small problem width insofar

as the goal G is limited to a single atom (Appendix A), further proving the result

on domains Blocksworld, Logistics, and n-puzzle. We say that these domains have low

atomic width.

In such domains, the complexity of a problem is thus derived mainly from its goal

structure, that is, the challenge posed by conjunctively achieving single atoms subgoals.

In other words, if it is easy to achieve single atoms, but difficult to solve full problems,

the difficulty must then come from being able to simultaneously achieve all the single

atoms in the goal. Such goals are referred to as conjunctive goals. An intuitive example

can be found in the popular puzzle ‘Rubik’s Cube’: we may manage to solve a full face of

the cube, but anyone who has tried to solve a cube knows that the challenge of the puzzle

is derived from the fact that further progress cannot then be achieved without impacting

the progress achieved thus far, as the currently completed face must be partially undone

in the process of solving the rest of the cube.

Background and Related Work 14

2.4 Novelty

In practical settings, the notion of problem width lays the groundwork for enhancing

search performance via the principle of Novelty:

Definition 2.5. The novelty w(s) of a newly generates state s is i iff there is a tuple of

i atoms and no smaller tuple, that is true in s and false in all states s′ generated before

s. Such tuple is said to be novel.

We can then perform a width-w search by performing a breadth-first search which evalu-

ates the novelty value of each newly generated state, and prunes the state, not inserting

it into the open list for later expansion, if the novelty value of that state is greater than

w. This idea is the basis for the iterative width algorithm (IW(w))[5], which, starting

from w = 1, iteratively performs searches of greater width until it finds a solution or

exceeds the maximum width (Alg. 1).

Figure 2.2: Comparison of states expanded and pruned by IW(1) and IW(2). Fluents
belong to set F = {A,B,C,D}, IW visits from left to right. For instances N1 and N2

with initial state I = {A} and goal formulas g1 = {B,C} and g2 = {D} respectively,
then N1 has width 1, and N2 has width 2.

The novelty value of a node can be computed in time polynomial in the number of

variables F in problem P , and exponential in the maximum width w measured, that is,

the maximum arity of tuples considered. Similarly, for a given maximum width w, the

memory requirements to store the record of previously seen tuples is polynomial in w.

From Theorem 2.4, we can thus obtain polynomial search algorithms where both the

novelty metric and the overall width-w search can be evaluated in time polynomial in

problem size, and that therefore find a solution or fail also in polynomial time.

Background and Related Work 15

Algorithm 1 Iterative Width w algorithm

Require: w ≥ 1
procedure Iterative Width w(search problem P , source node s, max width w)

i← 1
while i ≤ w do

if WIDTH-W SEARCH(P , s, i) finds a valid solution π to P then
End search and return solution π

else
Increment i

function Width-W Search(search problem P , source node s, max width w)
Initialize queue Q
Initialize tuple record R for all tuples of size ≤ w
Evaluate novelty of r and update R with novel tuples
Mark r as visited
Enqueue r in Q
while Q is not empty do

n← dequeue Q
if n is a goal then

End search and extract plan

S ← set of successors of n according to problem P
for successor node s ∈ S do

if s is not visited then
v ← evaluate novelty of s and update R with novel tuples
if v > w then

Prune s
else

Mark s as visited
Enqueue s in Q

2.4.1 SIW and BFS(f)

Two seminal planners which first demonstrated the benefits of adopting a novelty metric

in practical scenarios are serialized iterative width (SIW) and BFS(f).

SIW is an enhancement of IW(w) which improves its ability to solve more complex

planning problems. The solver serializes the goal, subdividing the goal formula into

distinct atomic goals, and then performs a sequence of calls to the IW algorithm. Each

time, the width search restarts from the most recent partial goal, a state where only a

subset of the goal state atoms are satisfied, seeking a new partial goal containing one

additional atom, until a goal state containing all atoms in the goal formula is found, or

the search runs out of nodes of novelty ≤ its maximum width. Given the linear nature of

solving partial goals, the algorithm is also polynomial. The importance of SIW derives

from it being the first blind planning algorithm capable of achieving good performance

Background and Related Work 16

across challenging benchmark domains, thus demonstrating the feasibility of subdividing

planning problems by serializing the goals and adopting a novelty planner to iteratively

solve each subproblem [5].

BFS(f) is the first novelty planner to demonstrate state-of-the-art performance. The

planner is a greedy best first search solver guided by the novelha(n) evaluation function.

This is a measure that combines novelty and helpful actions [15], further breaking ties

in the open list using a subgoal-counting heuristic alongside the hadd heuristic [35]. In

addition to demonstrating an equivalent planning performance to IPC-winning planner

LAMA’11 [19], an ablation study shows novelty as being the component that contributes

the most to its overall planning performance, further highlighting the meaningfulness of

the metric.

2.4.2 Analysis and Explanations of Novelty Performance

Multiple studies have sought to understand and explain why novelty metrics prove so ef-

fective at improving the performance of search algorithms while still being goal-agnostic,

meaning that they do not provide additional information or estimate on the location of

a valid goal state in the search state space.

An intuitive justification of the performance derived from novelty search is that it induces

an efficient search with respect to the objective of minimizing (and bounding) the number

of states expanded to find (optimal) plans from any start state to all reachable size-

1 tuples in a domain instance. This intuition is directly tied to Theorem 2.4 from

Lipovetzky and Geffner [5]: for an instance of bounded single-goal width w, theoretical

results ensure that IW (w) is going to find a path to the goal, and the number of expanded

nodes is guaranteed to be O(nw), where n is the number of variables in the instance.

In this respect, nodes that do not have any novel tuple of size ≤ w, and are therefore

pruned, can be judged to contain redundant information that is less useful to solving

the search task, pointing at a connection to an information theoretical view where we

may want to maximize the amount of useful information in the nodes we visit. Such

usefulness is not strictly defined, but clear connections may be identified with potentially

useful events, such as the search for novel preconditions and actions, or, as Groß et al.

[11] find, its relation to dominance pruning.

Background and Related Work 17

Groß et al. [11] interpret novelty pruning as an unsafe approximation of dominance.

Dominance pruning [36, 37] is a technique whereby states which are provably suboptimal

to, or dominated by, other states are pruned. More specifically, a state is said to dominate

another state if it leads to an equal or better outcome in all possible scenarios, and is

strictly better in at least one scenario. Such an event then allows the safe pruning of

dominated states, meaning that it guarantees that pruned states are not part of an

optimal solution path due to the existence of strictly preferred alternatives. Novelty can

then be related as an unsafe approximation of dominance, where states containing novel

tuples enable novel paths to the goal and are therefore less likely to be dominated. This

view thus reframes novelty in terms of the outgoing action paths from a given state,

suggesting that exploring novel states is preferable as they lead to new paths to the goal

that were not possible from previously visited states.

Still, existing contributions do not explain why so many problems demonstrate a low

atomic width, nor do they identify general domain characteristics that may determine

this low atomic width, which has proved pivotal to the success of the technique.

2.5 Novelty Limitations and Variants

As introduced in Section 2.4, a major result over domains with low width over single

atom goals is that domain complexity can then only arise through the goal structure of

the problem, thus laying blame on conjunctive goals for causing hard-to-solve bench-

mark domains. Such domains remain one of the major challenges for novelty search,

and planning in general [6]. The other main limitation for Classical Planning domains

remains the exponential increase in complexity of IW (i) as i increases. In practice, most

state-of-the-art width-based algorithms only ever perform a width w search of up to 2

[6], with recent results partially increasing this value [10].

Multiple studies in recent years have sought to extend Lipovetzky and Geffner [5]’s

concepts of width and novelty to address these limitations [8, 10, 14, 20, 38], further

outlined in Table 2.1, as well as adapting the ideas of novelty search to improve heuristic

search [9, 21, 22] and preferred operators [39, 40] techniques. This has led to promising

developments and practical implementations which outperform previous state-of-the-art

novelty algorithms in sets of commonly tested planning domains. Such results justify

Background and Related Work 18

the direction of our proposed research, addressing questions on the potential relevance of

our study towards improving novelty-based planning techniques as well as contributing

to the field’s understanding of the topic.

Limitation Description

High atomic width Atomic goals with high width quickly become computationally in-
tractable. This manifests both in terms of the exponential increase
in time and memory requirements of generating and keeping track
of all possible tuple conjunctions when tuple sizes increase, as
well as the exponentially larger number of states expanded during
search. In practice, non-approximate forms of novelty are bounded
to a width of up to 2 when subject to common IPC time and mem-
ory constraints [6].

Hard-to-serialize
conjunctive goals

Certain domains display conjunctive goals - subgoals defined
through formulas whose size is greater than one - that depend on
other partial goals to be satisfied in advance. This makes the in-
stance hard to serialize as valid plans must thus solve sub-problems
in a specific order. Greedy approaches such as SIW then may fail
to find a correct sub-goal ordering, precluding the achievement of
a valid plan [7].

Discrete representation Traditional novelty metrics [5] limit themselves to assigning a dis-
crete novelty value based on the smallest novel tuple in a state,
grouping states among few discrete categories. This poses a chal-
lenge for methods which require prioritization of preferred states,
such as best-first search, as well as large state-spaces, requiring
additional techniques to further partition the groups [7, 8, 14],
break ties [8, 14] or quantify novelty value [9, 39].

Table 2.1: Limitations of novelty search.

2.5.1 Partitioned Novelty

Lipovetzky and Geffner [8] extend the concept of novelty (Definition 2.5) with the in-

troduction of partition functions, whereby selected functions are used subdivide the

collection of observed tuples into partitions, and the novelty of a state is then only cal-

culated relative to tuples previously observed in states belonging to the same partition

(Fig. 2.3).

Definition 2.6. The novelty w(s) of a newly generated state s given the functions

h1, ..., hm is i iff there is a tuple (conjunction) of i atoms and no smaller tuple, that

is true in s and false in all states s′ generated before s with the same function values

h1(s
′) = h1(s), ..., hm(s′) = hm(s) [8].

Background and Related Work 19

(a) Novel (b) Novel

(c) Not novel (d) Novel

Figure 2.3: Example of partitioned novelty. H represents the heuristic value of states,
the tables are the fluent history for a width of 1. Fluent B in Figure 2.3c is not novel

in the partition of novelty reserved for states with H=2, thus the node is pruned.

Augmenting the basic definition of novelty through the use of partitions achieves two

main beneficial effects on the search. Firstly, it extends the availability of novel nodes

before the “novel” search space is exhausted. This effect arises because the novelty

of a node, when evaluated relative to only a subset of previously visited nodes, must

inherently be greater than or equal to its novelty when assessed against the entire set of

visited nodes. Consequently, partitioned novelty enhances the efficacy of novelty search

algorithms in problems characterized by a high atomic width. It allows polynomial

novelty planners, which prune non-novel nodes, to achieve greater coverage of the search

space, and complete1 novelty planners, which prioritize novel nodes and revert to blind

search or a secondary heuristic when novel nodes run out, to extend the informedness

of their metrics.

1A complete search algorithm is one that will eventually visit all reachable nodes, thereby guaran-
teeing to find a solution if one exists. In practice, time and resource constraints can still limit the
exploration of the entire state space.

Background and Related Work 20

Secondly, the use of appropriate partition functions guides the search towards the goal.

This guidance is achieved indirectly, not by prioritizing the expansion of nodes depending

on their partition − as is typical with heuristic functions − but by generating new

partitions in areas of the state space where progress is detected by the partition functions.

In this way, the exploration process is given more freedom while still being directed

towards areas deemed more promising without tampering directly with the order of

expansion of nodes.

Furthermore, this approach also partially addresses the issue of conjunctive goals. The

greater number of novel nodes in newly discovered partitions naturally prioritizes the

search in those areas, as compared to previous thoroughly-explored partitions. However,

the strategy does not de-prioritize the expansion of novel nodes found in earlier parti-

tions, thereby still enabling the discovery of alternative paths from these older partitions

if progress stalls in the newly discovered areas. This represents an improvement over

previous methodologies such as Serialized Iterative Width (SIW), which adheres more

rigidly to specific subgoal orderings in its search strategy.

2.5.1.1 Best First Width Search

Partitioned novelty acts as the core component of the Best First Width Search (BFWS)

planners [8]. BFWS represents a family of novelty-driven BFS solvers with the peculiar-

ity of ordering node expansion primarily through a partitioned novelty measure, using

goal-directed heuristics only for tie-breaking. This distinguishes these solvers from most

previous contributions, which relied heavily on goal-oriented heuristics as the primary

method of guiding the search. Prioritizing novelty exploration over heuristic exploitation

then enables the search to lessen the impact of uninformed heuristic measures leading

search algorithms into undesirable local minima of the state space topology. This has

also allowed the implementation of polynomial variants of BFWS planners, pruning

non-novel nodes, that achieve comperable problem coverage to previous state-of-the-art

planners [14].

Crucially, BFWS solvers have demonstrated competitive performance when used in con-

junction with less-informed but cheaply-computable partition functions, allowing for an

alternative solution compared to state-of-the-art planners such as LAMA [19], which

Background and Related Work 21

typically adopt highly-informed but expensive heuristics such as hff [15], that can in-

stead rapidly explore a greater number of nodes per unit time, albeit at a higher memory

cost (as nodes placed in the closed list consume memory). This trait of BFWS planners

proves crucial to fostering our own planner contributions in Chapters 5 and 8.2.1.

Two key solvers of the BFWS family are BFWS(f5), and Dual-BFWS [8]. BFWS(f5)

is a family of greedy best first search planners adopting the f5 = ⟨w,#g⟩ evaluation

function, where w is the partitioned novelty metric, and #g refers to the goal-counting

heuristic, that counts the number of atomic subgoals not-yet achieved in a given state.

The partitioned novelty metric adopted is w = w#g,#r − with subscript referring to the

partition functions − where #g(s) is still the goal-counting heuristic computed at state

s, and the #r(s) heuristic refers to the number of atoms in the last computed relaxed

plan which were made true between when the relaxed plan was computed and s. Such

relaxed plans are computed only for states that improve their #g(s) heuristic compared

to their predecessor, allowing the time-consuming relaxed plans to be computed more

sparsely, and therefore speeding up the search algorithm. k-BFWS solvers represent

polynomial variants of BFWS(f5), where nodes with novelty greater than k are pruned.

Dual-BFWS is a dual configuration solver, meaning that it runs a first solver, referred

to as the frontend, which is designed to seek a solution to the planning task, or fail

under certain conditions. When the frontend fails, the dual configuration then falls back

to a backend solver. Dual-BFWS adopts a fast polynomial 1-BFWS frontend solver, a

BFWS(f5) solver that prunes all nodes with a novelty w(s) > 1, quickly failing if all

novel nodes run out before it finds a solution to the problem. The backend is a slower

BFWS variant which takes inspiration from the BFS(f) solver, using hL [41] and hff

[15] partition functions in width-2 partitioned novelty metrics, alongside hL, hff , and

helpful actions [15], for tie breaking.

2.5.2 Approximate Novelty

Singh et al. [10] proposed Approximate Novelty, which introduces the use of Bloom filters

and state feature sampling to keep track of observed tuples in novelty and partitioned

novelty search, demonstrating a beneficial impact on time and memory complexity, and

allowing for an increase in the width of tractably computable novelty measurements.

Bloom filters enable a more efficient storage of tuple records compared to the exponential

Background and Related Work 22

blowup in the number of tuples with respect to the tuple size, albeit by allowing false

positives when testing for the containment of an object in a set. Sampling state features

instead reduces the set of tuples considered for novelty comparison, speeding up the

computation of the measure. The study also formally describes the error probability

introduced by the technique, which turns out to be low in practice. To our knowledge,

no other work has addressed the idea of statistical sampling of preferred state features in

novelty search nor planning in general. Extraction and use of state features [30, 38] also

focuses on selection of relevant state features, but such features are obtained through

general or domain dependent analysis as opposed to online statistical information. The

greater width achievable through use of approximate novelty aids performance over

domains with high atomic width, where use of partitioned novelty alone may not prove

sufficient.

Another key contribution related to approximate novelty is the open list control algo-

rithm for selecting nodes to insert into the open list when based on their approximate

novelty metric value. Open list control is an adaptive policy which controls the rate of

growth of states in the open list, restricting its size to avoid the exponential blowup in

number of expanded states at higher problem widths. Singh et al. [10] model the search

as a discrete-time dynamical system subject to perturbation, and formulate an optimal

control problem [42] where optimal policies ensure that the branching factor b of S(P)

− the average number of successors of each state − upper bounds the rate of growth

sustained by the open list, deriving such an optimal policy analytically. In practice, this

policy efficiently limits the number of nodes of each width value w observed which make

their way into the open list, limiting its overall size and, thus, the rate of growth of

memory usage.

Approximate novelty is adopted by the Approximate-BFWS planner [10]. This is a

planner which iteratively runs a polynomial k-BFWS adopting approximate novelty,

increasing the max-width k at each iteration. The use of approximate novelty in con-

junction with open list control then controls the rate of growth of states in the open list,

restricting its size to reduce the exponential blowup in number of expanded states at

higher problem widths. The improvements to time and memory complexity brought by

these modifications enable Approximate-BFWS to achieve state-of-the-art performance,

improving the coverage of previous novelty planners on IPC planning benchmarks and

achieving competitive running times in finding solutions.

Background and Related Work 23

2.5.3 Novelty as Heuristic Search

Katz et al. [9] introduced novelty heuristics, a notion of state novelty with respect to the

value of underlying heuristic estimates [9, 39]. This novelty metric is based on individual

state facts, where a fact f is a pair ⟨v, x⟩ where v is a state variable, and x represents a

valuation for variable v out of a finite domain of possible valuations for that variable.

Definition 2.7. Given a heuristic function h : S 7→ R0+ and a set of states seen so far

S, the novelty score of a fact (variable value) f is defined as

N(f, S, h) =

mins∈S,f∈s h(s) if f ∈ s for some s ∈ S,

∞ otherwise.

Given a state s, the novelty score of a fact f in state s is then defined as N(f, s, S, h) =

N(f, S, h)− h(s) if f ∈ s [9].

Unlike early contributions from Lipovetzky and Geffner [5, 7] − limited to recording

occurrence of a state atom to determine a binary novelty value − the heuristic novelty

measures the novelty score of individual facts in a state by calculating the difference

between the minimum heuristic value among all states in which a fact was previously

observed, and the heuristic value of the current state. In this way, it can quantify a fact

novelty score that is not binary, but rather can account for how much better or worse

the current state heuristic is compared to other states in which we already observed

each individual fact. Crucially, it enables the detection of facts which are novel by the

traditional novelty framework: if a fact was never observed previously in the search, thus

corresponding to a novel atom in the original novelty framework [5], the best observed

heuristic value of the fact is set to ∞, thus yielding a novelty score of ∞. However,

when a fact was previously observed, it still enables the quantification of novelty or

non-novelty relative to the underlying state heuristic value.

Multiple metrics are designed to aggregate individual novelty scores. One set of such

metrics uses the novelty score to assign a binary value to each state fact, corresponding

to its novelty or non-novelty, depending on whether the novelty score is greater than or

less than 0. In this respect, these metrics conceptually share some characteristics with

partitioned novelty, which also enables the evaluation of novel tuples in partitions −

determined by underlying heuristic values − where said tuple was never observed. This

Background and Related Work 24

includes partitions which improve the best heuristic value for a given fact, corresponding

to a positive novelty score. Another set of metrics further extends the dichotomy between

novel and non-novel facts by quantifying the value of individual facts through a range of

values induced by the fact’s underlying novelty score. To our knowledge, this technique

represents the only instance thus far of a novelty metric over state variables which

manages to quantify the contribution of novel and non-novel individual facts to the

state novelty, offering a more refined state ranking compared to discrete partitioning

based on novelty value. Such metrics have been adopted in multiple state-of-the-art

planners [21, 22, 40].

2.5.4 Novelty Forgetting and Open List Reset

An alternative body of work that jointly targets the underlying novelty metric of a solver

in conjunction with its open list, as does approximate novelty [10], is provided by Corrêa

et al. [20] through open list reset and novelty forgetting.

The authors introduce two alternative open list reset techniques, where at key points

in the search process the open list prioritizes newly generated states, biasing the search

towards newly acquired information. Unlike the open list control policy [10] which prunes

novel states to control the complexity of the search, reset deprioritizes old information,

favoring fresh data. The first variant simply clears the entire open list once the search

makes progress, resulting in a more aggressive approach which abruptly cuts off old

information. The second variant, instead, implements a bucket-based queue, where the

open list prioritizes the most recent queue, and once the search makes progress, pushes

that queue back one bucket. “Progress” is generally tracked in terms of some underlying

heuristic or event in the search, such as the improvement of the best heuristic value or

the discovery of a new subgoal.

The technique employs the concept of forgetting, which broadens the search scope by

“cancelling” the entire history of tracked tuples each time the search makes progress.

This approach to forgetting the full history is less restrictive in some respects than pre-

vious methods that depend on partition functions [8, 10, 14]. By resetting the record of

novel tuples − rather than partitioning them − it potentially allows a greater number of

nodes to be expanded shortly after search progress is achieved, thereby aiding in solving

subproblems with higher width. Conversely, there may be scenarios where partition

Background and Related Work 25

functions provide the algorithm more leeway to explore different segments of the state

space, particularly when there has been no progress for an extended period of time, and

previously less-explored partitions may still offer more novel search directions compared

to a single partition with a more recent history. In such situations, a single partition

may be more prone to getting “stuck” and exhausting novel tuples.

The adoption of novelty with forgetting has been adapted for use in the Scorpion-Maidu

solver [20], which incorporates a novelty heuristic into one of several open lists [43],

instead of relying solely on novelty as the primary heuristic in its search, as is the case

with BFWS solvers [8]. Consequently, the issue of exhausting novel nodes may not be as

significant, since other heuristics in alternative open lists can potentially find different

solutions to achieve progress in those areas of the state space. Meanwhile, forgetting

novelty history offers the benefit of requiring only a single partition, which is recycled

each time the algorithm makes new progress. This effectively addresses the significant

issue of high memory costs associated with tracking tuple occurrences across all novelty

partitions in scenarios with a large number of partitions.

In practice, Scorpion Maidu has demonstrated state-of-the-art performance, with a re-

cent variant of the planner that additionally includes the h2 preprocessor [44] winning

the satisficing track of the most recent 2023 International Planning Competition [45].

This success underlines the effectiveness of its approach, offering a compelling alternative

to the BFWS family of planners in blending novelty and heuristic search.

2.5.5 Sketches

The concept of sketches presented by Bonet and Geffner [46] provides an alternative

extension to the principles of width-based planning. As outlined earlier in this section,

the effectiveness of width-based search methods is heavily reliant on two main factors.

Firstly, it depends on the feasibility of solving a given planning problem by decomposing

it into subproblems, typically achieved by serializing the goal statement into conjunc-

tions of atomic subgoals. Secondly, it relies on the low atomic width of these subprob-

lems to tractably solve them using width-based algorithms. Work on sketches takes the

approach of tackling these limitations directly by fundamentally altering the problem de-

composition in order to make the underlying subproblems more tractable, guaranteeing

low atomic widths and feasible solutions over serialized problem representations. The

Background and Related Work 26

flip-side of the coin is that these decompositions end up not being domain-independent,

thus requiring domain knowledge and manual definition of the underlying rules, although

more recent contributions have also achieved progress in obtaining domain-independent

planners which automatically define such subproblems [38].

Policy sketches are general problem decompositions which are represented as a set of

sketch rules over a set of binary and numerical features. A feature here represents a

function of the state, for example whether a condition is satisfied − is a yellow block

on the table? − or a count − how many yellow blocks are on the table? Individual

sketch rules then take the form C 7→ E. C represents boolean conditions, in the form

c or ¬c for boolean features, and c = 0 or c > 0 for non-boolean features. E represent

feature effects, a condition which describes a given change in the underlying feature,

with features not mentioned in E expected to remain unchanged. In states where the

conditions C are satisfied, sketch rules then allow the definition of sets of subgoal states

representing the solution to a subproblem. The width of the sketch is given by the width

of possible subproblems defined by the sketch rules in the policy sketch. Suitably crafted

sketch policies can then bound the complexity of the problem, and guarantee tractability

of the problem decomposition. Drexler et al. [47] provide policy sketches for multiple

benchmark planning domains, including challenging problems for domain-independent

planners such as Childsnack, proving a low sketch-width and demonstrating that SIWR,

a variant of the SIW blind novelty algorithm with the modification of decomposing

problems according to predefined sketches, fully solves instances for such domains in

time polynomial in the underlying number of problem atoms.

2.6 Count-based Exploration

Learning agents in online decision making settings generally seek to learn a best possible

policy, that is, which course of action to take in order to achieve the best possible out-

come. In a Multi-armed Bandit setting, the goal is generally to minimize the regret, the

difference in the sum of rewards obtained by following a given policy compared to the

sum of rewards obtained by following the optimal policy − the best possible expected

outcome. In a Reinforcement Learning setting, agents instead may seek to maximize

the rewards obtained in a longer sequence of decisions. These pursuits introduce a fun-

damental trade-off − the exploration-exploitation dilemma − between following courses

Background and Related Work 27

of action which the agent “knows” are good, and seeking new possible courses of action

which have the potential to be better, but may also be worse. Effectively managing

this dilemma is key to developing intelligent systems that can learn optimal behaviors

in uncertain and dynamic environments.

2.6.1 The Exploration-Exploitation Dilemma

The exploration-exploitation dilemma encapsulates the trade-off that learning agents

must navigate:

• Exploration involves trying out different actions to gather more information about

the environment. This is crucial because without sufficient exploration, the agent

may never discover the best actions to take. Exploration helps the agent to build

a more accurate model of the environment’s reward structure, but it can come

at the cost of obtaining lower immediate rewards since the agent might choose

suboptimal actions in the process of learning.

• Exploitation means using the known information to make decisions that maximize

the immediate reward based on current knowledge. This is effective when the

agent has a reliable understanding of the environment, as it focuses on optimizing

returns with the learned strategies. However, excessive exploitation can lead to

suboptimal long-term results if the agent overlooks better options that were less

explored.

