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A Markov decision process (MDP) cannot be used for learning end-to-end control policies

in Reinforcement Learning when the dimension of the feature vectors changes from one

trial to the next. For example, this difference is present in an environment where the

number of blocks to manipulate can vary. Because we cannot learn a different policy

for each number of blocks, we suggest framing the problem as a POMDP instead of the

MDP. It allows us to construct a constant observation space for a dynamic state space.

There are two ways we can achieve such construction.

First, we can design a hand-crafted set of observations for a particular problem. However,

that set cannot be readily transferred to another problem, and it often requires domain-

dependent knowledge.

On the other hand, a set of observations can be deduced from visual observations. This

approach is universal, and it allows us to easily incorporate the geometry of the problem

into the observations, which can be challenging to hard-code in the former method.

In this Thesis, we examine both of these methods. Our goal is to learn policies that

can be generalised to new tasks. First, we show that a more general observation space

can improve the performance of policies tested in untrained tasks. Second, we show

that meaningful feature vectors can be obtained from visual observations. If properly

regularised, these vectors can reflect the spacial structure of the state space and used

for planning. Using these vectors, we construct an auto-generated reward function, able

to learn working policies.
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Chapter 1

Introduction

1.1 Motivation

Although it is not a difficult task for humans to pick or place arbitrary objects in

open, unknown environments or under uncontrolled conditions, such manipulation tasks

are still an open challenge in robotics. Traditionally, in the planning literature, such

movements were precomputed or solved by probabilistic roadmaps [1], [2] or rapidly-

exploring random trees [3], [4], which take random samples from the configuration space

of the robot.

However, these algorithms treat all the surrounding objects as obstacles. Thus, they

re-sample the problem whenever any object has moved, which can be a considerable

computational overhead in high-dimensional configuration spaces. Additionally, these

algorithms cannot be applied if the configuration space is unknown, which is usually the

case in complicated, real-world tasks.

To overcome this problem, Reinforcement Learning (RL) can be used. There is signif-

icant progress in learning end-to-end policies (behaviours) in continuous control tasks

such as robot locomotion [5] or dexterous in-hand manipulations [6] and recent attempts

in multi-tasking [7].

Although many of these learned policies have high complexity, the authors usually focus

on highly constrained, isolated tasks in a controlled environment. Thus, their policies

1



Introduction 2

cannot be readily transferred to another, although similar, problem or to another envi-

ronment. However, it is also important to focus on the robot’s ability to handle a variety

of tasks or operate in a range of situations, i.e. to focus on generalisation.

However, the current RL algorithms can be one of the problems affecting generalisa-

tion. These algorithms can only be employed if their input observations, called feature

vectors, are of fixed size. At the same time, the feature vectors, being the sole source

of information about the current state, are traditionally defined as points in a robot’s

configuration space. Such learning setup cannot be used in unbounded problems because

the number of elements can vary in the problem’s configuration space. Moreover, the

configuration space can be unknown or too complex to define mathematically.

Therefore, there is a recent trend to re-define RL learning problems as a Partially Observ-

able Markov Decision Process (POMDP) because, in this framework, the configuration

space, called state space, is unknown and hidden. In this case, the RL agent operates

in the observation space that partially observes the state space. Therefore, because the

observation space can reflect only the essential aspects of the state space, feature vectors

drawn from it can have fixed size even in unbounded problems.

For this purpose, feature vectors can be hand-crafted or deduced from visual observa-

tions. However, in the former approach, it can be a daunting task to design a proper

observation space that both incorporates the geometry of the problem and can be readily

transferred to another task. On the other hand, in the latter approach, feature vectors

can be simply defined as the intensities of raw image pixels. However, although it can

be expedient, such observation space does not reflect the structure of the hidden state

space, which can impede planning.

On the other hand, in recent years, it has been shown that the raw images could be com-

pressed to their latent representations using Variational Autoencoders (VAEs). These

representations may preserve some properties and approximate metric structure when

mapped into latent space, which can reflect the fundamental aspects of the environment.

However, the right space organisation is still an open question, which we examine as one

of our research questions.

The second problem affecting the transferability of modern RL algorithms can be at-

tributed to their use of hand-crafted reward functions. These functions are designed to
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guide the agent to obtain desirable policies. However, because it is hard to create an effi-

cient function that can be applied to unbounded problems, these functions usually work

in isolated tasks or controlled environments. Thus, an auto-generated goal-conditioned

reward function can accelerate the adoption of RL algorithms and their transferability.

Therefore, our second research question is to generate an observation space from visual

observations, reflecting the spatial structure of the hidden state space.

1.2 Literature Review

End-to-end Reinforcement Learning (RL) is a dynamic field of research, which produced

a variety of benchmarks such as Atari games [8] or OpenAI Gym [9], where all the

environments are provided with hand-crafted reward functions. In OpenAI Gym, an

agent directly observes the state space, which is defined as a set of hand-crafted features.

On the other hand, in Atari games, the state space is given as a set of screen frames. Both

of these benchmarks offer highly constrained, isolated tasks in controlled environments.

Therefore, they cannot be used in our experiments to examine policy generality.

Control problems can be categorised in many ways. We are primarily interested in:

• learning from hand-crafted features

• learning from visual observations

• learning from hand-crafted reward functions

• learning from auto-generated reward functions, i.e. self-supervised learning or

imitation learning.

Learning from Hand-Crafted Features

Hand-crafted features are usually defined as direct signals from a robot’s sensors. For

example, Haarnoja et al. [5] learned policies for continuous locomotion tasks in OpenAI

Gym using an extension to the soft actor-critic algorithm with better sample efficiency.

Andrychowicz et al. [6] used the PPO algorithm to learn dexterous in-hand manipulation

policies that could perform vision-based object reorientation. The policy was learned
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for the observation space given as the coordinates of the finger’s markers using a hand-

crafted reward. Although a convolutional neural network (CNN) was trained to map

the images into the fingers’ coordinates, the authors used very constrained environments

and operated in the state space.

Additionally, Neither Haarnoja et al. [5] nor Andrychowicz et al. [6] attempted to ex-

amine the generality of their policies.

Learning from Visual Observations

On the other hand, there is significant progress in learning policies from visual observa-

tions in recent years.

By using a Deep Q-Network (DQN), Mnih et al. [8], [10] demonstrated that it is possible

to play Atari games on the human level using only screen pixels. However, the authors

used a series of frames as observations to keep the information about previous states,

which effectively reduced the problem to an MDP.

Additionally, Hausknecht et al. [11] investigated the effects of adding recurrency to the

DQN by replacing the first post-convolutional fully-connected layer with a recurrent

Long Short-Term Memory (LSTM). They showed that their algorithm had better per-

formance in Atari games when the environment is defined as a POMDP instead of an

MDP, i.e. when the observations were comprised of one frame at each time step. How-

ever, in both of the articles, the rewards were predefined, and the policies were learned

from raw pixels.

Nasiriany et al. [12] suggested planning over model-free goal-conditioned polices repre-

senting sub-goals. The authors observed that the learned policies could only be used for

short-term planning, because the leaning produced overly greedy policies.

Another way to obtain a general policy was presented in Action Schema Networks (AS-

Net) [13], in which the authors used supervised learning to learn an action-proposition

representation of the problem. This presentation could automatically generalise to any

problem from a given planning domain and could plan in this domain using a heuristic.

Imitation Learning

On the other hand, instead of crafting a reward function, it can be expedient to learn

correct behaviour from human-made demonstrations.
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Lynch et al. [7] proposed to learn from teleoperated play data. The authors encoded a

large collection of unscripted robot play data into latent space, where each point in the

space represented a single trajectory. For this purpose, a vanilla Variational Autoencoder

(VAE) was used. The decoder was goal conditioned. That is, it decoded a trajectory

that had the closest final state to the goal state, which was used as a policy.

Zhang et al. [14] used a virtual reality device to teleoperate a robot to collect demonstra-

tions on ten manipulation tasks. The authors used raw image pixels that were processed

by a Convolutional Neural Network (CNN) into the state space. Then, the policies were

learned using a standard imitation learning loss function.

Losey et al. [15] encoded high-DoF robot actions into intuitive, human-controllable, and

low-DoF latent actions, which can be directly coordinated with a handheld joystick. The

authors used a vanilla autoencoder, trained from teleoperated task demonstrations.

To encode motions into the latent space, Dwibedi et al. [16] encoded multiple video

frames simultaneously, which encouraged the network to learn similarities between the

videos. First, each frame’s raw pixels were encoded by a CNN. After that, multiple

frames were connected by a temporal convolution [17].

In Universal Planning Networks (UPN) proposed by Srinivas et al. [18], the authors used

a vanilla autoencoder to map video frames into the latent space. The authors suggested

planning in this space by imitation human-made demonstrations.

However, in the works discussed above, the spatial structure of the spaces did not affect

resulting policies.

Zhan et al. [19] proposed Comprehensive Distance-Preserving Autoencoders (CDPAE)

to address the problem of unsupervised cross-modal retrieval. Besides pairwise distances,

the CDPAE also considered heterogeneous distances of representations extracted from

cross-media spaces (e. g. photos, and videos). That is, putting aside the authors’

terminology, the latent space was organised in a way to place similar images close to

each other, e.g. dogs to dogs and cats to cats. The CDPAE used the cosine similarity

distance to measure the similarity of features in the same media spaces.

On the other hand, Ghosh et al. [20] aimed to learn actionable representations with

goal-conditioned policies. That is, the authors aimed to capture the factors that are

important for decision making. Thus, the latent space was organised in a way that
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similar goal-conditioned policies were placed close to each other. In contrast to our

approach, the policies were decoded into the latent space, where the distance between

policy distributions was measured by KL-divergence.

Self-Supervised Learning

In contrast to the standard RL technique, where each new skill requires a manually-

designed reward function, Pong et al. [21] suggested setting self-supervised goals, en-

abling an agent to propose its own goals and acquire skills to achieve these goals. The

authors proposed a new objective function for learning to model the uniform distribu-

tion over states when only data collected by an autonomous goal-conditioned policy was

given. The experiments were made from visual observations using a vanilla VAE.

Nair et al. [22] presented another self-supervised learning approach. The authors trained

a vanilla VAE using data generated by an exploration policy. After that, new goals were

sampled from the VAE’s latent space, which was used to train a goal-conditioned policy

with reward measuring Mahalanobis distance in the latent space.

Hafner et al. [23] proposed a model-based agent that learns the environment’s dynamics

from pixels and chooses actions through online planning in a compact latent space.

Policy planning was done by model-predictive control [24]. That is, the plan was re-

generated each time step. Notably, the latent space, representing the environment’s

dynamics, was comprised of both stochastic and deterministic parts, learned by a VAE.

However, in all the discussed work, the authors did not try to construct a latent space

reflecting the spatial structure of the state space or examine the generality of their

policies.

1.3 Aim, Scope, and Contributions

In this thesis, we focus on two research questions. In the literature, the authors usu-

ally focus on highly constrained, isolated tasks in controlled environments. Thus, their

policies cannot be readily transferred to another, although similar, problem. Therefore,

our first question is to explicitly construct an observation space that can be used for

learning policies when the number of elements in the state space can vary. Particularly,

our goal is to learn end-to-end policies for picking and placing objects when the number
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of objects can vary. We are interested in policies that can work with the number of

objects that are not used in training. More broadly, we are interested in examining the

connection between the policy’s generalisation ability and its observation space.

To solve this problem, we propose a new learning environment, in which the number of

elements in the state space can vary. We frame this environment on a POMDP, for which

we construct three observation spaces of fixed size. We show that naively constructed

observation space can impede the policy’s generalisation ability.

Our second research question is influenced by the recent advancement in self-supervised

learning. Our goal is to generate the latent space from visual observations using a VAE.

