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The rapid advancement of artificial intelligence, exemplified by systems such as AlphaGo

and large language models, has great potential to contribute to the development of

human-like intelligence. However, fundamental differences exist between the underlying

mechanisms of these systems and those of biological organisms. For instance, humans

can achieve impressive performance with limited data and computing resources, while

existing algorithms often require significant amounts of data and computing power for

real-time operations. One of the reasons for this disparity is the human ability to

plan in a model-based sense, making computational models that can capture human

planning behavior valuable to bridge the gap between existing AI systems and human-

like intelligence.

This thesis explores the effectiveness of planning algorithms in modeling human behavior.

Existing literature often overlooks timing information, and I develop a novel tree-based

model that aims to capture both human action selection and human reaction times. The

thesis also introduces a timing-sensitive goal recognition framework that incorporates

timing information, and uses this framework to model human goal inference. My findings

indicate that a Bayesian framework that incorporates a prior based on goal difficulty and

a likelihood derived from an online planner accurately predicts human goal inference.

This thesis underscores the promise of planning algorithms in mimicking human behavior

and their utility in human-robot collaborations. More generally, it suggests that planning

algorithms have an important role to play in advancing human-like intelligence.
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Chapter 1

Introduction

Imagine a scenario where a robot collaborates with a human worker in a warehouse

environment. Together, their objective is to pick items from shelves and carefully place

them into designated containers for shipping. Now, consider a situation where the robot

must decide which item to pick next, taking into account specific order requirements

and packaging constraints. To execute this task effectively, the robot must grasp the

human worker’s intentions, preferences, and reasoning, enabling it to provide valuable

assistance.

If the robot does not understand the human worker and just follows a predetermined

set of rules, it may make incorrect assumptions that do not align with the human’s

goals, which might lead to inefficiencies, errors, and frustration for both the robot and

the human [1]. For example, the robot might choose an item that the human worker

had intentionally skipped because it was damaged, resulting in wasted time and re-

sources. However, if the robot can comprehend the human worker’s decision-making

process by taking into account factors such as the human’s actions, body language, ver-

bal instructions, thinking time or past behaviors, it can adapt its actions to support and

complement the human’s intentions. In this case, the robot might recognize that the

human worker skipped a particular item due to damage and choose an alternative, sav-

ing time and ensuring accurate order fulfillment. As this example suggests, by having a

better understanding of humans in complex environments, robots can effectively collabo-

rate with humans, enhance their capabilities, and provide valuable assistance, ultimately

improving the overall efficiency and productivity of human-robot collaboration [1, 2].

1
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Figure 1.1: David Vogt. A human working together with a robotic arm. Accessed
11 November 2023, https://research.engineering.asu.edu/exploring-new-frontiers-in-

human-robot-collaborations

This particular example can be seen as an instance of goal recognition, where the observer

infers the goal of the actor based on observed behavior. The goal recognition problem can

be considered as one application of Theory of Mind in cognitive science (CogSci), which

refers to the ability to attribute mental states—–such as beliefs, desires, intentions, and

emotions-to others in order to understand and predict behavior [3, 4]. Meanwhile, certain

researchers argue that goal inference may not inherently employ Theory of Mind [5–

7], suggesting that inferences could be drawn without a direct mental representation

of the actor. While this perspective introduces an interesting alternative for further

exploration, this thesis does not discuss the controversy extensively. Instead, my research

will be based on the assumption that Theory of Mind plays a role in the process of

goal recognition, following prior work on Plan recognition as Planning [8] and Bayesian

Theory of Mind [9] streams within the literature. This assumption is especially likely to

be valid when goal inference is conducted on complex tasks. Therefore, the thesis will

focus on goal recognition within sequential decision-making tasks that likely necessitate

explicit reasoning. I will discuss the opposite perspective (i.e. reflexive reasoning) with

more details in Chapter 6.
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Figure 1.2: TA self-driving Cruise robotaxi inconveniencing pedestrians at a cross-
roads in San Francisco in 2019. Andrej Sokolow. Accessed 11 November 2023,

https://spectrum.ieee.org/self-driving-cars-2662494269

In the field of AI, current research on human-agent interaction focuses on improving

human understanding of algorithms and models through explanations, known as Ex-

plainable AI [10]. However, the reciprocal aspect, wherein algorithms comprehend the

internal mechanisms of human behavior and decision-making processes to enhance the

effectiveness of the AI system, often receives less attention within the community [11].

Model reconciliation [12, 13] and transparent planning [14] represent two efforts in this

direction, although they proceed with assumed human models and without the valida-

tion of human experiments. Nonetheless, considering precise human mental models is

crucial in complex environments, not only empowering agents to autonomously fine-tune

their behavior and enhance support, but also inspiring the development of more efficient

algorithms since humans continue to outperform agents in numerous scenarios [15]. This

approach holds particular significance in two kinds of goal recognition scenarios. Firstly,

when the actor is human and the observer is an AI agent, the agent should factor in

human considerations to enhance its inference of the human actor’s goals. For instance,

in Figure 1.1, the robotic arm can offer more efficient and targeted assistance by under-

standing human intentions. Secondly, in situations involving a human observer and an
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AI actor, the AI actor should account for how humans conduct goal inference, adapting

its behavior to effectively convey its intentions to humans in collaborative settings. As

shown in Figure 1.2, pedestrians may experience frustration if the self-driving car does

not communicate its intentions in a manner that is easily understood by humans.

Integrating human factors into AI systems within the context of human-agent interaction

involves a three-step approach [16]. First, the design and execution of human experi-

ments are essential to gather behavioral data within a defined domain and task. Second,

this collected data serves as the foundation for developing an algorithm that emulates

human decision-making in complex environments—a so-called ‘human-like model.’ This

algorithm operates at an abstract level, encapsulating the core principles of human deci-

sion processes. Finally, the human-like algorithm is harnessed to enhance the efficiency

and performance of the AI systems.

While I employ planning techniques to develop domain-general algorithms, this does not

imply that a unified single planner can encompass all scenarios. As discussed in Chapter

6, different scenarios may require adjustments to parameters or the use of alternative

components within planners. In the first two chapters, I highlight our aim to avoid

relying on specific knowledge about solving particular types of problems. Instead, we

focus on modeling legal transitions that represent broader principles or strategies of

human problem-solving. This is a key reason for employing planning techniques in our

study. Meanwhile, I also acknowledge the importance of incorporating individual or

condition-specific factors during the modelling, as presented in Chapter 3, 4 and 5.

1.1 Research Contribution

This thesis will consider two primary topics: planning and goal recognition, with the

actor or observer being either a human or an agent, as illustrated in 1.1. The ultimate

goal of this line of work is to support human-agent interactions by furnishing agents

with user-friendly, human-like algorithms. Additionally, I will introduce a framework

for integrating these algorithms into goal recognition tasks in scenarios involving human

participants.

The field of artificial intelligence has seen limited efforts in generating human-like re-

sponses rather than optimal responses. This task presents additional challenges due to
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Actor
Human Agent

Domain: Planning

• Chapters 3&5 • Chapters 3&4

Domain: Goal
Recognition

Human

— • Chapters 4&5

Observer

Agent

• Chapters 4&5 • Chapter 4

Table 1.1: The topics addressed in Chapters 3, 4, and 5. In Chapter 3, I explore human
planning behavior and assess the capacity of planning models to simulate it. Chapter
4 centers on goal recognition scenarios, encompassing interactions between human and
agent actors. Chapter 5 focuses on the computational mechanisms of human goal
recognition, while also examining the performance of planning models when confronted

with unsolvable goals.

the inherent variability and instability in human responses across multiple levels. Firstly,

individual differences contribute to distinct responses among different individuals. Sec-

ondly, the same person may exhibit different responses based on changes in their internal

state, such as increased experience or cognitive resources. Furthermore, even when an

individual retains a consistent internal state, variations persist, emphasizing the dy-

namic nature of experiences and decisions. As a result, predicting individual responses

with certainty becomes challenging, if not impossible. However, it is feasible to describe

human responses through population-level probabilistic distributions, indicating typical

behavior for a given scenario [17]. When addressing sequential decision-making tasks,

generating human-like responses becomes even more challenging. The complexity of the

problem’s state space and transition function impedes learning from the perspective of

a human decision-maker. Moreover, the intricate causal relationships among sequences

of behaviors further complicate the task [18]. In this thesis, I will concentrate on do-

mains involving sequential decision-making, also known as problem solving in the field

of CogSci.

In addition, existing computational models of human sequential decision making, either

in the AI or CogSci communities, have primarily focused on the actions themselves,
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disregarding the significance of reaction time. Nonetheless, the accessibility of timing

information in the real world makes it an invaluable asset for building computational

models, as response times can be easily captured and measured. Moreover, when con-

sidering goal recognition algorithms, timing information can significantly enhance their

accuracy (as discussed in Chapter 4), providing additional contextual cues that sharpen

the inferences of an actor’s goals. Last but not least, Incorporating timing information

allows goal recognition algorithms to better align with human intuition and behavior,

resulting in more relatable and human-like inferences [19].

In light of this, my thesis aims to develop a human-like sequential decision making model

by capturing both the actions and the reaction times. Through considering timing as

a key variable, the model aspires to mirror the cognitive mechanism of how people

make decisions, offering a more comprehensive and authentic representation of human

behavior. This innovative step stands to refine our approach to intelligent system design,

ensuring that such systems are better equipped to interact with humans in a manner

that feels more natural and effective.