In the Multi-Armed Bandit (MAB) problem, the agent faces a set of actions (arm

pulls) each associated with an unknown probability distribution of rewards. The chal-

lenge is to determine which arm to pull to maximize the cumulative reward over time.

The regret in this context is quantified as the difference between the rewards obtained by

always pulling the best arm (in hindsight, after infinite trials) and the rewards actually

gathered by the agent’s strategy.

In Reinforcement Learning (RL), the agent interacts with a more complex envi-

ronment where actions not only yield immediate rewards but also affect future states

and subsequent rewards. The environment is typically a tabular setting or a Markov

Background and Related Work 28

Decision Process (MDP), a framework for modeling the agent’s decision-making situ-

ations consisting of states, actions, rewards and transition probabilities. This setting

extends the dilemma by adding the dimension of state transitions, which influence the

optimal policy in a dynamic manner. Agents must learn a policy that maximizes cumu-

lative future rewards, often discounted over time to prioritize more immediate returns.

This requires balancing exploration to discover profitable long-term strategies against

exploiting short-term known gains.

2.6.2 Epsilon-Greedy Exploration

A näıve solution to the exploration-explitation dilemma is given by the Epsilon-Greedy

policy, a simple method where the agent chooses the best-known action most of the time

(exploitation) but also randomly selects any available action with a small probability ϵ

(exploration). This allows for continual learning while mostly focusing on high-reward

actions. Modifications of the technique further have the ϵ probability decay as the

learning progresses, promoting a behaviour that is more exploratory at the beginning,

and that gradually shifts towards exploiting as the model accumulates more information

about the environment. This adjustment reflects the understanding that exploration is

more meaningful when information is scarce, and exploitation is more effective when

substantial information has been gathered.

This approach is considered näıve because it employs an uninformed method of ex-

ploration − necessitating empirical testing of multiple ϵ values and decay strategies to

optimize performance − as it does not tailor exploration to the agent’s experiences and

knowledge of the environment. For instance, an agent might have non-uniform knowl-

edge of the environment, with certain actions or areas of the state space visited more

frequently than others, resulting in more accurate estimates for those areas compared to

less visited regions. It is desirable for a more informed exploration policy to account for

this imbalance, strategically targeting less explored areas to refine the estimates which

may be less accurate due to insufficient data, and thereby ensuring that exploration

efforts are concentrated where they are most needed.

To address these shortcomings, count-based exploration methods have been introduced.

These techniques adjust the exploration incentive based on a record of the frequency of

occurrence of a given course of action − how many times an action has been chosen or

Background and Related Work 29

a state has been visited. For example, actions that have been explored less frequently

are considered more uncertain and thus are given a higher priority for future explo-

ration. This method helps to systematically reduce uncertainty about the less-explored

alternatives.

2.6.3 The UCB1 Algorithm in the Multi-Armed Bandit Problem

As mentioned in the previous section, count-based exploration methods are used to ob-

tain a more informed exploration policy that, in the MAB setting, seeks to explore ban-

dit arms whose expected rewards are more uncertain. Still, the exploration-exploitation

dilemma also dictates that we must balance such exploratory behaviour with our desire

to obtain the best possible cumulative rewards. Selecting a bandit arm with a low ex-

pected payoff a few times may be necessary to confirm its distribution of rewards, but

ideally the agent would also stop selecting that arm as soon as possible.

Such balance in MAB and RL settings is most commonly achieved through an exploration

bonus whose value is added to a reward, providing an additional incentive for the agent

to explore options with low visitation counts, while still accounting for the underlying

expected reward or the state and/or action. This formulation introduces the concept

of “optimism in the face of uncertainty”, a key principle adopted by many exploration

techniques across multiple fields. This idea embodies maintaining an optimistic outlook

on untested options, encouraging the exploration of lesser-known paths that may yield

greater rewards.

This tactic is exemplified by the well-known UCB1 exploration algorithm [48]. The

algorithm optimally balances exploration and exploitation by selecting actions, referred

to as the arms of a bandit, which maximize an upper confidence bound :

Qt(i) +

√
2 logN

N(i)

− the sum of the empirical average rewards Qt(i) of selecting arm i, and a confidence

interval term (the exploration bonus)
√

2 logN
N(i) , where N(i) is the count of pulls of arm

i, and N is count of total arm pulls.

Background and Related Work 30

The exploration bonus is constructed from the Chernoff-Hoeffding inequality :

P (X + a < µ) ≤ e−2na2

Where X = 1
n

∑n
i=1Xi is the sample mean of observations, µ is the true mean of the

distribution, a the one-sided upper confidence bound, and n is the number of observa-

tions. The formula bounds the probability that the sample mean X, augmented by the

upper confidence bound a, is less than the true mean µ, showing how the probability

decreases exponentially with increasing observations n.

This formula embodies the underlying intuition behind the UCB1 algorithm’s strategy.

In a scenario in which an arm is pulled twice, and two low values are observed, the sample

mean for that arm is going to be low; however, it is still possible that the arm actually has

a high true mean, and that the observed low values were simply due to low-probability

events where the samples were outliers. In order to obtain an empirical estimate which

does not underestimate the true mean with a high degree of confidence, the UCB1

exploration bonus, then, is crafted such that adding it to the sample mean of an arm

produces an upper confidence bound, representing its largest plausible mean with high

probability. Auer et al. [48] critically prove that the inclusion of this exploration bonus

in UCB1 guarantees an upper bound on cumulative regret which grows logarithmically

in the total count of arm pulls N , achieving near-optimal performance in a polynomial

number of time steps (arm pulls).

2.6.4 Count-based Exploration in Reinforcement Learning

The theoretical and empirical results obtained by UCB1 are foundational to highlighting

the potential of count-based exploration techniques, and how a suitable use and analysis

of the empirical counts of events − a relatively simple measure on its own − can give

rise to breakthrough and non-trivial results. These achievements have promoted the

development of count-based algorithms that prioritize exploration across various fields

including reinforcement learning and decision-making processes.

Background and Related Work 31

2.6.4.1 Provably Efficient Count-Based RL

Strehl and Littman [13] introduce two variants of the MBIE (Model Based Interval

Estimation) [49] reinforcement learning algorithm that achieve efficient exploratory be-

havior. The two algorithms only differ in the way in which action-value estimates (the

Q-function) − estimates maintained for each state-action pair and used by the algorithm

to select actions − are computed. Both algorithms achieve their exploratory behavior

by computing confidence intervals which rely on the empirical counts of occurrences of

state-action pairs, thus following the “optimism in the face of uncertainty” principle.

The MBIE-EB variant (MBIE-Exploration Bonus) in particular manages to achieve ef-

ficient exploratory behavior by only adding an exploration bonus component β√
n(s,a)

to the base Q-function, where β is a constant and n(s, a) is the empirical count of

state-action visitations.

Such efficient behavior is defined in terms of the concepts of sample complexity and PAC-

MDP (Probably Approximately Correct in Markov Decision Processes) [50]. Sample

complexity refers to the number of timesteps over the course of any run in which an

algorithm is not executing a near-optimal policy, referred to as ϵ-optimal where ϵ is the

allowed degree of error, from its current state. Considering the degree of error with

respect to its current state allows for the an evaluation based on the trajectories or

areas of the state space the algorithm has visited thus far, as opposed to a comparison

of its policies to the global optimal policy, thus evaluating the learning algorithm itself

in terms of the “mistakes” it is expected to make from its current position. An algorithm

is then PAC-MDP if it ensures a sample complexity which is polynomial in quantities

(|S|, |A|, 1ϵ ,
1
δ ,

1
1−γ) with probability 1 − δ, where |S| and |A| are the number of states

and actions, ϵ is the aforementioned degree of “acceptable” error, and γ is the future

reward discount factor. In other words, it seeks to bound polynomially the number of

timesteps where it does not act near-optimally. For an algorithm to be PAC-MDP, it

must also maintain polynomial per-step computational complexity in these quantities,

to keep in check the computational cost of the algorithm. Strehl and Littman [13] prove

that both their proposed variants of MBIE are PAC-MDP, with the simpler exploration

bonus of MBIE-EB achieving so with a lower computational cost.

Background and Related Work 32

2.6.4.2 Count-Based Exploration and MCTS

The count-based UCB1 exploration strategy has also been adapted to Monte-Carlo Tree

Search algorithms with the introduction of the UCT algorithm [51]. Monte Carlo Tree

Search (MCTS) represents a family of algorithms that explore a tree of possible options

by systematically expanding the most promising nodes based on the results of random-

ized simulations from the current state. It progressively builds a search tree, balancing

the exploration of new paths with the exploitation of paths that have previously shown

success. The UCT algorithm applies the UCB1 exploration bonus to the empirical es-

timates of state or state-action value in the search tree, seeking a similar exploratory

behavior where the additional exploration bonus allows the algorithm to not underesti-

mate the true mean of rewards of a state or state-action, incentivizing the exploration

of paths which may feasibly lead to better discounted rewards.

A similar exploration bonus is also adopted in the landmark AlphaGo MCTS algorithm

[52]. AlphaGo augments the base MCTS algorithm using function approximation to

estimate a policy network, which outputs a probability distribution over legal moves,

and a value network, which outputs a scalar estimate of the value of a state. Crucially,

the action value of a state-action pair is added to a bonus which is proportional to

the prior probability given by the policy network, but also decays proportionally to

the empirical count of visitation of state-action pairs to promote the exploration of less

visited options.

2.6.4.3 Count-Based Exploration in Large State Spaces and Continuous RL

Challenges arise in very large tabular settings and in continuous MDP settings, pri-

marily because most states or actions are never actually visited, rendering count-based

techniques less effective. In expansive state spaces, like those AlphaGo navigates2, most

states are not visited within a feasible amount of training time. To manage this, Al-

phaGo utilizes its policy network and exploration bonuses to limit the number of states

it explores, aiming to make the vast state space more manageable. Even then, the ap-

proach still demanded significant computational resources, and extensive pre-training on

existing domain knowledge. In MDPs with continuous features, applying count-based

2The game of Go is notoriously “hard”, as it admits roughly 250150 possible sequences of moves [52].

Background and Related Work 33

strategies becomes fundamentally impractical as the set of possible states becomes un-

countably infinite in theory. Even attempts to approximate these spaces, reducing the

expressiveness of the domain, can still result in the large state-space issue, even for

relatively simple problems.

This issue was addressed by the introduction of pseudocounts [53], a state visitation mea-

sure which relies on a density function to estimate visitation history, enabling the count-

based exploration framework to generalize across large and continuous state-spaces. This

is done by defining two unkowns: a pseudocount function at time n, N̂n, and a pseudo-

count total n̂. These are related through the following constraints:

ρn(x) =
N̂n

n̂
ρ′n(x) =

N̂n + 1

n̂+ 1

where ρ is the density function, and ρ′n(x) refers the updated density function after

state visitation at timestep n. These constraints are used to model the behavior of

pseudocounts in terms of that of discrete empirical counts − the discrete empirical

count density for a state given its count N and the total count n (equivalent to the

number of timesteps) is N
n , and this density is updated by adding 1 to both N and n

components when visiting the state. The pseudocount is derived from the constraints:

N̂n(x) =
ρn(x)(1− ρ′n(x))

ρ′n(x)− ρn(x)
= n̂ρn(x) (2.1)

The pseudocount function N̂ can thus be obtained by only using the prior and posterior

values of density function ρ, whereas the pseudocount total n̂ is implicit, and does not

need to be calculated. The use of this pseudocount function then allows the obtainment

of count estimates derived from powerful density models which are capable of gener-

alizing across large state spaces and continuous features, addressing the pain points of

previous count-based solutions. Furthermore, such pseudocounts are shown to demon-

strate useful properties, allowing new states to have non-zero counts while maintaining

roughly zero counts for novel events, as well as asymptotically converging to a constant

ratio of the empirical count measure N under given assumptions of the density function.

Multiple techniques have been proposed as density models that generalize across large

and continuous state spaces such as pixel-level representations, including Context Tree

Switching [53], PixelCNN [54], and a linear function approximation of feature space

density [55].

Background and Related Work 34

2.6.5 Relation to Novelty in Planning

The goal-agnostic nature of novelty heuristics has allowed novelty planners to be adapted

to the task of planning over simulators, enabling its adaptation to RL problems such

as the Arcade Learning Environment [56], augmenting the exploratory capabilities of

online agents [57, 58], as well as RL agents leveraging learnt policies [59]. These results

underscore the potential for Novelty to foster knowledge transfer across the subfields of

exploration in RL and Planning, which typically display limited overlap in ideas and

techniques [60]. However, gaps still remain in linking the theoretical analysis of width-

based exploration methods in Planning with exploration methods in RL. In this regard,

multiple conceptual links can be identified between width-based exploration methods

and count-based exploration.

A superficial connection may be identified in underlying definitions, where Novelty fo-

cuses on whether a piece of information has occurred, corresponding to the dichotomy

between an empirical count of 0 and a count ≥ 0. Such simplification allows for mul-

tiple techniques to improve the time and memory complexity of novelty techniques, at

the cost of ignoring the additional information included in empirical counts > 0 that

count-based exploration methods leverage to obtain their results. A major difference in

this respect is that novelty focuses on the occurrence of tuples, as opposed to the ma-

jority of discrete tabular count-based exploration methods which record state visitation

count. This provides novelty exploration with an intrinsic means of generalizing feature

information across states, which proves essential in Classical Planning, where states are

generally not visited twice.

Novelty metrics in classical planning are also fundamentally optimist in the face of

uncertainty. They prioritize visitation of new states which have a certain degree of unseen

information, and in a more extreme case of what seen in RL, even achieve good result by

precluding exploration all-together of states that do not contribute to the search with

novel information. Use of partition functions or novelty heuristics go one step further,

seeking an automatic balance between exploration of novel nodes and exploitation of

beneficial heuristic values, suggestive of exploration bonuses added to rewards in RL.

Ultimately both techniques seek to induce a sort of efficiency in the exploration pro-

cess through an optimistic outlook on unseen information, in order to explore various

alternatives available, but also to uncover the best options and minimize the effort spent

Background and Related Work 35

exploring options which are unlikely to yield useful search progress or rewards. Both nov-

elty planners and count-based exploration agents can achieve some degree of theoretical

polynomial guarantees in doing so, through tuple-graph analysis of low-width planning

domains and PAC-MDP analysis in RL respectively. It is possible that common theoret-

ical foundations to both techniques may be responsible for observed efficient-exploration

results across the fields.

Another framework which closely describes width-based exploration methods applied

to reinforcement learning is that of intrinsic motivation. Intrinsic motivation seeks

to provide agent guidance through an intrinsic reward brought by the exploration of

that which “surprises” them [61]. This is commonly achieved through a concept of

learning progress, whereby the difference or divergence between some underlying prior

and posterior value or distribution before and after observing a new piece of information

is measured, favouring the exploration of larger such divergences, which corresponds to

a greater degree of “surprise” in the observed information.

The intrinsic motivation argument can serve as a rationale for novelty, where the prior

on observed information is represented by a record over binary tuples [5, 8, 10] or fea-

ture values [57–59]. Agents seek states that can update this prior distribution with new

information by observing novel tuples or feature values, greedily maximizing the acquisi-

tion of new information. Bellemare et al. [53] establish a theoretical link in RL between

intrinsic motivation and their proposed pseudocounts, showing that exploration bonuses

derived from pseudocounts effectively upper-bound those obtained through information

gain, a commonly used quantity to quantify intrinsic reward. The common connec-

tion with intrinsic motivation, then, further strengthens the conceptual links between

novelty and pseudocount measures. Moreover, the focus on tuple-based occurrences in

width-based exploration can be directly integrated into the density models used in the

pseudocount formula, bridging another key difference between novelty and count-based

exploration frameworks.

These results underscore the substantial conceptual links between width-based and

count-based techniques, hinting at a significant knowledge gap for stronger theoretical

connections between the two successful efficient-exploration techniques.

Chapter 3

Count-Based Novelty in Classical

Planning

This chapter introduces our proposed count-based extension to novelty frameworks in

classical planning. We first highlight the main limitations of existing techniques that a

count-based novelty solution addresses in Section 3.1, and describe in detail the notation

that will be used throughout this thesis in Section 3.2. Classical count-based novelty and

partitioned classical count-based novelty are introduced in Section 3.3, followed by the

main theoretical analysis in Section 3.4. Sections 3.5 and 3.6 further discuss the tech-

nique and theoretical results, comparing them to previous work on novelty in classical

planning and providing initial results to bridge the gap between count-based exploration

techniques in classical planning and reinforcement learning.

3.1 Motivation

Sections 2.4 and 2.5 introduce the concept of Novelty and variations of the metric which

are currently adopted in several state-of-the-art classical planning algorithms. All men-

tioned techniques limit themselves to the original idea of measuring state information

content through the occurrence of tuples in the search history. Our main contribution

consists of a count-based measure of state novelty, classical count-based novelty, which

seeks to induce efficient exploration of the state space by making use of the additional

information contained in the count of occurrences of tuples in the search history. This

36

Count-Based Novelty in Classical Planning 37

addresses shortcomings of the current Novelty framework and techniques presented in

Chapter 2. We refer to previous width-based Novelty methods as width-novelty, to

distinguish them more clearly from our contributions in this thesis.

There are several main limitations of width-novelty frameworks that our contribution

addresses:

1. Width-novelty metrics are defined and implemented with respect to a maximum

width w, which determines what set of tuples the novelty metric considers, lim-

iting the maximum size of such variable conjunctions. This bounds the width-w

search that the metric allows the search algorithm to perform or approximate,

according to the implicit tuple graph (Definitions 2.1 and 2.3) generated by the

search. The exponential time and memory complexity with respect to w (Theorem

2.4) turns out to be one of the main limitations of practical implementations of

novelty heuristics, forcing a trade-off between the maximum width selected and

the tractability of the heuristic computation. This trade-off also makes search al-

gorithm performance highly susceptible to the selected maximum width, which is

generally either selected empirically as a hyperparameter of the model [8, 20, 21],

or increased iteratively in polynomial novelty planners when the previous iteration

fails [5, 7, 10].

2. At the opposite end of the novelty-informedness/tractability trade-off is the issue

of width-novelty metrics losing informedness once they run out of novel nodes,

and thus the “range” of their informedness being inevitably tied to the maximum

width of the adopted novelty heuristic. The ability to prune non-novel nodes

is central to the polynomial performance of novelty-based polynomial planners,

however running out of novel nodes forces the algorithm to fail without finding

a solution. For complete, non-polynomial implementations, running out of novel

nodes precludes the novelty heuristic from performing an efficient-exploration, un-

til new novel nodes are found. This issue is partially alleviated through the use

of secondary tie-breaking heuristics or alternative open lists, but these are forced

solutions to the underlying limitations of width-novelty heuristics. Increasing the

width w iteratively has also demonstrated promise in balancing such issue with

the underlying complexity of computation of the heuristic. However, this solution

proves to be unfeasible for adaptation to search algorithms that are not designed

Count-Based Novelty in Classical Planning 38

around it, for example Scorpion-Maidu [20], which adopts a novelty heuristic in

just one of several open lists used for search. It also inevitably requires redundant

computations to be performed at each new search iteration, which limits its ap-

plicability to planners with high per-node computational requirements and forces

hard trade-offs in the selection of heuristics, such as restricting the use of highly

informed − but slower − heuristics like hff .

3. Ignoring the intractable computational cost of high-width novelty heuristics, the

exponential increase in the number of feasible novel nodes introduces an issue re-

garding the degree of separation of nodes with higher novelty values. Separating

novel from non-novel nodes provides a meaningful improvement to the efficiency of

the search, however there already are multiple domains where a width-2 BFWS(f5)

solver only ever expands novelty-2 nodes, and yet still takes a long time or even

fails to find a valid plan. In these situations, a more granular, yet still informed,

degree of separation of beneficial and non-beneficial nodes would help further di-

rect the search towards valid solutions. Novelty heuristics [9] explicitly address

this issue, providing formulations which account for the degree of novelty and

non-novelty of underlying state variables (Section 2.5.3). However, this formula-

tion is with respect to the value of underlying heuristics, which plays against the

effectiveness of novelty in achieving an efficient search to fill the gaps created by

the uninformedness of goal-aware heuristics used in modern planning algorithms.

If such heuristics were consistently very accurate in estimating the optimal heuris-

tic h∗, there would arguably rarely be any need for novelty in the first place, and

planning would be a quasi-convex optimization problem.

4. Width-novelty exploration frameworks, while adaptable to a broader set of prob-

lems outside of Classical Planning, including planning with simulators and re-

inforcement learning, still remain theoretically independent to other exploration

techniques. Furthermore, current theoretical results mainly revolve around the be-

havior of novelty in Classical Planning, and find little common ground with respect

to existing theoretical analysis of alternative exploration techniques in other fields.

This is also true for novelty techniques which modify the basic novelty definition

to target problems not covered by the discrete atomic definition of novelty (Defi-

nition 2.5), such as numerical features [62]. As with the connections presented in

Section 2.6.5, these solutions demonstrate clear conceptual links to novelty, but fail

Count-Based Novelty in Classical Planning 39

to achieve explicit theoretical connections. Results which bridge such a gap could

provide beneficial knowledge transfer, and more general and explicit theoretical

justifications of novelty’s exploratory behavior in non-discrete and non-planning

domains.

Count-based novelty is not constrained to width-novelty’s binary classification of novel

information, and provides new solutions addressing the limitations in existing novelty

literature listed above.

Extracting the full set of information included in tuple counts allows count-based novelty

to estimate and solve higher atomic width problems through the evaluation of smaller-

sized tuples. This study focuses on the analysis and evaluation of a variant of our

proposed metric which only evaluates sets of size-1 tuples, corresponding to the under-

lying instance features, thus achieving a novelty metric which only ever operates over

a linear number of such tuples. Analysis in Section 3.4 and our experimental results

demonstrate that this formulation is sufficient to estimate the presence of larger novel

tuples in visited states, approximating higher-width searches without the previously

discussed exponential blowup in number of evaluated tuples.

The substitution of width-novelty’s dichotomic notion of tuple occurrence with a count-

able record over tuples also provides a more granular metric that does not run out of

“useful” information, precluding the exhaustion of novel nodes. The novelty heuristic

this way remains informative even when observing high tuple occurrence counts, en-

abling the separation and ranking of states in well-explored areas of the state space.

This is done through a blind pure-novelty solution, true to the original definition of

novelty (Section 2.4) and that does not rely on the use of goal-aware heuristics.

Finally, we provide an explicit connection between our contribution and a general RL

count-based exploration framework, demonstrating that the count-based novelty value

of a state can be represented as a pseudocount [53] through the use of a discrete density

function that selects the minimum empirical count of underlying tuples of feature values.

Through this result, and the connections to existing novelty theory in Classical Planning

provided our theoretical analysis, we show that count-based exploration bridges the gap

between exploration techniques and theoretical analysis in Planning and RL, providing

the basis for further knowledge transfer.

Count-Based Novelty in Classical Planning 40

3.2 Preliminaries

We briefly reiterate the main aspects of the notation used to describe the classical

planning model presented in Section 2.1.1:

• The classical planning model is defined as S = ⟨S, s0, SG, A, f⟩, where S is a

discrete finite state space, s0 is the the initial state, SG is the set of goal states,

and A is the set of actions.

• A(s) denotes the set of actions a ∈ A that deterministically map one state s into

another s′ = f(a, s), where A(s) is the set of actions applicable in s.

• st ∈ S denotes the tth visited (generated) state.

• s0:t denotes the sequence of t+ 1 states generated at time-steps 0, 1, ..., t.

• The STRIPS planning language defines a problem P = ⟨F,O, I,G⟩, where F

denotes the set of boolean variables, O denotes the set of operators, I ⊆ F is

the set of variables that fully describe the initial state, and G ⊆ F is the set of

variables that are true in the goal state.

3.3 Classical Count-Based Novelty

Classical count-based novelty operates over states that assign a value to a finite number

of variables v ∈ V over finite and discrete domains. In problems defined via STRIPS,

without loss of generality, V = F are boolean variables. Let V be the set of all variables,

and U (k) = {X ⊆ V | |X| = k} the set of all k-element variable conjunctions. A tuple

u ∈ U (k), specifically u = {v1, v2, . . . , vk}, represents a conjunction of k variables. Given

a state s that assigns a boolean value to each variable in V , the value of the tuple u

in state s, denoted s(u), is defined as the conjunction of the values of the k variables

in u, s(u) = s(v1) ∧ s(v2) ∧ · · · ∧ s(vk), where s(vi) is the value of variable vi in state

s. We say s(u) is true if all v ∈ s(u) are true, and tuple u is true in s if s(u) is true.

Let s0:t(u) denote the sequence of values of tuple u ∈ U (k) in state sequence s0:t, and let

U+(k)(s) ⊆ U (k) denote the set of tuples u in state s where s(u) is true.

Count-Based Novelty in Classical Planning 41

Definition 3.1 (Classical count-based novelty). The count-based novelty cU (s) of a

newly generated state s at time-step t + 1 given a history of generated states s0:t and

set of variable conjunctions U = U (k) for some tuple size k is:

cU (st+1) := min
u∈U+(st+1)

(Nu
t (st+1))

where Nu
t (st+1) counts the number of states si ∈ s0:t where si(u) = st+1(u).

That is, for each tuple u that is true in st+1, we count the number of states si ∈ s0:t

where si(u) is true, and we select the minimum out of those counts.

Figure 3.1: Each circle represents a visited
nodes. Circles contain variables (left) and the
node’s count-based novelty over size-1 tuples
(right), for a BrFS expansion ordering from left

to right.

Tuple Count

A 2

B 3

C 2

D 1

Table 3.1: Size-1 tuple
counts after visiting all nodes

in Fig. 3.1.