However, in contrast to the state of the art, we are interested in the latent space that

reflects the spatial structure of the hidden state space, from which visual observations

are taken. In contrast to current practice, we use visual observations taken from two

cameras instead of one. The cameras are placed perpendicular to each other.

Additionally, we use the latent space to construct a goal-conditioned reward function.

However, in contrast to the state of the art, we are interested in a reward function that

can be used with RL algorithms that are not goal-conditioned. Particularly, we focus

on learning polices using visual observations and the suggested goal-conditioned reward.

More broadly, our goal is to show that the same problem setup is general enough to be

applied to a variety of problems.

As our contribution, we suggest a new auto-generated goal-conditioned reward func-

tion measuring the distance to the goal in the latent space. We show that VAEs with

the vanilla regularisation cannot be used in such rewards because vanilla regularisation

cannot guarantee that the latent space reflects the structure of the hidden state space.

Thus, we propose and examine new regularisation.

1.4 Thesis Structure

The structure of the thesis is organised as follows. In Chapter 2, we discuss the required

background knowledge. More particularly:

• In Section 2.1, we introduce MDPs and POMDPs, as well as, we discuss their

major differences.
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• Section 2.2 is dedicated to Reinforcement Learning. We commence discussing Q-

Learning in Section 2.2.1 and its machine learning extension, Deep Q-Networks, in

Section 2.2.2. After that, Policy Gradient is introduced in Section 2.2.3, which is

used in the DDPG algorithm in Section 2.2.4. Then, we conclude with the notion

of trust regions in Section 2.2.5 and the PPO algorithm in Section 2.2.6.

• Finally, in Section 2.3, we discuss autoencoders in Section 2.3.1 and VAEs in

Section 2.3.2.

In Chapter 3, we concentrate on constructing observation spaces when the number of

elements in the state space can vary. After a brief introduction to the chapter in Sec-

tion 3.1, we define a new Kuka environment in Section 3.2. Further, we propose four

observation spaces in Section 3.3 and evaluation tasks for picking and placing objects in

Section 3.4, which are used in our experiments in Section 3.5.

Chapter 4 is dedicated to generating observation spaces from visual observations and

learning policies using goal-conditioned reward functions. Firstly, we briefly introduce

the chapter in Section 4.1. Section 4.2 focuses on the state-similarity reward function,

which requires a proper regularisation of the latent space. We discuss this regularisation

in Section 4.3. After that, we extend the Kuka environment and introduce a new Reacher

environment in Section 4.4. Finally, we use these environments in our experiments in

Section 4.5.

In Chapter 5, we summarise the contributions of the thesis and outline possible future

directions.



Chapter 2

Background

We begin the chapter with a review of a Partially Observable Markov Decision Process

(POMDP). In contrast to a Markov Decision Process (MDP), a POMDP separates the

state space, which is hidden, from the observation space. This mathematical framework

is useful in situations when the structure of the state space (i.e. the environment) is not

observable by the agent, which in turn means that the Markov property no longer holds.

In such situations, it is desirable to use visual observations as the observation space.

Because we concentrate on learning general policies for manipulation problems using

Reinforcement Learning (RL), we frame our environments on a POMDP. Thus, later,

we review relevant RL algorithms. We show that three of those algorithms can work

with continuous control signals and continuous state spaces, which are desirable in ma-

nipulation problems.

However, if raw pixels are used as feature vectors in Reinforcement Learning, it is hard to

deduce any similarity between two images and their corresponding hidden state, which

can affect planning. Therefore, in recent years, there is a growing interest in encoding

images into their compact representation (i.e. the members of a latent space) employing

autoencoders. Because we extensively use this technique, we review autoencoders and

the structure of their latent space at the end of the chapter.

9
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Figure 2.1: An example of an MDP with three states (green circles), two actions
(orange circles), and two rewards (orange arrows) by Waldoalvarez, licensed under CC

BY-SA 4.0.

2.1 POMDP

In general, most AI problems should be framed on a mathematical framework before

they can be solved. In Reinforcement Learning (RL), such a framework is a Markov

Decision Process (MDP), formally introduced to the field by Kaelbling et al. [25].

The MDP is convenient to model complex problems, in which an agent (e.g. a learning

algorithm) observes an environment, receiving the current state, and takes actions. The

actions are influenced by rewards. Is some cases, those rewards can be infrequent or

delayed, which makes it hard to identify the actions positively contributing to the reward.

For example, a chess game can be won or lost many moves before its end. An example

of the MDP can be found in Figure 2.1.

Mathematically, an MDP is defined as a tuple (S,A, T,R), where:

• S is a set of states. For robotic control, it can be represented by raw images or

joint angles and velocities.

• A is a set of actions. It represents all the actions that the agent can take.

• T : S × A −→ Π(S) is the state-transition function that estimates the transition

probabilities between two states s, s′ ∈ S when an action a ∈ A is taken.

https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
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• R : S × A −→ R is the reward function providing the expected immediate reward

gained by the agent for taking an action a ∈ A in a state s ∈ S.

To be framed on the MDP, the problem has to hold the Markov property. We say that

a stochastic process has the Markov property if the conditional probability distribution

of future states of the process depends only on the present state, not on the sequence of

events that preceded it:

P (Xn = sn | Xn−1 = sn−1, . . . , X0 = s0) = P (Xn = sn | Xn−1 = sn−1) .

The agent’s objective is to maximise expected discounted future reward

Eπ
[ H∑
t=0

γtrt

]
,

where γ ∈ [0, 1] is a discount factor, r is a reward, H ∈ N is planning horizon, and

the actions are drawn according to a policy π : S −→ A. A policy maximising the future

reward is called optimal.

When we frame a learning problem on an MDP, we assume that the agent can perfectly

observe the state space S, which is usually not the case in real manipulation problems.

Thus, the Markov property does not hold. In such cases, the common practice is to

approximate the problem as an MDP.

To improve the prediction about the future, a Partially Observable Markov Decision

Process (POMDP) can be used [11], [25]. The POMDP separates the state space S,

which is hidden, from the observation space Ω that has partial information about the

state space. Thus, in contrast to MDPs, the agent is unable to observe the current state.

Instead, the state is deduced from observations taken after the current action has been

taken.

Mathematically, the POMDP extends the MDP and defined as a tuple (S,A, T,R,Ω, O),

where:

• S,A, T,R are the same as in the MDP.

• Ω is a set of observations.
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Figure 2.2: Agent–environment interactions in reinforcement learning from Sutton
and Barto [26].

• O : S × A −→ Π(Ω) is the observation function that defined the probability of

taking observation o ∈ Ω when the agent took an action a ∈ A and landed in a

state s ∈ S.

Usually, in manipulation problems, the POMDP has unknown state-transition and ob-

servation functions as well as large continuous action and state spaces. In such cases, it

can be infeasible to find the optimal policy analytically. Thus, an approximate policy

should be learned by RL. Now we proceed to describe the existing learning algorithms

briefly.

2.2 Reinforcement Learning

In this section, we review existing reinforcement learning algorithms beginning with a

historical review. First, we introduce the model of agent-environment interactions.

Suppose, there is a robot (i.e. the agent) with a task to cross a room full of mines,

and the robot can only move one tile at a time. Those movements represent a set of all

possible action A in our environment (Figure 2.2). After each action, the agent receives

the robot’s new location in the room that represents a state s ∈ S in our environment,

often called a feature vector. Additionally, the agent receives a reward R assessing the

taken actions. Based on that data, the robot takes a new action. The process is repeated

until the agent reached the goal state or ran out of time, concluding a trial. The objective

of RL is to learn a policy π that assigns the best action a ∈ A to each state s ∈ S; that

is, π : S −→ A.
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2.2.1 Q-Learning

Q-Learning [27] is a seminal, model-free Reinforcement Learning algorithm, based on

the agent-environment interactions, where the agent estimates an action-value function

Q : S ×A −→ R. The function Q[s, a] is defined as a lookup table in which the maximum

expected future rewards are calculated for each action a at each state s. The policy is

defined as

π(s) = arg max
a

Q[s, a] .

Initially, values in the action-value table are filled randomly, but they are updated after

each trial, gradually converging to the optimal policy. The learning rule is

Qnew(st, at)← Q(st, at) + α ·
(
rt + γ ·max

a
Q(st+1, a)−Q(st, at)

)
, (2.1)

where rt is the reward, α ∈ [0, 1] is the learning rate, and γ ∈ [0, 1] is a discount factor.

Actions a on each trial can be drawn from the current policy or randomly, which is

influenced by exploration vs exploitation trade-off.

However, due to the use of a lookup table, the algorithm is limited to small discreet

action or state spaces. Later, we discuss several extension that can work in continuous

spaces.

2.2.2 Deep Q-Network

Deep Q-Network (DQN) [8] is a machine learning adaptation of the Q-Learning al-

gorithm. DQN uses a neural network with weights θ to approximate an action-value

function Q(s, a; θ), called a Q-Network. Thus, such a network can be used in continuous

state spaces S. However, actions are still drawn from Equation 2.2.1, which limits the

use of DQN to small discreet action spaces A.

Framed on the MDP, the agent’s learning objective is to maximise the discounted future

reward. One of DQN’s novel contribution is in stabilising the training process. Instead

of updating the policy after each trial, it is updated on a batch of trials drawn from an

experience replay buffer D. A learning update at each iteration k is made by minimising
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a temporal difference (TD) error L(θk) such that

(2.2)L(θk) = E(s,a,r,s′)∼D

[(
r + γ max

a′
Q(s′, a′; θ−k )−Q(s, a; θk)

)2]
,

where θk, θ
−
k are the current and previous weights of a Q-Network. The minimisation is

made by gradient descent with a learning rate α such that

θk+1 = θk − α∇θL(θk) . (2.3)

Although DQN was initially designed for playing Atari games from raw pixels, the learn-

ing problem was defined as an MDP, where each state is combined of four consecutive

frames. It was shown [11] that DQN performance could be diminished if one image is

used instead of four.

Additionally, there are two notable extensions: Double DQN [28], [29] and Dueling

DQN [30] that we do not review in this thesis. Both of them, as well as vanilla DQN, are

limited to small discrete action spaces; therefore, they cannot be used in manipulation

problems having continuous spaces. In following Section 2.2.3, we introduce Policy

Gradient method that does not have such a limitation.

2.2.3 Policy Gradient

Policy Gradient (PG) was initially suggested in REINFORCE paper [31] and further

developed by Sutton et al. [32]. It adopts a different approach to the learning problem.

Instead of optimising an action-value function Q, Policy Gradient directly optimises a

policy distribution πθ(a|s) over multiple trajectories τ to maximise expected discounted

rewards J(πθ); that is,

maximise
θ

J(πθ) = Eτ∼πθ

[
H∑
t=0

γtrt

]
= Eτ∼πθ

[
R(τ)

]
, (2.4)

where H is the learning horizon. Thus, Policy Gradient can be expressed as follows

∇θJ(πθ) = Eτ∼π
[ H∑
t=0

∇θ log πθ(at|st) ·Aπθ(st, at)
]

, (2.5)
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where Aπθ(st, at) is an advantage function. In the case of REINFORCE, it is presented

as R(τ), in a more general case, it is

Aπθ(st, at) =

H∑
t′=t

R(st′ , at′ , st+1)− b(st) ,

where b(st) is a baseline. Thus, the advantage function can be further rewritten as

Aπθ(st, at) = Qπθ(st, at)− V πθ(st) ,

where V πθ(s) =
∑

a∈A πθ(a|s) · Qπθ(s, a) is a value function. The policy updates are

made by gradient ascent

θk+1 = θk + α∇θJ(πθ) . (2.6)

In that case, the policy is stochastic. That is, it returns a probability distribution, which

can be suitable for continuous action spaces.