I begin by evaluating planning algorithms to determine their effectiveness in predict-

ing human responses within sequential decision-making contexts, covering both action

selection and reaction time. Following this assessment, I use the best-performing al-

gorithm to develop models of goal recognition, with the aim of enhancing AI observer

performance. This assessment involves conducting synthetic experiments using an AI

actor on goal recognition benchmarks, as well as human experiments involving human

actors. Finally, my investigation extends to scenarios involving unsolvable goals, which

pose unique challenges for AI observers. Within this context, I explore the factors that

influence human goal inference and develop a Bayesian model of human goal recognition

behavior.

1.1.1 Research Questions

This thesis addresses the following research questions, which serve as the foundation for

my work.

RQ1: Which algorithm is most suitable for emulating human responses (both action

selection and response times) in sequential decision-making tasks?
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RQ2: How can a human-like planning algorithm be leveraged to enhance the perfor-

mance of methods for goal recognition?

RQ3: How do humans carry out goal inference, and can this inference be captured

within a Bayesian framework?

1.2 Applying a Human-like Problem Solving Model to the

Tower of London Task

To address RQ1, I adopt the automated planning approach [20, 21], specifically using

automated planning algorithms to model human behavior in the Tower of London task.

Several reasons support my choice of the automated planning approach over learning

approaches or computational models in CogSci. Firstly, the automated planning ap-

proach shares similarities with the General Problem Solver (GPS) proposed by Newell

and Simon [22]. It offers greater explainability compared to learning approaches and

contributes to a better understanding of consciously planning processes in the human

mind [15]. Secondly, researchers have endeavored to create models that generalize across

various domains, such as cognitive architectures in cognitive science and approaches like

transfer learning in AI. Despite these efforts, such models often still rely on some degree

of domain-specific knowledge or rules [23–25]. In contrast, the automated planning ap-

proach is designed to be domain-independent. This aligns with a key characteristic of

human problem-solving, where individuals can typically perform well without explicit

training or precise knowledge about the task at hand [26]. Lastly, automated planning

algorithms offer flexibility in integrating various findings from Cognitive Science. For

example, learning effects can be modeled as the development of more accurate heuristic

functions [27], while the trade-off between accuracy and speed can be modeled as the

depth of the search tree [28]. Overall, the adoption of the automated planning approach

provides a robust framework for exploring human behavior in sequential decision-making

tasks and enables the incorporation of relevant insights from both CogSci and AI.

1.2.1 Tower of London Task

I selected the Tower of London task (see Figure 1.3) as the focus domain for studying hu-

man problem-solving due to two primary reasons. Firstly, while numerous researchers are
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Figure 1.3: Tower of London task. (a) A problem instance that requires two moves
to transition from the start state to the goal state. (b) A problem instance requiring
five moves. (c) Start Hierarchy is a structural parameter that classifies each instance
as unambiguous (all balls on one peg), partially ambiguous or completely ambiguous
(all balls on different pegs). The “ambiguity” refers to the initial action: unambiguous
actions allow only one action, but completely ambiguous instances allow 4 possible

actions.

increasingly directing their attention towards non-deterministic or partially observable

environment tasks, my work aligns with the Newell and Simon tradition, which investi-

gates insights from human performance on deterministic, fully observable tasks, such as

Tower of London. The task shares similarities with the well-known Tower of Hanoi task,

and both tasks have been extensively studied by psychologists [29–33]. Moreover, the

Tower of London task bears resemblance to the classic planning domain Blockwords [34],

making it an ideal domain for leveraging knowledge from both the psychological and

planning communities.

In addition, the Tower of London task specifically requires participants to engage in

explicit reasoning rather than relying on reflexive behavior [15] and individuals often

demonstrate the ability to solve this task successfully, even when they are new to it

[35]. This characteristic highlights the task’s suitability for examining human problem-

solving capabilities and the cognitive processes involved in tackling complex reasoning
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challenges.

Figure 1.3a shows an instance of the TOL task. The board shown has pegs that can

hold 1, 2 and 3 balls respectively from left to right. Participants are given the board

in some initial state, then asked to move balls from peg to peg until the board matches

some specified goal state. The participant can move the topmost ball from each peg

to another peg, and needs to ensure that the move does not violate the maximum

capacity of any peg. The instance in Figure 1.3a can be solved in just two moves, but

the shortest solution of the instance in Figure 1.3b involves five moves. The previous

literature has identified several key features within the TOL task that influence human

performance [29, 36]. For example, figure 1.3c illustrates the concept of Start Hierarchy,

which is one of the structural parameters analyzed by Berg et al. [36].

1.3 Using a Human-Like Planning Algorithm for Goal Recog-

nition

RQ2 builds upon the human-like planning algorithm developed in the previous question.

Existing approaches in goal recognition often assume actor rationality [37, 38], which

does not hold true for human behavior. Additionally, most goal recognition algorithms

consider only actions as observations, overlooking the important aspect of timing. I

overcome both limitations by building on the human-like model developed in addressing

RQ1. I propose an extended framework that incorporates both action and timing,

and I construct a timing goal recognition dataset based on an existing goal recognition

benchmark [39].

Furthermore, I develop a goal recognition algorithm using the human-like planning al-

gorithm. To evaluate its effectiveness, I conduct experiments on both synthetic datasets

spanning 10 different domains and human experiments using the Sokoban domain. The

results demonstrate that my algorithm outperforms existing approaches in capturing

human behaviors, while also exhibiting similarities to human goal inference. This pro-

vides evidence of the algorithm’s superiority in modeling and understanding human

decision-making processes.

Regarding RQ3, my research centers on the challenge of recognizing goals when faced

with unsolvable scenarios, a problem that existing goal recognition algorithms struggle
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to address. To explore how humans address this challenge, I develop a set of goal-

recognition experiments involving unsolvable goals. In parallel, I evaluate a Bayesian

framework as a model of human goal inference, leading to the development of a goal

recognition algorithm designed to mimic human inference and handle unsolvable goals.

My research goes beyond just actions, adding new dimensions to the Bayesian The-

ory of Mind and establishing the correlation between human problem solving and goal

recognition performance.

1.3.1 Sokoban Task

As part of my investigation in cognitive problem-solving and human-agent interactions

for RQ2 and RQ3, we turn our attention to the Sokoban task as shown in Figure 1.4,

a classic puzzle game originating from Japan. This game has been widely studied and

serves as a benchmark domain in the field of artificial intelligence [40]. In Sokoban, the

player assumes the role of a warehouse worker who must strategically maneuver crates

to their designated storage locations within a confined warehouse. The game presents a

complex set of challenges that require logical reasoning, planning, and spatial awareness.

The objective of Sokoban is to successfully push all the crates onto the target locations

while avoiding obstacles and creating blockades that may render the puzzle unsolvable.

The game mechanics impose strict constraints on the movement of both the player and

the crates, adding an extra layer of intricacy to the puzzle-solving process.

Sokoban puzzles are characterized by their increasing levels of difficulty, ranging from

simple introductory stages to highly complex configurations that demand advanced

problem-solving skills [40]. The game’s popularity stems from its ability to engage play-

ers in critical thinking, strategic planning, and pattern recognition, making it an ideal

domain for studying various aspects of cognitive processes and algorithmic approaches

[41, 42].

In the academic community, Sokoban has been extensively used to evaluate the perfor-

mance of intelligent systems, including automated planning algorithms [37, 39], heuris-

tic search techniques [40, 43], and machine learning models [44, 45]. Researchers have

leveraged Sokoban’s well-defined problem space and clear success criteria to assess the

effectiveness of novel algorithms and methodologies in the domain of puzzle solving.
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Figure 1.4: A Sokoban instance. In the problem solving task, the worker needs to
the crates to the target location (marked in red). In the goal recognition task, multiple
potential locations (in red and green) are shown, requiring the observer to infer which

is the real target location the worker is aiming for.

In the context of human goal recognition experiments, Sokoban task offer a convenient

framework for manipulating and presenting different configurations of goal positions.

This flexibility enables us to systematically investigate and analyze human goal recog-

nition abilities in a controlled experimental setting. In order to streamline my analysis

and maintain an appropriate level of difficulty for human observers, I deliberately limit

my investigation to Sokoban tasks featuring a single crate. This approach ensures that

the task remains accessible and comprehensible while enabling us to extract meaningful

insights into human goal inference processes.

1.4 Thesis Outline

The subsequent sections of this thesis are structured as follows. Chapter 2 provides

an extensive review of relevant literature, encompassing previous work on Theory of
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Mind, Goal Recognition, Human Problem Solving Models etc. This chapter culminates

with a brief discussion on how these collective findings contribute to the construction

of the human-like problem-solving model and goal recognition algorithm. By critically

examining and synthesizing existing research, I establish a comprehensive foundation

for the subsequent chapters of this thesis.

Chapter 3 presents novel human-like planning algorithm, which directly addresses the

first research question (RQ1). The chapter explores the model’s design choices, and

explains its underlying architecture and mechanisms. Furthermore, an empirical eval-

uation is conducted to assess the performance of the proposed algorithm on the Tower

of London (TOL) task, comparing it against existing algorithms. The results obtained

highlight the effectiveness and superiority of the introduced algorithm in achieving more

accurate and human-like problem-solving capabilities. This work previously appeared

at the 44th Annual Meeting of the Cognitive Science Society (CogSci23).

Chapter 4 presents a framework for goal recognition with timing information, which

leverages the proposed human-like planning algorithm (RQ2). This chapter outlines the

integration of the algorithm into the goal recognition task, showcasing its effectiveness

and advantages. To validate its performance, extensive experiments are conducted using

synthetic datasets as well as human behavioral data on the Sokoban task. The results

demonstrate the superior performance of the algorithm in accurately recognizing goals,

both in synthetic scenarios and when applied to human behavior. This chapter illustrate

how the human-like model can be used to enhance the goal recognition capabilities

of AI agents. This work has been published in the 33rd International Conference on

Automated Planning and Scheduling (ICAPS23).