Example 3.1. We refer to Figure 3.1 to represent a planning problem where nodes

are visited and expanded in a breadth-first search ordering, visiting children of expanded

nodes from left to right. The variables that make up the underlying state for each node

are shown in the left portion of each node circle. The value on the right side of each

node represents its classical count-based novelty value, according to Definition 3.1 over

the set of size-1 tuples U (1), given the aforementioned order of state visitation. Table 3.1

represents the record of tuple counts after all nodes in Fig. 3.1 have been visited. Note

that for each state, we first evaluate the minimum count of its tuples according to the

history of previously visited states, and then update the counts of tuples that occur in the

state. Comparison with the IW(1) (left) graph in Fig. 2.2 also highlights the equivalence

between novelty-1 nodes according to a width-novelty heuristic (Definition 2.5) and a

size-1 tuple count-based novelty value of 0, as both cases represent variables which have

Count-Based Novelty in Classical Planning 42

never been observed before. Also note that in this example, the count-based novelty value

of nodes is not used to affect the order of expansion of nodes.

Following prior work on Novelty [8], we also define a version of count-based novelty

which uses partition functions to separate the search space into distinct sub-spaces.

Definition 3.2 (Partitioned classical count-based novelty). The partitioned count-based

novelty cU (s) of a newly generated state s at time-step t + 1 given partition functions

h1, ..., hm is:

cUh1,...,hm
(st+1) := min

u∈U+(st+1)
(Nu

t;h1,...,hm
(st+1))

where Nu
t;h1,...,hm

(st+1) counts the number of states si ∈ {s0:t | h1(si) = h1(st+1) ∧ ... ∧

hm(si) = hm(st+1)} where si(u) = st+1(u).

In other terms, we are obtaining tuple counts relative to the partition of previously

generated states where hj(si) = hj(st+1) for all 1 ≤ j ≤ m, as opposed to the full state

history s0:t. It trivially follows that Nu
t;h1,...,hm

(st+1) ≤ Nu
t (st+1) and cUh1,...,hm

(st+1) ≤

cU (st+1).

Partitioned novelty does not run out of novel nodes, and thus does not require parti-

tions to expand the set of novel nodes as do partitioned width-novelty heuristics (Defi-

nition 2.6). However, it still benefits from the other main function of partitions, that is

guiding the direction of exploration towards areas of the state space that are estimated

to be closer to the goal according to the underlying partition functions. Resetting the

tuple counts in newly created partitions still encourages exploration of newly discovered

areas, compared to previously discovered partitions where tuple counts are likely to be

higher. Not running out of novel tuples in more thoroughly explored areas of the state

space, however, helps maintain a novelty-led efficient exploration in older partitions even

after lower width-based novelty heuristics would revert to blind search. This additional

trait of the heuristic can help prevent a search algorithm from getting “stuck” in un-

desirable search directions, potentially aiding it in finding alternative paths to the goal

from earlier in the search.

Count-Based Novelty in Classical Planning 43

3.4 Theoretical Analysis

Average Hamming distance measures how “new” the information in a state, represented

using binary features, is compared to all previously visited states based on a normalized

Manhattan distance, helping define lesser-seen areas of the state space. Theorems 3.6

to 3.9 detail the extent to which information on size-1-tuple counts can direct a search

towards such areas. Theorems 3.10 and 3.11 then show the mechanisms through which

prioritizing nodes with low counts and greater average Hamming distances enables the

discovery of more previously-unseen tuples in the search, thus uncovering more novel

information.

In this section, we define node ni = ni(si) as referring to a state si, where the sequence

n0:t corresponds to sequence s0:t. The distinction between a node ni and its correspond-

ing state si lies in the equality operator: ni = nj iff i = j, implying that si = sj , whereas

si = sj denotes the equality of all underlying variable values v in si and sj . Crucially,

throughout the entire section we assume that U = U (1) = V , that is, we are only looking

at counts over single-variable tuples. We thus simplify the tuple notation by denoting

si = s(vi).

Let L = |s| = |V |, and Hamming distance:

H(n, nj) = H(n(s), nj(sj)) =
L−1∑
i=0

1si ̸=sij

We then define normalized Hamming distance as:

δ(n, nj) =
1

L
(H(n, nj)) =

1

L

L−1∑
i=0

1si ̸=sij

We define the average normalized Hamming distance of a node n with respect to all

nodes in n0:t as:

α0:t(n) =
1

W

t∑
i=0;ni ̸=n

δ(n, ni)

where W = t if n ∈ n0:t or W = t + 1 otherwise, noting that in the first case we are

skipping a node’s comparison with itself.

Count-Based Novelty in Classical Planning 44

Let the tuple count distribution and minimum empirical count distribution be

µi
t(s) =

Nvi
t (s)

t+ 1
and µmin

t (s) = min
i∈V

(µi
t(s)) (3.1)

noting that the minimum is over the entire set of variables V = U (1) rather than the set

of true variables U+(1) in a state s used in Definition 3.1 and 3.2, and 0 ≤ µi
t(s) ≤ 1.

We provide a justification of this change through Lemmas 1 and 2, demonstrating a

correspondence between empirical counts and Hamming distances over U (1) in binary

vectors, and the same metrics over the set U+(1) in binary vectors that include negated

variables. This allows us to align our results with a STRIPS representation that includes

negated variables. For the set of L variables V , we define sneg for states s over Vneg =

V ∪ {¬v | v ∈ V } such that sneg(v) = s(v), sneg(¬v) = ¬s(v) for all vi ∈ V .

Lemma 3.3. The Hamming distance H(s, s′) between states s and s′ equals the true

Hamming distance Htrue(sneg, s
′
neg), considering only variables in sneg that are true.

Proof. Since H(s, s′) = |{i | s(vi) ̸= s′(vi)}|, we define Htrue(s, s
′) = |{i | s(vi) ̸=

s′(vi), s(vi) = 1}| and Hfalse(s, s
′) = |{i | s(vi) ̸= s′(vi), s(vi) = 0}|, noting that

H(s, s′) = Htrue(s, s
′) +Hfalse(s, s

′). Since for each variable s(vi) = 1 ∈ s there are two

variables sneg(vi) = 1 ∈ sneg and sneg(¬vi) = 0, and for each variable s(vi) = 0 ∈ s there

are two variables sneg(¬vi) = 1 ∈ sneg and sneg(vi) = 0, follows that Htrue(sneg, s
′
neg) =

Htrue(s, s
′) +Hfalse(s, s

′) = H(s, s′)

Lemma 3.4. The empirical count Nvi
t (s) for any value s(vi) corresponds to the empirical

count Nvx
t (sneg), where x = i if s(vi) = 1 and x = j|sneg(vj) ≡ sneg(¬vi) if s(vi) = 0.

Proof. From the definition of sneg, for every variable sj(vi) = 0 ∈ s0:t(vi) we have

that sneg;j(vi) = 0 and sneg;j(¬vi) = 1. The proof for sj(vi) = 1 case is symmetrical.

Lemma 3.4 follows.

We can thus show that the minimum of counts over true variables in sneg − its count-

based novelty − corresponds to the minimum of counts over all variables in s.

Proposition 3.5. cVneg(sneg;t+1) = minv∈V (N
v
t (st+1))

Count-Based Novelty in Classical Planning 45

Proof. Proof follows from Lemma 3.4 and Definition 3.1, by noting that to each feature

in the left-hand side equation, corresponds a feature in the right-hand side, and vicev-

ersa. Thus, a feature in the left-hand side has the minimum count over v ∈ V +
neg iff a

corresponding feature in the right-hand side has a minimum count over v ∈ V , and these

values must be equivalent.

Theorem 3.6. The average normalized Hamming distance α0:t(s) of a state s to the

t+ 1 states in history s0:t is upper bounded by:

α0:t(s) ≤ 1− µmin
t (s)

Proof. The average Hamming distance of s(vi) with respect to the value of variable i in

all states sj ∈ s0:t is equivalent to

1

t+ 1

t∑
j=0

1sij ̸=si = 1− 1

t+ 1

t∑
j=0

1sij=si = 1− 1

t+ 1
Nvi

t (s) = 1− µi
t(s)

Thus we have

α0:t(s) =
1

t+ 1

t∑
j=0

1

L

L−1∑
i=0

1sij ̸=si =
1

L

L−1∑
i=0

1

t+ 1

t∑
j=0

1sij ̸=si

=
1

L

L−1∑
i=0

(1− µi
t(s)) ≤

1

L

L−1∑
i=0

(1− µmin
t (s))

= 1− µmin
t (s)

(3.2)

3.4.1 Parent-Child Average Distance Bounds

We provide a set of results on the average normalized Hamming distances of a child node

with respect to its parent node, and the impact that the count-based novelty of a node

has on this bound. Let nc and np be the child and parent node respectively, where an

action a ∈ A is performed on np to flip the binary value of e variables, which we refer

to as the effects. Let nc be the newly generated node nt.

Theorem 3.7. Lower and upper bounds for α0:t(n
c) are given by:

Count-Based Novelty in Classical Planning 46

α0:t(n
p)− t− 1

t

e

L
≤ α0:t(n

c) ≤ α0:t(n
p) +

t− 1

t

e

L

Proof. In the lower bound, all e effect variables change their corresponding valuation to

match with all states in history except for the parent node, reducing Hamming distance

to each state by 1 for each effect e. Parent and child states share all variable valuations

except for the e effects, which change valuation from parent to child node. This yields,

for all cases where n′ ∈ n0:t, n
′ ̸= nc and n′ ̸= np

δ(nc, n′) ≥ 1

L

(
H(np, n′)− e

)
= δ(np, n′)− e

L
(3.3)

δ(nc, np) =
1

L

(
H(np, np) + e

)
=

e

L
(3.4)

We can redefine the average α0:t(n
c) as

α0:t(n
c) =

1

t

[t∑
i=0;ni /∈{np,nc}

(
δ(nc, ni)

)
+ δ(nc, np)

]
(3.5)

Since we define that nc = nt:

α0:t(n
p) =

1

t

[t−1∑
i=0;ni /∈np

(
δ(np, ni)

)
+ δ(nc, np)

]
(3.6)

Substituting (3.3) and (3.4) into (3.5), noting that
∑t

i=0;ni /∈{np,nc}(
e
L) = (t − 1) e

L , and

then substituting (3.6) yields Theorem 3.7.

For the upper bound, we note that it is symmetrical in that in the upper bound all

effects e are novel, that is, their variable valuation in nc has never been observed in

n0:t−1. Thus we get δ(nc, n′) ≤ δ(np, n′) + e
L . Following the same procedure yields the

upper bound. An extended version of the proof is presented in Appendix B.

Theorem 3.8. Given a minimum empirical count distribution µ = µmin
t−1 (n

c), the upper

bound α0:t(n
c) with respect to µ is given by:

α0:t(n
c) ≤ α0:t(n

p) +
t− 1

t

e(1− 2µ)

L

Proof. Since µ is the minimum feature occurrence, acting as a constraint, upper bound

occurs when all effects e have occurrence equal to µ, that is, the minimum possible

Count-Based Novelty in Classical Planning 47

occurrence they are allowed to have. Thus, for t− 1 nodes n′ ∈ n0:t−1, n
′ ̸= np, we have

that

δ(nc, n′) =
1

L

(
H(np, n′) + e

)
a total of (1− µ) · (t− 1) times, and

δ(nc, n′) =
1

L

(
H(np, n′)− e

)
a total of µ · (t− 1) times.

Proof follows from the steps outlined in the derivation of Theorem 3.7. An extended

version of the proof is presented in Appendix B.

Theorem 3.9. Lower bound for α0:t(n
c) when µmin

t−1 (n
c) = 0 is given by:

α0:t(n
c) ≥ α0:t(n

p)− t− 1

t

e− 2

L

Proof. In the lower bound, one effect is novel, and e−1 effects match all previous history

except np. Thus,

δ(nc, n′) =
1

L

(
H(np, n′)− (e− 1) + 1

)
Proof follows from the steps outlined in the derivation of Theorem 3.7. An extended

version of the proof is presented in Appendix B.

A comparison of the bounds in Theorem 3.7 with those in Theorems 3.8 and 3.9 demon-

strates the relation between novelty count and Hamming distance through improved

bounds, in terms of changes in the average distances from parent to child node, for

nodes with a low empirical count N , which acts through the empirical count distri-

bution µ. The upper bound in Theorem 3.8 details the main improvement, signalling

greater potential of the child node being located in newer areas of the state space. The-

orem 3.9 is a notable special case for novel variable valuations never encountered before,

which guarantees an improvement of the lower bound through the novel information

that could not have already been observed in the parent node. Through the recursive

nature of Theorems 3.7 to 3.9, we also conclude that paths consisting of low count-based

novelty nodes are more likely to exhibit rapidly increasing average Hamming distances,

thus facilitating a quicker exploration of novel state spaces. We cannot establish an

upper bound in relation to the parent state because the least common variable (the

one corresponding to the minimum state count) might not be an effect, however mod-

ifying count-based novelty metrics to consider effect occurrences could overcome this

limitation.

Count-Based Novelty in Classical Planning 48

(a) Case 1: Novel parent node. (b) Case 2: Parent node = H.

Figure 3.2: Parent-child average Hamming distance example scenarios.

Example 3.2. We provide a simplified example in Figure 3.2 of the intuition behind

our recursive definition of average Hamming distance with respect to a node’s parent.

H represents the set of t − 1 nodes in history, except for the parent node P . In these

examples, we assume the history is comprised of a set of identical states. In Figure 3.2b,

we further assume that the parent node P also has the same underlying state as all

nodes in H, as represented by H = P in the figure. The problem is represented as a

2-dimensional state space over binary variables d1 and d2. Available actions from a

parent node are represented by the arrows, and in all cases only alter 1 effect variable.

The state of child nodes is represented by the destination of the arrows. We assume

that a considered child node is the t+1th node generated through selection of one of the

actions (arrows) from the parent node (thus the other child node is not generated, and

does not contribute to the average distance).

• In (A), the average distance of the parent node to all other nodes, including the

child node, at time-step t+ 1 is 1
t × t = 1. This is apparent from the image. The

upper bound of its children’s average distance to all nodes is given by 1
t (t+(t−1)) =

1 + t−1
t = parent avg. distance+ t−1

t . The other child node’s distance to all nodes

is given by 1
t (t− (t− 1)) = parent avg. distance− t−1

t = 1
t . Children nodes in (A)

also correspond to the general upper (green arrow) and lower (red arrow) bounds

for actions with 1 effect according to Theorem 3.7.

• In (B), the parent node’s average distance to all nodes is 1
t , as it only has a Ham-

ming distance of 1 from the only child node. Both possible children have identical

Count-Based Novelty in Classical Planning 49

average Hamming distances of 1
t × t = 1 = parent avg. distance+ t−1

t . They both

correspond to the general upper bound from Theorem 3.7 (parent avg. distance +

t−1
t). However, as its parent in (B) is not novel and has a lower average Hamming

distance to nodes in history H, its average Hamming distance of 1 is less than that

of the green-arrow child in (A), which is 1 + t−1
t .

Still, greater Hamming distances alone do not quantify the impact of count-based novelty

on search progress. We provide Theorems 3.10 and 3.11 to tie our results to prior

theoretical contributions on novelty-based search (see [7, 11, 12]) through an analysis of

the expected count of novel tuples of size k (k -tuples).

3.4.2 Estimating Novel k-Tuples

Let history s0:t represent t+ 1 independent and uniformly distributed binary vectors of

size L. A tuple is novel if its valuation in s = st+1 was not observed in any state in

history s0:t.

Theorem 3.10. The expected number of novel tuples of size k found in s = st+1 given

search history s0:t is given by:

(
L

k

)[
1− (1− α0:t(s))

k
]t+1

(3.7)

Proof. From equation (3.2) we can obtain

α0:t(s) =
1

(t+ 1) · L

t∑
j=0

L−1∑
i=0

1sij ̸=si

= Esj∈s0:t,vi∈V [1{sj(vi) ̸=s(vi)}]

= P (sj(vi) ̸= s(vi) for some j, i)

(3.8)

Thus, the probability that it has the same value becomes 1 − α0:t(s), and for a tuple

of size k, the probability that any of its constituent variable values is different in sj

than in s is 1− (1−α0:t(s))
k. Calculating the union for a tuple over the full history and

multiplying by the number of possible tuples of size k yields the expectation in (3.7).

Theorem 3.11. The expected number of novel tuples of size k found in state s = st+1

given information on occurrence count N = Nv
t (s) for some variable v ∈ V and search

Count-Based Novelty in Classical Planning 50

history s0:t is given by:

(
L− 1

k

)[
1− (1− β0:t(s))

k
]t+1

+

(
L− 1

k − 1

)[
1− (1− β0:t(s))

k−1
]N

where β0:t(s) represents the average normalized Hamming distance after discounting the

contribution of variable v:

β0:t(s) =
α0:t(s) · L− (1− N

t+1)

L− 1

Proof. The left-hand side component of the addition is given by equation (3.7) taken

over tuples deriving from variables except for the variable v whose empirical count N we

observe. The right-hand side component is given by the probability 1− (1− β0:t(s))
k−1

that, for some variable x other than v in a k -tuple containing v and in a state sj where

sj(v) = s(v), sj(x) ̸= s(x). Thus, the tuple’s valuation in sj is different than in s.

Taking a union over N states with matching v valuation and multiplying by the total

number of tuples in s containing v yields the right-hand side component. Summing the

two expectations proves the theorem.

(a) E[# novel k -tuple] vs. N (b) E[# novel k -tuple] vs. α(s)

Figure 3.3: E[# novel k -tuple] according to Theorem 3.11. In (A) N is a variable,
and in (B) α(s) is a variable. Otherwise, parameters are set as L = 100, t = 50000,

N = 5, α(s) = 0.3. A realistic α(s) value was determined through simulation1.

1We remove a randomly generated root binary vector of size L=100 from the front of an open list,
generate 4 children nodes uniformly at random flipping 3 binary variables each, and append each into the
open list. We repeated the process to create 10000 nodes, and measured the average Hamming distance
of the last 100 nodes, yielding an average value of ≈ 35. The value of α is then obtained by dividing the
average distance to other states by the number of variables in each state, L = 100. We round the value
of α down to 0.3 to account for a marginally more pessimistic scenario.

Count-Based Novelty in Classical Planning 51

Theorem 3.10 reveals that, without count information, the expectation decreases expo-

nentially with increasing t, rendering the measure effective only for small history sizes.

Conversely, Theorem 3.11 introduces a component independent of t and exponential in

count number N , emphasizing the crucial role of the minimum count function in identi-

fying states likely to contain novel tuples, necessary to fulfill new action preconditions.

We thus highlight the double role played by count-based novelty in inducing novel tuples,

as shown in Figure 3.3: directly, through the greater probability that a novel tuple may

contain a variable with low occurrence N , as well as indirectly, through the effect that

a low count N induces a greater average Hamming distance compared to history s0:t

(Theorems 3.6 to 3.9), which in turn increases the expected number of novel tuples.

The estimation model we provide in Theorem 3.11 is domain-independent, in that it does

not account for the differences in structure present in each domain such as correlation

among feature values and effects. Still, it provides a valid baseline estimation, and thus

valuable guidance for an ordering of nodes in the open list of a search algorithm that

promotes an efficient exploratory behavior. We also believe that such structure is more

likely to induce a higher correlation among visited variables, and consequently increase

the expected probability for novel tuples.

3.5 Comparison with Novelty in Planning

The results in the previous section enable us to relate the exploratory behavior of count-

based exploration to that of width-novelty through a common theoretical link pertaining

to the discovery of novel tuples. The differences in such tuple discovery process justify

the claims made in Section 3.1.

Width-novelty directly distinguishes whether or not a tuple has been observed in its rel-

evant history, but for a width w, is not capable of inferring any information on whether

non-novel nodes are more or less likely to contain novel tuples of size > w. Our the-

oretical analysis concludes that a count-based novelty heuristic over tuples of size w,

on the other hand, is always capable of inferring nodes that are more likely to contain

novel tuples of size > w, because it implicitly estimates the expected number of such

novel tuples. These findings can then be directly linked to the results of Groß et al. [11],

Count-Based Novelty in Classical Planning 52

whereby novel tuples enable the discovery of new paths to the goal that were not accessi-

ble from previously visited states, thus establishing the necessary theoretical foundation

to support count-based novelty’s beneficial impact to search performance.

The heuristic thus tackles high-atomic width problems by directly seeking larger size

novel tuples. In this regard, we note that the magnitudes over the expected number of

novel tuples estimated in Figure 3.3a are realistic and useful, especially if we consider

that novelty search algorithms are often capable of generating 100, 000s of nodes in

seconds. Still, for problems that induce high counts N , the expected probability of

encountering novel tuples still decreases exponentially in N .

While this can quickly reduce the probability of encountering novel small tuples −mostly

tuples of size 1, 2 or 3 − we note that not only do larger size novel tuples exhibit higher

expected probability of occurrence, but also have this probability decay less rapidly as

N increases. Encountering novel tuples of greater size can then promote a positive cycle

through the greater Hamming distance of the node (Fig. 3.3b, Theorems 3.6-3.9), that

increases the expected probability for small-size tuples. We also argue that in such

problems, if the minimum count over tuples in states increases rapidly, then available

novel tuples of smaller sizes are quickly exhausted, and thus it must be the larger-size

feature conjunctions that provide the breakthrough for further search progress. This

justifies the continued informedness of count-based novelty even as the count-based

heuristic value grows higher.

The effectiveness of a linear-size count-based novelty heuristic, that only records the

occurrence of individual features (size-1 tuples) in a state then follows from our analysis.

Such a heuristic implies an O(V) time and memory complexity under all scenarios, where

V = F is the set of variables in a planning problem. Importantly, this heuristic is then

more robust to the underlying characteristics of a planning domain than width-novelty.

Through the measure of variable counts, it adapts dynamically to the domain, without

the need to set a maximum width w to tackle a problem, or iteratively increase the

hyperparameter value to search for the ideal value for w.

We have only provided analysis on the case where we measure occurrence counts over

tuples of size 1, which aligns with our experimental evaluation of the technique, however

we are confident that the presented conclusions generalize to counts over larger size

tuples. These simply increase the maximum tuple size at which the count-based metric

Count-Based Novelty in Classical Planning 53

switches from being certain of observing novel tuples, to implicitly estimating their

expected probability of being novel. As with width-novelty, this comes at the cost

of an exponential increase in number of evaluated tuples, and thus time and memory

complexity.

3.6 Connections to Count-Based Exploration

3.6.1 RL Setting Notation

We provide an adaptation for use in the reinforcement learning setting we explore in

this section of the notation adopted in Sections 3.3 and 3.4, which simplifies comparisons

with Bellemare et al. [53]’s work on pseudocounts. In this setting, s1:t ∈ St represents

a sequence of t states from a countable state space S where S∗ is the set of finite

sequences of states − thus extending the binary representation from previous sections.

We label the first state in the sequence s1 to align with RL notation convention, and to

differentiate from the notation in previous sections where the root node of a planning

problem was represented as s0. s1:t · s represents the concatenation of sequence s1:t with

a new state s. Let ρt(s) := ρ(s; s1:t) ≡ ρ : s∗×s→ [0, 1] be a density model that provides

a probability distribution for each sequence s1:t ∈ St. The recoding probability of a state

s is then ρ′t(s) := ρ(s; s1:t · s), that is, the probability assigned to s after observing

its occurrence. The density models used with pseudocounts assume that states are

independently distributed.

Let Nt(s) := N(s, s1:t) be the number of occurrences of a state s in the sequence s1:t.

Bellemare et al. [53] define the empirical distribution µt:

µt(s) := µ(s; s1:t) :=
Nt(s)

t

An important fact from [53] for our analysis is then:

If ρt = µt, then the pseudocount N̂t = Nt. (3.9)

Count-Based Novelty in Classical Planning 54

3.6.2 Minimum Empirical Count Distribution

We further reiterate previous notation from Section 3.3 for clarity. We use V to define

the set of variables in states s ∈ S, and U (k) = {X ⊆ V | |X| = k} the set of all k-element

variable conjunctions, with tuple u ∈ U (k) representing a conjunction of k variables. s(u)

denotes the valuation of variables in tuple u in state s, and Nu
t (st+1) := Nu(st+1; s1:t)

counts the number of states si ∈ s1:t where si(u) = st+1(u). We can adapt the tuple

empirical count distribution for tuple u from Equation 3.1 to this setting, and define it

as:

µu
t (s) =

Nu
t (s)

t

noting that the denominator changes to t, as it enumerates the sequence of states starting

from s1 rather than s0.

Given a set of tuples U = U (k) over features V of states in S for some tuple size k, we

also adapt the minimum empirical count distribution:

µmin
t (s) = min

u∈U
(µu

t (s))

This definition is a generalization of Equation 3.1 over possible tuple sets U (k), and

countable features. It is a valid density model for a pseudocount measure, as it satisfies

the assumption that states are independently distributed, as well as being learning pos-

itive, which is an assumption over density models used in much of Bellemare et al. [53]’s

analysis:

Definition 3.12. A density model ρ is learning-positive if for all s1:n ∈ Sn and all

s ∈ S, ρ′n(s) ≥ ρn(s) [53].

3.6.3 Connection to Pseudocounts

We can then provide the link between count-based novelty and pseudocounts.

Proposition 3.13. Given a tuple size k and an underlying set of tuples U = U (k) over

features V of states in S, if ρt = µmin
t (s), then the pseudocount N̂t = minu∈U (N

u
t (st+1)).

Proof. Proof of the proposition follows from Fact 3.9 and from the pseudocount function

definition in Equation 2.1. An explicit derivation is provided in Appendix B.

Count-Based Novelty in Classical Planning 55

As with the minimum empirical count distribution defined in this section, the pseudo-

count in Proposition 3.13 represents a more general definition of the count formula in the

right-hand side of Proposition 3.5 over possible tuple sets U (k) and countable features,

with equivalence to Proposition 3.5 when applied to binary features and U = V . In a

given binary state space, it thus achieves an explicit link between the analysis on the

effect of count-based novelty value of a state on classical planning exploration we provide

in Section 3.4, and existing work on the exploratory behavior induced by a pseudocount

exploration bonus in tabular and MDP RL settings.