However, the convergence of the Policy Gradient method can be unstable due to the

high variance of expected rewards R(τ). This problem is inherited into expected re-

wards because one unlucky action can affect the whole trajectory and the length these

trajectories may vary. Moreover, this problem is still an active field of research yielding a

variety of Policy Gradient algorithms such as A3C [10], A2C [10], DPG [33], D4PG [34],

ACER [35], ACTKR [36], SAC [37], and TD3 [38]. However, we solely concentrate

on DDPG (2.2.4), TRPO (2.2.5), and PPO (2.2.6), which are capable of operating in

continuous action and state spaces.

2.2.4 Deep Deterministic Policy Gradient

The training of Policy Gradient models can be unstable because of the high variance

inherent in expected rewards R(τ). This problem is still an active field of research yielded

a variety of algorithms. In this section, we concentrate on Deep Deterministic Policy

Gradient (DDPG) [39] designed to address that problem. The additional advantage of

DDPG that it can operate in continuous action and state spaces, which is required in

our research. DDPG improves training stability by combining the value-based (2.2.2)

and policy-based algorithms (2.2.3) into an Actor-Critic method.
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Policy Gradient Equation 2.5 can be rewritten as

(2.7)∇θJ(πθ) = Eτ∼π
[ ∞∑
t=0

∇θ log πθ(at|st) · ∇πQ(st, πθ(s))

]
.

Both parts can be estimated separately, which leads us to the Actor-Critic method,

where:

• First, the critic network estimates the action-value function Q(st, πθ(s)) using the

deep Q-Learning.

• After that, the actor network updated the policy distribution πθ(a|s) using the

Policy Gradient.

However, DDPG has another source of instability. Because the policy distribution can

be flat in one region but steep in another, gradient updates can collapse into a local

minimum. This problem is addressed in following Section 2.2.5.

2.2.5 Trust Region Policy Optimisation

Finding a suitable learning rate for gradient updates can be a daunting task. The policy

can be flat in one region but steep in another. Thus, the same change in parameter

space θ can lead to different policy updates in different regions because of the policy’s

curvature. Thus, gradient updates can collapse into a local minimum, while climbing to

the global maximum.

To constrain policy changes to a safe region, Trust Region Policy Optimisation (TRPO) [40]

was suggested. It uses natural policy gradients. TRPO uses natural policy gradients to

maximise a surrogate loss that estimates the lower bound of the expected discounted

reward J(π):

J(π) ≥ Lπ(πold)− CEs∼dπ
[
DKL(π||πold)[s]

]
, (2.8)

where C is a normalisation constant, DKL is a Kullback–Leibler divergence such that

DKL(P ||Q) = Ex log
P (x)

Q(x)
, (2.9)
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dπ is a discounted future state distribution such that

dπ(s) = (1− γ)

∞∑
t=0

γtP (st = s|π) , (2.10)

and Lπ(π) is an importance sampling loss such as

Lπ(π) = Eτ∼π

[ ∞∑
t=0

γt
π′(at|st)
π(at|st)

Aπ(st, at)

]
, (2.11)

where Aπ is an advantage function as in Section 2.2.3.

Although TRPO shows improved learning stability, the calculation of KL-divergences

requires more computational resources due to the use of second derivatives, which limits

the scale of possible learning problems. In following Section 2.2.6, we discuss PPO that

does not use KL-divergences.

2.2.6 Proximal Policy Optimisation

In practice, natural policy gradient involves the calculation of second-order derivatives,

which limits the scale of possible learning problems. Proximal Policy Optimisation

(PPO) [41] addresses this problem. Instead of imposing a trust region, PPO clips the

loss function such that

LCLIP
θk

(θ) = Eτ∼π

[
min

(
rt(θ)Â

πk
t , clip(rt(θ), 1− ε, 1 + ε)Âπkt

)]
, (2.12)

where rt(θ) is a ratio between new and old policie distributions

rt(θ) =
πθ(at|st)
πθk(at|st)

.

Therefore, the loss function LCLIP
θk

(θ) can be solved by first-order optimisers.

In our research, we use PPO as our primary learning algorithm. However, we deviate

from common practice and frame our learning problems as POMDPs instead of MDPs.

That is, instead of learning the policy distribution πθ(a|s), we learn the distribution

πθ(a|o), where o ∈ Ω.
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Therefore, to frame the problem as the POMDP, we need to define the observation

space Ω, which we constructed from visual observation employing autoencoders. Thus,

in following Section 2.3, we give their formal introduction.

2.3 Autoencoders

Autoencoders (AEs) have been part of the state of the art for decades [42], and they

are closely related to compression algorithms such as Principal Component Analysis

(PCA) [43]. Initially, AEs were proposed for dimensionality reduction and feature learn-

ing. However, unlike PCA, they can learn non-linear representations due to the use of

a non-linear activation function.

Recently, Generative Adversarial Networks (GANs) [44], based on Variational AEs, have

sparked a new line of research in Reinforcement Learning (RL). It is desirable in manipu-

lation problems to use visual observations because they contain geometrical information

about the environment, which could be problematic to hard-code if we used hand-made

features. Although RL algorithms can successfully learn policies from raw pixels [8],

[11], the states constructed from them have no notion of similarity or closeness, which

can negatively affect planning. Thus, it was proposed [18] to use AEs for deducing

useful features from raw images, because they are designed to work with unstructured

data. In Chapter 4, we used Variational AEs to construct observation spaces in POMDP

frameworks from raw images. Now we proceed to introduce vanilla and Variational AEs.

2.3.1 Vanilla Autoencoder

Autoencoders (AEs) [45] aim to copy their inputs to their outputs. It is done by com-

pressing the input into a latent representation, from which the output is reconstructed.

That is, AEs encode input values x ∈ X into a latent space Z, i.e. f : X −→ Z. Then,

the latent representation z ∈ Z can be decoded back to its input value x such that

g : Z −→ X . Thus, AEs represent a form of compression, where the latent space serves

as a compact representation of the input space.

For any input space X , the functions f and g can be approximated by a neural network

with weights θ. Learning updates are made by minimising a mean squared error (MSE)
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Figure 2.3: The structure of an autoencoder.

loss function

L(θ) =
1

N

N∑
i=0

∣∣∣∣∣∣xi − gθ(fθ(xi))∣∣∣∣∣∣2 . (2.13)

The learning objective is to reconstruct the input as accurate as possible.

However, the loss L(θ) makes no restrictions on the structure of latent space. We cannot

guarantee that two states close in X will be close in Z as well. Thus, it can be challenging

to separate the unique features of the input space.

On the other hand, unique features can be overly separated. That is, the space Z can

form clusters with meaningless states between them. Thus, the learned latent space Z

might not be convex or continuous when it is desired. Therefore, such spaces cannot be

used as observation spaces in POMDPs or for planning.

Although there are many kinds of AEs such as Sparse Autoencoders (SAEs) [46], De-

noising Autoencoders (DAEs) [47], or Contractive Autoencoders (CAEs) [48], only for

Variational Autoencoders (VAEs) [49], it can be guaranteed that the latent space is

convex and continuous. Thus, we will use VAEs in Chapter 4, and we focus on VAEs in

the following section.

2.3.2 Variational Autoencoder

Although Variational autoencoders (VAEs) [49] have the architecture similar to vanilla

AEs, they can regularise the latent space Z. Instead of learning a deterministic function

f : X −→ Z, a VAE learns a latent distribution p(z|x), from which latent states z ∈ Z
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can be sampled. Then, these states can be decoded back by a deterministic function

g : Z −→ X .

With Bayes’ theorem, we can define a variational inference problem:

p(z|x) =
p(x|z) p(z)

p(x)
, (2.14)

where p(x|z) is assumed to be unknown normal distribution and p(z) is N (0, I).

The distribution p(z|x) can be approximated by a Gaussian distribution qx(z) such that

qx(z) = N (µ(x), σ(x)) .

The functions µ(x) and σ(x) are unknown deterministic functions, which can be learned

by a neural network with weights θ. Thus, by using the so-called reparametrisation

trick, we define a distribution qθx(z) as

qθx(z) = µθ(x) + σθ(x) · N (0, I) . (2.15)

Additionally, the unknown distribution p(x|z) can be approximated by the deterministic

function gθ(z).

Finally, we can construct a loss function L(θ) by minimising the Kullback-Leibler diver-

gence such as

(2.16)

L(θ) = arg min
θ

DKL

(
qθx(z) || p(z|x)

)
= arg max

θ

(
Ez∼qx(z)

[
log p(x|z)

]
−DKL

(
qθx(z) || p(z)

))
= arg max

θ

(
Ez∼qx(z)

[
−
∣∣∣∣∣∣x− gθ(z)∣∣∣∣∣∣2]−DKL

(
qθx(z) || p(z)

))
.

The equation represents a trade-off between minimising a reconstruction error and stay-

ing close to the prior distribution, i.e. a normal distribution. By requiring to stay close

to the normal distribution, which is convex and continuous, we obtain a guarantee that

our distribution qθx(z) is convex and continuous as well.
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However, in any latent space regularised with Equation 2.16, two states close in X can

be apart in Z. More generally, we cannot guarantee that a triangle inequality holds.

This problem is one of our research questions, which we address in Chapter 4.

2.4 Summary

Traditionally, a learning problem is framed as an MDP; however, there is a recent trend

in using POMDPs instead. This mathematical framework is useful in situations when

the structure of the state space is complicated, and the use of visual observations is

desired.

Thus, if a manipulation problem is framed on a POMDP, the problem usually has

continuous action and state spaces. In such cases, a policy can be learned by PPO.

Although it is possible to learn the policy from feature vectors as raw pixels, it can be

challenging to deduce a meaningful structure of the hidden state space, which can affect

planning. Therefore, it can be useful to decode images into a latent space reflecting the

structure of the state space before using them in PPO. In this case, the latent space

should be properly regularised.



Chapter 3

Learning from Hand-Crafted

Feature Vectors

An observation space, decoded as a set of feature vectors, can be either hand-crafted

or deduced from visual observations. In this chapter, we concentrate on the former

approach.

Traditionally, manipulation problems are framed on an MDP with a hand-crafted state

space. However, this approach has a significant drawback: a state space has to be

engineered for each environment, which impedes its applicability and usually requires

domain-dependent knowledge.

Another issue is a limitation of current machine learning algorithms. The size of feature

vectors has to be constant in every instance of the environment, which can not be the case

if the feature vectors are drawn from the state space. For example, in an environment

where each trial can have a different number of blocks to manipulate, the size of feature

vectors is not constant.

In this chapter, we show that an environment framed on a POMDP instead of an MDP

can overcome that limitation. We present and examine several constant-size observation

spaces for an environment where the number of blocks can vary. Further, we concentrate

our efforts on learning policies that can be applied to untrained tasks.

22
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3.1 Introduction

First, we introduce several definitions that we will use extensively throughout the chap-

ter.

Definition 3.1. An environment is a union of all the possible POMDPs representing a

learning problem, where the state and action spaces are fixed, and only the initial and

goal states can change. On each trial, the environment generates a new instance. We

use this term in Reinforcement Learning sense.

Definition 3.2. An instance of the environment is a single POMDP that has a single

initial and goal state.

Definition 3.3. We say that an observation is instance-invariant if it is represented by

a feature vector that has a constant size. When the observation is encoded as a feature

vector which size might not be constant, we say the observation is instance-dependent.

Traditionally, in planning problems framed as an MDP, a state space, which can be

defined as a set of hand-crafted feature vectors, is usually comprised of the configurations

of a manipulator and all objects (Section 1.2). However, this approach has a significant

drawback: a state space has to be engineered for each environment, which impedes

generality and usually requires domain-dependent knowledge. Also, it can be hard to

incorporate the geometry of an environment into feature vectors.