Chapter 5 continues the exploration from Chapter 4, where I look closely at human

goal inference with unsolvable goals in the Sokoban task. In this chapter, I aim to

understand the challenges posed by these situations and how humans handle unsolvable

goals. I also explore a Bayesian goal recognition framework in depth and create a

goal recognition algorithm that mimics how humans infer goals in dynamic and complex

environments(RQ3). This work has been accepted by the 23rd International Conference

on Autonomous Agents and Multi-agent Systems (AAMAS24).

Chapter 6 discusses potential future directions in the field. This chapter explore the

possibilities of integrating deep learning approaches into the domain, highlighting other
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important challenges that remained unsolved within this thesis, such as working memory

mechanism and human goal recognition mechanism. In Chapter 7, the thesis concludes

with a summary of the contributions made in the realm of human-like AI and human-

agent collaboration. This chapter provides a comprehensive overview of the key findings

and advancements achieved throughout the thesis, arguing for the significance of the

work in advancing our understanding of human behavior and enhancing interactions

between humans and intelligent agents.



Chapter 2

Background

Problem solving and goal/intent recognition are both important activities in our daily

life and there is a large literature spanning multiple disciplines on both topics. This

chapter aims to provide an overview of how the AI community and the cognitive science

community approach these topics from different perspectives.

The chapter is divided into two main sections: problem solving and goal recognition. In

the problem-solving part, I begin by providing an overview of human problem-solving

behavior and associated computational models. I then examine how the AI community

represents and models problems. Next, I introduce relevant planning algorithms used

in automated planning to solve these problems. Finally, I briefly introduce the primary

domains typically studied in problem-solving research. In the goal recognition section,

I will first discuss work on Theory of Mind and other investigations related to how

humans understand others. I then discuss AI research in this area, including categorizing

various goal recognition approaches. The discussion end with a detailed exploration of

the model-based approach.

2.1 Problem Solving

Problem solving is a term with various definitions. It can refer to cognitive processing

directed at a goal when the solution method is not initially known [46]. It can also mean

engaging in a task for which the solution method is not known in advance [47].

14
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In many scenarios, particularly in the realm of artificial intelligence and operations

research, problem solving extends beyond finding a single response. Instead, it requires

identifying a sequence of actions or observations to achieve a desired goal. Classic

puzzles like the 8-queen problem exemplify this form of sequential decision-making.

In this puzzle, one needs to place eight queens on an 8x8 chessboard such that no

two queens threaten each other. Deciding where to place each queen is a sequence of

decisions, and each decision influences the subsequent choices. It is worth noting that

there are various approaches to solve this type of puzzle, and not all of them rely strictly

on sequential decision-making. Some algorithmic solutions might employ backtracking,

genetic algorithms, or other combinatorial techniques. However, in this thesis, I will

focus on problem-solving as finding the solution to a well-defined problem as a sequential

decision making task.

In academia, problem solving or sequential decision making is considered as a hallmark of

intelligent behavior, and efforts to develop problem solving agents have been pursued by

both AI researchers [48] and cognitive scientists [49] since the development of the Logic

Theorist in 1956, a theorem prover sometimes described as the first AI program [50].

These two communities, however, focus on different themes: psychologists are interested

in the cognitive processes behind human problem solving, and AI researchers focus on

developing efficient algorithms that generate optimal or approximately optimal solutions.

2.1.1 Computational Models for Human Problem Solving

Researchers have looked at how humans tackle a variety of challenges, from puzzles

like the Tower of Hanoi [51] to more complex problems like the Travelling Salesman

Problem [52]. While many models have been created to mimic how humans behave

in these tasks, these models are often specific to one task and don’t work as well for

others. Interestingly, humans seem to quickly understand and make good decisions in

new situations or games after just learning the rules. This suggests that humans might

use general strategies that work across many tasks, instead of needing specific strategies

for each one [53, 54]. The General Problem Solver (GPS) was one of the first attempts

to model human problem-solving in a domain-general manner, laying the foundation for

numerous subsequent cognitive models. [22]. At its core, the GPS operates via means-

ends analysis. It starts by comparing the current state with the desired goal state and
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then identifies differences between the two. The system then selects an operator or

action that can reduce this difference. If the selected action cannot be directly applied,

the system sets a sub-goal to create conditions that enable the action. This process

of setting sub-goals continues recursively until the system can apply an action directly.

Throughout this iterative process, the GPS continually makes decisions about which

differences to focus on and which operators to apply, navigating its way from the initial

state to the goal state.

Later, several general cognitive architectures like BDI [55], SOAR [56] and ACT-R [57]

were developed. These architectures are intended to capture various human cognitive

mechanism, including problem solving, attention, memory etc. However, for a specific

task, they usually include some domain-specific production rules.

SOAR is a cognitive architecture designed to mimic general intelligence and human

cognition across a wide range of tasks. In the context of problem-solving, SOAR employs

a decision-making process called the recognize-decide-act cycle. Initially, the system

perceives its environment and forms internal symbolic representations. When faced

with a problem, SOAR first attempts to retrieve a relevant solution from its memory.

If a past solution isn’t available or doesn’t fit the current problem, the system enters a

problem-solving mode. In this mode, SOAR generates and tests various hypotheses or

strategies using chunking, a mechanism to store new knowledge. This iterative process

of hypothesis generation and testing continues until a viable solution is found. Once

the solution is identified, SOAR acts upon it and stores this new knowledge for future

reference. The system’s ability to learn from past experiences and adapt its strategies is

a core feature that allows it to tackle a diverse array of problems, though it does often

rely on domain-specific knowledge to enhance its performance, especially in hypothesis

or strategies generation stage.

Over the past two decades, significant advancements have been made in modeling hu-

man domain-general problem solving behaviors, drawing from diverse computational

approaches. One of the most notable advancements in modeling human problem-solving

behaviors comes from the realm of artificial intelligence (AI) and machine learning.

A key method in this area uses tree search algorithms to simulate human decision-

making [58, 59]. Tree search involves expanding a tree of possibilities, where each node

represents a state, and the edges between nodes depict actions or transitions from one
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state to another. Starting from an initial state (root of the tree), the algorithm ex-

plores potential actions and their outcomes, branching out to form a tree structure.

As the tree expands, decision-making relies on evaluating the desirability of states, of-

ten guided by heuristics or domain knowledge. A more sophisticated approach, Monte

Carlo Tree Search (MCTS), employs random sampling combined with traditional tree

search [60, 61]. The ultimate goal of tree search is to find a path through the tree, from

the initial state to a goal state, that represents a solution to the problem at hand. These

methods mirror the way humans might mentally map out the consequences of their ac-

tions when faced with complex challenges. Their efficacy becomes especially evident in

constrained environments, such as board games, where they have managed not only to

match but surpass human expertise in some instances [62].

Another paradigm known as resource-rational analysis has been gathering attention in

the cognitive science community [63–65]. This framework presents a fresh perspective

on human decision making and problem solving by assuming that human cognition is

adept at deploying its limited computational resources in an optimal manner. At its

heart, resource-rational analysis suggests that humans make decisions by strategically

allocating their cognitive resources, weighing the computational cost against the poten-

tial benefit of a decision. This often results in heuristics or ”shortcuts” that might not

always yield the perfect solution, but provide a satisfactory outcome with less cognitive

effort. The idea is not to always find the best solution, but to find the most efficient one

given the cognitive constraints. By adopting this framework, researchers aim to uncover

the underlying mechanisms by which humans navigate complex tasks. This framework

offers explanations for why certain seemingly suboptimal behaviors might actually be

the result of a finely tuned balance between effort and reward, and underscores the

adaptability and efficiency of human cognition in a wide range of scenarios.

Probabilistic inference is also one well-known approach to model human problem solving

in cognitive science. The application of probabilistic inference methods has also opened

avenues to model how humans naturally handle uncertainty, predict future events, and

generalize from sparse data [33, 66, 67]. Probabilistic models propose that human cog-

nition functions in a Bayesian manner, where the brain integrates prior knowledge with

incoming evidence to update beliefs and make informed decisions. Essentially, these

models consider the brain as a probability calculator, continuously updating its beliefs

about the world based on the evidence it encounters. When faced with uncertainty,
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humans weigh the likelihood of various outcomes based on prior experiences and current

observations. This probabilistic approach to cognition can be observed in various cog-

nitive tasks, from simple perceptual judgments to complex problem-solving scenarios.

It provides a mathematical framework for understanding how humans predict future

events, make sense of ambiguous situations, and even learn from minimal data. More-

over, it helps explain the flexibility and adaptability of human thinking, allowing us to

adjust our beliefs and strategies in the face of changing evidence.

2.1.2 Model-based Problem Solving Agents

Like domain-general and domain-specific problem solving models in cognitive research,

in the field of AI, a critical distinction also exists between model-free and model-based

problem solving agents. Model-free methods, as the name suggests, operate without a

concrete model of the environment. These methods learn purely from trial and error,

leveraging experiences and interactions to determine the best actions, often without a

comprehensive understanding of the environment’s dynamics. In contrast, model-based

approaches come equipped with a structured model of the environment. Such models

act as blueprints, detailing how actions impact the world, which enables more reasoned,

systematic exploration and planning.