The binary space requirement is an effect of the theoretical analysis in Section 3.4

being performed over a representation of STRIPS Classical Planning problems as binary

feature vectors, and is stricter than a countable numerical discrete range, commonly used

to define MDP environments. Still, non-trivial environments can also be represented

through binary vectors, as for example bit-wise inputs, which are often simplified to

produce binary features for white and black pixels in a screen to obtain a more efficient

state-space representation. Finite discrete countable features may also be transformed

into a binary state-space representation which, while possibly inefficient for practical

implementation, may be used to study theoretical links across the two fields.

Additional parallels between Classical Planning and RL strengthen the relevance of the

presented connection between planning and RL exploration. The sequences of states

visited and transitions performed across multiple episodes of RL training in an MDP

or tabular environment with deterministic actions can build a planning search tree con-

taining all visited states, conceptually similar to a Monte Carlo Tree Search over full

training episodes. Moreover, useful high-level features in such settings can be defined

using tuples of feature values. Bridging knowledge from Novelty and Classical Planning,

where domains often have explicit definitions of atoms and goals, and work exists on

uncovering favorable atom conjunctions to find a goal, may aid the study of exploration

techniques concerning high-level information in less structured MDPs.

Chapter 4

Trimmed Open List

In this chapter, we introduce the trimmed open list algorithmic contribution. Section 4.1

explains the need for this solution and why traditional open lists are inadequate for our

use case. In Section 4.2, we present the single trimmed open list and double trimmed open

list techniques, which we implement in our solvers as described in Chapter 5. Finally, in

Section 4.3, we analyze how these techniques address the limitations of traditional open

lists and provide an intuitive explanation of their workings.

4.1 Motivation

Balancing the amount of memory occupied by low-rank nodes is a common strategy

which allows for better ranked exploratory nodes to appear further down the search.

A common implementation technique is that of lazily generating nodes. This solution

involves not storing the description of a node’s state and only generating it later at

expansion time from its parent node’s state representation and action. Doing so prevents

memory being occupied by the node’s state representation, reducing the overall memory

footprint of nodes in the open list. However, even when lazily generated, the large

number of nodes that populate the open list can end up consuming a significant portion

of a search algorithm’s overall memory footprint. Furthermore, lazy generation may

require the computation of a node’s underlying state twice, once at generation time

to evaluate heuristic values, and another time at expansion for the lazy evaluation.

This introduces redundant computations, thus trading time for memory. Nonetheless,

56

Trimmed Open List 57

this time overhead is often relatively small, and lazy evaluation is a common technique

adopted by many modern planners, including those presented in this work.

Another effective technique relevant to novelty planners is node pruning. Polynomial

width-novelty planners [10, 14] prune nodes with a novelty value greater than a preset

threshold, usually the maximum width of the novelty search algorithm, as they are

deemed not useful for the search. As discussed in Section 2.4, this is key to achieving

the polynomial bounds of such search algorithms, as theoretical limits to the number of

novel nodes guarantees that the algorithm either finds a solution, or fails in polynomial

time. Another key benefit, relevant to the technique presented in this section, is that

pruning a node frees up the memory which it would have otherwise occupied in the

open list. This allows the algorithm to insert fewer nodes in the open list, and in many

cases significantly reduce its overall memory footprint. Pruning nodes that are deemed

to not be useful to the search thus provides a more targeted approach, which balances

a lower memory usage with the ability to preserve nodes which are likely to aid the

efficient exploration of the state space. Doing so is especially useful for novelty planners,

because the low computational overhead of novelty and partition heuristics adopted in

algorithms such as BFWS [8] (described in Section 2.5.1.1) generates larger open lists

that thus consume a larger portion of the available memory over time. Pruning non-

novel nodes can thus help solve instances which would otherwise hit preset memory

limits in computational environments with constrained resources.

Open list control [10], briefly introduced in Section 2.5.2, further restricts the set of

visited nodes which make their way to the open list by adaptively controlling the rate

of growth of states in the open list. This is beneficial to the search, since at higher

widths of 3 or 4, even novel nodes end up being too numerous and consuming too much

space in the open list. Through the formulation of an optimal control problem, open list

control can therefore prune additional nodes of different novelty value, further reducing

the memory footprint of the open list compared to a basic polynomial novelty algorithm.

As with non-novel nodes in novelty search algorithms, count-based novelty heuristics

generate multiple nodes which may be considered less useful to the search at a given

point in time. These are nodes which have very high counts relative to that of the

“best” nodes in the open list that are currently being expanded. However, adopting a

Trimmed Open List 58

predefined threshold for pruning nodes as in the width-novelty case is unfeasible due to

the granularity of the metric.

This trait is shared by best-first search algorithms in general. In large search problems,

where a complete search is unfeasible, heuristic best-first search algorithms visit and

evaluate a large number of nodes with a “bad” heuristic value − a high estimate of

their distance to the goal − which never get expanded, as better newly generated nodes

are prioritized for expansion in the open list. This issue is exacerbated if the algorithm

makes meaningful search progress, thus visiting and expanding nodes that are closer to

the goal, and continually generating new nodes which are themselves closer to the goal.

The result is a large number of “deadweight” nodes that, like stale water, remain stuck

at the bottom of a priority heap open list, never moving up as newly generated nodes

continually overtake them.

Addressing this issue, however, can be challenging, as defining an exact boundary be-

tween nodes which will and will not get expanded is unfeasible without future knowledge.

Indeed, the search algorithm may get stuck in local minima of the state space topology

induced by a heuristic measure, only generating bad states without finding new states

that improve the heuristic value of previously generated nodes. In such a case, old

nodes in the open list which were previously “stale” may start moving towards the top,

providing new search directions for the algorithm to overcome the local minima.

The trimmed open list addresses this challenge by providing an open list which limits its

size to a maximum pre-defined value to constrain its maximum memory usage, whilst

still allowing nodes with “good” heuristic values to not be pruned. Intuitively, the goal is

to “trim” the bottom layers of a binary heap while minimizing the impact that this has

on its normal order of node expansion. This is achieved dynamically, without the need

to maintain an explicit threshold, but rather by sampling from an implicit distribution

induced by the nodes already in the open list, avoiding an increase in the asymptotic

time complexity of the insertion procedure. Furthermore, the proposed algorithm can

be implemented through a simple modification of a conventional binary heap.

Trimmed Open List 59

4.2 Trimmed Open List

4.2.1 Single Trimmed Open List

Built on a binary heap, the trimmed open list inserts new nodes like a regular binary heap

when its size is below the predefined maximum size threshold L, limiting its growth by

pruning less promising nodes when it exceeds L. This pruning process involves randomly

selecting a leaf node, comparing its heuristic value with the candidate for insertion n

using the open list’s comparison function, and then pruning or swapping nodes based on

their heuristic values. A unique heapify-up operation is applied to the newly positioned

leaf, which, unlike standard heaps, is not required to be the last element. This process

is described in detail in Algorithm 2.

This process relies on a binary heap’s property of pushing less preferred nodes towards

the bottom of the binary tree. At each level, there may still be nodes whose value is

less than that of nodes in levels above, but not their parent node; however the mean

node value in each level of a full complete binary tree − that is, with also the last layer

completely filled − must be greater than or equal to that of all levels above (open lists

are min-heaps as lower heuristic estimates are preferred). Finding the absolute minimum

node value in the heap would require checking among all leaf values − corresponding to

half+1 of all nodes in a complete tree − thus requiring an O(n) time complexity for n

nodes in the binary heap. By relying on the aforementioned property of binary heaps,

we can instead simply add an O(1) time procedure to the insertion process of the binary

heap, which allows us to sample a threshold value estimate for insertion of a new node.

The insertion procedure also preserves the binary heap property, as a newly inserted

node may only substitute a leaf node in the binary heap, with no children, and it then

recursively swaps with its parent only if it has a better value.

4.2.2 Double Trimmed Open List

We also developed a double trimmed open list for heuristic alternation [43], accommo-

dating dual open lists for node insertion under distinct heuristics and enabling alternate

node retrieval. Newly generated nodes are candidates for insertion to each of two open

lists, and are separately evaluated for insertion in each open list employing the same

Trimmed Open List 60

Algorithm 2 Trimmed Open List

procedure Trimmed Open List(new node N , heap H, heap size limit L)
S ← size of H
if S < L then ▷ If heap hasn’t reached size limit L

insert N into H
heapify-up(H) ▷ Reorder last element

else
i← uniformly random leaf index of H
O ← H[i] ▷ Node at random leaf index
if N has a better heuristic value than O then

H[i]← N ▷ Replace O with N
heapify-up(H, i) ▷ Reorder element at index i
discard O

else
discard N

pruning strategy as the single trimmed open list, but using each open list’s heuristic

evaluation function for node comparison.

This variant further distinguishes itself by tracking each node’s interaction with either

open list. An interaction refers to a node being popped from the top of the open list −

thus that node being expanded − or the node being trimmed from the bottom, which

occurs when it is pruned right away, or after a subsequent comparison and swap with

another node generated at a later time step. A node becomes eligible for deletion when

its interaction count equals the number of lists it is associated with, provided it is not in

the closed list. This ensures a node is removed only when it is confirmed to be redundant,

safeguarding against premature deletion crucial for the lazy expansion of successors. It

also removes the need to generate two separate nodes for each state inserted in both

open lists, allowing for a total memory footprint of both open lists that is less than or

equal to that of two single trimmed open lists.

These techniques are further generalizable to k-trimmed open list variants with minor

modifications, where k is the number of open lists. For values of k greater than 2, the

insertion procedure is identical, but over k lists rather than just 2. Similarly, nodes may

be safely deleted when their interaction count equals k and they are not already in the

closed list. While this study does not implement any variant of trimmed open lists with

k > 2, this trait of the algorithm enhances its versatility, broadening its applicability

across a wider range of use cases and search algorithms.

Trimmed Open List 61

4.3 Trimmed Open List Analysis

The single trimmed open list variant thus achieves a space complexity which is linear in

the average size of nodes in the open list, which is multiplied by a constant factor given

by the maximum size of the open list L. Similarly, the double trimmed open list variant

has a space complexity which is less than or equal to twice that of an equivalent single

trimmed open list. The insertion procedure of new nodes simply adds a constant time

operation − the comparison and, if necessary, swap and deletion of a node if the open list

has reached its maximum size − that therefore enables it to maintain the O(log n) time

complexity of a regular binary heap. Technically, the overhead actually becomes O(1),

as the maximum size of the heap limits its maximum depth and, thus, the complexity of

insertion; still, the benefit of this is marginal in practice. Finally, the find-min procedure

also does not encounter any relevant additional overhead in the double trimmed open

list compared to the single variant, simply alternating among open lists.

The effectiveness of this solution therefore derives from its ability to obtain valid esti-

mates for a threshold value for insertion of new nodes, without worsening the underlying

asymptotic complexity of the binary heap. In this regard, the entire last layer of the

heap is used as a “barrier to entry” for newly inserted nodes, to allow good nodes to

go in but bad nodes to stay out. The set of all nodes in the leafs at any point in time

induces an implicit distribution given by their heuristic values. Due to the binary heap

properties, the heuristic value of each node in this set must be less than or equal to

that of all its ancestors in the heap. For a trimmed open list with a realistic maximum

size of L = 220, this corresponds to 19 ancestors. Furthermore, as mentioned earlier in

the section, the mean of heuristic values of nodes in the last layer − the mean of the

implicit distribution − must be greater than or equal to the mean of all layers above.

Selecting a node at random from the leafs and using its heuristic value then corresponds

to sampling from this distribution. These facts thus warrant that we sample from a

distribution whose values, in expectation, are greater than that of all other distributions

induced by the above layers of the heap, pushing the sampled heuristic values up. On

the other hand, the process of comparing and swapping leaf nodes with “better” newly

generated nodes pushes the sampled heuristic values down, improving the overall mean.

This balance achieves a threshold distribution which can automatically adapt to the

heuristic values of nodes inside the open list, and to that of nodes being generated.

Trimmed Open List 62

Another important factor resides in the open list’s alternation between trimming inserted

nodes, when it is full, and performing a “normal” heap insertion when it is not full. Every

time the open list expands a node, it frees up one space which will then be filled by the

first newly generated node, irrespective of its heuristic value, increasing the chances that

it may have a value much lower to that of most nodes in the open list. This lowers the

overall mean of the distribution. This event does not constitute a problem, as the main

goal of this barrier is to allow good nodes to pass through. As in any min-heap, any

node that gets added must still be the best in the heap in order to be expanded. Bad

nodes are thus likely to simply linger in the last layer until they get trimmed again later

in the search.

A meaningful parallel between trimmed open lists and novelty pruning may be drawn.

As with novelty pruning, this solution prunes nodes which are deemed not useful to

the search. Unlike novelty pruning, however, it does not rely on a fixed threshold, but

rather it dynamically adapts to the values of nodes in upper layers of the open list. If

a search algorithm gets “stuck” without finding new low-heuristic-value nodes then, as

the average heuristic value of nodes in the open list increases, so does the mean of the

implicit distribution in the open list’s boundary layer. When the search then progresses,

finding a large number of states with very low heuristic values, a higher-heuristic-value

state gets trimmed from the bottom every time a low-heuristic-value state gets inserted

into the open list, lowering the distribution’s mean again.

Still, novelty pruning is also used to induce a width-w polynomial search, whereas adopt-

ing a trimmed open list loses such polynomial guarantees. The trimmed open list also

produces a search which is technically not complete, as the trimming process does not

guarantee that it will eventually visit every possible state in the state space. Overall,

however, the significant reduction in memory footprint brought by the constant mem-

ory complexity of a trimmed open list with a suitable maximum size L can outweigh

these limitations, and improve overall performance significantly in satisficing domains, as

backed by experimental results in Section 7.2. Furthermore, we discuss in Section 5.2.1

and demonstrate in Section 7.3 that implementing a memory limit as a cutoff for halt-

ing the planner is an effective alternative strategy to a polynomially-bounded search,

mitigating the impact of these limitations.

Chapter 5

Count-Based Search Algorithms

This chapter introduces the count-based solvers proposed and evaluated in this thesis,

and is divided into two main sections. Section 5.1 presents the BFWSt, BFCSt, and

BFNoSt variants of the BFWS solver family [8], and specific implementations using

techniques from Chapters 3 and 4. Section 5.2 motivates our adoption of memory

thresholds, and explains how we integrate our solvers from Section 5.1 with memory and

time thresholds to create hybrid planners employing a dual strategy alongside classical

planners from previous literature.

5.1 Count-Based Solvers

We define three new planning solvers to evaluate the performance of our proposed

trimmed open list and classical partitioned count-based novelty techniques. All our

solvers are based on and extend the BFWS(f5) search algorithm [8] (introduced in Sec-

tion 2.5.1.1). Reiterating the main features of BFWS(f5), the Best First Width Search

family of solvers represents best-first search algorithms that adopt a novelty heuristic as

the primary tie-breaking criterion for nodes in the open list. Consequently, these solvers

prioritize exploration through goal-agnostic heuristics over the greedier approach of tra-

ditional solvers that use goal-aware primary heuristics. This strategy seeks to overcome

the potential uninformedness of goal-aware heuristics at various stages of the search

process. f5 represents the evaluation function ⟨w,#g⟩, where the primary heuristic w is

the novelty measure and the secondary heuristic is given by the goal counter #g, which

63

Count-Based Search Algorithms 64

counts the number of atomic goals not true in s. The novelty measure w in BFWS(f5)

is a partitioned novelty heuristic w⟨#g,#r⟩, that is computed given partition functions

#g and #r(s) (described in Section 2.5.1.1).

The solvers proposed in this section also adopt the f5 function. In this study, we extend

the w component to refer to both width-novelty as well as our proposed count-based

novelty metric, thus adopting the notation f5(X) to represent an f5 function heuristic

where X is the chosen novelty measure w. Wx is used to denote the partitioned width-

novelty metric w⟨#g,#r⟩ with max-width = x [8]. Furthermore, all proposed count-based

solvers adopt the C1 count-based novelty heuristic, where C1 = cV⟨#g,#r⟩ is the partitioned

classical count-based novelty metric over size-1 features v ∈ V with partition functions

⟨#g,#r⟩, according to Definition 3.2 in Section 3.3.

In terms of computational complexity, the C1 heuristic only operates over single-atom

tuples, rather than size 1 and 2 tuples checked by W2. Each partition therefore only

needs to store |V | elements, as opposed to |V |2 elements stored by W2. An important

consideration is that W2 still has an O(V) time complexity, as it can operate by only

checking the tuples that have changed from one state to another [5]. C1, therefore, does

not provide an asymptotic improvement in time complexity compared to W2. On the

other hand, it does guarantee a lower space complexity compared to the W2 heuristic.

In practice, the binary checking of W2 enables it to be implemented through bit-sets,

which only adopt a single bit of space to check occurrence of a tuple, as opposed to C1

which relies on integer counts, which may have a size of 16, 32 or 64 bits depending

on implementation. Still, the quadratic space blowup of W2 is often larger than the

constant space factor increase of C1 in satisficing planning problems, with C1 achieving

significant memory usage improvement in problems with a relatively large number of

variables |V |.

Proposed algorithms also adopt single and double trimmed open list variants (Chapter 4)

in place of conventional open lists implemented as min-heaps, to address the blowup in

open list memory usage created by the quick rate of state visitation of BFWS variants.

Solvers proposed for experimental evaluation include BFWSt(f5(W2)), BFCSt(f5(C1)),

and BFNoSt(f5(C1), f5(W2)). The trimmed open list is capped at a constant depth

D = 18 (maximum size L = 524, 287) determined through empirical testing. We note

Count-Based Search Algorithms 65

that empirically, small changes in depth − D = 17 or D = 19 − did not alter coverage

beyond the variance in the results.

• BFWSt(f5(W2)): A standard non-polynomial variant of the BFWS(f5) search

algorithm as defined in previous literature [8] with parameter max-width = 2. The

only modification carried out on this solver is represented by the subscript t, which

denotes the use of a single trimmed open list instead of a conventional open list.

The main purpose of this solver is to provide an analysis of the impact that the

trimmed open list alone has on the underlying BFWS(f5) search algorithm, all else

equal, but also to provide a benchmark to asses the performance of count-based

solvers BFCSt(f5(C1)) and BFNoSt(f5(C1), f5(W2)).

• BFCSt(f5(C1)): A BFWSt(f5) solver, thus also adopting a single trimmed open

list, where the main feature consists of substituting the W2 width-novelty heuristic

with w = C1. The search algorithm allows for a direct comparison of the differ-

ences in performance achieved across planning domains by simply substituting the

traditional width-novelty heuristic in BFWS(f5) with the C1 count-based variant

proposed. The name is changed to BFCS (Best First Count Search) to reflect the

fact that the count-based heuristic is technically not a width-based heuristic. It

may be considered a width-1+ search, as it induces a search with a width of at

least 1, but it cannot truly perform a width 2 or above search, and it reverts to a

simple W1 heuristic if it performs only a width-1 search, thus it is not classified as

such.

• BFNoSt(f5(C1), f5(W2)): A best first novelty search solver that adopts a double

trimmed open list for open list alternation [43]. It employs the evaluation function

f5(C1), that is with w = C1, for first open list and evaluation function f5(W2),

with w = W2, for the second open list, alternating node selection between the two

lists during the expansion phase. The goal of this solver is to capitalize on the

differences between the C1 and W2 heuristics. The C1 heuristic, as discussed in

Section 3.4, is effective at estimating states containing tuples of size greater than 2,

achieving a consistent level of informedness without running out of “useful” nodes.

However, it is incapable of directly measuring the presence of 2-tuples, which W2

does. Previous work has shown that the step from W1 to W2 significantly improves

solver coverage across benchmark problems [5, 8, 14], thus suggesting that adding

Count-Based Search Algorithms 66

an additional open list which may directly target 2-tuples may complement the

effectiveness of the C1 heuristic. Likewise C1 can complement W2 by primarily

directing the search when W2 runs out of nodes with a novelty value of 1 or 2. The

solver variant is called BFNoS (Best First Novelty Search), as it blends distinct

novelty heuristics − a count-based variant, and a width-based variant. ‘BFNoS’ is

also directly used to abbreviate the BFNoSt(f5(C1), f5(W2)) solver in Chapters 5,

6, and 7, as it is the only such variant in these chapters.

5.2 Hybrid Solvers

5.2.1 Memory Thresholds

Solvers tend to exhibit diminishing returns in the number of instances solved with respect

to both memory and time (Figs. 5.1a, 5.1b). Thus, as memory usage increases while

solving an instance, it is more likely that the instance will not be solvable within the

defined memory constraint, indicating that the adopted heuristics are not effective for

that particular problem.

(a) Instance coverage vs. memory
usage (MB).

(b) Instance coverage vs. time (sec).

Figure 5.1: Instance coverage vs. (A) memory usage, and (B) time, for solver BFNoSt
(f5(C1), f5(W2)). The curves show the diminishing returns on instances covered with
respect to time and memory. Measurements were conducted over the set of benchmark

planning problems described in Section 7.1.

Novelty heuristics W2 and C1 provide a quick evaluation of state novelty which, in

combination with efficient partition functions, allow solvers to expand considerably more

nodes per unit time than counterparts adopting more informed but expensive heuristics

such as hff [15], albeit at a greater memory cost. In other words, they can reach

Count-Based Search Algorithms 67

the “flatter” region of the coverage-memory relation more quickly. We leverage this

trait to introduce dual configuration planners in which the frontend seeks to prioritize

coverage, but also fail as quickly as possible when memory usage reaches those flatter

areas, accounting for different domains’ characteristics with respect to memory usage.

Experimental results in Section 7.3 provide empirical analysis of the technique, validating

the benefits of the approach, and justify the selection of count-based novelty solvers

presented in Section 5.1 as ideal frontend candidates under this strategy.

5.2.2 Hybrid Count-Based Solvers

Memory thresholds also raise a comparison with polynomial width-novelty planners,

which fail in polynomial time if the search exhausts all novel nodes. This trait can

be useful to avoid wasting too many resources on a solver whose heuristics may be

uninformed in a particular domain or instance, and potentially switch to an alternative

solver which may have a better chance at solving the problem. Many successful solvers

such as FF, Probe or Dual-BFWS rely on such dual strategy [8, 15, 16], with the frontend

of such solvers playing a key role in their performance. Dual-BFWS in particular −

introduced in Section 2.5.1.1 − relies on a polynomial width-1 BFWS frontend solver

designed to solve the problem or fail very quickly, for the backend to then take over.

While the use of memory thresholds does not provide polynomial time guarantees, it

does have benefits compared to the more typical time thresholds adopted in multiple

state-of-the-art solvers [20, 21]. In particular, it adapts to the underlying characteristics

of the domain with respect to its memory usage, allowing problems with a high memory

usage to fail quickly when the memory-coverage relation in Figure 5.1a implies a low

probability of solving the instance, but also allocating a significant longer running time

for instances showing less memory usage, and thus a higher chance of being solved. This

allows it to provide some degree of balance between the time provided to frontend and

backend solvers, as opposed to a one-size-fits-all constraint of time thresholds.

We adopt BFNoSt(f5(C1), f5(W2)) as a frontend solver, capped by a 6 GB memory

threshold and a time threshold close to the overall time limit. The additional time

threshold is included to enable backend fallback for all unresolved searches. This is be-

cause the solver also exhibits diminishing returns to time (Fig. 5.1b), indicating a lower

Count-Based Search Algorithms 68

probability of finding a solution when reaching the flatter portion of the the coverage-

time relation. Adopting a combination of memory and time thresholds therefore allows

the frontend solver to switch whenever the earliest of the two thresholds is hit, maxi-

mizing the time provided to the backend solver. The time threshold also ensures that

all problems fallback to the backend solver eventually, albeit only reserving a relatively

small fraction of the total time allowance for its execution.

We pair the frontend solver with three backend planners from literature: the Dual-

BFWS backend component (BFNoS-Dual) [8], LAMA-First (BFNoS-LAMA) [19], and

the “first” version of Scorpion-Maidu (BFNoS-Maidu-h2), in its IPC2023 configura-

tion with the h2-preprocessor [20, 44, 63]. These backend solvers were chosen for their

complementary heuristics to our frontend’s f5 partitioning, promoting diverse solution

strategies to enhance coverage diversity, and also for the influential status of all selected

backend planner in modern planning literature. In the BFNoS-Maidu-h2, we allow the

use of a preprocessor as it is part of a “pre-packaged” backend planner; the dual solver

thus adopts a peculiar frontend-preprocessor-backend tactic, that filters the problems

that reach the preprocessor, and provides an additional layer of orthogonality between

the underlying traits of the frontend and backend solvers.

Frontend time thresholds are set to 1600 sec with BFNoS-Dual and BFNoS-LAMA, and

1400 sec for BFNoS-Maidu-h2, to account for up to 180 sec of preprocessing allowance

determined by its IPC2023 parameter settings. The threshold values were selected em-

pirically and by cross-referencing Figure 5.1. This approach was also influenced by the

excessive time and resource requirements of performing a more formal hyperparameter

tuning process. As further discussed in Section 7.1, experiments with planners adopting

trimmed open lists (the BFNoS frontend) have to be repeated with multiple random

seeds to obtain a more accurate estimate of coverage performance. Furthermore, a less

thorough hyperparameter search may reduce the risk of overfitting our results to the

set of available benchmark domains, as the goal of satisficing solvers is ultimately to

perform well across all possible domains. This reasoning also motivates the selection of

the maximum depth of trimmed open lists adopted by all proposed frontend models.

Chapter 6

Implementation Details

In this chapter, we provide important details on the implementation of the solvers and

techniques presented in previous chapters. Sections 6.1 and 6.2 offer an overview of the

implementation of the main components of the count-based solvers and hybrid solvers

introduced in Sections 5.1 and 5.2, respectively. These sections also detail the exter-

nal libraries and solvers from existing literature adopted in our hybrid planners. In

Section 6.3, we further provide an overview of the implementation of the experimental

portion of our study. The solvers proposed and implemented in this study are accessible

through our GitHub repository [64].