Another issue is a limitation of current machine learning algorithms. The size of feature

vectors has to be constant in every instance of an environment. That is, feature vectors

have to be instance-invariant. In the MDP, such a constrain holds only if the state

space is instance-invariant, which might not be the case in complicated problems. For

example, for an environment in which each trial can have a different number of blocks

to manipulate, the size of feature vectors is not constant.

In this chapter, we relax the assumption that the state space is instance-invariant. Our

main contribution that we construct and examine instance-invariant observation spaces

for an instance-dependent state space. In Section 3.2, we formally introduce our envi-

ronment framed as a POMDP. Then, in Section 3.3, we discuss several possible ways of

construction instance-independent observation spaces, which we test in our environment

in Section 3.5.
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Figure 3.1: A frame of the Kuka environment.

3.2 Framework Formulation

We created a virtual environment simulating a Kuka IIWA robotic arm [50]. The ma-

nipulator has seven degrees of freedom. An agent can control the configuration χgr of a

2-finger gripper such that

χgr = x× y × z × α ∈ S× R3, (3.1)

where x, y, z are the gripper’s Cartesian coordinates in the world frame, and α (yaw) is

a Euler angle. To simplify the problem, we always keep the arm vertically; thus, Euler

angles β (roll) and γ (pitch) are constant. Additionally, the configurations of all the

arm’s other joints are set by inverse kinematics.

We mounted the arm on the top of a table (Fig 3.1). The table has enough space to

accommodate any configuration and number of blocks. In our experiments, we used

cube-shaped rigid blocks, having the same size. All the blocks are affected by gravity.

Each block with the configuration χo is defined by the set of coordinates x, y, z and

orientation quaternion q:

χo = x× y × z × q ∈ R7. (3.2)

The agent operates the arm by setting shifts

∆ = δx× δy × δz × δα ∈ R4. (3.3)

We consider a very general case in which the shifts are not bound. Our goal is to learn

the physical bounds at each pose implicitly, which would free the designers of robotic

tasks from complex specifications.
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Additionally, without the loss of generality, we scripted a grasping movement to keep

the fingers’ control out of the action space. That is, when the arm is in the proximity

of a goal block, the script closes the arm’s fingers.

Therefore, an instance of the environment with n rigid blocks has the configuration space

X , where X = {χ | ∀χ ∈ R4+7·n, ∀n ∈ N0} is a union of all possible configurations χ

such that

χ = χgr × χ1
o × ...× χno ∈ S× R3+7·n. (3.4)

We frame the environment on a union of POMDPs with tuples (S,A, T,R,Ω, O), where

a single initial sinit ∈ S and goal Xgoal = χgr state is assigned to each POMDP.

The state space is S = X . It is not instance-invariant because each instance can have a

different number of blocks. At time step t, an instance containing the robotic arm and

n objects has a state st in the configuration space X .

Time is discretised in the following manner. When the agent has requested an action at,

the environment terminates the time step t. Then it applies the action and simulates

the changes. After that, the environment starts a new time step t+ 1 and returns a new

state st+1. Then it freezes the simulation until it receives a new action at+1.

Later, we specify action A and observations Ω spaces as well as the reward function R.

Other aspects of the framework are the same as in Section 2.1.

3.2.1 Action Space

The action space A contains two actions {A1,A2}:

• The arm’s translation. To translate the arm, preserving its orientation, the

agent can apply a shift ∆1 = (δx, δy, δz, 0) ∈ R3. Then, the next time step t + 1,

the arm will move to the state with coordinates ut+1 = ut + ∆1, where ut is the

arm’s coordinate in the previous time step t. Thus, A1 = {∆1 | ∀ δx, δy, δz ∈ R}.

• The arm’s rotation. To rotate the arm (yaw), preserving its spatial position, the

agent can apply a shift ∆2 = (0, 0, 0, δα) ∈ R. Then, the next time step t+ 1, the

arm will change its orientation by qt+1 = qt + ∆2, where qt is the arm’s orientation

in the previous time step t. Thus, A2 = {∆1 | ∀ δα ∈ R}.
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Both actions can be applied at the same time step; thus, the action space A is equal to

A1 ∪ A2.

3.2.2 Reward Function

We define reward R as a function at a time step t:

R : Xgoal ×Xgrip × χo1 × ...× χon −→ R , (3.5)

where Xgoal = χgr/q and Xgrip = χgr/α are the world coordinates of the goal and the

gripper.

The function we use in our experiments is

(3.6)Rt = −a|Xgoal −Xt
grip|2 − bλ

n∑
i=1

|χtoi − χ
0
o1 |

2 + C .

The first term guides the agent to the goal. The constant C is used to reward a completed

task. The third term is added to discourage the agent from moving the surrounding

blocks, where the parameter λ regulates its strength. Constants a, b are normalisation

coefficients.

In this chapter, we use a hand-crafted reward function. However, in Chapter 4, we pro-

pose a method to generate rewards automatically. Further, we define several observation

spaces Ω for our instance-dependent state space S.

3.3 Observation Space

In this chapter, we examine the generalisation abilities of instance-independent observa-

tion spaces Ω derived from an instance-dependent state space S. Thus, in this section,

we define three possible observation spaces. Two of them are instance-invariant and one

instance-dependent. Later, we omit t for simplicity.
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3.3.1 Instance-Dependent Observation Space

As a baseline, we define an instance-dependent observation space Ω that is equal to the

state space S, which effectively reduces our problem to an MDP. The agent receives the

goal’s coordinates Xgoal in the world frame and a state vector χ = s ∈ S. Therefore, it

is a deterministic perfect information problem.

Additionally, we augment the state vector by adding the goal coordinates Xgoal. Thus,

the observation space Ω is a union of all possible configurations of

Xgoal × χ ∈ S2 × R6+7n .

Thus, the size of the space depends on the number of blocks n. In our experiments, we

label this space as all in obs.

3.3.2 Instance-Invariant Observation Space

Later, we construct several instance-invariant observation spaces.

3.3.2.1 No Blocks in Observations

A straightforward approach can be to exclude all the block from observations because

their number can vary. Thus, the state space S is partially observable, and the agent

receives the goal’s coordinates Xgoal in the world frame and the gripper’s configuration

χgr. Therefore, it is a deterministic imperfect information problem.

The observation space Ω is a union of all possible configurations of

Xgoal × χgr ∈ S2 × R6 .

Thus, the size of the space is constant. In our experiments, we label this space as none

in obs.

However, such an observation space is ignorant of the location of objects, which impairs

the agent’s ability to manipulate these objects. In the next section, we propose another

observation space without such limitations.
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Figure 3.2: An illustration of a sensing sphere with the radius rmax. The gripper is
situated at the origin. The green region represents a sensing sector. For simplicity, the
angle φ is omitted. The sensing sector returns the distance di to the closest object in

that sector. If there is no object, the sector returns rmax.

3.3.2.2 Sensing Sphere

Because our goal is to construct an observation space Ω that has information about

any number of blocks yet constant in size, we propose only to keep the closest blocks

to the arm. Thus, the agent has information about the environment within a sensing

radius rmax and ignorant of the world beyond. For 3D problems, the sensing radius can

be viewed as a sensing sphere, hence the name.

We place the sphere’s origin is at the gripper’s centre of mass. To keep a constant

number of tracking blocks, we further subdivide the sphere into a× o sectors, where we

keep the distance to the closes block bp in each sector. Additionally, if there is no block

within that volume of space v, we keep the sensing distance rmax. We define a as the

number of meridians and o as the number of parallels on the sphere, which intersections

form 3D sectors. Thus, each sector has θ = 2π/a and φ = 2π/o. Figure 3.2 illustrates

our idea.

Mathematically, for each object bp ∈ v and a distance di ≡ di(Xgr, bp), the sensing sphere

S̃a,o is defined as a matrix

S̃a,o =

(
si,j = min(d1, d2, ..., dq, rmax)

)
∈ Ra×o , (3.7)

where a, o ∈ N represent the number of sectors in latitudinal and longitudinal angles.

Thus, the observation space Ω is constructed as a union of all configurations of

X̃goal × χgr × S̃a,o ∈ R3+7+a×o ,
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where X̃goal is the Cartesian coordinates of a goal in the gripper’s frame, and the choice

of the parameters a, o is instance-independent. In our experiments, we label this space

as sens.

Additionally, we can exclude the gripper’s configuration χgr from the observations. Be-

cause χgr is the only one variable defined in absolute values, that can make a new

observation space more general. Thus, the observation space Ω is constructed as a

union of all configurations of

X̃goal × S̃a,o ∈ R3+a×o .

We label this space as sens, no gr.

3.4 Evaluation Tasks

Our goal was to construct an observation space that can be used for learning policies for

high-level planning operations in highly constrained scenarios in an instance-dependent

environment. That is, our goal was to learn policies for picking and placing objects when

the number of blocks could vary. Bearing that in mind, we defined two evaluation tasks:

Pick and Place, discussed in the following sections.

3.4.1 Pick

In the first task, the agent’s goal was to pick a blue block without toppling a tower (Fig-

ure 3.3-A). This task can be challenging if the learned policy is used in an environment

with a tower of different height. Because the tower is made of blocks, it changes the

number of object in the environment, hence its state space. Thus, because we cannot

learn an individual policy for each state space (i.e. the number of objects), our goal was

to create a general policy working in general observation space.

To make the task more challenging, the tower could be adjacent to any sides of the

goal block. Also, while we were learning the policy, we kept the tower’s height and the

manipulator’s initial state unchanged. Therefore, in this task, we examined the policy’s

generalisation ability when the policy was tested in an environment with a different

number of blocks.
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Figure 3.3: (A)(B) Possible initial states of the environment used in the task ’Pick ’.
(C) A possible initial state of the environment used in the task ’Place’.

Additionally, we tested each policy on a different initial state (Figure 3.3-B) where two

blocks were adjacent to opposite sides of the goal. Because we did not train the policy

in such block configurations, it would require more general policy to perform well. We

denote that test case as row.

Additionally, we used a single initial configuration for the manipulator. That is, the

arm’s initial position was constant in all trials. In contrast, we varied the coordinates of

the blue block. That is, the positions of the goal block and the tower could move across

the table.

In our experiments, we label this task as pick x on y. Here, x denotes the tower’s height

that we used in training and y the height that we used in testing.

3.4.2 Place

In the second task, the agent’s goal was to place a block on the top of a tower (Figure 3.3-

C). As before, we could vary the complexity by changing the tower’s height. However,

by varying the height, we also change the elevation of a goal state, which adds to the

complexity of the problem. To isolate and study this additional complexity, we designed

two different sets of initial states.

Fig 3.4-A shows the first subset, which is more challenging. We put the arm, holding the

red-contoured block, at the same coordinate position each trial, while the tower could

move across the table. Therefore, not only the distance to the goal but also the goal’s

elevation could vary with the tower’s height. Thus, when the policy was tested on a

tower of another height, it required a more general policy that could elevate the block.

In our experiments, we label the first subset as place x on y, absolute, where x denotes

the tower’s height that we used in training and y denotes the height that we used in

testing.
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Figure 3.4: (A) An illustration of the red-edged block having a single initial state.
The manipulator holds the red-edged block, and the block has constant coordinates
every trial. (B) An illustration of the red-edged block having a set of initial state. The
manipulator holds the red-edged block, and the block is located on the half-sphere with

radius r every trial.

Fig 3.4-B shows the second subset of initial states, in which we kept the arm above the

goal in the vicinity of the tower on a half-sphere with radius r. It reduced the task’s

complexity because the elevation height of the goal did not depend on the height of the

tower. In our experiments, we label this case as place x on y, relative, where x denotes

the tower’s height that we used in training and y denotes the height that we used in

testing.