Recent progress in AI has seen a strong preference for the model-free approach. Well-

recognized systems, such as AlphaGo [68], mainly rely on reinforcement learning tech-

niques [69, 70]. However, these methodologies are not without limitations. Notably,

there is a clear difference between how model-free systems work and how humans nat-

urally solve problems. Firstly, these AI systems need large amounts of data and a lot

of computing power to either come close to or surpass human skills [70]. In addition,

the ’black box’ aspect of deep learning also raises questions, especially when we think

about using these systems in vital areas like healthcare or self-driving cars [25, 71].

Furthermore, these algorithms struggle to deal with novel scenarios [72].

Nowadays, as the AI community leans more towards enhancing human-computer inter-

action and ensuring system interpretability [73, 74], adopting model-based methods to

simulate human behavior might be a step in the right direction [70, 75]. The model-based

approach, especially automated planning and search algorithms, stand out due to their
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domain-independent nature as human problem solving. To be specific, automated plan-

ning uses general search algorithms and possibly domain independent heuristic functions,

much like how humans often approach new challenges using broad strategies instead of

narrow, specific knowledge. In addition, unlike deep learning systems, which can be

complex and need a lot of resources, model-based methods aim for clarity and wider

applicability.

2.1.3 Markov Decision Process

Before I move to the agents used to solve the problem, the environment in which agents

run should be considered first, especially for the model-based approach.

In the realm of problem-solving tasks, there exist various potential representations, such

as Constraint Satisfaction Problems and Finite Automata. However, the Markov Deci-

sion Process (MDP) emerges as a central framework within the model-based approach

for sequential decision-making problems [76]. The MDP offers a rigorous mathematical

structure for scenarios where decision sequences intertwine with both stochastic out-

comes and a decision-maker’s control. Within this framework, it becomes feasible to

identify an optimal policy, which dictates the best action or decision for each state to

maximize a cumulative reward over a given timeframe.

While MDPs are a popular and widely used representation, several other formalisms

and extensions can be used based on the specific characteristics of the environment and

problem [77]:

• Partially Observable Markov Decision Process (POMDP) [78]: When the

agent cannot fully observe the state of the environment, a POMDP can be used. It

incorporates a belief state which represents a probability distribution over possible

states the system might be in.

• Semi-Markov Decision Process (SMDP) [77]: This is an extension of MDP

where the time between transitions is not necessarily one time step, but a random

variable with a certain distribution. It is useful when actions might take varying

amounts of time to complete.
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• Decentralized Markov Decision Process (Dec-POMDP) [79]: Used when

there are multiple agents making decisions, and the environment is partially ob-

servable.

• Hierarchical Markov Decision Process (HMDP) [80]: These are used when

the decision-making problem can be decomposed hierarchically, with high-level

decisions guiding lower-level ones.

For simplicity, my work considers only environments that are both fully observable and

deterministic. Within this context, an MDP can be equivalently referred to as a classical

model. Formally, a classical model is denoted as ⟨S, s0, SG, A, a(s), f, c⟩, where:

• State Space S is a finite set of discrete states.

• s0 is the designated initial state, and is a member of S.

• SG represents the set of goal states, which is a subset of S.

• The Action Space A is a finite set that encompasses all possible actions. The

applicability function is defined as fa : s→ 2A, where 2A denotes the power set of

A, and a(s) ⊆ A. This function specifies which actions can be validly applied to a

given state s.

• f : S × A → S is the state transition function. For a given state s and an action

a, it determines the subsequent state s′.

• c : S ×A→ R defines the cost function. When an agent executes action a ∈ A in

state s ∈ S, it incurs a cost c(s, a).

Here I show how I model the Sokoban task with one box shown in Figure 1.4 using this

formulation:

• State Space (S):

S = {< boxloc, agentloc > | boxloc ∈ Grid, agentloc ∈ Grid}

where boxloc represents the location of the box on the grid and agentloc repre-

sents the player’s position. The set Grid contains all possible grid locations (e.g.

loc1, loc2, ...) as propositions.
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• Initial State s0:

s0 =< boxinitialloc , agentinitialloc >

This state corresponds to the initial configuration of the Sokoban puzzle.

• Goal Set SG:

SG = {< boxloc, agentloc > | boxloc = target, agentloc ∈ Grid}

A state s is a goal state if the boxloc is located on the predefined location target

in the grid.

• Action Space (A):

A = {move up,move down, · · · push up,push down, · · · }

.

• Applicability function (fa): A move action is applicable if the player’s adjacent

cell in the direction of the move is empty (i.e., not occupied by a wall or a box).

A push action is applicable if there is a box in the adjacent cell in the direction of

the push, and the cell beyond the box is empty.

• Transition Function (f):

f : S ×A→ S

For instance, if the current state is s =< boxloc, agentloc > and the action is

move up, the new state s′ would be < boxloc, agent
up
loc > where agentuploc is the

location one unit above agentloc on the grid.

• Cost Function (c):

c : S ×A→ R

c(s, a) = 1 for any combination of state s and available action a of that state.

2.1.4 Planning Domain Definition Language (PDDL)

Up to this point, we have presented the model using mathematical formulations. How-

ever, when it comes to implementing and running search algorithms, a more descriptive
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and structured representation is beneficial. For this purpose, we use the Planning Do-

main Definition Language (PDDL) [81, 82]. PDDL serves as the standard language for

expressing planning problems within the automated planning community. Introduced

during the International Planning Competition in the late 1990s, PDDL was developed

to provide a common and unambiguous format for specifying planning domains and

problems. The language is primarily declarative, focusing on describing states, actions,

and their effects. Each problem in PDDL is defined in terms of an initial state, a set

of goals, and a domain that lists possible actions along with their preconditions and ef-

fects. This structured format facilitates comparisons of different planning algorithms, as

they can all operate on the same problem descriptions. Additionally, PDDL has evolved

over the years, with extensions supporting temporal planning, preferences, and other

advanced features, making it a good tool for a wide range of planning scenarios.

In PDDL formulation, the basic element is the predicate. States in the planning problem

are described as a set of predicates, which convey the conditions or properties that are

true in that particular state. Actions, on the other hand, are defined in terms of their

preconditions and effects. Preconditions specify the necessary predicates that must hold

true for the action to be applicable. The effects of an action outline how the set of

predicates (i.e., the state) changes upon the execution of that action. Essentially, the

effects represent the transition function by indicating which predicates become true and

which become false post-action. This framework provides a declarative way to specify

the structure of the problem domain, allowing the planner to generate a sequence of

actions (a plan) that transitions the system from an initial state to a desired goal state,

with the goal itself being defined as another set of predicates that need to be satisfied.

In the Sokoban example, beyond just using predicates to signify the agent’s and the

box’s locations, it’s essential to incorporate predicates that capture adjacency between

locations. In our grounded version of Sokoban, each grid location is given a distinct

identifier—like loc1, loc2, loc3, and so on. The relationship of adjacency between

grid locations can be expressed using the predicate (adjacent ?x ?y), where ?x and

?y are variables representing location propositions. The possible values for ?x and ?y

are limited to identifiers within the set of defined locations, ensuring that adjacency is

only established between valid neighboring points on the grid. This predicate holds true

if ?x is directly adjacent to ?y.



Chapter 2 Background 23

In our initial setup, predicates like (at-agent loc1) and (at-box loc2) can be used

to suggest that the agent begins at loc1 and the box at loc2.

When modeling actions, instead of using directions like “up” or “down”, actions are

defined in a more general manner by enumerating all feasible movements or pushes from

one location to another. Furthermore, to accurately model the impact of actions, it

would be beneficial to differentiate between movements that do not involve pushing the

box and those do push. For instance, an action might be denoted as (move-push ?a ?b

?c), where the agent moves from location ?a to ?b, pushes the box from ?b to ?c, with

the conditions that ?a is adjacent to ?b, ?b is adjacent to ?c, and all three locations,

?a, ?b, and ?c, lie on a straight line. Preconditions for this action would require the

agent to be at ?a, the box at ?b, and ?c to be vacant. Once executed, the agent’s new

position is ?b, and the box is shifted to ?c.

The goal can specify a certain location for the box, such as (at-box loc3). This means

that the puzzle is solved once the box reaches loc3.

After expressing the Sokoban tasks in this PDDL format, planning algorithms can craft

a sequence of moves for the agent to successfully position the box at the target location,

while following Sokoban ’s rules and constraints. The complete PDDL files for the

problem shown in Figure 1.4 (red target) are provided in the Appendix.

2.1.5 Automated Planning

Automated planning represents a core area in artificial intelligence, focusing on the gen-

eration of sequences of actions that transition a system from an initial state to a desired

goal state. The General Problem Solver (GPS) can be viewed as an early conceptual pre-

cursor to automated planning algorithms, laying foundational ideas for computational

problem-solving that have since evolved into more sophisticated and diverse planning

techniques. As model-based approaches, these algorithms (also known as search algo-

rithms), equipped with techniques to efficiently navigate vast solution spaces, bridge the

gap between high-level objectives and low-level actions. A prominent characteristic of

modern planning algorithms is their ability to leverage domain-general heuristics, which

are often automatically derived from problem representations (e.g. classical model pre-

sented in section 2.1.3) using relaxations [20]. Such an approach not only enhances
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the planner’s efficiency but also holds the potential to inspire novel models of human

problem solving, adaptable across a diverse range of challenges without problem-specific

strategies.

Classical Planners

Classical planners are designed for deterministic and fully observable tasks. Two classic

search algorithms, breadth-first search and depth-first search, constitute the most basic

blind classical planners. Blind classical planners have no information about which state

is closer to the goal, and hence the order in which they explore the space of solutions

is independent of the goal. By contrast, AI researchers have focused on planning as

heuristic search. A heuristic planner usually consists of two components, a search algo-

rithm and a heuristic function derived automatically from the symbolic description of

the problem [83]. Since the late 90s, heuristic planning has been the dominant approach

to solving deterministic tasks [21, 84, 85]. The latest state-of-the-art planners also in-

clude pruning techniques such as helpful actions [84] and novelty pruning [86] in order

to reduce the size of the search.