6.1 Implementation of Count-Based Solvers

Proposed count-based BFWS variants − BFWSt(f5(W2)), BFCSt(f5(C1)), and

BFNoSt(f5(C1), f5(W2)) − were fully implemented using the “Devel2.0” branch of the

LAPKT planning library [65]. LAPKT (Lightweight Automated Planning Toolkit) is an

open-source planning library designed to facilitate implementation, testing and bench-

marking of planning algorithms. The framework is designed to be modular and exten-

sible, and already includes multiple implementations for novelty planners and compo-

nents, as well as planning benchmarks written in PDDL [66]. It uses a C++ backend

and Python API.

The implementation of proposed solvers adopted the LAPKT BFWS planning engine as

basis for further modifications. The main new modules which have been implemented

69

Implementation Details 70

into LAPKT are the count-based heuristic C1, and the single and double open lists. The

planning engine has been adapted for each variant for integration with its respective

components.

6.1.1 Planning Engine

The planning engine represents the core component of the solver, that performs the main

planning loop of expanding a node, generating successors, evaluating heuristics and in-

serting successors into the open list, and checking for goal conditions. BFWSt(f5(W2))

adopts an equivalent planning engine to BFWS(f5(W2)), as the main difference is the

substitution of the open list, which can be abstracted in its implementation. The

BFCSt(f5(C1)) engine is also equivalent, as the C1 heuristic can also substitute the

W2 heuristic without further modifications.

The BFNoSt(f5(C1), f5(W2)) on the other hand requires the addition and evaluation of

an additional heuristic, as it adopts both the C1 and W2 heuristics. Both open lists

adopt a #g secondary heuristic, allowing it to be utilized for both open lists. The

other main modification involves a check for determining which expanded nodes may

be deleted. Expanded nodes are inserted into the closed list; however, if the state of

the node is already present in the closed list, it is identified as a duplicate. With a

single open list, this duplicate node may be deleted. The double trimmed open list

complicates this step, as the algorithm must ensure that this node is not present in any

of the available open lists. This is done through checks of their interaction count, as

described in Section 4.2.2, when the node is normally checked for presence in the closed

list. Another subtlety is that the state of these nodes, which is lazily generated, can be

deleted if the node is in another closed list and the state is a duplicate of another node

already present in the closed list. This saves additional space, and the node which is still

present in the closed list does not need its state to be generated as it may be directly

marked as a duplicate. It may then be deleted when expanded again without need to

spend time lazily re-generating its state.

The measurement of memory usage for comparison with the memory threshold in hybrid

solver implementations is also integrated into the BFNoS engine. This measurement is

periodically evaluated during the node generation phase, typically once every 10,000

nodes generated. Such an interval is sufficient because each node adds only a small

Implementation Details 71

amount of memory, making larger steps suitable while providing an almost negligible

time overhead. The operation is performed at node generation since the average number

of nodes generated per expanded node − the branching factor of the problem − can vary

significantly across different domains. Measuring memory usage at node expansion would

therefore result in more inconsistent readings. Maximum memory usage is measured

using the maximum resident set size given by the ru maxrss member of the struct

rusage object from the sys/resource.h C++ library.

6.1.2 State Nodes

State nodes represent the actual node objects that contain the state representation

of a node, as well as heuristic values of the nodes and additional information. Main

modifications to node implementation include the addition of a variable to store the

second primary heuristic value in BFNoS solvers, as well as additional information for

the double trimmed open list to use to determine whether or not to delete a node and

free its memory. This information is composed of a counter variable that records the

node’s interaction count (mentioned in Section 4.2.2), as well as a duplicate-marking

variable that marks nodes expanded by one open list, but still present in another open

list.

6.1.3 Count-Based Novelty Heuristic

The C1 partitioned count-based novelty heuristic implementation is derived from the

existing implementation of W1 partitioned novelty heuristic in LAPKT. The existing

implementation already efficiently checks for the presence of size-1 tuples for a given

state and partition. The main modification involves replacing binary occurrence checks

with the extraction and increment of integer values for the counts. An important im-

plementation detail in this regard is the choice to use a double nested C++ vector

for storing partition count information, instead of alternatives like an unordered map.

This tradeoff was chosen due to the tight time complexity requirements of the heuris-

tic, which is often evaluated millions of times during the solving of a single satisficing

planning instance. The inner vectors represent variable counts for a single partition.

New partitions, and thus inner vectors, are added as the search algorithm extends the

horizon of “best” reached partitions. With the nested vector implementation, space is

Implementation Details 72

pre-allocated for all possible tuples in each partition vector. Although an unordered map

could save memory by only allocating space for seen tuples, empirical testing showed

that the memory-for-time tradeoff of the nested vector implementation benefited overall

planner performance.

6.1.4 Trimmed Open List

Details of the single and double trimmed open list algorithms are described in Sec-

tion 4.2.1. The implementation in LAPKT modifies its standard min-heap open list,

and maintains an explicit vector object, making use of the C++ standard library func-

tion make heap() to perform heapify operations. This allows for the implementation

of procedures as described in Algorithm 2. The node comparison operation uses the

standard node comparer objects in LAPKT. For the double trimmed open list, an ad-

ditional node comparer is implemented for the secondary open list, which ranks nodes

using the second primary heuristic value in the search node instead of the first primary

heuristic value.

6.2 Implementation of Hybrid Configurations

We set the memory threshold for the frontend BFNoS solver by performing memory

usage measurements directly in LAPKT [65], to then fallback to the backend solver.

For the BFNoS-Dual solver, the fallback planner is ran as part of the same process in

LAPKT since Dual-BFWS, thus also its backend component, is already implemented in

LAPKT. For the BFNoS-LAMA and BFNoS-Maidu-h2 solvers, a script runs the BFNoS

frontend first in LAPKT. The LAMA and IPC2023-Scorpion-Maidu backend solvers are

not implemented in LAPKT, but in variants of the Fast Downward planning library

[67], and hence must be ran as a separate process. Thus, when a frontend threshold is

reached, the LAPKT process is halted sending a suitable signal, such that the backend

solver script may then be called by the main process.

Implementation Details 73

6.2.1 LAMA-First

The backend solver of BFNoS-LAMA is the LAMA-First planner. The “first” part of

the name refers to the variant of LAMA that halts as soon as it finds the first valid plan

from root node to the goal. This is because the full LAMA planner continues running,

seeking better (shorter) plans to the goal, until it exceeds the total time threshold. Such

an approach is used in the satisficing track of the International Planning Competition,

where performance is evaluated based on plan quality. However, our study places less

emphasis on plan quality, as performing the plan improvement step on all benchmark

instances significantly increases experimental running times. Consequently, it is com-

mon practice to evaluate planners without the plan improvement component outside of

the International Planning Competition, to streamline testing and obtain results more

efficiently.

The LAMA-First backend is ran using the ‘release-23.06’ branch of the fast downward

library [67]. An alias for LAMA-First already exists in the library. Thus the planner is

easily selected through the command:

"--alias", "lama-first"

6.2.2 “First” Variant of IPC2023 Scorpion-Maidu

For the backend solver of the BFNoS-Maidu-h2 solver, we run a “first” version of Scor-

pion Maidu [20], which halts after finding a solution rather than improving the plan,

from the IPC2023 branch of the code base [20] using the following command, as there

is no explicit alias to directly run a “first” version of the planner:

--evaluator ’hlm=lmcount(

lm_factory=lm_reasonable_orders_hps(lm_rhw()),

transform=adapt_costs(one),pref=false)’

--evaluator ’hff=ff(transform=adapt_costs(one))’

--search ’lazy(alt([single(hff),

single(hff, pref_only=true),

single(hlm), single(hlm, pref_only=true),

type_based([hff, g()]),

Implementation Details 74

novelty_open_list(novelty(width=2,

consider_only_novel_states=true,

reset_after_progress=True),

break_ties_randomly=False,

handle_progress=move)],

boost=1000),preferred=[hff,hlm],

cost_type=one,reopen_closed=false)’

This command is just for the planner, and does not include the h2 preprocessing step,

which can be included, together with the preprocessor time limit, using the commands:

"--transform-task", "preprocess-h2",

"--transform-task-options", "h2_time_limit,180",

Where 180 is the preset preprocessor maximum running time, according to its IPC 2023

configuration.

6.3 Experiment Implementation

Planning experiments are implemented using the LAB library [68]. LAB is an open-

source Python package designed to facilitate running, analysis and comparison of plan-

ning experiments on benchmark sets. It supports the running of third-party libraries

including LAPKT, controlling the resource availability and offering parallel execution.

The library also includes code for parsing results. Using this library enables the imple-

mentation of rigorous planning experiments subject to predetermined time and memory

constraints, and allocating parallel experiments to a single core each to speed up the

obtainment of results.

Experiments for count-based novelty solvers BFWSt(f5(W2)), BFCSt(f5(C1)), and

BFNoSt(f5(C1), f5(W2)), and the BFNoS-Dual hybrid solver are executed by making

the LAB module directly call the LAPKT command for planner execution. This is not

possible with BFNoS-LAMA and BFNoS-Maidu-h2, as the frontend and backend solvers

are run using different libraries. As mentioned, the frontend and backend are called by

Implementation Details 75

a parent Python script, which catches a suitable error message launched by the frontend

solver when it fails, and runs the backend accordingly.

A main consideration of the implementation is how the time and memory limits set by

LAB are propagated from parent process, the script that is called, to child processes,

the frontend and backend planners: the parent process simply propagates an identical

time and memory limit to its child process. This is not a problem for the memory limit,

as ending the old process frees its memory, and the new process is then subject to the

same memory limit. However, it is an issue for the time limit. If the total time threshold

is 1800 sec, and the first process fails after 900 sec, the second process is supposed to

only have 900 sec left. However, propagating an identical time limit to the second

child process will set another 1800 sec limit on it, exceeding the intended overall time

allowance. This issue is resolved by directly having the execution time of the frontend

child process be measured by the main script, and then having it set a new limit for

the backend child process that is equivalent to the difference between the total time

limit and the frontend execution time. Furthermore, the wall-clock time of the main

python script, recorded by LAB, allows for verification of the total frontend + backend

execution time.

Suitable parsers are also implemented using the LAB parser module, to extract relevant

information from the planner run logs, in order to obtain the aggregate set of results

from all planner runs in an experiment. Analysis of data was then performed separately

using Jupyter Notebook, reading the extracted information from the experimental logs.

Chapter 7

Experimental Evaluation

This chapter contains the main experimental results of this thesis. Section 7.1 details

the setup of experiments performed to evaluate all solvers and techniques introduced

in previous chapters. Section 7.2 evaluates the proposed BFCSt and BFNoSt count-

based solvers, comparing their performance to BFWS and BFWSt width-novelty solver

variants. Our analysis assesses problem coverage, search time and efficiency, and plan

length of the planners. Section 7.3 then provides coverage results for our proposed hybrid

solver variants, demonstrating state-of-the-art performance compared to best-in-class

benchmark solvers from prior literature. We further highlight the crucial contribution of

using BFNoSt frontend solvers alongside memory thresholds, demonstrating the strength

of our solution and providing empirical validation for the analysis of memory thresholds

discussed in Section 5.2.

7.1 Experimental Setup

Our experiments were conducted using Downward Lab’s experiment module [69], ad-

hering to the IPC satisficing track constraints of 1800 seconds and 8 GB memory. Each

test was ran on a single core of a cloud instance AMD EPYC 7702 2GHz processor.

We implemented all proposed planners in C++, using LAPKT’s [65] planning modules.

For hybrid experiments, LAMA-First [19] and Scorpion-Maidu [20, 70] served as back-

end components, employing Fast-Downward [67] and the IPC 2023 code repository [63],

respectively. Except for Approximate-BFWS, BFWS variants utilized the FD-grounder

76

Experimental Evaluation 77

for grounding [71], however in problems where the FD grounder produces axioms (un-

supported by LAPKT), LAPKT automatically switched to the Tarski grounder [72].

Approximate-BFWS exclusively used the Tarski grounder, following its initial setup and

IPC-2023 configuration. We utilized IPC satisficing track benchmarks as in [10], select-

ing the latest problem sets for recurring domains. We conducted two sets of experiments.

The first benchmarked our planners against the base BFWS(f5) solver, evaluating the

degree to which our proposed classical count-based novelty and trimmed open list tech-

niques improve the coverage of BFWS(f5) and its exploration efficiency, measured as

the number of expansions required to find a solution. The second set of experiments

compared our hybrid configurations to Dual-BFWS, Approximate-BFWS, LAMA-First,

and a “first” version of the IPC-2023 satisficing track winner Scorpion-Maidu, in order to

assess the coverage gains obtainable by adopting our proposed frontend solver alongside

existing solvers in a dual configuration, relying on memory thresholds alongside more

traditional time thresholds to trigger the frontend to fallback.

Multiple measurements were conducted for variants implementing trimmed open lists, as

well as for the Approximate-BFWS solver [73]. The measurement runs were repeated 5

times, always using the same set of seeds − {0,1,2,3,4} − to avoid biased seed selection.

Figures 7.1, 7.2, 7.3, 7.5, and 7.6 only include one arbitrarily selected run per visualized

solver for clarity. The small variance in results among runs does not alter the figures

and the discussed trends meaningfully.

7.2 Count-Based Solvers

7.2.1 Coverage Results

The results of the experiment in Table 7.1 show a significant improvement in coverage

compared to that of the baseline BFWS(f5) solver.

The effect that introducing a trimmed open list has on the solver’s coverage can be

assessed by comparing the results of BFWS(f5(W2)) and BFCS(f5(C1)) to those of

BFWSt(f5(W2)) and BFCSt(f5(C1)) respectively, which are identical in all but the open

list variant. The trimmed open list’s smaller memory footprint substantially boosts the

Experimental Evaluation 78

Coverage

Solver % Score Total (1831) IPC 2023 (140) IPC 2018 (200)

BFWS(f5(W2)) 76.76% 1510 67 120
BFCS(f5(C1)) 77.57% 1510 75 129
BFWSt(f5(W2)) 79.78%±0.13 1555±1.64 66±0.45 134±1.82
BFCSt(f5(C1)) 81.53%±0.33 1568±4.76 78±0.89 146±2.79

BFNoS 83.32%±0.18 1600±3.90 87±1.10 149±1.34

Table 7.1: % score and coverage comparison of proposed variants. % score is the
average of the % of instances solved in each individual domain, calculated over all
benchmark domains. The coverage is provided over the full set of benchmark domains,
as well as the subsets of domains corresponding to those used in recent IPC 2023 and
IPC 2018 competitions. Values for solvers that use a trimmed open list show the mean

and standard deviation across 5 measurements.

instance coverage of BFCS and BFWS solvers alike, demonstrating the versatility of its

node filtering mechanism even when dealing with the W2 heuristic’s narrower range.

BFCSt(f5) outperforms BFWSt(f5) in both coverage and normalized score. This advan-

tage is especially evident in problems with high atomic widths, such as Ricochet-Robots

[74] from IPC 2023 [75], where BFCSt(f5) consistently solves 19 out of 20 instances com-

pared to the BFWSt(f5)’s single solve. This underscores count-based novelty’s scalability

in complex problems, contrasting with Wx metrics which have to revert to secondary

heuristics after exhausting novel nodes, and demonstrates the O(n) count-based novelty

heuristic variant’s capacity to seek novel tuples of size > 1 as predicted by the theoretical

analysis in Section 3.4.

However, while C1 can prioritize states with a higher expected number of 2-tuples, it

cannot explicitly detect the presence of 2-tuples like W2. BFCSt(f5) does show reduced

coverage compared to BFWSt(f5) in various domains, suggesting that there still are mul-

tiple domains where an actual width-2 search can provide meaningful benefits compared

to an estimation of the number of 2-tuples. As mentioned in Section 3.4, one of the main

limitations of classical count-based novelty’s estimation of novel k-tuples is its inability

to account for the underlying structure of the domain, and the ways in which this struc-

ture impacts the underlying distribution of variables and tuples across states. Specific

domains may therefore exhibit systematic differences in such distributions, which causes

the ordering of nodes induced by the count-based heuristic to implicitly over- or under-

estimate the number of novel 2-tuples present in specific states. By directly measuring

the number of 2-tuples in each state, W2 helps address this limitation, suggesting that

W2 and C1 heuristics offer complementary strengths.

Experimental Evaluation 79

N ≥ 0 N ≥ 1 N ≥ 5 N ≥ 10 N ≥ 100 N ≥ 1000 N ≥ 10000

Generated 100% 99.45% 97.68% 95.09% 74.61% 45.35% 28.26%
Expanded 100% 34.88% 27.21% 24.45% 16.34% 10.49% 4.91%

Table 7.2: % of instances across all IPC satisficing benchmarks where a node with
count ≥ N was recorded across generated and expanded nodes by a BFCSt(f5) planner.

This includes unsolved instances.

This synergy is exemplified by BFNoSt(f5(C1), f5(W2)), which surpasses both in cover-

age due to its dual-heuristic approach. Notably, it also secures a significant 3.5% gain

in normalized scores compared to BFWSt(f5). The % score of the solver is meaningful,

as it is less biased by the number of problem instances in a domain, which may vary

significantly. The results in Table 7.1 are therefore indicative of BFNoS’s enhanced

cross-domain generalization. To our knowledge, this is the first instance demonstrating

performance gains obtained by combining distinct goal-unaware exploration heuristics

in planning, as opposed to combining goal-aware exploitation heuristics as in [43].

Results in Table 7.1 also show a greater variance in coverage and % score for solvers

adopting a count-based heuristic, potentially due to its wider range reducing the number

of ties resolved by the secondary #g goal-counting heuristic, and instead increasing the

relevance of count-based novelty. Given that the novelty value of a state varies based on

the visitation history of the search algorithm, it leads to less consistent search guidance

compared to traditional heuristics, whose value given a state is deterministic and does

not vary, and accentuates differences in search direction introduced by the trimmed

open list’s randomized insertion procedure. The variance of results for BFNoS is then

generally in the middle.

7.2.2 Search Efficiency

Discounting the significant difference in coverage between BFWSt(f5) and BFNoS and

focusing only on problems solved by both, Figure 7.1 shows that integrating the C1

novelty heuristic improves exploration efficiency in many problems. The number of

expansions incurred by a search algorithm to solve a problem is used to define the

exploration efficiency.

Both planners achieve a significantly better efficiency than the other − at least an or-

der of magnitude fewer expansions − in multiple instances. However, while BFWSt(f5)

Experimental Evaluation 80

BFNoS

B
F
W

S
t(
f 5
)

Figure 7.1: Number of nodes expanded to solve instances by BFNoS and BFWSt(f5).
Blue crosses represent instances not solved by at least one planner.

mainly achieves a small edge across instances requiring relatively fewer expansions on

aggregate, denoted by the dots that are closer to the origin, BFNoS demonstrates im-

proved efficiency at tackling “larger” domains that require more expansions on average.

This can be observed in the top-right quarter of Figure 7.1, where differences are more

markedly in favor of BFNoS (more black dots are pushed further upwards). This range

also includes the vast majority of problems in which BFWSt(f5) fails to find a valid

plan before hitting the memory or time limits imposed, shown by the blue crosses in the

upper edge of the figure. The count-based heuristic therefore provides a more informed

search across this set of instances, on aggregate benefiting the performance of the search

algorithm. The problems that BFWSt(f5) solves more efficiently, instead, seem to be

particularly suited to a width-2 partitioned novelty search, and thus BFNoS’s double

heuristic approach delays the discovery of a solution.

7.2.3 Search Time

Analysis of the time required to find a solution by BFNoS and BFWSt(f5) in Figure 7.2

uncovers two main trends:

Experimental Evaluation 81

1. BFWSt(f5) systematically achieves a lower running time to solve a main sequence

of planning instances from benchmark problems. On average, this trend is repre-

sented by a constant factor reduction in running time, with the constant factor

being less than an order of magnitude for the vast majority of instances.

2. A polynomial reduction in running time on behalf of BFNoS to solve a smaller

subset of problems, which in several cases exceeds an order of magnitude. This

trend is made more apparent by also including the numerous instances not solved

by BFWSt(f5) (blue crosses on the top edge of the figure), which correspond to

instances where BFWSt(f5) either ran out of time or memory.

BFNoS

B
F
W

S
t(
f 5
)

Figure 7.2: Time (sec) to solve instances by BFNoS and BFWSt(f5). Blue crosses
represent instances not solved by at least one planner.

Running time is determined by two main factors. The first is the time requirement

of expanding a node, generating its successors, and most importantly evaluating the

heuristic values for all its successors. In most state-of-the-art search algorithms, the

heuristic evaluation is by far the operation responsible for consuming the greatest amount

of time. The second main contributor is the number of nodes expanded and generated

by the algorithm, as for a given average node expansion time, the number of expansions

then determines the algorithms total running time.

Experimental Evaluation 82

Figure 7.1 then helps interpret the results in Figure 7.2. The first trend described in

the previous paragraph is determined by the main sequence of instances in Fig. 7.1,

where both solvers achieve a very similar expansion count. Since BFNoS corresponds

to a BFWSt(f5) search algorithm with an additional open list, and additional heuristic

evaluation, it is reasonable to expect a constant factor increase in its running time, given

an equivalent number of expansions. The second trend seems to correspond to the set

of “larger” instances discussed in the upper-right quarter of Figure 7.1 where BFNoS

achieves a significantly better efficiency. Similarly, BFNoS achieves a polynomial im-

provement trend as running time increases in this subset of instances, before BFWSt(f5)

starts failing altogether to solve a large number of instances between the 101 and 102

marks on the x-axis.

The constant factor increase in runtime described in the first trend represents one of the

main limitations created by the double open list solution, which forces the algorithm to

sacrifice some running time to achieve a greater and more robust coverage. In most cases,

the increase in running time is not overly substantial, and satisficing planners commonly

accept this trade-off to enhance their coverage. A width-1 1-BFWS(f5) planner, for

example, is significantly faster than even a 2-BFWS(f5) variant, but achieves a markedly

lower coverage [8]. It is also worth noting that the single trimmed open list in BFWSt(f5)

already improves its running time compared to the base BFWS(f5) algorithm. Firstly,

by pruning − often, the majority of − generated nodes which would otherwise require

a log(n) insertion time in the open list for size n of the open list. Secondly, by limiting

the number of nodes n in the open list in the first place, which can otherwise grow to

much larger values. The solver thus represents a very performant benchmark.

Overall, an on-average small constant-factor increase in runtime over mostly simple

problems represents a valid trade-off for the improved coverage, and often running time,

of BFNoS over larger instances: in benchmark planning problems, a large number of

instances are considered quite simple, and solved by most modern planners. It is the

last few hundred instances that truly provide a challenge to modern planners, and that

are targeted by new satisficing planners.

This main limitation described in this section may be further addressed through existing

solutions, such as a BFNoS variant where the second open list adopts an Approximate

Novelty heuristic [10] instead of a basic Novelty-2 heuristic. Approximate Novelty is a

Experimental Evaluation 83

width-novelty variant, which may thus benefit from the orthogonality with count-based

novelty described in Section 7.2.1, that achieves lower time and memory complexity than

the Wx heuristic given maximum width x, improving the running time and memory

consumption, and potentially allowing the secondary open list to also target nodes with

a higher width of 3.

7.2.4 Plan Length

BFNoS

B
F
W

S
t(
f 5
)

Figure 7.3: Plan cost over instances solved by BFNoS and BFWSt(f5). Blue crosses
represent instances not solved by at least one planner.

Figure 7.3 compares the plan cost of obtained solutions. In this case, the vast majority

of problems show minimal differences in plan quality, however in aggregate BFWSt(f5)

maintains an edge compared to BFNoS. Still, the BFWS family of planners achieve

competitive plan qualities compared to other state-of-the-art planners [8, 14, 76], and

a marginally lower first-plan quality in a few domains is a reasonable trade-off for the

better coverage. This may be a negative effect of C1’s greater heuristic granularity. Both

BFWSt(f5) and BFNoS adopt node cost as a third tie-breaking heuristic, prioritizing

nodes with a lower distance from the root node. In this respect, count-based novelty’s

granularity creates fewer ties, relying less on node cost and potentially finding alternative

paths to the goal from nodes with a lower C1 heuristic value but a higher plan length

compared to BFWSt(f5). This raises a potential area for improvement, however the

Experimental Evaluation 84

margins of improvement, as highlighted by Figure 7.3, are limited in most domains.

Furthermore, it is common for satisficing planning algorithms to improve their first

valid plan by falling back to secondary solvers designed to improve such plans, further

alleviating this issue.