3.5 Experimental Results

As we mentioned before, our goal was to construct an observation space that can be

used for learning policies for high-level planning operations in highly constrained sce-

narios in an instance-dependent environment. That is, our goal was to learn policies for

picking and placing objects when the number of blocks could vary. We were particularly

interested in policies that can work in instances with the number of blocks that were

not used in training. We were interested in finding the connection between the policy’s

generalisation ability and the used observation space. Therefore, in this section, we

present the performance of the polices equipped with three observation spaces defined

in Section 3.3 in the ’Pick ’ and ’Place’ tasks, defined in Section 3.4.
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We trained all the policies using a reward function Rt such that

(3.8)Rt = −10|Xt
goal −Xt

grip|2 + C − 100λ
n∑
i=1

|χtoi − χ
0
oi |

2,

where the constant C rewards the agent with extra 50 points if the task has been

completed successfully and discourages with −1 point if the task has failed. The third

term was added to discourage the agent from moving the surrounding blocks, where the

parameter λ regulates its strength. We examined the impact of λ in the ’Pick ’ task, but

we kept λ = 0 in the ’Place’ task.

We used four indicators to evaluate each policy over 2000 trials:

• Success rate - the fraction of the successful policy runs in the total number of

runs. It measures the robustness of a learned policy on a test set.

• Mean policy execution trace - the average number of time steps in a policy.

The optimal policy should have the length that does not depend on the tower’s

height.

• Mean displacement - the total distance at which the adjacent blocks have been

relocated during the execution of a policy. It measures the impact of the policy on

the surrounding blocks. The intuition is that while picking or moving a block, the

arm could collide with surroundings, hence damaging them. Therefore, a better

policy should have a lower displacement.

• Mean displacement in successful runs - the average displacement measured

for successful runs. Because failed runs can significantly affect the displacement,

this indicator, when compared with the mean displacement, shows how destructive

is the policy in failed runs.

3.5.1 Learning Setup

As discussed in Chapter 2, there are two first-order learning algorithms: DDPG and

PPO that can work with continuous action and state spaces, which is required in our

environments. To choose between them, we compared their performance on ’Pick ’ task,

illustrated in Figure 3.5.
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Figure 3.5: PPO vs DDPG performance. The cummultive rewards for ’Pick ’ task.

On the same task, PPO showed better results in producing a working policy. In contrast

to PPO, the training of DDPG was unstable due to the gradient explosion discussed in

Section 2.2.4. Thus, we chose to employ PPO in the following experiments.

We used the off-the-shelf PPO and DDPG implementations from rllib, a Python pack-

age [51], with the following hyperparameters:

• S̃16,8 was used for the sensing sphere. This parameter controls the perceptive

ability of the agent.

• The sensing radius was equal to 40 blocks.

• For PPO and DDPG, we used the default parameters suggested by the authors.

However, for PPO, we reduced sample_batch_size to 40 and train_batch_size

to 2500. We observed that by reducing those parameters, we increased the training

speed yet not impaired the policy convergence.

All the policies were trained on an m5.24xlarge1 cloud instance from AWS Cloud Com-

puting Services. The instance contained 2 Intel Xeon processors with 48 cores and

96 threads. Such an instance performs 3.08 Tflops (trillion floating-point operations per

second) in Single float precision General Matrix Multiply (SGEMM) test. It is 8.8 times

more powerful than MacBook Pro’s Intel Core i5 performance (0.35 Tflops), on which

the policies were tested. The Intel Core i5-8259U has 4 cores and 8 threads.

1https://aws.amazon.com/ec2/instance-types/m5/

https://aws.amazon.com/ec2/instance-types/m5/
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Figure 3.6: The cumulative reward for the
’Place’ task with λ = 0.

Exp Name Training Time

none in obs, absolute 42m 39s
all in obs, absolute 41m 38s
sens, absolute 2h 17m 26s
sens, relative 29m 42s
sens, relative, no gr 31m 16s

Table 3.1: Training times
for the ’Place’ task.

3.5.2 Performance Evaluation

This section presents empirical results comparing the performances of three observation

spaces in the ’Place’ and ’Pick ’ tasks. As a baseline, we used the instance-dependent

observation space all in obs.

3.5.2.1 Place

We begin with the ’Place’ task. We concentrated on learning policies that can be

applied to more general problems. All the policies were trained with a 4-block tower

with the reward with λ = 02 (Equation 3.8). The results can be seen in Table 3.2 and

in Figure 3.10. Their cumulative rewards can be found in Figure 3.6, along with their

training times in Table 3.1.

First, we tested the policies’ performance in the environment with the tower of the same

height. In Table 3.2, it is labelled as place 4 on 4. All three observation spaces showed

similar performance, but the sensing sphere with relative initial states (sens, relative)

was harder to train, which was reflected in its success rate. However, we observed

that the performance was comparable with the baseline (all in obs) if the gripper’s

configuration χgr was excluded from observations (sens, relative, no gr). This could be

attributed to the fact that the configuration χgr was only parameter defined in absolute

coordinates.

2We examined the impact of λ in the task ’Pick ’ (Section 3.5.2.2).
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Exp Name Success Rate Policy Execution Trace Block Displacement Displ in successful runs

place 4 on 9
sens, relative, no gr 0.8305± 1.99% 9.8760± 2.27% 0.0263± 43.35% 0.0050± 10.00%

place 4 on 8
sens, relative 0.5940± 3.62% 16.5120± 3.68% 0.7493± 7.74% 0.0124± 39.52%
sens, relative, no gr 0.8915± 1.53% 9.2815± 2.08% 0.0212± 47.17% 0.0045± 24.44%

place 4 on 7
sens, relative 0.7360± 2.62% 12.3020± 3.69% 0.3270± 12.11% 0.0105± 30.48%
sens, relative, no gr 0.9090± 1.39% 9.3090± 2.08% 0.0202± 42.57% 0.0034± 11.76%

place 4 on 6
sens, relative 0.8460± 1.87% 10.2285± 3.04% 0.1385± 17.98% 0.0092± 17.39%
sens, relative, no gr 0.9290± 1.22% 8.9585± 1.86% 0.0125± 42.40% 0.0047± 14.89%

place 4 on 5
sens, absolute 0.4610± 4.75% 16.7880± 3.76% 0.6122± 5.72% 0.0231± 21.21%
sens, relative 0.8950± 1.50% 9.5035± 2.24% 0.0547± 25.41% 0.0117± 13.68%
sens, relative, no gr 0.9350± 1.16% 8.7625± 1.72% 0.0107± 41.12% 0.0056± 12.50%

place 4 on 4
all in obs, absolute 0.9880± 0.49% 5.5845± 0.80% 0.0066± 6.06% 0.0065± 6.15%
none in obs, absolute 0.9955± 0.29% 5.8480± 0.51% 0.0062± 4.84% 0.0062± 4.84%
sens, absolute 0.9800± 0.62% 5.8230± 1.26% 0.0109± 14.68% 0.0102± 5.88%
sens, relative 0.9105± 1.37% 9.9375± 1.74% 0.0317± 29.34% 0.0115± 13.04%
sens, relative, no gr 0.9310± 1.19% 8.6985± 1.82% 0.0158± 36.08% 0.0082± 24.39%

place 4 on 3
none in obs, absolute 0.0350± 23.14% 39.0750± 0.59% 0.3873± 0.59% N/A
sens, absolute 0.9190± 1.27% 9.4490± 2.83% 0.0057± 7.02% 0.0057± 7.02%
sens, relative 0.9110± 1.37% 10.9650± 1.40% 0.0134± 29.85% 0.0094± 7.45%
sens, relative, no gr 0.9140± 1.35% 9.6740± 2.63% 0.0125± 31.20% 0.0081± 9.88%

place 4 on 2
sens, absolute 0.5675± 3.82% 28.1225± 1.84% 0.0021± 38.10% 0.0023± 13.04%
sens, relative 0.8920± 1.52% 13.4160± 1.82% 0.0081± 8.64% 0.0086± 8.14%
sens, relative, no gr 0.7650± 2.43% 13.9785± 3.71% 0.0134± 32.09% 0.0092± 8.70%

place 4 on 1
sens, relative 0.7685± 2.41% 20.8295± 2.12% 0.0061± 24.59% 0.0065± 9.23%

Table 3.2: The experimental results measuring the performance of the learned poli-
cies. The task is to place a goal block on the top of a tower. The block displacement
represents the mean distance that the surrounding blocks have been moved during the
execution of a policy. The displacement in successful runs is the mean block displace-
ment measured in successful runs. The experiment names represent different observa-
tion spaces. The notations are: none in obs - no blocks in observations; all in obs -
all the blocks in observations; sens - a sensing sphere; absolute - a subtask with the
gripper’s absolute initial configuration; relative – a subtask with the gripper’s relative
initial configuration; no gr – no gripper coordinates in the observations. The notation
place 4 on x means that we trained a policy using a 4-block tower and tested using an

x-block tower. We used λ = 0 in the reward function.



Learning from Hand-Crafted Feature Vectors 36

Figure 3.7: The experimental results for the task of placing a goal block on the top of a
tower. The experiment names represent different observation spaces. The notations are:
none in obs - no blocks in observations; all in obs - all the blocks in observations; sens
- a sensing sphere; absolute - a subtask with the gripper’s absolute initial configuration;
relative – a subtask with the gripper’s relative initial configuration; no gr – no gripper

coordinates in the observations.

Next, we examined the policies’ performance on towers with different numbers of blocks.

The policy all in obs could not be easily applied to them because its observation space

contains the coordinates of all the blocks (i.e. instance-dependent). Thus, for example,

if we reduce the height from four to three blocks, the observation space will shrink.

Unfortunately, RL algorithms require a constant size of the space. Thus, all in obs was

excluded from further tests.

The policy none in obs could be tested on a tower of any height, but we observed a

marginal performance, which can be seen in place 4 on 3. Therefore, it was excluded

from further tests as well.

On the other hand, the policies equipped with a sensing sphere showed a better generali-

sation ability. For them, we kept only the result with success rate bigger than 50% in the

table. Concerning the subtask with a absolute initial height of the gripper, we observed

that the policy (sens, absolute) could better generalise to the towers of a shorter height.

Examining the policy’s behaviour, we found that, for the towers taller than the trained

height, the policy tended to topple the tower while it was elevating the block, hence the

drop in the success rate (as shown in Figure 3.8-A and Video 3).

It can be explained as follows. During the training, the arm’s initial state was the same:

hovering above the ground at a constant height. Thus, the agent learned to move the

arm along the shortest trajectories that could cross a taller tower. However, by design

https://youtu.be/_TlNxkKtIFQ
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Figure 3.8: (A) A demo showing the policy execution of sens, absolute on place 4 on
5 with λ = 0. (B) A demo showing the policy execution of sens, relative on place 4 on
5 with λ = 0. (C) A demo showing sens policy execution in the task pick 3 on 4 with

λ = 0.

of the second task, a similar issue could not be observed in the second subtask with a

relative initial height of the gripper (sens, relative), which performed better in these

tests.

Additionally, we improved the success rate for towers taller than the trained one when

we excluded the gripper’s configuration from the observation space (sens, relative, no

gr), which was measured in absolute coordinates. However, we observed a diminishing

performance for the towers shorter than the trained one. Figure 3.8-B and Video 4

demonstrate its policy execution in place 4 on 5.

https://youtu.be/onGfepKaFZg
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Figure 3.9: The cumulative rewards for the
’Pick ’ task with λ = 0.

Exp Name λ Training Time

none in obs 0 26m 51s
none in obs 1/16 39m 35s
all in obs 0 51m 2s
all in obs 1/16 1h 8m 17s
sens 0 2h 1m 12s
sens, no gr 0 1h 58m 11s

Table 3.3: Training times
for the ’Pick ’ task.