Online Planners

When dealing with complex tasks with limited reasoning time, it is sometimes imprac-

tical to find a full plan. Online planners are proposed to deal with this scenario. These

planners excel in dynamic situations by iteratively determining the most suitable im-

mediate action rather than attempting to devise a complete plan from the initial state.

Situated planning falls within this category, emphasizing an agent’s adaptive responses

to real-time environmental feedback and its own impact within that environment. This

approach is especially relevant when agents must not only respond to the environment

but also maintain a continuous interaction with it, aligning the planning process with

the immediate and evolving context of the task at hand [87]. A prominent approach

to online planning is Monte Carlo Tree Search (MCTS), which has achieved striking

success at playing Go [60]. These planners have also been explored as tree search based

model of human problem solving in cognitive research [59, 61].
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Temporal Planners

Temporal planning extends the scope of classical planning by introducing timing consid-

erations for actions [88, 89]. In this paradigm, actions have durations, can be executed

concurrently, and are subjected to temporal constraints regarding their start and end

times. This allows for richer, parallelized sequences of actions that adhere to complex

timing requirements. Challenges in temporal planning include optimizing for various

metrics such as makespan (i.e. total amount of time taken to complete a sequence

of tasks), resource usage, or energy consumption. Temporal planners and algorithms,

like Simple Temporal Networks (STNs) [88], Forward-chaining partial-order planning

(POPF) [90], and Temporal Fast Downward [91], have been developed to handle such

complexities.

2.1.6 Domains for problem solving

In the context of problem solving, a domain refers to the set of conditions, rules, entities,

and actions that define a particular problem space. For instance, in chess, the domain

encompasses the board, the specific pieces, their legal moves, and the objective of check-

mating the opponent’s king. In automated planning and problem-solving, specifying

the domain is crucial because it provides the framework and boundaries within which

solutions are sought. By cleanly defining a domain, one can isolate the intrinsic chal-

lenges and complexities of the problem, allowing both humans and machines to apply

general or domain-specific strategies to find solutions. Furthermore, clear domain defini-

tions enable the reusability of planning algorithms across multiple problems that share

similar domain characteristics, thereby emphasizing the strength of domain-independent

planning approaches. In this section, I provide an overview of some well-known domains

in the field, highlighting their advantages and limitations.

Navigation Tasks

Navigation tasks serve as a prototypical example of problem-solving domains [40, 41, 92–

95]. In these tasks, an agent is typically placed in an environment and must find the

most efficient or safest path to a specified destination. Environments can range from

simple 2D grids, where the agent moves between adjacent cells, to more complex 3D



Chapter 2 Background 26

terrains with varying elevations and obstacles. The challenges in navigation tasks arise

from factors such as dynamic obstacles, limited visibility, or even adversaries that the

agent might encounter. For example, a robot in a warehouse might have to find the

quickest route to retrieve an item while avoiding moving equipment and other robots.

Or, in a video game setting, a player character might need to navigate a maze while

evading enemies.

Navigation tasks come in various forms, each introducing unique complexities and chal-

lenges. One classic variant is the Sokoban puzzle we modelled previously, which origi-

nated in Japan. In Sokoban, the player must push boxes onto designated target locations

within a confined space. The key is that boxes can only be pushed and not pulled, de-

manding careful planning to ensure that none become trapped against walls or corners.

The task combines spatial reasoning with intricate problem-solving, making it a popular

benchmark in both AI research and cognitive studies [40, 41, 92].

Another widely studied navigation-related problem is the Travelling Salesman Problem

(TSP). Unlike the grid-based environment of Sokoban, TSP involves finding the shortest

possible route that visits a set of cities and returns to the origin city. While it sounds

straightforward, the TSP is a combinatorial problem that grows exponentially with the

number of cities, making it computationally challenging. Its significance stems from its

applicability in logistics, transportation, and even DNA sequencing [93–95].

Navigation tasks are valued for their intuitive appeal and their direct relevance to prac-

tical situations, notably in fields like autonomous driving and robotic path planning [96].

In addition, the extensive understanding of these tasks provides a solid foundation for

new research, allowing for quicker advancements and more refined methodologies. Yet,

they come with certain constraints when modelling human behavior on these domains

with automated planning algorithms. A primary one is the tendency of individuals to

lean heavily on visual indicators, often bypassing the need for forward search or reason-

ing. Consider a navigation task within a video game where the player must find their

way out of a maze. The game is designed with distinct visual markers, such as brightly

colored paths or arrows pointing in certain directions. Players may start relying solely

on these visual cues to navigate through the maze, choosing paths that appear visually

appealing or following the arrows without considering other potential strategies.
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Additionally, the cognitive mapping people employ for tasks like Sokoban, especially

in grid environments, might diverge from standard representations in automated plan-

ning [97]. Instead of merely considering moves to adjacent cells, people might adopt

a more hierarchical approach to understand and solve the problem [98]. Consequently,

algorithms designed to tackle such tasks might incorporate methods like Hierarchical

Task Network (HTN) planning [99].

2.1.6.1 Disc Moving Tasks

Disc-moving tasks, or tasks that involve the strategic movement and placement of discs or

blocks, are also fundamental in studying problem-solving behaviors and strategies [100,

101]. Such tasks usually revolve around rearranging items in specific configurations,

demanding a blend of spatial reasoning, planning, and sequencing.

The Blocksworld is one of the most iconic domains in the annals of artificial intelligence

and cognitive science [34]. In this environment, the player manipulates a set of blocks

on a table to achieve a target configuration, guided by specific rules such as only one

block can be moved at a time, and a block can only be moved if there’s no other block

on top of it. The challenge isn’t merely to reach the goal configuration but to do so

in an optimal or minimal number of moves. The Blocksworld has been used to study

various aspects of reasoning, from causal reasoning to the interplay between perception

and action in problem solving [34].

Another classic disc moving task is the Tower of Hanoi [29, 30, 32, 33, 51, 102]. In this

task, participants are presented with three or more pegs and multiple discs of different

sizes. The objective is to transfer all discs from one peg to another, subject to two

constraints: only one disc can be moved at a time, and a larger disc cannot be placed on

top of a smaller one. The Tower of Hanoi serves as a benchmark for recursive reasoning

since the optimal solution often requires breaking the problem down into sub-problems,

solving each in turn, and then combining the solutions One noteworthy variant of the

Tower of Hanoi is the Tower of London (TOL) task. While both tasks revolve around

disc movement, TOL introduces additional complexities with its flexibility in start and

goal configurations. Instead of a fixed initial setup, TOL often involves varied and ran-

domized ball placements on pegs. Moreover, the pegs in the TOL have different height
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limitations, further complicating the solution strategy. This flexibility not only intensi-

fies the planning required but also makes the Tower of London task a good playground

in cognitive research to assess problem solving strategies [24, 33, 35, 103].

Disc moving tasks like the Blocksworld and the Tower of London are valued for the

structured challenge they present, reflecting fundamental aspects of human problem-

solving [104]. Disc moving tasks present several distinct advantages for problem-solving

research. Firstly, they demand a more concentrated form of explicit reasoning than

navigation tasks [32, 33]. Adjusting the complexity of these tasks is also straightfor-

ward, facilitating varied levels of challenge [32]. Notably, humans’ mental models of

disc moving tasks often mirror the way the AI community represents the problem [33].

Additionally, just like navigation tasks, both the AI and cognitive science communities

have accumulated a lot of knowledge and outcomes in these domains, making future

research and applications more streamlined.

2.1.6.2 Other Tasks

Beyond navigation, and disc moving tasks, the realm of problem-solving stretches into

various other challenges [105]. Shape manipulation tasks stand as another cornerstone in

problem-solving domains. These tasks necessitate the transformation or rearrangement

of geometric or abstract patterns to achieve a specific end state or solve a particular

puzzle. An example is the Tangram puzzle, where players must arrange a set of shapes

to form a specific silhouette or image. These tasks offer a unique vantage point into

visual-spatial reasoning and how individuals deal with the constraints of geometry and

spatial relationships. Another popular shape manipulation problem is the jigsaw puzzle,

where the goal is to interlock varying pieces to construct a complete picture. Such tasks

push individuals to match patterns, colors, and shapes while also keeping the broader

image in mind. This interplay between local pattern recognition and global planning

offers a rich avenue for understanding cognitive strategies and the balance between

detail-oriented and big-picture thinking [106]. Shape manipulation tasks underscore the

depth of human spatial intelligence. Unlike tasks that are predominantly logic-based,

these tasks emphasize intuitive visual processing and the ability to visualize end goals.

Some researchers also use other domains to study problem solving. Logic puzzles, for

instance, often presented in the form of riddles or deductive reasoning games, demand
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abstract thinking and the ability to consider multiple constraints simultaneously. An ex-

ample is the Einstein’s Riddle, also known as Zebra Puzzle, which is a form of constraint

satisfaction problem [107]. Additionally, real-world tasks, like scheduling, resource allo-

cation, or even everyday chores, can be also structured as problem-solving tasks. For

instance, the act of organizing a cluttered room can be viewed as a spatial problem-

solving task, where items must be efficiently placed while considering the available space

and desired organization [108].

These varied tasks provide a snapshot into the diversity of challenges that can be framed

within the problem-solving paradigm. They reinforce the idea that problem-solving is

a widespread human skill, applicable across a multitude of scenarios, both abstract and

concrete.