7.3 Hybrid Solvers

7.3.1 Coverage Results

Domain BFNoS Dual- Apx-BFWS LAMA- Maidu Maidu BFNoS- BFNoS- BFNoS-

BFWS (Tarski) First with h2 Dual-back LAMA Maidu-h2

agricola-sat18 (20) 15±0.0 12 18±0.9 12 12 13 15±0.5 15±0.5 15±0.5

airport (50) 47±0.6 46 47±0.6 34 38 45 46±0.6 46±0.5 46±0.6

caldera-sat18 (20) 18±0.0 19 19±0.6 16 16 16 16±0.0 17±0.5 18±0.0

cavediving-14 (20) 8±0.5 8 8±0.5 7 7 7 8±0.0 8±0.0 8±0.5

childsnack-sat14 (20) 1±1.1 9 5±0.6 6 6 6 8±0.0 6±0.0 6±0.5

citycar-sat14 (20) 20±0.0 20 20±0.0 5 6 6 20±0.0 20±0.0 20±0.0

data-network-sat18 (20) 17±0.6 13 19±0.5 13 16 16 16±0.8 15±1.1 16±0.8

depot (22) 22±0.0 22 22±0.0 20 22 22 22±0.0 22±0.0 22±0.0

flashfill-sat18 (20) 14±1.3 17 15±1.6 14 15 14 17±0.5 16±0.6 16±0.9

floortile-sat14 (20) 2±0.5 2 2±0.0 2 2 20 2±0.0 2±0.0 20±0.0

folding (20) 9±0.0 5 5±0.5 11 11 11 9±0.0 9±0.0 9±0.0

freecell (80) 80±0.0 80 80±0.0 79 80 80 80±0.0 80±0.0 80±0.0

hiking-sat14 (20) 20±0.0 18 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

labyrinth (20) 15±0.5 5 18±0.5 1 0 2 15±0.5 15±0.5 15±0.5

maintenance-sat14 (20) 17±0.0 17 17±0.0 11 13 13 17±0.0 17±0.0 17±0.0

mystery (30) 18±0.6 19 19±0.0 19 19 19 19±0.0 19±0.0 19±0.0

nomystery-sat11 (20) 14±0.8 19 14±0.5 11 19 18 19±0.0 15±0.6 17±0.0

nurikabe-sat18 (20) 16±0.6 14 17±0.5 9 11 16 17±0.6 17±0.0 18±0.0

org-synth-split-sat18 (20) 8±0.5 12 8±0.0 14 14 14 11±0.5 14±0.0 14±0.9

parcprinter-sat11 (20) 9±0.6 16 11±1.3 20 20 20 20±0.0 20±0.0 20±0.0

pathways (30) 26±0.9 30 28±1.1 23 25 25 30±0.0 27±0.8 27±0.7

pipesworld-nt (50) 50±0.0 50 50±0.0 43 45 45 50±0.0 50±0.0 50±0.0

pipesworld-t (50) 43±1.6 42 44±0.6 43 43 43 43±0.8 43±0.5 43±0.6

recharging-robots (20) 14±0.6 12 14±0.8 13 13 13 14±0.5 14±0.0 14±0.5

ricochet-robots (20) 20±0.5 20 18±0.6 14 18 18 20±0.0 20±0.0 20±0.0

rubiks-cube (20) 5±0.0 6 5±0.6 20 20 20 5±0.0 20±0.0 16±0.6

satellite (36) 34±0.8 33 34±0.5 36 36 36 34±0.6 35±0.0 35±0.0

schedule (150) 149±1.3 150 149±1.3 150 150 150 149±0.7 150±0.0 150±0.0

settlers-sat18 (20) 13±1.5 7 12±0.7 17 18 18 12±0.5 17±0.0 17±0.5

slitherlink (20) 5±0.6 5 5±0.7 0 0 0 5±0.5 3±0.6 4±0.7

snake-sat18 (20) 20±0.0 17 20±0.0 5 14 14 20±0.0 20±0.0 20±0.0

sokoban-sat11 (20) 15±1.1 17 14±0.9 19 19 20 15±0.5 19±0.0 20±0.0

spider-sat18 (20) 17±1.3 16 16±1.1 16 16 17 18±0.0 18±0.0 18±0.9

storage (30) 30±0.5 29 30±0.0 20 25 25 29±0.5 29±0.0 29±0.6

termes-sat18 (20) 10±0.8 10 5±1.5 16 14 14 10±0.5 14±0.0 14±0.0

tetris-sat14 (20) 20±0.0 17 20±0.0 16 17 20 20±0.0 20±0.0 20±0.0

thoughtful-sat14 (20) 20±0.0 20 20±0.2 15 19 19 20±0.0 20±0.0 20±0.0

tidybot-sat11 (20) 20±0.0 18 20±0.2 17 20 20 20±0.0 20±0.0 20±0.0

transport-sat14 (20) 20±0.0 20 20±0.2 17 18 16 20±0.5 20±0.0 20±0.0

trucks (30) 8±0.8 19 13±1.5 18 20 22 17±0.5 16±0.0 20±0.0

woodworking-sat11 (20) 20±0.0 20 12±1.1 20 20 20 20±0.0 20±0.0 20±0.0

Coverage (1831) 1600±3.9 1603 1606±3.9 1535 1590 1626 1641±1.9 1662±2.3 1688±3.3

% Score (100%)
83.32%

±0.18
83.23%

83.51%

±0.27
79.06% 82.84% 85.31%

86.23%

±0.09

87.87%

±0.17

89.79%

±0.22

BFNoS % coverage

share
- - - - - - 97% 96% 94%

Table 7.3: Comparative coverage analysis across benchmark domains. % score is the average of the % of
instances solved in each domain. BFNoS % coverage share refers to the % of covered instances solved by
the BFNoS frontend, when run in a dual configuration. Domains which are fully solved by all planners are
omitted. Values for BFNoS variants and Approximate-BFWS represent the mean and include the standard

deviation across 5 measurements. The complete table of results is included in Appendix C.

Experimental Evaluation 85

Table 7.3 shows BFNoSt(f5(C1), f5(W2)) alone achieves comparable coverage to all base-

lines with the exception of the IPC 2023 configuration of Scorpion-Maidu, which is

the only baseline solver incorporating a preprocessor. The hybrid solvers adopting a

BFNoSt(f5(C1), f5(W2)) frontend outperform all baselines, denoting a meaningful in-

crease in coverage and normalized % score compared to their respective backends, par-

ticularly for the hybrid configuration with LAMA-First backend, which covers 62 and

127 more instances compared to BFNoS and LAMA-First respectively. BFNoS-Maidu-

h2 gains an edge on BFNoS-LAMA mainly thanks to the additional preprocessor in the

backend, which only gets used if the frontend solver fails. It is worth noting that the

implementations of BFNoS-LAMA and BFNoS-Maidu-h2 perform the grounding opera-

tion a second time for the backend, resulting in redundant computations which may use

up significant time in hard-to-ground domains. Addressing this limitation may provide

further easily-achievable improvements in coverage and runtime for the two algorithms.

BFNoS-Dual-backend performs more poorly than the other hybrid configurations, yet

this does not come as a surprise. The Dual-BFWS backend is a Novelty planner which

shares many more similarities with our own proposed frontend, most crucially the W2

primary heuristic, thus causing more overlap in coverage between the frontend and back-

end. Still, even this version suffices to outperform tested benchmarks.

% instances solved

%
d
o
m
ai
n
s

Figure 7.4: Coverage analysis of proposed solvers. Lines indicate the % of IPC
benchmark domains where the % of domain instances solved is ≥ a given value.

Experimental Evaluation 86

Table 7.4 also underscores a significant increase in coverage of proposed hybrid planners

on problem sets from IPC 2023 [45] and IPC 2018 [76], with BFNoS-LAMA covering

101 and 164 instances, and BFNoS-Maidu-h2 covering 98 and 166 instances on average

respectively. In all cases, the implementation of hybrid planner configurations leveraging

only two powerful solvers allows us to keep such dual solvers as simple as possible, which

we argue helps us minimize the risk of overfitting to the set of available benchmarks. The

main improvement in IPC 2023 for BFNoS-LAMA and BFNoS-Maidu-h2 comes from

the domain Rubiks-Cube, which BFNoS only solves 5 instances, whereas the LAMA and

Maidu-h2 backends solve all 20 on their own. The limitation of this is that BFNoS fails

to solve Rubiks-Cube due to time, and not memory, thresholds. As such, the fallback

relies on the time threshold of the hybrid solvers, and is very late in their execution.

The BFNoS solver alone also solves 87 IPC 2023 instances, outperforming all other

benchmark solvers. This fact further strengthens the position of count-based novelty

among modern Classical Planning heuristics, proving its capability to address the char-

acteristics of certain hard-to-solve domains better than existing alternatives. This makes

it a useful component for future planners.

Domain BFNoS Dual- Apx-BFWS LAMA- Maidu Maidu BFNoS- BFNoS- BFNoS-
BFWS (Tarski) First with h2 Dual-back LAMA Maidu-h2

IPC2023 (140) 87±1.10 73 85±0.84 79 82 84 88±0.84 101±0.84 98±0.45
IPC2018 (200) 149±1.34 137 149±2.17 132 146 152 152±0.71 164±1.95 166±2.17

Table 7.4: Comparative coverage analysis of tested and benchmark solvers across IPC
2023 and IPC 2018 instance sets.

7.3.2 Frontend Failure Analysis

In all three proposed hybrid variants in Table 7.3, the BFNoS frontend solver with a 6

GB memory threshold is responsible for over 94% of all the solved instances, highlight-

ing its role as the main component of all hybrid planners. Many of these instances are

relatively simple planning problems that the backend would have also solved. However,

the significant improvement in total coverage compared to that of constituent planners

of the hybrid solvers underscores the frontend’s ability to also solve a subset of harder

problems that state-of-the-art backend planners fail to address. Even for the simpler

problems, BFNoS inherits BFWS’s favourable runtime and plan-length traits, as dis-

cussed in Sections 7.2.3 and 7.2.4.

Experimental Evaluation 87

Figure 7.5: Cumulative % of all failures attributed to memory failures vs. time of
failure (sec), for BFNoS solvers with 6 GB and 8 GB memory and 1800 sec time limits.

A better picture of the interplay between the BFNoS frontend solver and memory thresh-

olds in the three hybrid configurations is given not only by assessing the frontend’s cov-

erage, but also through the analysis of its failures over time, presented in Figure 7.5.

The curves depict a rapid rise in memory failures in the first half of the x-axis, before

the 900 sec mark. At 8 GB and 1800 sec limits, BFNoS hits half of its total failures by

reaching the memory limit when half of the available time has passed, and this time is

reduced to 700 sec with a 6 GB threshold. Overall, memory failures clearly constitute

the majority of total failures.

The trend validates the claim made in Section 5.2.1 that BFNoS planners can reach

the “flatter” region of the coverage-memory relation (Figure 5.1) more quickly. This

analysis of BFNoS’s performance in relation to its memory usage aligns with empirical

observations, justifying its seemingly contrasting behavior of achieving state-of-the-art

coverage while also failing quickly due to high memory usage in many problems where

its heuristics are uninformed.

7.3.3 Backend Contribution and Threshold Analysis

The relative improvement in instance coverage over time of proposed hybrid solvers

compared to a base BFNoS solver is further examined in Figure 7.6, visualizing the

Experimental Evaluation 88

impact of backend solvers. The figure is particularly useful for visually discerning the

relative benefits of time and memory thresholds. The effects of time thresholds are

visible at the 1600 sec mark for BFNoS-Dual and BFNoS-LAMA, and 1400 sec mark

for BFNoS-Maidu-h2.

Figure 7.6: Instance coverage vs. time (sec). Comparison of BFNoS with the three
presented hybrid configurations. The solvers are run in an identical configuration to
previous sections, with BFNoS using the full 8 GB memory allowance when run on its
own, and a 6 GB memory threshold when run as the frontend of hybrid configurations.

The vertical lines signal the 1400 sec (green) and 1600 sec (red) time thresholds.

A positive takeaway is found in the memory threshold contributing more heavily to the

increase in coverage than the time threshold, which is beneficial as it implies an earlier

frontend fallback, and lower total runtime to find a solution. The relative contribution

of the memory threshold is also outlined in Table 7.5. The BFNoS-Dual solver in partic-

ular only covers 5 additional instances on average through the use of a time threshold.

denoting a very small contribution.

Figure 7.6 also highlights that the improved performance of BFNoS-LAMA compared

to BFNoS-Dual may be deceiving. The solver follows a comparable coverage over time

to BFNoS-Dual, and only achieves a jump in coverage thanks to the time threshold at

the 1600 sec mark. Rubiks-Cube accounts for 15 of the 24 instance difference on aver-

age between the ‘memory-only’ threshold and ‘time + memory’ threshold in Table 7.5,

potentially biasing the improved results of this hybrid solver.

Experimental Evaluation 89

Hybrid Solver Only memory TH Time + memory TH

BFNoS-Dual-Back 1636±3.3 (85.90%±0.14) 1641±1.9 (86.23%±0.09)
BFNoS-LAMA 1638±4.9 (86.13%±0.26) 1662±2.3 (87.87%±0.17)
BFNoS-Maidu 1643±3.7 (86.45%±0.17) 1658±1.6 (87.46%±0.12)
BFNoS-Maidu-h2 1662±4.7 (88.02%±0.21) 1688±3.3 (89.79%±0.22)

Table 7.5: Coverage and % score comparison of hybrid planner variants adopting
only a memory threshold, and the usual configuration with both memory and time
thresholds. All memory thresholds are set at 6 GB for both configurations of each
planner. The BFNoS-Maidu planner is a variant of BFNoS-Maidu-h2 that does not use
the h2 preprocessor with its Scorpion-Maidu backend. Values represent the mean and

the standard deviation across 5 measurements.

While having the backend excel at problems where the frontend under-performs is one

of the main goals of a hybrid configuration, a larger contribution from a very late time

threshold is a weaker result than earlier memory-threshold failbacks, as it implies a

highly sub-optimal near-limit runtime, and leaves a small amount of time for additional

tasks such as plan improvement.

Choosing such late time thresholds was a deliberate choice to focus on the contribution

of memory thresholds and to separate its effects more clearly, while allowing for the

study and comparison of the additional improvement in coverage obtainable with time

thresholds. If the focus were on early coverage, the shape of the orange line for BFNoS-

LAMA in Figure 7.6 shows that most of the gap compared to the BFNoS base solver

attributable to the memory threshold is largely realized by the 1200 sec mark. Thus,

the hybrid solver could achieve similar performance with a lower time threshold. This

analysis also links back to the importance of the steep section of the memory-failures-

over-time plots in Figure 7.5, underscoring the significance of selecting BFNoS as the

frontend for the presented hybrid solvers.

The BFNoS-Maidu-h2 solver proves to be preferable to other hybrid variants not only

in terms of pure coverage, but also from the shape of the curve in Figure 7.6. It achieves

a clear improvement in coverage compared to other hybrid variants starting from the

400 sec mark, solving as many instances on average in its ‘memory-only’ threshold

configuration as the second best variant, BFNoS-LAMA, solves in its ‘memory + time’

threshold variant (Table 7.5). The memory threshold then contributes to almost 3
4 of

total instances solved by the backend solver, solving most of them by the 1200 sec mark

and thus raising the potential for an earlier time threshold.

Experimental Evaluation 90

Comparing the coverage of BFNoS-Maidu − the same frontend-backend configuration

as BFNoS-Maidu-h2, albeit without the use of the h2 preprocessor [44] in the backend

− in Table 7.5 to that of other hybrid configurations then shows an overall performance

in line with that of BFNoS-LAMA. The main contributor to BFNoS-Maidu-h2’s im-

proved performance compared to other hybrid configurations is then the “sandwiched”

frontend-preprocessor-backend configuration, whereby the preprocessor only runs when

the frontend solver fails. This configuration further enjoys the benefit of not delaying

the execution of the frontend planner when solving simple instances where it does not

require the preprocessor.

As stated in Chapter 5, the reason BFNoS-Maidu-h2 is the only configuration adopting

the preprocessor is that it is already included in the IPC 2023 configuration of Scorpion-

Maidu [20]. The results in this section suggest that further study on the interplay

between the presented count-based dual solver configurations and preprocessors could

be a promising avenue to extract further performance improvements. This study also

does not rule out potential benefits derived from adopting the preprocessor directly with

the frontend BFNoS solver, especially since recent work [77] has demonstrated significant

improvements in the performance of similar BFWS solvers.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we introduce the concept of count-based novelty as an alternative nov-

elty exploration framework in Classical Planning, showing that the arity-1 variant of

our proposed metric is capable of effectively predicting states with novel k -tuples only

using a constant number of tuples that is linear in the number of features of a prob-

lem. We introduce the use of counts and Hamming distances to relate the exploratory

behavior of count-based novelty to the existing body of knowledge on Novelty. This

enables it to act as a more granular and versatile alternative to previous width-novelty

heuristics, performing effectively in low-atomic-width and high-atomic-width domains

alike. Through the adoption of a partitioned classical count-based novelty heuristic, we

extend the BFWS family of planners. The proposed solvers are shown to outperform

width-novelty counterparts, with count-based novelty and width-novelty demonstrating

complementary strengths. Our techniques used in the BFNoS solver then demonstrate

the effectiveness of combining distinct novelty metrics, achieving competitive coverage

compared to state-of-the-art planners.

We also propose single and double Trimmed Open List variants which allow us to upper

bound the open list size by pruning nodes unlikely to be expanded. This contribution

provides an effective solution to the need to reduce the memory impact of nodes in the

open list, while minimizing the amount of useful search nodes that are not inserted into

the open list. Multiple features make this contribution versatile and relevant to the

91

Conclusion and Future Work 92

field of classical planning at large. A trimmed open list only requires setting the maxi-

mum open list size, and automatically determines the insertion of new nodes based on

an implicit distribution derived from the heuristic values of nodes already in the open

list. This allows it to automatically adapt to an algorithms search progress, and across

different search problems. Furthermore, it can be implemented through a simple modi-

fication to a min-heap data structure, and we detail how our implementation naturally

supports the extension to multiple open list variants that go beyond the double open list

we adopt. We show that its effectiveness is maintained when using width-novelty heuris-

tics instead of count-novelty heuristics, and argue that the characteristics of trimmed

open lists make them ideal for use with best-first search planners, independently of the

adopted heuristic.

Finally, we detail a dual-configuration strategy adopting a BFNoS frontend solver and in-

troducing memory thresholds alongside customary time thresholds, justify the suitability

of our proposed strategy, and demonstrate improved coverage performance compared to

state-of-the-art planners. Memory thresholds enable our hybrid solvers to reserve a vari-

able amount of time for the frontend solver that is correlated to its probability of solving

the problem at any point during the search, as opposed to the one-size-fits-all nature of

customary time thresholds. This solution not only enhances the overall coverage of the

solvers, but crucially achieves significantly improved planning-time performance and

characteristics that alleviate the limitations of time-threshold-only dual-configuration

planners.

Our work provides foundational knowledge on count-based novelty through basic solu-

tions that mirror our theoretical analysis. The ideas presented may act as a starting

point for more advanced solutions leveraging counts. Future directions may include al-

ternative count-based variants over tuples or extracted features to guide exploration in

general and domain-specific planners, as well as adaptation to the existing body of work

blending Novelty and heuristic estimates. In the following section, we focus on work

that introduces promising preliminary results in this direction. We provide an overview

and experimental analysis of alternative count-based heuristic variants that demonstrate

promising performance, and potential for expanding the scope of count-based techniques

in classical planning. Our contributions in this thesis also provide a basis to bridge

Classical Planning with the broader paradigm of count-based exploration, benefiting

knowledge transfer with related areas such as Reinforcement Learning. Trimmed open

Conclusion and Future Work 93

lists and memory thresholds also proved to be simple yet effective solutions, pointing at

the potential for a deeper study of similar ideas in Classical Planning.

8.2 Future Directions

8.2.1 Alternative Count-Based Novelty Heuristics

Chapter 3 presents classical count-based novelty and partitioned classical count-based

novelty as extensions to previous Novelty frameworks, in particular those of Lipovetzky

and Geffner [5, 8]. Our empirical implementation and study in Chapters 5, 6 and 7

adopt the C1 heuristic we propose, which directly implements a partitioned count-based

novelty over size-1 tuples, closely aligning with the theoretical portion of our study.

This section diverges from the main body of work presented thus far, introducing two

alternative count-based-novelty-derived heuristics whose definitions modify the count-

based framework from Chapter 3 to some extent. It presents preliminary results that

provide a few interesting talking points, complementing the study of count-based novelty

and offering promising avenues for future developments. These new heuristics aim to

enhance the existing framework by exploring different aspects of count-based novelty,

thus contributing to its overall understanding and potential applications.

8.2.1.1 Added Count-Based Novelty

A necessary but not sufficient condition for a tuple to be novel in a newly generated

state is that at least one of its constituent atoms must be an added atom, meaning that

the atom was added as an effect of the action that generated the state. Otherwise, all

atoms in the tuple would have already been present in the state’s predecessor, implying

a previous occurrence of the tuple. Thus, tuples that are known to not be novel don’t

need to be checked. Width-novelty heuristics [5, 8] make use of this trait, only checking

occurrence of tuples where at least one of the atoms is an added atom. This enables

a reduction in the computational complexity of a width-w heuristic from O(nw) to

O(nw−1), allowing the computation of the W2 heuristic (Section 5) in linear time. This

greatly improves the speed and performance of width-based search algorithms.

Conclusion and Future Work 94

Adopting the same trick to reduce the heuristic’s computational overhead is not possible

with the definitions of count-based novelty provided in Chapter 3: given that it records

the occurrence count of a tuple, and not merely the first occurrence, the counts for all

tuples in a state need to be incremented regardless of whether or not they are novel.

This does not mean that such a heuristic cannot be implemented by modifying the

definition of count-based novelty. This is exactly what is done with the heuristic ACx:

it is an added-tuple variant of a count novelty heuristic over size-x tuples Cx, where

only the counts of added tuples in a state are measured and incremented, and the lowest

count of such tuples is taken as the heuristic value, improving asymptotic computational

complexity.

Example 8.1. State s1 has atoms {a, b, d}. Through an action o whose effect is to

add an atom c, the search algorithm generates state s2 with atoms {a, b, c, d}. The C2

heuristic measures the occurrence and increments the values of all 6 possible size-2 atom

combinations from the set {a, b, c, d}. The AC2 heuristic instead only does so with added

tuples, which contain the added atom c in this case. The set of considered tuples thus

becomes {(a, c), (b, c), (d, c)}.

While the analysis in Section 3.4 does not cover this heuristic variation, we are confident

that a similar approach to the existing theoretical analysis can be used to show that

this technique also helps predict novel tuples of greater sizes, as all novel tuples must

contain an effect atom, and are thus considered by the heuristic. Compared to the

classical count-based novelty metric proposed in Chapter 3, this definition implicitly

prioritizes action-state pairs that produce effect tuples with low counts, de-prioritizing

states which would normally have a low count as a result of their parent also having

the same tuple with a low count. Thus, variations of count-based novelty frameworks

can still partially modify the heuristic’s behavior, while achieving the same overall goal,

providing an interesting parallel for future study.

The actual heuristic adopted is defined as AC13,2, thus looking at both tuples of size

1 and size 2, with the only subtlety of limiting maximum value of size-1 counts: size-

1 tuple counts are measured only up to a count of 3, giving a heuristic value equal

to the minimum count. The heuristic value derived from size-2 tuples with minimum

occurrence count n is then n+4. Size-1 tuple counts up to 3 are thus prioritized. This is

done to distinguish states with a novelty-1 value, and provide tie-breaking for novelty-2

Conclusion and Future Work 95

nodes. The heuristic is also partitioned according to the #g and #r partition functions,

as was the case with C1 and W2. For clarity, we refer to this heuristic as AC1,2 in this

chapter.

8.2.1.2 Lifted Feature Extraction Count-Based Ranking

In classical planning, there exists a distinction between grounded variables and lifted

variables. Grounded variables refer to specific instances of variables that have been

instantiated with concrete values or objects, and correspond to the atoms used rep-

resent planning states in this study. Lifted variables, on the other hand, are ab-

stract and not yet instantiated; they represent general placeholders that can be bound

to specific values during the planning process. For example, in a classical plan-

ning problem, there may be a lifted variable, or predicate, OnChair(T,C), where

T and C are placeholders, which then defines a set of possible grounded variables

{OnTable(Table1, Cat1), ‘OnTable(Table1, Cat2), ...}, for a set of available objects

{Table1, Table2, ..., Cat1, Cat2, ...}.

Given a state s, a set of features is extracted from the set of atoms in s; such set consists

of an enumeration for each lifted variable in the problem of the number of grounded

variables which correspond to the set defined by that lifted variable. The ordering of the

count corresponding to each lifted predicate is not important, but must be consistent.

Example 8.2. For a STRIPS planning problem with predicates

{OnTable(T,C), OnF loor(C), InBox(B,C)}, with T , C and B being placeholders

for ‘Table’, ‘Cat’ and ‘Box’ objects, and a state s′ defined through grounded variables

s′ = {OnTable(Table1, Cat1), OnF loor(Cat2), OnF loor(Cat3)}, the set of extracted

lifted features is [1, 2, 0], corresponding to 1 ‘OnTable’ variable, 2 ‘OnFloor’ variables,

and 0 ‘InBox’ variables in s′.

The extracted lifted features share conceptual similarities with sketch rules defined for

various domains in Drexler et al. [47], as both approaches count the number of lifted

variables of a particular type present in a state. However, they differ in that the extracted

lifted features are automatically generated from any state without specifying a starting

state or goal. This method therefore does not define a direction of search but partitions

the state-space into an alternative feature space.

Conclusion and Future Work 96

A count-based heuristic for lifted feature counts LFC is then constructed by counting

the occurrence of the lifted feature representation of a state, and states whose lifted

feature representation has a lower count are prioritized. That is, for state s′ with lifted

features [1, 2, 0], it counts the number of times the same set of lifted features [1, 2, 0]

was observed in previous states. Thus, unlike all other count-based heuristics defined

in this work, the counts are not over occurrence of tuples of underlying variables, but

rather over the full extracted state representation. The LFC heuristic also separates

the counts in partitions, as previous W2 and C1 heuristics, adopting the same #g and

#r partition functions.

Since the same lifted features values often repeat in different states, counting the occur-

rence of the full set of features is feasible and empirically more effective than counting

tuple occurrences over extracted features. This characteristic creates a count-based

metric that more closely resembles discrete count-based exploration bonuses in RL that

count the occurrence of states, such as UCB1 [48] and MBIE-EB [13]. Intuitively, the

heuristic ranks higher the states with a greater exploration bonus with respect to the

extracted lifted features, albeit also adopting partition functions to indirectly influence

the direction of exploration.

8.2.1.3 BFNoS Variants

We implement the AC1,2 and LFC heuristics into variants of the BFNoS solver presented

in Chapter 5, proposing two new BFNoS variants.