Figure 3.10: The experimental results for the task of picking a goal block adjacent
to a tower. In this experiment, we treated a trial as successful if the agent had picked
the block regardless the state of the tower. The experiment names represent different
observation spaces. The notations are: none in obs - no blocks in observations; all
in obs - all the blocks in observations; sens - a sensing sphere; no gr – no gripper

coordinates in the observations. We used λ = 0 in the reward function.

3.5.2.2 Pick

Second, we examined the ’Pick ’ task. We concentrated on learning policies that can

be applied to more general problems. Additionally, we measured the impact of the

parameter λ in the reward function (Equation 3.8). All the policies were trained with a

3-block tower. The results can be seen in Table 3.4. Their cumulative rewards can be

found in Figure 3.9, along with their training times in Table 3.3.

In this task, we treated a trial as successful if the agent picked the block regardless of the

final state of the tower. At first, we tested the policies’ performance in the environment
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Exp Name Success Rate Policy Execution Trace Block Displacement Displ in successful runs

pick 3 on 4
none in obs 0.9160± 1.33% 5.0180± 1.55% 1.6756± 2.04% 1.6835± 2.12%
sens 0.7660± 2.43% 15.7885± 3.86% 1.0557± 4.20% 1.2356± 4.02%
sens, no gr 0.1290± 11.40% 35.3165± 1.35% 0.2623± 10.87% 1.4585± 7.09%

pick 3 on 3
none in obs 0.9280± 1.22% 5.0420± 1.53% 1.3521± 1.96% 1.3430± 2.03%
all in obs 0.9475± 1.03% 4.7490± 4.02% 1.1409± 2.86% 1.1724± 2.79%
sens 0.9940± 0.34% 4.3355± 1.70% 0.9912± 3.42% 0.9894± 3.44%
sens, no gr 0.9835± 0.57% 9.2715± 2.17% 0.8409± 4.10% 0.8373± 4.16%

pick 3 on 2
none in obs 0.8020± 2.18% 4.9175± 1.54% 1.0264± 2.18% 0.9953± 2.43%
sens 0.8295± 1.99% 12.4740± 3.83% 0.2832± 6.96% 0.3031± 7.29%
sens, no gr 0.8905± 1.54% 13.1715± 3.46% 0.4061± 6.03% 0.4252± 6.14%

pick 3 on row
none in obs 0.8995± 1.47% 4.9850± 1.53% 0.4477± 3.19% 0.4404± 3.27%
sens 0.7675± 2.41% 10.3915± 4.32% 0.2562± 4.29% 0.2800± 4.64%
sens, no gr 0.1585± 10.09% 22.6970± 2.99% 0.2579± 7.33% 0.2358± 16.54%

Table 3.4: The experimental results measuring the performance of the learned policies.
The task is to pick a goal block adjacent to a tower. In this experiment, we treated a
trial as successful if the agent had picked the block regardless the state of the tower.
The block displacement represents the mean distance that the surrounding blocks have
been moved during the execution of a policy. The displacement in successful runs is
the block displacement measured in successful runs. The experiment names represent
different observation spaces. The notations are: none in obs - no blocks in observations;
all in obs - all the blocks in observations; sens - a sensing sphere; no gr – no gripper
coordinates in the observations. The notation pick 3 on x means that we trained a
policy using a 3-block tower and tested using an x-block tower. We used λ = 0 in the

reward function.

with the tower of the same height, which is labelled as pick 3 on 3. The policy with no

blocks in the observations, none in obs, showed the success rate below the baseline, all

in obs. However, both of the policies equipped with a sensing sphere performed better

than the baseline. We observed no significant difference whether the configuration of

the gripper χgr was in the observations or not.

Next, we examined the policies’ performance on towers with different numbers of blocks.

As in the task ’Place’, the policy all in obs was excluded from further tests. The policy

none in obs showed a stable success rate over the tower with both bigger and smaller

numbers of blocks. However, after careful examination, we observed that the agent

achieved this success rate at the expense of toppling the tower because there was no

information about the position of the tower in the observations. That also can be seen

in more significant block displacements for the policy none in obs.

On the other hand, the policy equipped with the sensing sphere without the configuration
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of the gripper, sens, no gr, showed marginal results, while the policy sens performed at

the same level as the policy none in obs. The policy sens, no gr also showed smaller

block displacements than the policy none in obs. Figure 3.8-C and Video 5 show an

example of its execution.

Additionally, we tested the policies on the initial state row, where the agent’s task was to

pick the middle block from a row of blocks. Here, again, policy none in obs demonstrated

a higher success rate at the expense of a more significant block displacement.

At the end, we examined the impact of the parameter λ on the success rate and block

displacements. As discussed in Section 3.2.2, we added the last term in the reward

function to facilitate policies that could pick the goal block without disturbing the tower.

We observed that by increasing λ, we made training harder, which was reflected in the

diminishing success rates. At the same time, the effect on block displacement was

minimal. For example, in case of all in obs, the success rate dropped by 33%, and the

block displacement decreased by 12%. The results can be found in Table 3.5.

Finally, it worth to note that all the policies moved the tower to some extent. This

can be attributed to the fact that there was no sufficient geometry information in our

observation spaces because we only decoded the centre of mass coordinated and orien-

tations. We will continue the construction of observation spaces in Chapter 4, where we

concentrate on visual observations.

3.5.3 Summary

The state space of a real-world environment can be unknown or instance-dependent. In

these cases, it is useful to frame the environment on a POMDP instead of an MDP. It

allows us to devise a more general instance-independent set of observations that can be

used in a broad range of tasks.

However, it can be a daunting task to construct a suitable observation space because it

usually requires domain-dependent knowledge. For example, we demonstrated that the

policy constructed by excluding all the surrounding blocks, the number of which could

vary, showed marginal results in generalising to untrained tower’s heights. At the same

time, the policy trained with the sensing sphere as an observation space showed better

results in the same task.

https://youtu.be/ZSRC-DHV8sg
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Exp Name λ Success Rate Policy Execution Trace Block Displacement Displ in successful runs

pick 3 on 3
none in obs 0 0.9280± 1.22% 5.0420± 1.53% 1.3521± 1.96% 1.3430± 2.03%
all in obs 0 0.9475± 1.03% 4.7490± 4.02% 1.1409± 2.86% 1.1724± 2.79%
sens 0 0.9940± 0.34% 4.3355± 1.70% 0.9912± 3.42% 0.9894± 3.44%
sens, no gr 0 0.9835± 0.57% 9.2715± 2.17% 0.8409± 4.10% 0.8373± 4.16%

none in obs 1/36 0.9440± 1.07% 3.9535± 0.48% 1.2387± 2.52% 1.2234± 2.63%
all in obs 1/36 0.9150± 1.33% 9.4805± 3.93% 1.0337± 3.21% 1.1005± 3.03%

none in obs 1/25 0.4025± 5.34% 3.1970± 9.11% 0.9162± 3.44% 0.8642± 6.41%
all in obs 1/25 0.6450± 3.26% 6.6755± 8.20% 0.8426± 4.00% 0.9022± 4.62%
sens 1/25 0.8910± 1.54% 4.1590± 2.17% 1.0501± 3.26% 1.0447± 3.47%

none in obs 1/16 0.4515± 4.83% 2.0190± 1.85% 0.7417± 4.02% 0.5884± 8.46%
all in obs 1/16 0.6385± 3.30% 5.7895± 8.62% 1.0017± 3.51% 1.0118± 4.13%

pick 3 on 2
none in obs 0 0.8020± 2.18% 4.9175± 1.54% 1.0264± 2.18% 0.9953± 2.43%
sens 0 0.8295± 1.99% 12.4740± 3.83% 0.2832± 6.96% 0.3031± 7.29%
sens, no gr 0 0.8905± 1.54% 13.1715± 3.46% 0.4061± 6.03% 0.4252± 6.14%

sens 1/25 0.7165± 2.76% 14.1890± 0.60% 0.5665± 4.01% 0.5957± 4.73%

Table 3.5: The experimental results measuring the impact of λ in the reward function.
The task is to pick a goal block adjacent to a tower. In this experiment, we treated a
trial as successful if the agent had picked the block regardless the state of the tower.
The block displacement represents the mean distance that the surrounding blocks have
been moved during the execution of a policy. The displacement in successful runs is
the block displacement measured in successful runs. The experiment names represent
different observation spaces. The notations are: none in obs - no blocks in observations;
all in obs - all the blocks in observations; sens - a sensing sphere; no gr – no gripper
coordinates in the observations. The notation pick 3 on x means that we trained a

policy using a 3-block tower and tested using an x-block tower.

However, this approach has several limitations. Due to the nature of the observation

space, the sensing sphere cannot be easily transferred to another problem. Also, it does

not fully capture the geometry to the problem. Moreover, it can be a daunting task to

hard-code geometry into the observation space in a way that this space can be applied

to different problems. Therefore, it can be beneficial to use visual observations instead

of hand-crafted features, which is our goal in Chapter 4.



Chapter 4

Learning from Visual

Observations

Hand-crafted reward functions are common in Reinforcement Learning. However, be-

cause a reward designed for one task usually cannot be applied to another, the algo-

rithms cannot be general enough to be transferred to another problem. Thus, it can be

expedient to auto-generate rewards from visual observations, which are universal.

We can construct an auto-generated reward if the distance between visual observations

can be measured. For this purpose, we can use raw pixels, but such an observation

space does not reflect the structure of the hidden state space. On the other hand, we

can compress images to their latent representations, which can be used as feature vectors.

In this chapter, we propose a new domain-independent, auto-generated reward function,

assessing state-similarity to the goal state. However, the correct distance between two

latent representations requires regularisation that can preserve the spatial structure of

an environment, which we introduce in this chapter. Additionally, we show that our

regularisation can work in a variety of environments, where we concentrate our efforts

on learning working policies using our auto-generated reward function.

42
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4.1 Introduction

As discussed in Chapter 3, designing a proper observation space can be a daunting task.

Therefore, it would be advantageous to deduce feature vectors from visual observations.

For this purpose, we can use raw pixels, but such an observation space does not reflect

the structure of the hidden state space. On the other hand, we can compress images to

their latent representations, which can be used as feature vectors.

Additionally, in the state of the art, visual observations are usually made by one camera.

However, in manipulation problems, the agent usually operates in three dimensions,

which cannot be properly captured by one camera. In such cases, it can be possible to

extract more useful features if we use two cameras. However, it can bring unexpected

irregularities into the latent space; thus, it can impede the quality of feature vectors.

On the other hand, hand-crafted reward functions are common in the state of the art

(Section 1.2). Defining a reward function for each task can be problematic and usually

requires domain-specific knowledge. Therefore, auto-generated rewards can facilitate

the generality of learning algorithms.

In this chapter, we propose a new domain-independent, auto-generated reward function,

measuring state-similarity to the goal state. In Section 4.2, we use a Variational Au-

toencoder (VAE) to map images to latent space, where a similarity metric is defined.

However, the correct similarity distance between two latent states requires regularisa-

tion that can preserve spatial directions of a real environment, which is not the case

for the vanilla regularisation. Thus, we propose a new regularisation in Section 4.3.

Additionally, we show that our regularisation can work with visual observations from

two cameras.

Finally, we refine our training framework in Section 4.4 and show that an RL agent

can learn meaningful policies using the proposed reward. To show the generality of our

method, we apply the same regularisation to a new environment, defined in Section 4.4.2.
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4.2 State-Similarity Reward Function

It can be problematic to define a hand-crafted reward function for each task because

it usually requires domain-specific knowledge. Therefore, to facilitate the generality of

learning algorithms, it can be beneficial to use auto-generated rewards.

In practice, we can define a domain-independent reward function R(st, sg), measuring

proximity to the goal state sg, if the distance between two states st, sg can be measured.