2.2 Goal Recognition

In the domain of artificial intelligence, goal recognition refers to the process of inferring

the goals or intentions of an agent based on its observed actions or behavior. This task is

often referred as intention recognition, and is closely related to plan recognition, which

involves inferring the agent’s plan by observing its behaviors. Although there can be

subtle differences between the two, such as the same goal leading to different plans, or

the same plan aiming at different goals, these distinctions are minor and not the focus

of my thesis. Therefore, in this thesis I will use goal recognition and plan recognition

interchangeably [109, 110].

Goal recognition is worth studying in AI field as it contributes significantly to the devel-

opment of intelligent systems capable of understanding and predicting human actions.

Its applications are vast and include fields like video surveillance, video games, assistive

care for the elderly, personal assistant agents, and human-robot interaction. Meanwhile,

from the perspective of cognitive science, goal recognition is instrumental in understand-

ing the cognitive mechanisms that underpin our ability to infer intentions, an aspect

fundamental to social interactions. Moreover, the principles derived from human goal

recognition are crucial for developing sophisticated goal recognition algorithms. Studies

on human cognition, especially those related to the Theory of Mind, indicate that indi-

viduals predict behaviors by integrating observations with their knowledge of someone’s
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goals and plans. Applying these human-centric principles to AI systems can enhance

their efficiency and accuracy in predicting goals. The understanding gleaned from the

human cognitive process is also invaluable in overcoming the challenges inherent in

creating such systems, such as navigating uncertainties and adapting to ever-changing

environments

The approaches to goal recognition vary and are often categorized into logic-based ap-

proaches, classical machine learning approaches, deep learning approaches. In the fol-

lowing subsections, I will discuss the mechanisms of human goal recognition and the

logic-based goal recognition algorithms that form the cornerstone of this thesis. Before

that, I will provide a concise overview of learning-based goal recognition algorithms in

the remaining of this section.

Classical machine learning approaches for goal recognition involve training a model on a

labeled dataset of actions and goals. The model can then be used to recognize the goal

of a new action based on its features [111]. These approaches are based on statistical

models that learn from data and can be used to recognize a wide range of goals. They

are relatively easy to implement and can handle large datasets of labeled data. However,

they may struggle with complex relationships between entities and may not generalize

well to new situations. They also require labeled data, which can be time-consuming

and expensive to obtain.

Deep learning approaches are based on artificial neural networks that attempt to mimic

the structure and function of the human brain and both of them can be applied to goal

recognition tasks [112, 113]. In deep learning, artificial neural networks are trained on

large datasets of labeled data to recognize the goal of a new action based on its features.

These networks can handle raw sensor data and learn complex patterns from it, making

them particularly useful for recognizing goals in video or sensor data. For example, a

deep learning approach could be used to recognize the goal of a person walking into

a room based on the features of their gait and the objects they interact with. This

approach is able to adapt to new situations and generalize well to new tasks. However,

they are computationally expensive and lack interpretability.
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2.2.1 Theory of Mind and Human Goal Recognition

One crucial skill humans have is recognizing others’ goals from their actions and the

context in which their actions occur. For example, when observing someone reaching

for a cup, we can infer that their goal is to drink from it based on our knowledge

of the typical sequence of actions involved in drinking from a cup. This skill falls

under the Theory of Mind, enabling us to appreciate the diversity in others’ thoughts

and consider the range of mental states – emotions, desires, intentions, beliefs, and

knowledge – that influence how others and ourselves behave [114]. This understanding

is vital for successful communication, cooperative endeavors, and social engagement.

Children start developing Theory of Mind at an early age [5, 115], indicating that very

young children may be able to recognize that other people can have beliefs or knowledge

distinct from their own. These abilities keep evolving throughout adolescence and well

into adulthood. [116].

Within cognitive science, the study of Theory of Mind is encompassed by social cognition

research, which explores the mechanisms of how we perceive and interact with the social

world. Two primary theories attempt to explain the functioning of Theory of Mind: the

theory-theory and the simulation theory [110]. The theory-theory suggests that people

use a simplified abstract model of minds that is different from their own decision-making

mechanism to make predictions about the behavior of others. In contrast, the simulation

theory proposes that humans use their own mental states to simulate the mental states

of others. According to this theory, humans use their own experiences and emotions to

understand the experiences and emotions of others.

Imagine a child watching their friend reach for an apple. According to the theory-theory,

the child applies a simple theory they have about behavior and motivation – in this

case, the understanding that people usually take an apple because they are hungry or

because they like apples. Thus they infer that their friend is hungry or like apples. This

inference is made independently of child’s own hunger; it is based on their generalized

understanding of behavior, not their immediate physical state. In contrast, according to

simulation theory, the child engages in an empathetic process. They imagine themselves

in their friend’s situation, drawing on personal experiences of hunger or the enjoyment of

eating an apple. However, this doesn’t require the child to currently feel hungry. Instead,

they recall past experiences of hunger to understand their friend’s possible intentions.



Chapter 2 Background 32

By simulating, not replicating, these experiences, the child deduces that their friend is

likely reaching for the apple due to hunger or the anticipation of enjoyment.

Bayesian Theory of Mind

While Theory of Mind is central to research in social cognition, there have been relatively

few efforts to create quantitative models that simulate human Theory of Mind, and even

fewer that accurately reflect the mechanism of human goal recognition processes. The

most prominent approach among their lines is Bayesian Theory of Mind (BTOM) [9,

117]. BToM is based on the principles of Bayesian inference, which is a statistical method

used to update the probability for a hypothesis as more evidence or information becomes

available, and it allows for the incorporation of prior knowledge and the handling of

uncertainty. BToM has been shown to be effective in a variety of domains, including

spatial navigation [98, 117] and social interaction [118].

BToM suggests that people use Bayesian reasoning to infer the intentions of actors.

Observing an actor’s actions, a person holds prior knowledge about the initial probability

of different potential objectives (prior) and considers how likely various intentions are

to produce those actions (likelihood). Then prior and likelihood are integrated, leading

to an updated set of beliefs (posterior) about the actor’s probable objectives.

Applying the BToM framework, let’s analyze the example that a child observes their

friend reaching for an apple and aims to infer the underlying intention. The prior in this

context would be the child’s pre-existing beliefs about why someone might reach for an

apple (objectives). These beliefs could include eating the apple, wanting to make a pie,

etc. The child may assign probabilities to these goals based on their observations and

experiences. For instance, if the child has often seen their friend be hungry, the prior

probability for hunger would be high. The prior probabilities might be P (g1 = ”eat”) =

0.7 and P (g2 = ”makeapie”) = 0.3.

The likelihood involves assessing how probable the observed action (reaching for an

apple) is, given different potential goals. For example, the child sees the friend reach for

an apple (o) and knows that if the friend want to eat an apple, the probability of them

reaching for an apple is high, let’s say P (o|g1) = 0.9. However, if they want to bake
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a pie, the probability of reaching for an apple is lower, perhaps P (o|g2) = 0.5, because

they also need other ingredients.

Using Bayes’ theorem, the child updates their beliefs as follows:

P (g1|o) =
P (o|g1) · P (g1)

P (o)
=

0.9 · 0.7
0.78

= 81%

P (g2|o) =
P (o|g2) · P (g2)

P (o)
=

0.5 · 0.3
0.78

= 19%

where P (o) is the total probability of reaching for an apple, calculated by summing

the likelihood of reaching for an apple under all hypotheses weighted by their prior

probabilities:

P (o) = P (o|g1) · P (g1) + P (o|g2) · P (g2) = 0.9 · 0.7 + 0.5 · 0.3 = 0.78

Therefore, the child will favor the hypothesis with the higher posterior probability. In

this case, it points to the likelihood that the friend is reaching for the apple due to a

desire to eat the apple.

2.2.2 Logic-based Goal Recognition Algorithms

Having explored the Bayesian Theory of Mind, which offers a probabilistic view on un-

derstanding intentions, we now turn our attention to the field of AI and its logic-based

goal recognition algorithms. These algorithms provide a different approach, employing

formal logic to deduce goals from observed actions and contrasting with the Bayesian

model’s statistical inferences. These algorithms use logical frameworks to establish di-

verse relationships among entities, like preconditions, mutual exclusions, or decompo-

sitions. Additionally, these logical relationships permit the systems to produce new

potential plans on the fly, which are then contrasted with real observations.

Two commonly used logic-based approaches are plan library-based algorithms and domain-

theory based algorithms [110]. Algorithms based on plan libraries, also known as plan

recognition as parsing, present plans as a hierarchy of simpler actions. The main task
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becomes aligning the observed actions with these structured plans. Hierarchical task

networks (HTN) and grammars are typical methods for representing knowledge in plan

libraries [119]. HTN outlines tasks using a set of subtasks and their constraints, either

separately or in relation to each other. Meanwhile, grammars describe the structure of

plans through a set of production rules. These algorithms are useful in domains where

the set of possible plans is known in advance, such as in video game AI and robotics.

On the other hand, algorithms based on domain theory, often referred to as plan recog-

nition as planning (PRP), use standard planning algorithms to create potential plans

for the observed agent [37, 39, 120] . These planning algorithms typically depend on

planning languages like STRIPS or PDDL (refer to section 2.1.4), enabling them to

outline the state of the environment and the impacts of applicable actions. They also

use this information to formulate potential plans that could achieve specified goals. The

plan recognition system then assigns weights to these candidate plans based on gathered

observations, and the most likely plan or goal is chosen based on these weights.