The first variant is BFNoSt(f5(C1), f5(LFC))8:1. This solver differs from the

BFNoSt(f5(C1), f5(W2)) solver presented in previous chapters in two main character-

istics. Firstly, it substitutes the width-based W2 heuristic with the newly introduced

LFC heuristic. The solver thus foregoes any means of directly measuring the presence of

novel size-2 tuples. The second crucial difference is found in the ‘8 : 1’ subscript, which

refers to the solution of expanding 8 nodes from the first open list, with evaluation func-

tion f5(C1), for every 1 node expanded by the second open list with evaluation function

f5(LFC). The two open lists are therefore expanded asymmetrically, with more weight

placed on the first one, and thus on the count-based novelty heuristic C1.

Conclusion and Future Work 97

The second variant, described BFNoSt(f5(AC1,2), f5(LFC))8:1, further modifies the for-

mer through the use of the other heuristic proposed in this chapter, AC1,2, and main-

taining the LFC secondary open list heuristic and the 8-to-1 primary-secondary open

list expansion ratio.

8.2.1.4 Analysis of BFNoS Variants

Solver BFNoS-only
BFNoS-Maidu-h2; memory

threshold only (6GB)
BFNoS-Maidu-h2; memory +
time threshold (6GB, 1400 sec)

All IPC Benchmark Domains

BFNoSt(f5(C1), f5(W2)) 1600±3.9 (83.32%±0.18) 1662±4.72 (88.02%±0.21) 1688±3.29 (89.79%±0.22)
BFNoSt(f5(C1), f5(LFC))8:1 1595±6.11 (82.92%±0.39) 1669±3.61 (88.46%±0.21) 1692±1.15 (90.12%±0.10)
BFNoSt(f5(AC1,2), f5(LFC))8:1 1588±6.24 (82.49%±0.41) 1658±4.51 (87.76%±0.32) 1688±1.00 (89.84%±0.09)

IPC 2023

BFNoSt(f5(C1), f5(W2)) 87±1.10 87±1.30 98±0.45
BFNoSt(f5(C1), f5(LFC))8:1 84±0.58 85±1.15 97±0.00
BFNoSt(f5(AC1,2), f5(LFC))8:1 91±0.58 91±1.53 103±1.15

IPC 2018

BFNoSt(f5(C1), f5(W2)) 149±1.34 159±1.52 166±2.17
BFNoSt(f5(C1), f5(LFC))8:1 148±3.21 170±0.58 171±1.15
BFNoSt(f5(AC1,2), f5(LFC))8:1 141±3.06 159±1.00 165±0.58

Table 8.1: Coverage comparison of BFNoS and BFNoS-Maidu-h2 variants. % score
is the average of the % of instances solved in each individual domain, and is provided
for results calculated over the full set of benchmark domains. The best results for each

solver class are highlighted in bold.

(a) BFNoS-only variants comparison (b) Hybrid variants comparison

Figure 8.1: Instance coverage vs. time (sec). Comparison of BFNoS variants dis-
cussed in this section, and the respective BFNoS-Maidu-h2 configurations. BFNoS-V1
is BFNoSt(f5(C1), f5(W2)), BFNoS-V2 is BFNoSt(f5(C1), f5 (LFC))8:1, and BFNoS-
V3 is BFNoSt(f5(AC1,2), f5(LFC))8:1. All BFNoS variants use the full 8 GB memory
allowance when ran on their own in Figure (A), and 6 GB memory threshold and 1400
sec time thresholds when ran as the frontend solver in the in BFNoS-Maidu-h2 config-
urations in Figure (B). The red vertical line in Figure (B) signals the time threshold.

Both BFNoSt(f5(C1), f5(LFC))8:1 and BFNoSt(f5(AC1,2), f5(LFC))8:1 demonstrate

similar, but marginally lower coverage in Table 8.1 when ran on their own, compared to

Conclusion and Future Work 98

the original BFNoSt(f5(C1), f5(W2)) variant. On the other hand, the dual-configuration

BFNoSt(f5(C1), f5(LFC))8:1-Maidu-h2 outperforms all other solvers, achieving the best

overall coverage and %-score of all solvers evaluated in this thesis, albeit by a very small

margin.

These results provide interesting insights. Firstly, we show that a “better” fron-

tend solver does not guarantee improved results in the dual configuration. Other

factors, including the orthogonality between frontend and backend coverage, and the

frontend solver’s characteristics with respect to memory failures (as discussed in Sec-

tion 7.3.2), overpower BFNoSt(f5(C1), f5(W2))’s advantage both in the memory-only

and time+memory dual configurations. BFNoSt(f5(AC1,2), f5(LFC))8:1-Maidu-h2 also

manages to catch up to BFNoSt(f5(C1), f5(W2))-Maidu-h2 thanks to the time threshold,

however as mentioned in the previous chapter, this is a weaker result than matching the

memory-only performance, as a larger number of challenging problems are solved much

later in time, as shown in Figure 8.1b.

The second key insight is that both BFNoS variants adopting the LFC heuristic in a

secondary open list with asymmetric expansion, can almost match the performance of

BFNoSt(f5(C1), f5(W2)) without the need for a width-novelty heuristic, complementing

the primary f5(C1) open list heuristic with similar effectiveness. This is surprising,

as the W2 heuristic is known to be powerful on its own, and has extensive theoretical

analysis behind its performance [6]. The fact that a count-based approach proves to be an

effective means of implementing an exploratory heuristic that does not rely on the use of

tuples − employed in classical count-based novelty, and all previous literature on width-

novelty − is an important result in its own right. Such results provide a positive outlook

on the potential of studying alternative exploratory heuristics which may be extracted

from the state representation, and the adoption of count-based novelty as a more general

means of promoting the exploration of the state space in specific dimensions.

Addressing the lower performance of BFNoSt(f5(AC1,2), f5(LFC))8:1, a main identified

limitation of the AC1,2 heuristic is its slower evaluation time and the greater memory

usage compared to C1, which cause BFNoSt(f5(AC1,2), f5(LFC))8:1 to lag behind the

other two variants in Figure 8.1a. This is caused by the constant factor increase in tuples

whose count must be checked and incremented, as well as the need to evaluate the set

Conclusion and Future Work 99

of added atoms in a state. BFNoSt(f5(C1), f5(LFC))8:1, on the other hand, denotes a

trend which is on par with that of BFNoSt(f5(C1), f5(W2)).

Still, while AC1,2’s negatives outweigh its overall benefits, it does demonstrate strong

performance in specific subsets of domains. BFNoSt(f5(AC1,2), f5(LFC))8:1 is the

best solver tested so far on the IPC 2023 dataset, solving 91 instances on average on

its own, and outperforms every other solver, including benchmark solvers and dual-

configuration BFNoS variants in Table 7.3, in ‘folding’, ‘agricola’ and ‘flashfill’ do-

mains, where on average it solves 13, 19 and 20 instances. Interestingly, there seem

to be some trade-offs between the performances of BFNoSt(f5(C1), f5(LFC))8:1 and

BFNoSt(f5(AC1,2), f5(LFC))8:1 in IPC 2023 and IPC 2018 datasets, causing the two

variants to achieve complementary results across the two datasets.

The BFNoS variants adopting alternative count-based heuristics described in this sec-

tion thus offer an interesting set of strengths and weaknesses compared to the base

BFNoSt(f5(C1), f5(W2)) solver, and solutions that diverge more markedly from previ-

ous work on width and novelty in Classical Planning. Further study of these differences

may provide valuable insights into count-based novelty and the structure of specific

domains. These results also suggest promising future directions for expanding the set

of exploratory heuristics in Classical Planning. This could lead to the development of

powerful new novelty heuristics, and search algorithms that leverage the complemen-

tary strengths of these heuristics to improve performance across a range of challenging

problems.

8.2.2 Other Future Directions

In Section 3.6 we provide an initial link between classical count-based novelty and pseu-

docounts as defined by Bellemare et al. [53]. This presents a basis for bridging count-

based exploration techniques across classical planning and RL. The current count-based

novelty framework is only defined over discrete and binary state representations. Ex-

panding on those results, we believe that leveraging knowledge transfer from RL count-

based exploration methods, which offer multiple techniques that tackle numerical and

continuous state-space representations, is a promising avenue to generalize our own

count-based novelty framework to numerical and continuous state features, potentially

making it adoptable across planning sub-fields that extend beyond classical planning.

Conclusion and Future Work 100

We believe that research gaps still exist also in reference to our results on memory

thresholds. Time and memory thresholds have been implemented as separate limits in

our hybrid solvers. Further study and development of the technique can merge the time

and memory limits, and potentially additional factors, into a single threshold that relies

on a probability-of-failure measure of a planner. This may improve the performance of

dual-configuration planners, but also crucially provide developments to the large body of

work that exists on portfolio planners1, which currently rely heavily on time thresholds,

enabling individual solver run-times that vary more dynamically based on the underlying

solver characteristics and planning problem.

1In classical planning, a portfolio planner is a system that selects and combines multiple planning
algorithms to solve a given problem by leveraging their complementary strengths.

Appendix A

Atomic Width of Domains

Figure A.1: Atomic width of solving serialized single atom subgoals over a set of
benchmark planning domains. I is the number of resulting instances. Other columns
denote the number of solved atomic instances using iterative width with width we.

From Lipovetzky [2].

101

Appendix B

Extended Proofs

Theorem 3.7. Lower and upper bounds for α0:t(n
c) are given by:

α0:t(n
p)− t− 1

t

e

L
≤ α0:t(n

c) ≤ α0:t(n
p) +

t− 1

t

e

L

Proof. When comparing the Hamming distances of np and nc with respect to a third

node n′, the greatest decrease in Hamming distances e, corresponding to all e effects

changing variables vi where n
p(vi) ̸= n′(vi) and nc(vi) = n′(vi). Thus in the lower bound

we get that all e effect variables change their corresponding valuation to match with all

states in history except for the parent node, reducing Hamming distance to each state

by 1 for each effect e. The upper bound is symmetric, and we take into account the

fact that the distance of nc to np is already accounted as the distance of np to nc in

α0:t(n
p), since nc = nt, and it thus does not change. Since parent and child states share

all variable valuations except for e effects, which change valuation from parent to child

node. This yields, for all cases where n′ ∈ n0:t, n
′ ̸= nc and n′ ̸= np:

δ(nc, n′) ≥ 1

L
(H(np, n′)− e) = δ(np, n′)− e

L
(B.1)

δ(nc, np) =
1

L
(H(np, np) + e) =

e

L
(B.2)

102

Appendix B 103

We can redefine the average α0:t(n
c) as

α0:t(n
c) =

1

t

[t∑
i=0;ni /∈{np,nc}

(
δ(nc, ni)

)
+ δ(nc, np)

]
(B.3)

We have that, for t−1 comparisons,
∑t−1

j=1 α0:t−1(n
p) =

∑t−1
j=1

1
t−1

∑t−1
i=0;ni ̸=np δ(np, ni) =∑t−1

i=0;ni ̸=np δ(np, ni), therefore we can update the average for np which includes node

nc = nt:

α0:t(n
p) =

1

t

[t−1∑
j=1

α0:t−1(n
p) + δ(nc, np)

]

=
1

t

[t−1∑
i=0;ni ̸=np

(
δ(np, ni)

)
+ δ(nc, np)

] (B.4)

Substituting (B.1) into (B.3), noting that
∑t

i=0;ni /∈{np,nc}(
e
L) = (t − 1) e

L , and that∑t
i=0;ni /∈{np,nc}

(
δ(np, ni)

)
=

∑t−1
i=0;ni /∈{np}

(
δ(np, ni)

)
since nc = nt, we obtain:

α0:t(n
c) ≥ 1

t

[t∑
i=0;ni /∈{np,nc}

(
δ(np, ni)−

e

L

)
+ δ(nc, np)

]

=
1

t

[t−1∑
i=0;ni /∈{np}

(
δ(np, ni)

)
+ δ(nc, np)

]
− t− 1

t

e

L

(B.5)

Substituting (B.4) into (B.5) we obtain

α0:t(n
c) ≥ α0:t(n

p)− t− 1

t

e

L
(B.6)

For the upper bound, we note that it is symmetrical in that in the upper bound all

effects e are novel, that is for some effect variable vi we have that nc(vi) ̸= n′(vi) for all

n′ ∈ n0:t−1, thus we get δ(nc, n′) ≤ δ(np, n′) + e
L . Following the same procedure yields

the upper bound.

Example B.1. For states of size L = 3, we give a history of t nodes, one of which

the parent. All t − 1 nodes that are not the parent node np are represented by state

vector [1,0,1]. Parent node np is represented by [1,1,0]. For an action with 2 effects,

e = 2, knowing that the Hamming distance between parent and child node must be

e = 2 by assumption, then the greatest decrease occurs when child node nc also has value

Appendix B 104

[1,0,1]. Parent node np has average normalized Hamming distance of 2
3 to all other

nodes, where 3 is given by L = 3. Child node nc has average normalized Hamming

distance of 1
t
2
3 = t

t
2
3 −

t−1
t

2
3 = α0:t(n

p)− t−1
t

2
L .

Theorem 3.8. Upper bound α0:t(n
c) with respect to µ = µmin

t−1 (n
c) is given by:

α0:t(n
c) ≤ α0:t(n

p) +
t− 1

t

e(1− 2µ)

L

Proof. We seek to maximize the Hamming distance of the child node with respect to its

parent by minimizing the number of nodes in history n′ ∈ n0:t−1 where value nc(vi) =

n′(vi) for effect variables vi. Since µ is the minimum feature occurrence, this acts as a

constraint, and the upper bound occurs when all effects e have occurrence equal to the

minimum occurrence µ. Thus there are (1−µ) ·(t−1) nodes in which, for effect variables

vi, n
′(vi) ̸= nc(vi) and n′(vi) = np(vi), and µ · (t − 1) nodes in which n′(vi) = nc(vi)

and n′(vi) ̸= np(vi). Thus, for t− 1 nodes n′ ∈ n0:t−1, n
′ ̸= np, we have that δ(nc, n′) =

1
L(H(np, n′)+ e) a total of (1−µ) · (t−1) times, and δ(nc, n′) = 1

L(H(np, n′)− e) a total

of µ · (t− 1) times.

The summation over all comparisons becomes:

t∑
i=0;ni /∈{np,nc}

(
δ(nc, ni)

)

=
t∑

i=0;ni /∈{np,nc}

(
δ(np, ni)

)
+ (1− µ)(t− 1)

e

L
− µ(t− 1)

e

L

=
t−1∑

i=0;ni /∈{np}

(
δ(np, ni)

)
+ (t− 1) · e(1− 2µ)

L

(B.7)

Substituting (B.7) into (B.3) as in Theorem 3.7 we obtain:

α0:t(n
c) ≤ 1

t

[t−1∑
i=0;ni /∈{np}

(
δ(np, ni)

)
+ (t− 1) · e(1− 2µ)

L
+ δ(nc, np)

]

=
1

t

[t−1∑
i=0;ni /∈{np}

(
δ(np, ni)

)
+ δ(nc, np)

]
+

t− 1

t

e(1− 2µ)

L

(B.8)

Appendix B 105

Substituting (B.4) into (B.8) we obtain:

α0:t(n
c) ≤ α0:t(n

p) +
t− 1

t

e(1− 2µ)

L

Theorem 3.9. Lower bound for α0:t(n
c) when µmin

t−1 (n
c) = 0 is given by:

α0:t(n
c) ≥ α0:t(n

p)− t− 1

t

e− 2

L

Proof. In the lower bound, one effect of the action from parent to child node is con-

strained to be novel, resulting in a Hamming distance of +1 compared to the parent

node, and e − 1 effects match all previous history except np, resulting in a hamming

distance of −1 compared to the parent. Thus we have that:

δ(nc, n′) =
1

L
(H(np, n′)− (e− 1) + 1)

= δ(np, n′)− e− 2

L

(B.9)

Inserting (B.9) into (B.3) and following the derivation from Theorem 3.7 yields Theo-

rem 3.9.

Proposition 3.13. Given a tuple size k and an underlying set of tuples U = U (k) over

features V of states in S, if ρt = µmin
t (s), then the pseudocount N̂t = minu∈U (N

u
t (st+1)).

Proof. This proof adopts the notation described in Section 3.6. The pseudocount func-

tion (as defined in [53], introduced in Section 2.6.4.3) is defined

N̂t(s) =
ρt(s)(1− ρ′t(s))

ρ′t(s)− ρt(s)
(B.10)

and the minimum empirical count distribution is µmin
t (s) = minu∈U (µ

u
t (s)), where

µu
t (s) =

Nu
t (s)
t is the tuple empirical count distribution for u. We define the minimum

count as

Nmin
t (s) := min

u∈U
(Nu

t (s))

Appendix B 106

thus we have that

µmin
t (s) = min

u∈U
(µu

t (s)) =
minu∈U (N

u
t (s))

t
=

Nmin
t (s)

t

The prediction gain of the minimum empirical count distribution is given by

(µmin
t)′(s) = µmin

t (s; s1:t · s) =
Nmin

t (s) + 1

t+ 1

as it simply increments the minimum count and the total count by 1. Substituting

ρt(s) = µmin
t (s) and ρ′t(s) = (µmin

t)′(s) into Equation B.10 we then solve the pseudocount

function, proving the proposition:

N̂t(s) =

Nmin
t (s)
t

(
1− Nmin

t (s)+1
t+1

)
Nmin

t (s)+1
t+1 − Nmin

t (s)
t

=
Nmin

t (s)(t−Nmin
t (s))(

Nmin
t (s)+1
t+1 − Nmin

t (s)
t

)
(t)(t+ 1)

=
Nmin

t (s)(t−Nmin
t (s))(

t(Nmin
t (s)+1)−Nmin

t (s)(t+1)
t(t+1)

)
t(t+ 1)

=
Nmin

t (s)(t−Nmin
t (s))

t−Nmin
t (s)

= Nmin
t (s)

(B.11)

Appendix C

Extended Tables of Results

107

Appendix C 108

Domain BFNoS Dual- Apx-BFWS LAMA- Maidu Maidu BFNoS- BFNoS- BFNoS-

BFWS (Tarski) First with h2 Dual-back LAMA Maidu-h2

agricola-sat18-strips 15±0.0 12 18±0.9 12 12 13 15±0.5 15±0.5 15±0.5

airport 47±0.6 46 47±0.6 34 38 45 46±0.6 46±0.5 46±0.6

assembly 30±0.0 30 30±0.0 30 30 30 30±0.0 30±0.0 30±0.0

barman-sat14-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

blocks 35±0.0 35 35±0.0 35 35 35 35±0.0 35±0.0 35±0.0

caldera-sat18-adl 18±0.0 19 19±0.6 16 16 16 16±0.0 17±0.5 18±0.0

cavediving-14-adl 8±0.5 8 8±0.5 7 7 7 8±0.0 8±0.0 8±0.5

childsnack-sat14-strips 1±1.1 9 5±0.6 6 6 6 8±0.0 6±0.0 6±0.5

citycar-sat14-adl 20±0.0 20 20±0.0 5 6 6 20±0.0 20±0.0 20±0.0

data-network-sat18-strips 17±0.6 13 19±0.5 13 16 16 16±0.8 15±1.1 16±0.8

depot 22±0.0 22 22±0.0 20 22 22 22±0.0 22±0.0 22±0.0

driverlog 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

elevators-sat11-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

flashfill-sat18-adl 14±1.3 17 15±1.6 14 15 14 17±0.5 16±0.6 16±0.9

floortile-sat14-strips 2±0.5 2 2±0.0 2 2 20 2±0.0 2±0.0 20±0.0

folding 9±0.0 5 5±0.5 11 11 11 9±0.0 9±0.0 9±0.0

freecell 80±0.0 80 80±0.0 79 80 80 80±0.0 80±0.0 80±0.0

ged-sat14-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

grid 5±0.0 5 5±0.0 5 5 5 5±0.0 5±0.0 5±0.0

gripper 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

hiking-sat14-strips 20±0.0 18 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

labyrinth 15±0.5 5 18±0.5 1 0 2 15±0.5 15±0.5 15±0.5

logistics00 28±0.0 28 28±0.0 28 28 28 28±0.0 28±0.0 28±0.0

maintenance-sat14-adl 17±0.0 17 17±0.0 11 13 13 17±0.0 17±0.0 17±0.0

miconic 150±0.0 150 150±0.0 150 150 150 150±0.0 150±0.0 150±0.0

movie 30±0.0 30 30±0.0 30 30 30 30±0.0 30±0.0 30±0.0

mprime 35±0.0 35 35±0.0 35 35 35 35±0.0 35±0.0 35±0.0

mystery 18±0.6 19 19±0.0 19 19 19 19±0.0 19±0.0 19±0.0

nomystery-sat11-strips 14±0.8 19 14±0.5 11 19 18 19±0.0 15±0.6 17±0.0

nurikabe-sat18-adl 16±0.6 14 17±0.5 9 11 16 17±0.6 17±0.0 18±0.0

openstacks-sat14-strips 20±0.0 20 20±0.6 20 20 20 20±0.0 20±0.0 20±0.0

organic-synthesis-split-sat18-strips 8±0.5 12 8±0.0 14 14 14 11±0.5 14±0.0 14±0.9

parcprinter-sat11-strips 9±0.6 16 11±1.3 20 20 20 20±0.0 20±0.0 20±0.0

parking-sat14-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

pathways 26±0.9 30 28±1.1 23 25 25 30±0.0 27±0.8 27±0.7

pegsol-sat11-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

pipesworld-notankage 50±0.0 50 50±0.0 43 45 45 50±0.0 50±0.0 50±0.0

pipesworld-tankage 43±1.6 42 44±0.6 43 43 43 43±0.8 43±0.5 43±0.6

psr-small 50±0.0 50 50±0.0 50 50 50 50±0.0 50±0.0 50±0.0

quantum-layout 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

recharging-robots 14±0.6 12 14±0.8 13 13 13 14±0.5 14±0.0 14±0.5

ricochet-robots 20±0.5 20 18±0.6 14 18 18 20±0.0 20±0.0 20±0.0

rovers 40±0.4 40 40±0.4 40 40 40 40±0.4 40±0.0 40±0.0

rubiks-cube 5±0.0 6 5±0.6 20 20 20 5±0.0 20±0.0 16±0.6

satellite 34±0.8 33 34±0.5 36 36 36 34±0.6 35±0.0 35±0.0

scanalyzer-sat11-strips 20±0.0 20 20±0.5 20 20 20 20±0.0 20±0.0 20±0.0

schedule 149±1.3 150 149±1.3 150 150 150 149±0.7 150±0.0 150±0.0

settlers-sat18-adl 13±1.5 7 12±0.7 17 18 18 12±0.5 17±0.0 17±0.5

slitherlink 5±0.6 5 5±0.7 0 0 0 5±0.5 3±0.6 4±0.7

snake-sat18-strips 20±0.0 17 20±0.0 5 14 14 20±0.0 20±0.0 20±0.0

sokoban-sat11-strips 15±1.1 17 14±0.9 19 19 20 15±0.5 19±0.0 20±0.0

spider-sat18-strips 17±1.3 16 16±1.1 16 16 17 18±0.0 18±0.0 18±0.9

storage 30±0.5 29 30±0.0 20 25 25 29±0.5 29±0.0 29±0.6

termes-sat18-strips 10±0.8 10 5±1.5 16 14 14 10±0.5 14±0.0 14±0.0

tetris-sat14-strips 20±0.0 17 20±0.0 16 17 20 20±0.0 20±0.0 20±0.0

thoughtful-sat14-strips 20±0.0 20 20±0.2 15 19 19 20±0.0 20±0.0 20±0.0

tidybot-sat11-strips 20±0.0 18 20±0.2 17 20 20 20±0.0 20±0.0 20±0.0

tpp 30±0.5 30 30±0.3 30 30 30 30±0.0 30±0.0 30±0.0

transport-sat14-strips 20±0.0 20 20±0.2 17 18 16 20±0.5 20±0.0 20±0.0

trucks-strips 8±0.8 19 13±1.5 18 20 22 17±0.5 16±0.0 20±0.0

visitall-sat14-strips 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

woodworking-sat11-strips 20±0.0 20 12±1.1 20 20 20 20±0.0 20±0.0 20±0.0

zenotravel 20±0.0 20 20±0.0 20 20 20 20±0.0 20±0.0 20±0.0

Coverage (1831) 1600±3.9 1603 1606±3.9 1535 1590 1626 1641±1.9 1662±2.3 1688±3.3

% Score (100%)
83.32%

±0.18
83.23%

83.51%

±0.27
79.06% 82.84% 85.31%

86.23%

±0.09

87.87%

±0.17

89.79%

±0.22

Front-end % coverage share - - - - - - 97% 96% 94%

Table C.1: Comparative performance analysis across the full set of benchmark domains. % score is
the average of the % of instances solved in each domain. Front-end % coverage share refers to the % of
covered instances solved by the BFNoS front-end. Values for BFNoS variants and Approximate-BFWS

represent the mean and include the standard deviation across 5 measurements.