That is,

R(st, sg) = −d(st, sg). (4.1)

For example, in a game of the 15-puzzle, such a distance can be the number of misplaced

tiles.

However, in practical planning problems, we do not usually have direct information

about the structure of the state space S due to its complexity. The agent often operates

within an observation space Ω that is made from visual observations to be universal.

Although the feature vectors can be constructed from a camera’s raw pixels by measuring

their intensity, it is unclear how to define the distance between such two feature vectors.

Fortunately, we can use a VAE to learn a distribution p(z|o) mapping raw images to a

latent space Z ∈ Rn, hoping that the latent representation will reflect the structure of

the state space. That is, neighbouring states in the state space should be close in the

latent space as well.

In this case, we can define a new domain-independent reward function based on a dis-

tance to the goal state as

R(ot, og) = −d(ot, og) ≈ −d(zt, zg)
∣∣∣
z∼p(z|o)

= −
∣∣∣∣∣∣zt − zg∣∣∣∣∣∣2 , (4.2)

where zt, zg ∈ Z are drawn from the distribution p(z|o) and ot, og ∈ Ω.

The approximation holds if and only if the latent representation Z reflects the structure

of the state space S. That is, if the triangle inequality

d(zi, zj) < d(zi, zk) + d(zk, zj)
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is true for any feature vectors zi, zj , zk sampled from the observations oi, oj , ok of states

si, sj , sk such that

d(si, sj) < d(si, sk) + d(sk, sj).

Unfortunately, it is not the case for the VAE’s vanilla regularisation because its latent

space Z is approximated as a normal distributionN (0, I) by KL-divergenceDKL

(
qθx(z) || N (0, I)

)
.

Moreover, the vanilla VAE treats each observation independently; thus, the spatial or-

ganisation of feature vectors is not rigorously defined and can be arbitrary. Therefore,

in the next section, we introduce a new regularisation in which the triangle inequality

holds at least locally.

4.3 Action Regularisation

We assume that each time step, a learning environment, defined as a POMDP with a

tuple (S,A, T,R,Ω, O), generates a set of visual observations o ∈ Ω after receiving an

action a ∈ A. Thus, each training episode can be represented as a trajectory τ with

horizon H ∈ N such that

τ = {o0, a0, o1, ..., ot−1, at−1, ot, ..., oH}. (4.3)

Such trajectories contain spatial information about the structure of the state space S.

That is, when the agent moves to a new state, the state-transition function s′ = T (s, a),

connecting old and new states, depends on action a. For example, in Figure 4.1, the

actions (LEFT, UP, RIGHT) and (RIGHT, UP, LEFT) will bring the agent to the same

state. Thus, the state space S can be ordered in a way that neighbouring states can be

reached in a single action. That is, the farther the physical distance to a state, the more

actions are needed to reach it. Thus, the triangle inequality holds in such spaces.

However, it can be challenging to deduce such a structure for 3D spaces from visual

observations, where each observation is a 2D projection. If we obtain a latent space Z

employing a VAE with the vanilla regularisation, the space Z will be ordered arbitrarily,

especially if more than one image or sensor contributes to the observations. Thus, we

need a yardstick to regularise the latent space. We suggest employing latent actions in

a way similar to how we used the actions to represent the state space above.
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Figure 4.1: An example of a state space S (to the right) modelling the environment
to the left, where the further the physical distance to a state (a circle), the further

distance in the environment.

Suppose, we have a function g : A −→ H mapping actions a ∈ A ⊂ Rm to their latent

representations h ∈ H ⊆ Z. To keep the spatial structure of the latent space Z ⊂ Rn

close to the one of the state space S, we additionally require that the angles between

two action vectors ai, aj be preserved in the latent action space H, which is possible if

it is bigger or equal to the action space A, i.e. m < n. For example, if we want to

go left in the environment, we have to reserve a direction in the latent space, and this

direction has to be orthogonal to the direction of up and down. Mathematically, it can

be achieved by cosine similarity such as

ai · aj
||ai||·||aj ||

=
hi · hj
||hi||·||hj ||

. (4.4)

The function g can be learned using a VAE if the loss function is modified. We keep

the original reconstruction error as in Section 2.3.2, but we propose a new regularisation

term to keep the angles between ai, aj and hi, hj . Instead of KL-divergence, we minimise

an absolute difference between cosine similarities. Thus, a loss function Lact(φ) is

(4.5)Lact(φ) = arg min
φ

(
Eh∼qa(h)

[∣∣∣∣∣∣a− gφ(h)
∣∣∣∣∣∣2]+

∑
i,j∈A

∣∣∣ ai · aj
||ai||·||aj ||

− hi · hj
||hi||·||hj ||

∣∣∣) .

After training the VAE, if the dimensionality of H is equal to the dimensionality of Z,

we can use vectors h to preserve directions in the latent space Z. As our objective is

to preserve the original directions of the state space S in the latent space Z, we train a

second VAE with the loss function L(θ) such that

(4.6)L(θ) = arg min
θ

(
Ez∼qx(z),h∼qa(h)

[∣∣∣∣∣∣x− fθ(z)∣∣∣∣∣∣2 +
∣∣∣∣∣∣zt − (zt−1 + ht−1)

∣∣∣∣∣∣2]) ,
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where h ∼ gφ(a) is trained with Lact(φ). The regularisation term in Equation 4.6

guaranties that the next latent state zt ∼ fθ(st) obtained after applying an action

ht−1 ∼ gφ(at−1) is in the same direction as the original state st.

Later, in Section 4.5, we test the observation space with the action regularisation in the

Kuka and Reacher environments, which we define in following Section 4.4.

4.4 Framework Formulation

We extend the Kuka environment in Section 4.4.1, and, additionally, we introduce a new

Reacher environment in Section 4.4.2.

4.4.1 Kuka

First, we extend a Kuka manipulator framework, defined in Section 3.2, to accommodate

visual observations instead of hand-crafted feature vectors, used in Chapter 3. We keep

the action space A and the state space S the same as in Section 3.2. However, as a

reward function R, we use the state-similarity reward, discussed in Section 4.2.

Additionally, we introduce a new task in which the agent has to achieve the goal state

that is given as a set of images. All other aspects of the environment are kept the same

as in Section 3.2.

4.4.1.1 Observation Space

Further, we define a new observation space Ω accommodating visual observations. In

contrast to common practice, the Kuka environment generates two images each time

step t, simulating two cameras. The virtual cameras are located perpendicular to each

other facing at x− z and y− z planes. An example of a visual observation can be found

in Figure 4.2. Each image has the height and width of 128 pixels and 3 colour channels.

Before mapping them to a latent space Z, we normalise each pixel to have intensity

between 0 and 1 and combine two images together by their colour channels. That is,

each visual observation o has 128 x 128 x 6 dimensions, i.e. R128×128×6.
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Figure 4.2: An example of a visual observation obtained from two cameras. Each
image has the height and width of 128 pixels and 3 colour channels.

Figure 4.3: An example of a visual observation for the Reacher environment. Each
image has the height and width of 128 pixels and 3 colour channels.

Finally, the observations are mapped into the latent space Z ⊂ R256, from which feature

vectors z ∈ Z are drawn. We sample them from a distribution p(z|o) learned using a

VAE with either the vanilla or action regularisation. In our experiment, we used the

vanilla regularisation as a baseline.

To show that the same algorithm can be applied to a variety of problems, we define the

second environment in following Section 4.4.2. Additionally, we would like to note that

although we assume that all images have a constant size, the images of different sizes

can be easily resized without loss of generality.

4.4.2 Reacher

We modified Reacher environment [9], an instance-invariant, continuous control problem.

Originally, the agent’s goal was to reach a ball, controlling the angles of two joints.

However, we introduce a new task in which the agents goal is to reach a configuration

that is given as an image. An example of a goal state can be found in Figure 4.3.
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In this environment, the manipulator, comprised of two joints, has two degrees of free-

dom. The configuration space is instance-independent and contains the angles of both

of the joints α, β. Thus, the configuration space is a Cartesian product of all possible

configurations of

χ = α× β ∈ R2 . (4.7)

Additionally, there are no friction nor inertia in the environment.

We frame the environment on a POMDP with a tuple (S,A, T,R,Ω, O), where an initial

state sinit ∈ S and a goal state sgoal ∈ S are assigned on each trial. The state space S

is instance-invariant and equal to the manipulator’s configuration space. Similar to the

Kuka environment, we use a state-similarity reward as a reward function R. Also, time

is discretised in the same manner as in the Kuka environment.

The action space A contains one action a = ω1 × ω2 ∈ R2 , where the agent can apply

the angular velocities (shifts), ωi ∈ Ωi ⊂ R, for both of the joints i ∈ 1, 2. Then, the

next time step t + 1, the manipulator will move to the state with the configuration

χt+1 = (αt + ω1)× (βt + ω2). Thus, the action space A is a union of all possible actions

such that A = {ω1 × ω2 | ∀ω1, ω2 ∈ R}.

Concerning the observation space Ω, our goal is to show that the same algorithm can

be applied to a variety of problem. Thus, we use the same technique as in the Kuka

environment (Section 4.4.1.1) to obtain feature vectors from visual observations. The

only notable difference is that the Reacher environment generates a single image for each

time step. That is, each visual observation has the height and width of 128 pixels and 3

colour channels, i.e. R128×128×3. All other aspects of the environment are kept the same

as in Section 2.1.

In following Section 4.5, we used these environments to examine the performance of

the hand-crafted and the state-similarity reward functions in the Kuka and Reacher

environments.

4.5 Experimental Results

Our goal was to learn policies that can reach a specified goal state when the state-

similarity reward and visual observations were used. More broadly, our goal was to
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show that the same problem setup was general enough to be applied to a variety of

problems. Bearing that in mind, we tested our algorithm in the Kuka and Reacher

environments.

We chose a new task in which the agent had to reach a goal state, given as a set of

images, which was generated at the beginning of each trial. We used these images in

the state-similarity reward function R(ot, og), defined in Section 4.2. However, because

we utilised the same off-the-shelf PPO implementation as in Section 3.5.1, which cannot

learn a goal-conditioned policy, only one goal state was used on each trial. For PPO, we

kept the hyperparameters the same as in Section 3.5.1.

As a baseline, we used pairs of:

1. The latent space with the vanilla regularisation and the hand-crafted reward func-

tion R(st, sg). We labelled it as vanilla, hand-crafted.

2. The latent space with the vanilla regularisation and the state-similarity reward

function R(ot, og). We labelled it as vanilla, state-similarity.

All the latent spaces had 256 dimensions, i.e. Z ⊂ R256. The hand-crafted reward

R(st, sg) was defined as a distance to the goal in the state space S (Equation 4.1). For

this purpose, we used the same hand-crafted state space (no blocks in observations) as it

was in Section 3.3.2.1 because it is instance-invariant. Thus, mathematically, the state

space was a Cartesian product of all possible configurations of

Xgoal × χgr ∈ R3+7 .

We used two parameters to evaluate each policy over 200 trials:

• Initial distance – the mean distance from the initial states to the goal state,

which was measured in the latent space. We defined it as a ball with a radius r,

which we varied in the experiments.

• Final distance – the mean final distance to the goal state, which was measured

in the latent space as well. Because we organised the latent space in a way the

neighbouring states in the state space are close in the latent space as well, the

smaller the distance, the better policy convergence to the goal.



Learning from Visual Observations 51

All the policies were trained on a c5.9xlarge1 cloud instance with 36 vCPUs from

AWS Cloud Computing Services. To train the VAEs with both the vanilla and action

regularisation, we used a p3.2xlarge2 cloud instance with one Tesla V100 GPU and

8 vCPUs. All the policies were tested on MacBook Pro’s Intel Core i5 that had 4 cores

and 8 threads.