In the framework of PRP, a goal recognition problem is defined as follows:

Definition 2.1. A planning domain D = ⟨S, s0, A, f, c⟩ consists of a finite set of discrete

states S, an initial state s0 ∈ S, a finite set of actions A, a state transition function

f : S × A → S that maps a state-action pair (s, a) into another state s′ and a cost

function c : S × A → R which specifies the cost c(s, a) incurred when applying action

a ∈ A on state s ∈ S.

Definition 2.2. A goal recognition problem G = ⟨D,O, SG, prior⟩ is defined within a

planning domain D = ⟨S, s0, A, f, c⟩, where:

• O = {o1, o2, ..., on} is a sequence of observations.

• SG ⊆ S is a set of possible goal states.

The goal recognition task is to infer the most likely goal state g ∈ SG that the agent

intends to reach, given the sequence of observations O and the planning domain D.

For the PDDL files that define the corresponding goal recognition problem shown in

Figure 1.4, please see Appendix.
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Interestingly, given the formulation, PRP also adapt the bayesian framework to solve

the goal recognition problem like BToM. It transforming the inference problem to the

problem that find the goal with highest posterior:

P (gi|O) =
P (O|gi) · P (gi)

P (O)

where:

• P (gi|O) is the posterior probability of goal gi given the observations O.

• P (O|gi) is the likelihood of observing O if gi were the true goal.

• P (gi) is the prior probability of gi, representing our initial belief about the likeli-

hood of gi.

• P (O) is the probability of the observations under all possible goals, computed as:

P (O) =

m∑
j=1

P (O|gj) · P (gj)

The goal with the highest posterior probability P (gi|O) is considered the most likely

goal the actor is trying to achieve.

In PRP, most researchers simply assume the uniform prior [37, 38, 120]. The main

contribution of PRP in contrast to BToM is that PRP provides a logic-based method

(i.e. planning algorithms) to generate and evaluate possible plans an observed agent

might be executing for likelihood estimation. Bayesian reasoning can then be applied

to weigh these candidate plans against observed behaviors, updating the probabilities of

each goal.

In Chapters 4 and 5, I extend the Bayesian Theory of Mind (BToM) and Plan Recogni-

tion as Planning (PRP) methodologies to investigate how factors other than observed ac-

tions affect human goal recognition. I will demonstrate the adaptability of the Bayesian

framework across human and AI contexts and highlight how additional information can

be used to enhance the performance of goal recognition algorithms.
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2.3 Summary

As we conclude this chapter, I have shown that AI and cognitive science share common

themes in their literature. This parallel is not merely coincidental but rather indictive

of the complementary nature of the two disciplines. With the rise of human-robot in-

teraction as a prominent field of study, the need to integrate these disciplines becomes

increasingly crucial and presents a promising frontier for research and application. By

integrating the computational power and algorithmic precision of AI with the deep,

experiential insights of human cognition from cognitive science, it might lead to ad-

vancements for both disciplines.

Within the specific contexts of planning and goal recognition, the interdisciplinary union

offers a robust foundation for developing systems in human-agent interaction scenario.

Such systems can be used to not only mimic human-like problem-solving and goal recog-

nition capabilities, but also understand the underlying cognitive processes, which equips

them to interact with humans more effectively in real world applications. In the sub-

sequent chapters, I will present three distinct projects that contribute to this endeavor,

encompassing computational models for problem solving and goal recognition. These

models incorporate and synthesize insights from both disciplines to offer a more com-

prehensive understanding of these cognitive processes.



Chapter 3

Automated Planning Algorithms

and Human Performance1

3.1 Introduction

In the warehouse setting, human workers need to coordinate a series of actions, such as

deciding which item to pick next and determining the best path to reach the item, in

order to prepare a package for shipment. Modeling human behavior in this context is

essential for agents to comprehend and even predict human actions through simulation.

Cognitive scientists often refer to these types of activities as problem-solving tasks,

while AI researchers commonly classify them as planning tasks. Problem solving or

planning is a hallmark of intelligent behavior, and has been extensively studied by

both AI researchers and cognitive scientists since the development of the Logic Theorist

in 1956, a theorem prover sometimes described as the first AI program [50, 121]. In

subsequent decades, psychologists have studied human performance on a wide range of

problem solving tasks, including water jug problems [122] and the tower of Hanoi [30].

Planned behavior can be distinguished from reflex behavior, similar to the distinctions

regarding goal-directed versus habitual behavior, model-based versus model-free deci-

sion making, and type II versus type I reasoning [15]. Reflex-based approaches do not

consider the outcome of each action or evaluate the utility of these outcomes, which

1This chapter is adapted from the published article: “Comparing AI Planning Algorithms with
Humans on the Tower of London Task.” Proceedings of the Annual Meeting of the Cognitive Science
Society. Vol. 45. No. 45. 2023.

37
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limits their ability to perform well in dynamic situations. Both approaches are used by

humans and animals, and in order to study human planning behavior, it is essential to

choose tasks that cannot be solved through reflexive behavior, forcing participants to

rely on planned behavior to solve the problem.

In this study, I build on an approach to planning that was initially developed by re-

searchers including Newell et al. [104]. I have selected a simple task that is suitable for

laboratory study and is unlikely to be solved through reflexive behavior [15]. For us

the task is the Tower of London (TOL) problem, a variant of the well-known Tower of

Hanoi problem. My goal is to identify a planning algorithm that matches human perfor-

mance on the TOL task, and towards that end I evaluate a set of planning algorithms

including several inspired by state-of-the art approaches in AI. My approach therefore

falls squarely in the tradition established by researchers like Newell and Simon who used

computational models such as the General Problem Solver (GPS) to account for human

performance on tasks like the Tower of Hanoi [30, 104].

The Newell-Simon approach to problem solving arguably reached its pinnacle in the

1970s, and has been pursued less actively from the mid 1990s onwards [123]. There

are at least two reasons, however, why this approach may be worth revisiting. First,

AI researchers have developed new approaches to planning that may help to capture

aspects of human problem solving. For example, from the mid 1990s modern planning

algorithms have relied on domain-general heuristics that can be derived automatically

from a problem representation via relaxations [20]. This approach to deriving heuristics

could potentially lead to new models of human problem solving that can be applied to

broad families of problems without requiring problem-specific strategies.

Second, psychologists have continued to construct new computational models to account

for several aspects of human decision making [58, 124]. A key issue explored in recent

computational modeling work is the tradeoff between time cost and decision quality.

Models exploring this idea build on the idea of bounded rationality [125] and the frame-

work of rational analysis [126]. An agent that makes optimal use of bounded cognitive

resources must decide when to stop the search process and act, and recent work on

metareasoning has explored this stopping problem [127, 128]. Solway and Botvinick [58]

use an evidence accumulation mechanism to model performance in a two-step decision
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problem, but applying a similar approach to more complex sequential decision making

problems (e.g. TOL) is a challenge that has not yet been addressed.

The next section provides a brief overview of previous computational research on problem-

solving, laying the foundation for the work discussed in this chapter. For more in-depth

coverage of relevant studies, please refer to Chapter 2. I then describe the Tower of Lon-

don task and the behavioral experiment. The following sections introduce the specific

planners that I evaluate and discuss the extent to which they account for the behavioral

data. As a preview of my results, I found that people tend to use different strategies

under different conditions and that the adaptive lookahead planner provides the best

overall account of human performance.

3.2 Models of Human Problem Solving

Perhaps the most influential cognitive model of problem solving is the General Problem

Solver [104] and this model can be regarded as a variant of breadth first search. Subse-

quent work in this tradition used production systems such as ACT-R [129], 4CAPS [24]

and SOAR [130] to develop models of problem solving on tasks including the Tower of

Hanoi [29] and the Tower of London [24].

In recent years researchers have departed from the earlier emphasis on production sys-

tems by considering a range of alternative approaches. Kuperwajs et al. [59] used a

tree search model with a domain-specific heuristic to predict human performance on a

two-player game. Working within the framework of bounded rationality, Callaway et al.

[63] derived a meta-level Markov decision process model to simulate human behavior on

a navigation task known as Mouselab. Donnarumma et al. [33] developed an approach

that combines probabilistic inference with subgoaling to account for human performance

on the Tower of Hanoi task.

Across the recent literature there is evidence that the extent to which people look ahead

while planning varies across individuals and across tasks [64, 131]. Meder et al. [132]

found that an approach that looks ahead only one step provided the best account of

human performance in the 20-questions game, while Krusche et al. [61] found that people

have a planning horizon of at least 3 steps in the farming game that they considered.
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Several studies demonstrate that time pressure can lead to a shallower search tree [133,

134].

Most recent studies use non-deterministic or partially observable environments so that

humans cannot easily derive optimal solutions [61, 131], and there has been relatively

little work on fully observable deterministic environments (e.g. TOL) in recent years.

My work, however, belongs to the Newell and Simon tradition that explores what can

be learned from human performance on deterministic, fully observable-tasks. A small

amount of work in cognitive science explored how to use computational model to repro-

duce human behavior in the TOL task[24, 33], but none of them considered response

time (RT) as far as I know.

3.3 Tower of London Task

Previous work on the TOL has focused on identifying structural parameters that appear

to influence the difficulty of a problem instance[36, 135, 136]. Berg et al. [36] carried

out an experiment in which participants solved a set of TOL problems with optimal

solutions of length between 4 and 7, and used their data to evaluate how 5 structural

parameters relate to measures of human performance.

Inspired by their work, our experiment consider two different conditions (described later)

and use two most influential factors on initial planning time (i.e. optimal cost and start

hierarchy 2) as baselines in planning time prediction.