Appendix C 109

Domain BFNoS- BFNoS- BFNoS- BFNoS-

Dual-back LAMA Maidu Maidu-h2

agricola-sat18-strips 15±0.0 15±0.0 15±0.0 15±0.5

airport 47±0.6 47±0.6 47±0.6 47±0.6

assembly 30±0.0 30±0.0 30±0.0 30±0.0

barman-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

blocks 35±0.0 35±0.0 35±0.0 35±0.0

caldera-sat18-adl 16±0.0 17±0.0 17±0.0 18±0.0

cavediving-14-adl 8±0.0 8±0.6 8±0.6 8±0.6

childsnack-sat14-strips 4±0.5 4±0.5 4±0.5 4±0.6

citycar-sat14-adl 20±0.0 20±0.0 20±0.0 20±0.0

data-network-sat18-strips 16±0.7 16±0.6 17±0.6 16±0.6

depot 22±0.0 22±0.0 22±0.0 22±0.0

driverlog 20±0.0 20±0.0 20±0.0 20±0.0

elevators-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

flashfill-sat18-adl 17±0.5 16±0.0 15±0.5 15±0.5

floortile-sat14-strips 2±0.0 2±0.0 2±0.0 20±0.0

folding 9±0.0 10±1.0 10±0.6 9±0.6

freecell 80±0.0 80±0.0 80±0.0 80±0.0

ged-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

grid 5±0.0 5±0.0 5±0.0 5±0.0

gripper 20±0.0 20±0.0 20±0.0 20±0.0

hiking-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

labyrinth 15±0.5 15±0.5 15±0.5 15±0.5

logistics00 28±0.0 28±0.0 28±0.0 28±0.0

maintenance-sat14-adl 17±0.0 17±0.0 17±0.0 17±0.0

miconic 150±0.0 150±0.0 150±0.0 150±0.0

movie 30±0.0 30±0.0 30±0.0 30±0.0

mprime 35±0.0 35±0.0 35±0.0 35±0.0

mystery 19±0.0 19±0.0 19±0.0 19±0.0

nomystery-sat11-strips 19±0.0 14±0.8 17±0.0 17±0.0

nurikabe-sat18-adl 16±0.5 16±0.6 16±0.6 16±0.6

openstacks-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

organic-synthesis-split-sat18-strips 11±0.7 14±0.6 13±0.5 13±1.3

parcprinter-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

parking-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

pathways 30±0.0 26±0.9 27±0.8 26±0.9

pegsol-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

pipesworld-notankage 50±0.0 50±0.0 50±0.0 50±0.0

pipesworld-tankage 43±1.1 42±1.5 42±1.5 42±1.5

psr-small 50±0.0 50±0.0 50±0.0 50±0.0

quantum-layout 20±0.0 20±0.0 20±0.0 20±0.0

recharging-robots 14±0.6 14±0.6 14±0.6 14±0.6

ricochet-robots 20±0.0 20±0.6 20±0.0 20±0.0

rovers 40±0.5 40±0.5 40±0.5 40±0.5

rubiks-cube 5±0.0 5±0.0 5±0.0 5±0.0

satellite 33±0.6 34±1.1 35±0.0 34±1.0

scanalyzer-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

schedule 148±1.3 148±1.3 148±1.3 148±1.3

settlers-sat18-adl 12±0.8 16±0.9 16±0.9 16±0.6

slitherlink 5±0.0 4±0.7 4±0.7 4±0.7

snake-sat18-strips 20±0.0 20±0.0 20±0.0 20±0.0

sokoban-sat11-strips 15±0.6 19±0.5 19±0.5 20±0.0

spider-sat18-strips 18±0.0 18±0.0 18±0.0 18±0.0

storage 29±0.6 29±0.6 29±0.5 29±0.6

termes-sat18-strips 10±0.5 11±0.8 11±0.5 11±0.5

tetris-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

thoughtful-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

tidybot-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

tpp 30±0.0 30±0.0 30±0.0 30±0.0

transport-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

trucks-strips 18±0.5 16±0.6 19±0.5 20±0.9

visitall-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0

woodworking-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0

zenotravel 20±0.0 20±0.0 20±0.0 20±0.0

Coverage (1831) 1636±3.3 1638±4.9 1643±3.7 1662±4.7

% Score (100%) 85.90%±0.14 86.13%±0.26 86.45%±0.17 88.02%±0.21

Front-end % coverage share 97% 97% 97% 96%

Table C.2: Comparative performance analysis across the full set of benchmark do-
mains of ‘memory-only’ threshold dual-configuration BFNoS variants. % score is the
average of the % of instances solved in each domain. Front-end % coverage share refers
to the % of covered instances solved by the BFNoS front-end. Coverage values represent

the mean and include the standard deviation across 5 measurements.

Appendix C 110

Domain BFNoS-Only Memory-Only TH Memory+Time TH

BFNoS-V2 BFNoS-V3 BFNoS-V2- BFNoS-V3- BFNoS-V2- BFNoS-V3-

Maidu-h2 Maidu-h2 Maidu-h2 Maidu-h2

agricola-sat18-strips 17±1.7 19±1.5 16±0.6 18±0.6 16±0.6 16±0.6

airport 46±0.6 47±0.0 46±0.0 47±0.0 46±0.0 47±0.0

assembly 23±1.0 27±0.6 30±0.0 30±0.0 30±0.0 30±0.0

barman-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

blocks 35±0.0 35±0.0 35±0.0 35±0.0 35±0.0 35±0.0

caldera-sat18-adl 18±0.0 18±0.6 18±0.0 17±1.0 18±0.0 17±0.6

cavediving-14-adl 8±0.0 7±0.0 8±0.0 7±0.0 8±0.0 7±0.0

childsnack-sat14-strips 1±0.6 2±1.0 2±0.0 2±1.0 6±0.0 6±0.0

citycar-sat14-adl 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

data-network-sat18-strips 18±0.6 17±0.6 18±1.0 16±0.0 18±1.0 16±0.6

depot 22±0.0 22±0.0 22±0.0 22±0.0 22±0.0 22±0.0

driverlog 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

elevators-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

flashfill-sat18-adl 18±0.0 20±0.6 18±0.0 19±0.6 18±0.0 19±0.6

floortile-sat14-strips 1±0.0 1±0.6 20±0.0 20±0.0 20±0.0 20±0.0

folding 9±0.0 13±0.0 9±0.0 13±0.6 9±0.0 14±0.0

freecell 80±0.0 80±0.0 80±0.0 80±0.0 80±0.0 80±0.0

ged-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

grid 5±0.0 5±0.0 5±0.0 5±0.0 5±0.0 5±0.0

gripper 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

hiking-sat14-strips 20±0.6 20±0.0 20±0.6 20±0.0 20±0.0 20±0.0

labyrinth 15±0.0 15±0.0 15±0.0 15±0.0 15±0.0 15±0.0

logistics00 28±0.0 28±0.0 28±0.0 28±0.0 28±0.0 28±0.0

maintenance-sat14-adl 17±0.6 15±0.0 17±0.6 15±0.6 17±0.0 16±0.0

miconic 150±0.0 150±0.0 150±0.0 150±0.0 150±0.0 150±0.0

movie 30±0.0 30±0.0 30±0.0 30±0.0 30±0.0 30±0.0

mprime 34±0.0 34±0.0 34±0.0 34±0.0 35±0.0 35±0.0

mystery 19±0.6 19±0.0 19±0.0 19±0.0 19±0.0 19±0.0

nomystery-sat11-strips 13±0.6 13±0.0 17±0.0 17±0.0 17±0.0 17±0.0

nurikabe-sat18-adl 17±0.0 13±0.0 17±0.0 13±0.0 18±0.0 15±0.6

openstacks-sat14-strips 20±0.0 19±0.6 20±0.0 19±0.6 20±0.0 20±0.0

organic-synthesis-split-sat18-strips 8±0.0 8±0.0 15±0.0 14±0.6 15±0.6 14±0.6

parcprinter-sat11-strips 12±0.0 12±0.6 20±0.0 20±0.0 20±0.0 20±0.0

parking-sat14-strips 20±0.0 18±0.6 20±0.0 18±0.6 20±0.0 20±0.0

pathways 29±0.6 27±0.6 29±0.0 27±0.0 29±0.0 27±0.6

pegsol-sat11-strips 20±0.0 19±0.0 20±0.0 20±0.0 20±0.0 20±0.0

pipesworld-notankage 50±0.0 50±0.0 50±0.0 50±0.0 50±0.0 50±0.0

pipesworld-tankage 42±1.5 42±1.0 42±1.5 42±1.0 44±0.6 43±0.0

psr-small 50±0.0 50±0.0 50±0.0 50±0.0 50±0.0 50±0.0

quantum-layout 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

recharging-robots 13±0.6 14±0.0 14±0.6 14±0.0 14±0.0 14±0.0

ricochet-robots 19±0.0 19±0.0 20±0.0 20±0.0 20±0.0 20±0.0

rovers 40±0.0 40±0.0 40±0.0 40±0.0 40±0.0 40±0.0

rubiks-cube 4±0.6 5±0.0 5±0.6 5±0.0 16±0.0 16±0.6

satellite 35±0.0 35±0.0 35±0.0 35±0.0 35±0.0 35±0.0

scanalyzer-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

schedule 150±0.0 147±1.2 150±0.0 147±1.2 150±0.0 150±0.0

settlers-sat18-adl 8±1.0 4±1.0 17±0.0 17±0.0 17±0.0 17±0.0

slitherlink 3±0.0 5±0.6 3±0.0 4±1.0 3±0.0 4±1.0

snake-sat18-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

sokoban-sat11-strips 14±1.1 13±0.6 20±0.0 20±0.0 20±0.0 20±0.0

spider-sat18-strips 18±0.0 16±0.0 18±0.0 16±0.0 18±0.0 17±0.0

storage 29±0.6 29±0.6 29±0.6 29±0.6 29±0.6 29±0.6

termes-sat18-strips 6±1.0 7±1.0 13±0.0 9±1.2 14±0.0 14±0.6

tetris-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.6

thoughtful-sat14-strips 19±0.0 20±0.0 19±0.0 20±0.0 19±0.0 20±0.0

tidybot-sat11-strips 20±0.0 20±0.6 20±0.0 20±0.6 20±0.0 20±0.0

tpp 30±0.0 29±0.0 30±0.0 30±0.6 30±0.0 30±0.0

transport-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

trucks-strips 10±1.5 12±0.6 18±0.6 20±0.6 20±0.0 20±0.0

visitall-sat14-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

woodworking-sat11-strips 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

zenotravel 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0 20±0.0

Coverage (1831) 1595±6.1 1588±6.2 1669±3.6 1658±4.5 1692±1.2 1688±1.0

% Score (100%) 82.92%±0.39 82.49%±0.41 88.46%±0.21 87.76%±0.32 90.12%±0.10 89.84%±0.09

Front-end % coverage share - - 95% 95% 94% 93%

Table C.3: Comparative performance analysis across the full set of benchmark do-
mains of BFNoS variants. BFNoS-V2 is BFNoSt(f5(C1), f5 (LFC))8:1, and BFNoS-V3 is
BFNoSt(f5(AC1,2), f5(LFC))8:1. % score is the average of the % of instances solved in each
domain. Front-end % coverage share refers to the % of covered instances solved by the BFNoS
front-end. Coverage values represent the mean and include the standard deviation across 3 mea-

surements.

Bibliography

[1] Nir Lipovetzky. Ai planning for autonomy: Search algorithms. University Lecture

Slides, 2022.

[2] Nir Lipovetzky. Structure and inference in classical planning. 2013.

[3] Tom Bylander. The computational complexity of propositional strips planning.

Artificial Intelligence, 69(1-2):165–204, 1994.

[4] Daniel Fǐser and Florian Pommerening. International planning competition 2023

classical tracks. In International Planning Competition 2023, 2023. [Online; ac-

cessed 02-September-2023].

[5] Nir Lipovetzky and Hector Geffner. Width and serialization of classical planning

problems. In ECAI 2012, pages 540–545. IOS Press, 2012.

[6] Nir Lipovetzky. Planning for novelty: Width-based algorithms for common

problems in control, planning and reinforcement learning. arXiv preprint

arXiv:2106.04866, 2021.

[7] Nir Lipovetzky and Hector Geffner. Width-based algorithms for classical planning:

New results. In ECAI 2014, pages 1059–1060. IOS Press, 2014.

[8] Nir Lipovetzky and Hector Geffner. Best-first width search: Exploration and ex-

ploitation in classical planning. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 31, 2017.

[9] Michael Katz, Nir Lipovetzky, Dany Moshkovich, and Alexander Tuisov. Adapting

novelty to classical planning as heuristic search. In Proceedings of the International

Conference on Automated Planning and Scheduling, volume 27, pages 172–180,

2017.

111

Bibliography 112

[10] Anubhav Singh, Nir Lipovetzky, Miquel Ramirez, and Javier Segovia-Aguas. Ap-

proximate novelty search. In Proceedings of the International Conference on Auto-

mated Planning and Scheduling, volume 31, pages 349–357, 2021.

[11] Joschka Groß, Alvaro Torralba, and Maximilian Fickert. Novel is not always better:

On the relation between novelty and dominance pruning. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 34, pages 9875–9882, 2020.

[12] Simon Dold and Malte Helmert. Novelty vs. potential heuristics: A comparison of

hardness measures for satisficing planning. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 38, pages 20692–20699, 2024.

[13] Alexander L Strehl and Michael L Littman. An analysis of model-based interval es-

timation for markov decision processes. Journal of Computer and System Sciences,

74(8):1309–1331, 2008.

[14] Nir Lipovetzky and Hector Geffner. A polynomial planning algorithm that beats

lama and ff. In Proceedings of the International Conference on Automated Planning

and Scheduling, volume 27, pages 195–199, 2017.

[15] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,

2001.

[16] Nir Lipovetzky and Hector Geffner. Searching for plans with carefully designed

probes. In Proceedings of the International Conference on Automated Planning and

Scheduling, volume 21, pages 154–161, 2011.

[17] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Ronald Brach-

man, Francesca Rossi, and Peter Stone. An introduction to the planning domain

definition language, volume 13. Springer, 2019.

[18] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[19] Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-based

anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:

127–177, 2010.

Bibliography 113

[20] Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide Mario Longo, and

Jendrik Seipp. Scorpion Maidu: Width search in the Scorpion planning system. In

Tenth International Planning Competition (IPC-10): Planner Abstracts, 2023.

[21] Michael Katz. Cerberus: Red-black heuristic for planning tasks with conditional

effects meets novelty heuristic and enchanced mutex detection. Ninth International

Planning Competition (IPC-9): planner abstracts, pages 47–51, 2018.

[22] Michael Katz, Nir Lipovetzky, Dany Moshkovich, and Alexander Tuisov. Merwin

planner: Mercury enchanced with novelty heuristic. IPC 2018 planner abstracts,

pages 53–56, 2018.

[23] Christer Bäckström. Five years of tractable planning. In New directions in AI

planning, pages 19–33. 1996.

[24] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

[25] David Chapman. Planning for conjunctive goals. Artificial intelligence, 32(3):333–

377, 1987.

[26] Kutluhan Erol, Dana S Nau, and VS Subrahmanian. When is planning decidable?

In Artificial Intelligence Planning Systems, pages 222–227. Elsevier, 1992.

[27] Stephen V Chenoweth. On the np-hardness of blocks world. In AAAI, pages 623–

628, 1991.

[28] Jörg Hoffmann. Where ‘ignoring delete lists’ works: Local search topology in plan-

ning benchmarks. Journal of Artificial Intelligence Research, 24:685–758, 2005.

[29] Malte Helmert and Robert Mattmüller. Accuracy of admissible heuristic functions

in selected planning domains. In Proceedings of the 23rd national conference on

Artificial intelligence-Volume 2, pages 938–943, 2008.

[30] Jendrik Seipp, Florian Pommerening, Gabriele Röger, and Malte Helmert. Correla-

tion complexity of classical planning domains. In Subbarao Kambhampati, editor,

Proceedings of the Twenty-Fifth International Joint Conference on Artificial In-

telligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 3242–3250.

IJCAI/AAAI Press, 2016.

Bibliography 114

[31] Stefan Edelkamp. Planning with pattern databases. In Proceedings of the Sixth

European Conference on Planning (ECP 2001), 2001.

[32] Patrik Haslum and Héctor Geffner. Admissible heuristics for optimal planning. In

AIPS, pages 140–149. Citeseer, 2000.

[33] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From

non-negative to general operator cost partitioning. In Proceedings of the AAAI

conference on artificial intelligence, volume 29, 2015.

[34] Hubie Chen and Omer Giménez. Act local, think global: Width notions for tractable

planning. In ICAPS, pages 73–80. Citeseer, 2007.

[35] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33, 2001.

[36] David Hall, Alon Cohen, David Burkett, and Dan Klein. Faster optimal plan-

ning with partial-order pruning. In Proceedings of the International Conference on

Automated Planning and Scheduling, volume 23, pages 100–108, 2013.

[37] Alvaro Torralba and Jörg Hoffmann. Simulation-based admissible dominance prun-

ing. In IJCAI, pages 1689–1695, 2015.

[38] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Learning sketches for decom-

posing planning problems into subproblems of bounded width. In Proceedings of

the International Conference on Automated Planning and Scheduling, volume 32,

pages 62–70, 2022.

[39] Alexander Tuisov and Michael Katz. The fewer the merrier: Pruning preferred

operators with novelty. In ICAPS 2021 Workshop on Heuristics and Search for

Domain-independent Planning, 2021.

[40] Michael Katz and Alexander Tuisov. Tftm-co1 planner: Pruning preferred operators

with novelty. 2023.

[41] Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In

AAAI, volume 8, pages 975–982, 2008.

[42] Dimitri P Bertsekas. Dynamic programming and optimal control. Journal of the

Operational Research Society, 47(6):833–833, 1996.

Bibliography 115

[43] Gabriele Röger and Malte Helmert. The more, the merrier: Combining heuristic

estimators for satisficing planning. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 20, pages 246–249, 2010.

[44] Vidal Alcázar and Alvaro Torralba. A reminder about the importance of computing

and exploiting invariants in planning. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 25, pages 2–6, 2015.

[45] Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fǐser, Michael

Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber,

et al. The 2023 international planning competition, 2024.

[46] Blai Bonet and Hector Geffner. General policies, representations, and planning

width. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,

pages 11764–11773, 2021.

[47] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Expressing and exploiting the

common subgoal structure of classical planning domains using sketches: Extended

version. arXiv preprint arXiv:2105.04250, 2021.

[48] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47:235–256, 2002.

[49] Marco Wiering and Jürgen Schmidhuber. Efficient model-based exploration. pages

223–228, 1998.

[50] Sham Machandranath Kakade. On the sample complexity of reinforcement learning.

University of London, University College London (United Kingdom), 2003.

[51] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In

European conference on machine learning, pages 282–293. Springer, 2006.

[52] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and

tree search. nature, 529(7587):484–489, 2016.

[53] Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-

ton, and Remi Munos. Unifying count-based exploration and intrinsic motivation.

Advances in neural information processing systems, 29, 2016.

Bibliography 116

[54] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based

exploration with neural density models. In International conference on machine

learning, pages 2721–2730. PMLR, 2017.

[55] Jarryd Martin, S Suraj Narayanan, Tom Everitt, and Marcus Hutter. Count-based

exploration in feature space for reinforcement learning. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence, pages 2471–2478, 2017.

[56] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal of Arti-

ficial Intelligence Research, 47:253–279, 2013.

[57] Nir Lipovetzky, Miquel Ramirez, and Hector Geffner. Classical planning with sim-

ulators: Results on the atari video games. In Proc. IJCAI, 2015.

[58] Guillem Frances, Miquel Ramirez, Nir Lipovetzky, and Hector Geffner. Purely

declarative action representations are overrated: Classical planning with simulators.

In International Joint Conferences on Artificial Intelligence Organization (IJCAI),

2017.

[59] Miquel Junyent, Anders Jonsson, and Vicenç Gómez. Deep policies for width-

based planning in pixel domains. In Proceedings of the International Conference on

Automated Planning and Scheduling, volume 29, pages 646–654, 2019.

[60] Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. A

unifying framework for reinforcement learning and planning. Frontiers in Artificial

Intelligence, 5:908353, 2022.

[61] Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in

model-building neural controllers. In ’From animals to animats: proceedings of the

first international conference on simulation of adaptive behavior’, 1991.

[62] Florent Teichteil-Königsbuch, Miquel Ramirez, and Nir Lipovetzky. Boundary ex-

tension features for width-based planning with simulators on continuous-state do-

mains. In Proceedings of the Twenty-Ninth International Conference on Interna-

tional Joint Conferences on Artificial Intelligence, pages 4183–4189, 2021.

[63] Augusto B. Corrêa, Guillem Francès, Markus Hecher, Davide Mario Longo, and

Jendrik Seipp. Scorpion maidu satisficing ipc2023-classical. https://github.com/

https://github.com/ipc2023-classical/planner8/tree/ipc2023-classical
https://github.com/ipc2023-classical/planner8/tree/ipc2023-classical

Bibliography 117

ipc2023-classical/planner8/tree/ipc2023-classical, 2023. Accessed: 2024-

04-20.

[64] Miquel Ramirez, Nir Lipovetzky, Christian Muise, Anubhav Singh, and Giacomo

Rosa. Lightweight Automated Planning ToolKiT - Extended with BFNoS Solvers.

https://github.com/grosa97/LAPKT-BFNoS, 2024. Accessed: 2024.

[65] Miquel Ramirez, Nir Lipovetzky, and Christian Muise. Lightweight Automated

Planning ToolKiT. http://lapkt.org/, 2015. Accessed: 2024.

[66] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain defi-

nition language. 1998.

[67] Malte Helmert. The fast downward planning system. Journal of Artificial Intelli-

gence Research, 26:191–246, 2006.

[68] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

Lab. https://doi.org/10.5281/zenodo.790461, 2017.

[69] Jendrik Seipp, Florian Pommerening, Silvan Sievers, and Malte Helmert. Downward

lab, 2017.

[70] Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated cost partitioning for

optimal classical planning. Journal of Artificial Intelligence Research, 67:129–167,

2020.

[71] Malte Helmert. Concise finite-domain representations for pddl planning tasks. Ar-

tificial Intelligence, 173(5-6):503–535, 2009.

[72] Guillem Francés, Miquel Ramirez, and Collaborators. Tarski: An AI planning

modeling framework. https://github.com/aig-upf/tarski, 2018.

[73] Anubhav Singh, Nir Lipovetzky, Miquel Ramirez, and Javier Segovia-Aguas. Ap-

proximate novelty search - technical appendix, 2021.

[74] Daniel Fiser and Rebecca Eifler. Ricochet robots pddl domain. https://github.

com/ipc2023-classical/domain-ricochet-robots, 2023. Accessed: 2024-04-20.

https://github.com/ipc2023-classical/planner8/tree/ipc2023-classical
https://github.com/ipc2023-classical/planner8/tree/ipc2023-classical
https://github.com/grosa97/LAPKT-BFNoS
http://lapkt.org/
https://doi.org/10.5281/zenodo.790461
https://github.com/aig-upf/tarski
https://github.com/ipc2023-classical/domain-ricochet-robots
https://github.com/ipc2023-classical/domain-ricochet-robots

Bibliography 118

[75] Anubhav Singh, Nir Lipovetzky, Miquel Ramirez, and Javier Segovia-Aguas. Ap-

proximate novelty search ipc2023-classical. Proceedings International Planning

Competition (IPC-10), 2023.

[76] Florian Pommerening and Alvaro Torralba. International planning competition

2018 - classical tracks. https://ipc2018-classical.bitbucket.io/, 2018. Ac-

cessed: 2024-04-20.

[77] Mojtaba Elahi and Jussi Rintanen. Optimizing the optimization of planning do-

mains by automatic action schema splitting. In Proceedings of the Thirty-Eighth

AAAI Conference on Artificial Intelligence, 2024.

https://ipc2018-classical.bitbucket.io/

	Abstract
	Declaration of Authorship
	Preface
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Classical Planning
	1.2 Novelty Search in Classical Planning
	1.3 Summary of Contributions
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 Classical Planning
	2.1.1 The Classical Planning Model
	2.1.2 Classical Search Algorithms

	2.2 Complexity of Planning Domains
	2.3 Concepts of Width in Classical Planning
	2.3.1 Hamming Width and Variants
	2.3.2 Novelty Width

	2.4 Novelty
	2.4.1 SIW and BFS(f)
	2.4.2 Analysis and Explanations of Novelty Performance

	2.5 Novelty Limitations and Variants
	2.5.1 Partitioned Novelty
	2.5.2 Approximate Novelty
	2.5.3 Novelty as Heuristic Search
	2.5.4 Novelty Forgetting and Open List Reset
	2.5.5 Sketches

	2.6 Count-based Exploration
	2.6.1 The Exploration-Exploitation Dilemma
	2.6.2 Epsilon-Greedy Exploration
	2.6.3 The UCB1 Algorithm in the Multi-Armed Bandit Problem
	2.6.4 Count-based Exploration in Reinforcement Learning
	2.6.5 Relation to Novelty in Planning

	3 Count-Based Novelty in Classical Planning
	3.1 Motivation
	3.2 Preliminaries
	3.3 Classical Count-Based Novelty
	3.4 Theoretical Analysis
	3.4.1 Parent-Child Average Distance Bounds
	3.4.2 Estimating Novel k-Tuples

	3.5 Comparison with Novelty in Planning
	3.6 Connections to Count-Based Exploration
	3.6.1 RL Setting Notation
	3.6.2 Minimum Empirical Count Distribution
	3.6.3 Connection to Pseudocounts

	4 Trimmed Open List
	4.1 Motivation
	4.2 Trimmed Open List
	4.2.1 Single Trimmed Open List
	4.2.2 Double Trimmed Open List

	4.3 Trimmed Open List Analysis

	5 Count-Based Search Algorithms
	5.1 Count-Based Solvers
	5.2 Hybrid Solvers
	5.2.1 Memory Thresholds
	5.2.2 Hybrid Count-Based Solvers

	6 Implementation Details
	6.1 Implementation of Count-Based Solvers
	6.1.1 Planning Engine
	6.1.2 State Nodes
	6.1.3 Count-Based Novelty Heuristic
	6.1.4 Trimmed Open List

	6.2 Implementation of Hybrid Configurations
	6.2.1 LAMA-First
	6.2.2 ``First" Variant of IPC2023 Scorpion-Maidu

	6.3 Experiment Implementation

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Count-Based Solvers
	7.2.1 Coverage Results
	7.2.2 Search Efficiency
	7.2.3 Search Time
	7.2.4 Plan Length

	7.3 Hybrid Solvers
	7.3.1 Coverage Results
	7.3.2 Frontend Failure Analysis
	7.3.3 Backend Contribution and Threshold Analysis

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Directions
	8.2.1 Alternative Count-Based Novelty Heuristics
	8.2.2 Other Future Directions

	A Atomic Width of Domains
	B Extended Proofs
	C Extended Tables of Results
	Bibliography