4.5.1 Performance Evaluation

In this section, we present empirical results comparing the performance of the state-

similarity reward function with action-regularised latent space (action, state-similarity)

to the baseline in the Kuka and Reacher environments. As the baseline, we used the

latent space with the vanilla regularisation with either the hand-crafted reward (vanilla,

hand-crafted) or the state-similarity reward (vanilla, state-similarity).

First, we visually studied the VAE’s reconstruction errors, shown in Figure 4.4. That is,

we encoded visual observations into the latent space and decoded them back. For the

Kuka environment, the VAEs were trained by varying blocks’ coordinates and the num-

ber of blocks. In both of the environments, we observed that the VAE with the action

regularisation reconstructed cleaner images, which can be seen in Figure 4.4. We at-

tribute this to the fact that the action regularised latent space had a better organisation,

preserving more information.

Next, we examined the structure of our latent spaces. For this purpose, their dimen-

sionalities were reduced from 256 to 3, which was achieved by using an off-the-shelf

t-SNE algorithm [52]. To better understand the spatial structure, we chose the same

initial state, from which all possible unit actions were taken five times in succession.

For example, in the Reacher environment, the action space had two dimensions, where

the actions represented the velocities of the joints. Thus, we consequently applied one

of the actions (1, 0), (−1, 0), (0, 1), (0,−1) five times. The same steps were taken in the

Kuka environment, but there were four possible unit actions instead. The results can

be found in Figure 4.5, where we additionally colour-coded the initial state and each

distinct unit action.

1https://aws.amazon.com/ec2/instance-types/c5/
2https://aws.amazon.com/ec2/instance-types/p3/

https://aws.amazon.com/ec2/instance-types/c5/
https://aws.amazon.com/ec2/instance-types/p3/
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Figure 4.4: A visual representation of the VAE’s reconstruction errors. The first row
demonstrates the original observations. The second row shows the observations decoded
from the latent space of the vanilla VAE. The third row demonstrates the observations
decoded from the latent space of the action-regularised VAE. For Reacher’s latent space,
the manipulator’s position may vary. For Kuka’s latent space, the number of blue blocks

and their coordinated, as well as the gripper’s position, may vary.

We observed that, for the action regularisation, the consecutive actions were located

closer to each other and formed straight lines, which is desirable behaviour, required for

the state-similarity reward function. On the other hand, for the vanilla regularisation,

the actions were spanned across the entire latent space with several states between them.

Next, we learned policies using both of the latent states. We chose a task in which the

agent had to reach a goal state, given as a set of images. The cumulative rewards can

be found in Figure 4.6, along with their training times in Table 4.1. However, because

the rewards were auto-generated from different latent spaces, they are not on the same

scale; thus, they cannot be properly compared. Also, we could not learn a working

policy for vanilla, state-similarity because the vanilla latent space could not be used

in the state-similarity reward as it was discussed in Section 4.2. Therefore, the policy

vanilla, state-similarity was excluded from all further tests.

Finally, we analysed the policy performance by measuring the policy convergence to the

goal state, measured in the latent space Z. Primary, we compared the policy behaviours

varying the initial distance to the goal state in the state space S. In the Kuka environ-

ment, it was achieved by moving the gripper a distance of r-blocks along an arbitrary
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Figure 4.5: A visual representation of the vanilla and action regularised latent spaces.
The spaces are reduced from 256 dimensions by t-SNE, where the colours represent

distinct unit actions. The blue dots are the same initial state.

Figure 4.6: The cumulative reward for the
Kuka and Reacher environments

Exp Name Training Time

Kuka
vanilla, hand-crafted 1h 25m 44s
vanilla, state-similarity 1h 24m 52s
action, state-similarity 1h 10m 19s

Reacher
vanilla, state-similarity 1h 23m 06s
action, state-similarity 1h 25m 57s

Table 4.1: Training times.
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Initial Distance Initial Distance Final Distance

Kuka
Vanilla, hand-crafted

1 bl 5.4433± 0.0087 13.9479± 0.194
2 bl 9.3228± 0.0231 13.8247± 0.1894
4 bl 11.9968± 0.0482 13.9264± 0.2001
5 bl 10.8223± 0.0755 13.7759± 0.186

Action, state-similarity
1 bl 2.2731± 0.0076 1.0240± 0.0521
2 bl 3.8930± 0.0106 1.0638± 0.0536
4 bl 5.4525± 0.0169 1.1039± 0.0495
5 bl 5.5911± 0.0593 1.1809± 0.0602

Reacher
Action, state-similarity

30◦ 3.1514± 0.0424 0.1612± 0.0091
80◦ 3.4921± 0.0560 0.4325± 0.1119

100◦ 3.4881± 0.0321 1.3341± 0.1736
120◦ 3.2542± 0.0616 1.7583± 0.1657
160◦ 3.4453± 0.0605 2.3935± 0.1044

Table 4.2: The policy performance. In the first column, the mean initial distance is
measured in blocks for Kuka and in angles for Reacher. In the last two columns, the

distances are measured in the latent space.

direction. To have some intuition, we chose to measure the distance in blocks because

there is no unit of length in the Kuka environment.

We varied the initial distance r from one to five blocks, where the radius of five blocks

represented the physical boundaries of the environment. The results are presented in

Table 4.2. Increasing the distance r in the state space, we observed a consistent growth

of the initial distances, measured in the latent space. However, in contrast to the

vanilla, hand-crafted, the action, sate-similarity policy converged to the goal state. This

difference in final distance can be seen in Figure 4.7, where we presented two examples

of policy execution for the ball radius of four blocks.

In the Reacher environment, we varied the angle of the manipulator’s bottom joint.

More precisely, we varied the difference in the angles between the goal state and the

initial state. In this case, the environment had a physical boundary of 180 degrees. In

this task, our goal was to show that the same technique could be applied to a variety

of problems. Thus, we learned policies only for the vanilla, state-similarity and the

action, state-similarity, but the former policy did not converge; thus, it was excluded.

The results are presented at the bottom of Table 4.2.



Learning from Visual Observations 55

Figure 4.7: An example of policy execution for the latent space with the action
regularisation and the state-similarity reward function (at the top), and the latent space
with the vanilla regularisation and the hand-crafted reward function (at the bottom).
The final state is the last state of the trial. The policy were executed for the ball radius

of four blocks.

In this test, we observed that the action, state-similarity policy reached the goal state

only when the difference in the angle of the first joint between the initial state and the

goal state was less than 90◦. This could be explained with the fact that each move to

the goal decreased the latent distance; thus, the reward was positive. However, for the

ball radius greater than 90◦, initial moves decreased the reward, which led the agent to

the local maximum. It was the case because the closest path was through the centre of

the board, which is an illegal action and violates our assumption that the neighbouring

states must be reachable with a single action. It is also reflected in the initial distance

that stopped growing after the ball radius of 90◦. We further illustrate this idea in

Figure 4.8.
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Figure 4.8: An example of policy execution for the latent space with the action
regularisation and the state-similarity reward function. (A) - the angle of the bottom
joint differs less that 90◦ from the goal state. (B) - the angle of the bottom joint differs

more that 90◦ from the goal state.

4.5.2 Summary

It can be expedient to auto-generate rewards for a variety of problems measuring the

distance between visual observations. However, in this case, the observations should be

compressed into their latent representations reflecting the structure of the state space.

For this purpose, a VAE can be used if its latent space is properly regularised.

We showed that the VAE’s vanilla regularisation does not hold the triangle inequality;

thus, it cannot be used in the state-similarity reward. Therefore, we could not learn a

working policy using this latent space. However, it was possible to learn a policy if the

action regularisation was used. Additionally, we showed that the same technique could

be applied to the Reacher environment.

However, our method has a limitation. The environment must not violate the assumption

that the neighbouring states in the latent space are reachable with a single action.

Otherwise, the policy can converge to a local maximum.
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Conclusion

In this chapter, we summarise the contribution we made in this thesis. Additionally, we

outline possible future work.

5.1 Summary of the Thesis

Picking and placing arbitrary objects in open, unknown environments or under uncon-

trolled conditions is still an open challenge in robotics. Although there is significant

progress in learning end-to-end policies in continuous control tasks using Reinforcement

Learning, the research community usually focuses on highly constrained, isolated tasks in

a controlled environment. Thus, their policies cannot be readily transferred to another,

although similar, problem or to another environment. However, it is also important to

focus on the robot’s ability to handle a variety of tasks or operate in a range of situations,

i.e. to focus on generalisation.

In this thesis, we focus on two research questions, which we addressed in two chapters.

In Chapter 3, we aimed to explicitly construct an observation space that can be used for

learning policies when the number of elements in the state space can vary. Particularly,

our goal was to learn end-to-end policies for picking and placing objects when the number

of objects can vary. We were interested in policies that can work with the number of

objects that are not used in training. More broadly, we were interested in examining

the connection between the policy’s generalisation ability and its observation space.
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We showed that it is useful to frame the environment on a POMDP instead of an

MDP when the state space of a real-world environment can be unknown or instance-

dependent. In this case, it allowed us to devise a more general instance-independent set

of observations that were used in a broad range of tasks.

We demonstrated that the policy trained with the sensing sphere as observation space

had better results in the Pick and Place tasks. At the same time, the policy trained with

the space constructed by excluding all the surrounding blocks showed marginal results

in generalising to the towers of different heights.

In Chapter 4, we aimed to generate the latent space from visual observations using

a VAE. We were interested in the latent space that reflected the spatial structure of

the hidden state space, from which visual observations were taken. In contrast to cur-

rent practice, we used visual observations taken from two cameras instead of one. The

cameras were placed perpendicular to each other.

Additionally, we used the latent space to construct a goal-conditioned reward function.

Particularly, we focused on learning polices using visual observations and our goal-

conditioned reward. More broadly, our goal was to show that the same problem setup

is general enough to be applied to a variety of problems.

We showed that it is possible to auto-generate rewards for a variety of problems measur-

ing the distance between visual observations in the latent space. However, in this case,

the latent space should have the structure reflecting the spatial structure of the state

space to be used in the state-similarity reward.

We showed that the VAE’s vanilla regularisation does not hold the triangle inequality;

thus, it cannot be used in the state-similarity reward. However, it was possible to learn

a policy if the action regularisation was used. Additionally, we showed that the same

technique could be applied to the Reacher environment.

5.2 Future Work

In our study, we addressed several problems focusing on constructing hand-crafted fea-

tures and latent spaces from visual observations. However, there are still many problems

to be solved.
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In Chapter 3, our approach had several limitations. Due to the nature of the observation

space, the sensing sphere cannot be easily transferred to another problem. Also, it does

not fully capture the geometry to the problem. Therefore, a future line of work can be

to design a better observation space.

Another line of work can be the learning algorithm. The vanilla PPO does not have a

goal-conditioned policy. Thus, we had to include the goal state into the observation.

It imposed a layer of complexity because PPO had to disentangle the goal state from

the observations. It would be beneficial to study the performance of the proposed

observation spaces while using goal-conditioned policies as in [12], [20].

In Chapter 4, our method also had a limitation. Constructing the action regularised

latent space, we assumed that the neighbouring states in the latent space were reachable

with a single action. This assumption was violated in the Reacher environment, which

led the policy to converge to a local maximum on some trials. Therefore, a possible

future work can be to search for a better regularisation, which can work in the Reacher

environment.

Additionally, the properties of the regularised latent space could be studied further. For

example, an estimate of the degree by which the triangle inequality is preserved is still

an open question.

Finally, as a possible line of work, the proposed learning framework can be tested on a

real robot using real cameras.

As a final word, we like to stress that this thesis focused on problems of the robot’s

ability to generalise. We hope our work can provide a starting point for researchers

interested in this area and motivate them to search further.
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