A small amount of work has attempted to model the actions people choose when solving

TOL problems [24, 33], but to my knowledge no previous work on the TOL task attempts

to model both action selection and planning time as I do here.

3.4 AI Planning and Planners

Planning is the model-based approach to reasoning about the action(s) needed to achieve

a goal given an initial scenario. In contrast to approaches based on constraint program-

ming [63, 64, 131] that do not naturally capture human problem solving mechanisms,

2Start hierarchy is based on the initial configuration which is either unambiguous, partially ambigu-
ous, or completely ambiguous (three balls on different pegs), see figure 1.3(c)
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AI planning algorithms directly simulate the forward reasoning process, echoing the

methodology used by the General Problem Solver. For detailed description of how to

apply planning algorithm to problem solving tasks, please refer to Chapter 2.1.

In order to apply AI planners to the TOL problem, I translate the task into the proposi-

tional subset of the Planning Domain Definition Language (PDDL), which is a standard

language for modelling planning problems that extends the expressivity of the well known

STRIPS language [82]. To encode the height constraints in the task, I simply enumerate

all possible ball locations. In my setting, since there are just three pegs with heights of

1, 2, and 3 respectively, I have 6 different locations in total. In each state, there is a

fluent (proposition) for each ball recording its current location. In addition, I also mark

whether each ball is free to move and whether each location is available. For example,

in the start state of Figure 1a, the red ball is in LOC3-3 (the third position on peg 3).

There is no other ball on the red ball, so it is free to move to other locations. LOC1-1 is

available, so I can execute the action that moves the red ball from LOC3-3 to LOC1-1

and the successor state is the middle state in Figure 1.3c.3.

All of the AI planners evaluated here use the representation just described, but there

is another way to model the problem within the PDDL framework. Namely, we can

decompose each move action into two steps: first pick up a ball from one peg and then

put it down on a peg. The major advantage of this approach is that it allows a player to

pick up a ball then return it to the same peg, which occurs occasionally in our behavioral

data. I evaluated the planners on both representations, and the differences are relatively

subtle. Since most previous research on the TOL treats each move as a single action, I

adopt the same approach for consistency.

My model evaluation aimed to consider a set of planning algorithms (i.e. planners) that

is broadly representative of prior work on planning in the fields of AI and psychology.

The following sections describe the 6 different planners that I settled on.

3The PDDL representation of the start state of Figure 1a is {(in RED LOC3-3), (in ORANGE
LOC3-2), (in BLUE LOC3-1), (free LOC1-1), (free LOC2-1), (free LOC2-2), (clear RED)}
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3.4.1 Cognitive Architecture

4CAPS

The 4CAPS (Cortical Capacity-Constrained Concurrent Activation-based Production

System) cognitive architecture integrates both symbolic and connectionist models, while

accounting for human cognitive constraints. This architecture proposes that functions

are distributed and dynamically balanced across independent processors, which are de-

signed to mimic different brain regions. The component centers correspond to particular

brain regions that activate for a particular task. Each center is implemented as a produc-

tion system like other cognitive architectures, but potentially with different computing

approach (e.g. propositional, geometric etc). Communication between the centers is

achieved through memory. This involves two types of memory: declarative memory,

which stores knowledge (akin to predicates in automated planning), and procedural

memory, which specifies the effects and conditions of actions, as well as the action se-

lection criteria (similar to actions and search algorithms in automated planning). The

amount of processing activity in each center reflects the activity in the corresponding

brain area.

I chose 4CAPS to represent the broader family of cognitive architectures because an

existing 4CAPS model of the TOL task is publicly available, and has previously been

used to account for both behavioral and brain imaging data [24, 102]. This model

includes some productions that are specific to the TOL task, and therefore does not

qualify as a fully general model of problem solving.

3.4.2 Classical Planners

Classical planners search until a complete path to the goal has been found. I considered

three such planners: Breadth First Search (BrFS), A* and Greedy Best First Search

(GBFS).

BrFS

The three-peg TOL problem is sufficiently small that Breadth First Search (BrFS) is a

viable algorithm. BrFS first tries all possible actions from the start state, and adds all
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states reached in this way to a queue. It then repeatedly takes a state from the front of

the queue, tries all actions from that state, and adds all resulting states to the end of

the queue, effectively always expanding the state closest to the initial state that has not

been expanded yet. Proceeding in this way guarantees that BrFS will find an optimal

solution, but the algorithm is blind because it does not consider the goal when choosing

the state to expand next.

A*

The A* search algorithm [137] is commonly used as a baseline heuristic search planner in

AI planning research. A heuristic is a function that takes a state as input and returns an

estimate of the distance between the state and the goal. A heuristic-based algorithm can

therefore potentially capture the idea that people are most likely to focus on intermediate

states that promise to bring them closer to their ultimate goal. If equipped with an

admissible heuristic, then A* is guaranteed to find an optimal solution.4 When choosing

which state to expand next, A* picks the state that minimizes the cost to reach that

state plus the heuristic estimate of the distance to the goal. Here I use the goal-counting

heuristic, a domain-independent heuristic that can be automatically derived from the

PDDL description of the problem, which evaluates a state based on how many goals are

yet to be achieved (in our case, how many balls are not yet in their final positions).5

This heuristic is equivalent to the “perceptual distance” heuristic in the psychological

literature [33], and has been explored by researchers including Simon [138].

GBFS

The heuristic search algorithm used in most state-of-the-art satisficing planners is greedy

best-first search (GBFS) [139]. In contrast to A*, GBFS expands states using only the

heuristic function, and chooses the state that lies closest to the goal according to this

function. GBFS is not guaranteed to find an optimal solution and hence produces

satisficing planners that trade off solution quality and solution speed. When combined

4A heuristic function is admissible if it never overestimates the real distance between a state and the
goal state.

5The goal-counting heuristic is admissible in the TOL task. The A* planner in this paper is therefore
guaranteed to find an optimal solution.



Chapter 3 Automated Planning Algorithms and Human Performance 44

with the goal-counting heuristic, GBFS yields a search strategy that captures some of

the core ideas of means-ends analysis [104].

3.4.3 Online Planners

Online planners are able to choose an action before a complete path has been found,

and have been previously explored as models of human problem solving [59, 61]. One

prominent approach is Monte-Carlo Tree Search, but I did not consider this approach

because it is best-suited for stochastic environments and the TOL is a deterministic

task. Instead, I evaluate two lookahead planners that both rely on the goal-counting

heuristic.

Lookahead

The basic lookahead planners I consider have a fixed horizon that was set to values from

1 to 7 (maximum solution length). The planner evaluates the value of a state recursively

using the minimal state value of its successors, and the state values of all leaf nodes are

based on the heuristic function (goal-counting in this work). After computing these state

values, the planner chooses the path with minimal estimated cost. If multiple paths have

the same minimal value, the planner randomly chooses one of these paths.

Adaptive Lookahead (A-LH)

Although many online planners (e.g. Monte-Carlo Tree search) use a fixed planning

horizon or a pre-defined timing budget, a small amount of work in AI has explored

methods for optimizing lookahead depth [140]. For example, Kryven et al. [131] develop

a model with an adaptive planning horizon for a task that involves navigating through

a maze.

Here I propose and evaluate an adaptive lookahead planner (see Algorithm 1) that

draws on prior work on evidence integration and human meta-reasoning [58, 127]. To

achieve a balance between exploration and exploitation, this planner uses the upper

confidence bound (UCB) algorithm as an action selection strategy [141], and keeps

searching (evidence integration) until enough nodes have been expanded to suggest that
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Algorithm 1 Adaptive Lookahead 1

Parameters: Decision Threshold θ, Exploration constant C
Input: Search space P , Search goal g, Current state s0
Output: Action selected a, Number of expanded nodes n (used as a proxy for the
planning time for this step)

1: Let tree = Tree(s0), n = 0 {Construct a tree rooted on state s0}
2: Let v′ = −∞, v′′ = −∞{v′ and v′′ denote the best child node value and second best

child node value of the root node respectively}
3:

4: while |v′ − v′′| ≤ θ do
5: node← tree.root {Use UCB policy to select node for expansion from root node}
6: while node is expanded do
7: node = UCBSelect(node, C)
8: end while
9:

10: if node.state is g then
11: return a← softmaxSelect(tree.root), n
12: end if
13:

14: n← n+ 1
15: for succ in P.successors(node.state) do
16: node.children.add(Node(succ, gc(succ))) {Initialize the new generated node us-

ing goal counting heuristic}
17: tree.update(gc(succ)) {Backpropogate the new evidence so values of all ancestor

nodes are updated by selecting the best child node}
18: end for
19:

20: v′, v′′ ← tree.getBest()
21: end while
22:

23: return a← softmaxSelect(tree.root), n

the difference in value between the best action and the second best action exceeds some

decision threshold. My implementation in this work sets the threshold θ to 1 because the

goal-counting heuristic is integer-valued. The exploration constant in UCB algorithm is

set to 1.

Given a problem with a goal hypothesis g and initial state s0, we carry out the procedure

laid out in Algorithm 1 and described below until the goal state is achieved or the

predefined threshold is exceeded. The input includes tree T containing only the current

state. the algorithm traverses the tree using the UCB policy [141] (lines 6-8): for each

node choose the action a that maximizes −ca+
√

logn
na

recursively, where ca is the current

estimation of expected cost-to-go if action a is chosen, na is the number of times action

a was chosen at the node and n is the number of times the node has been visited.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2

(d) Iteration 3 (e) Iteration 4

Figure 3.1: The Adaptive Lookahead planner run on a goal-directed example. The
dark circles represent expanded nodes and the light circles represent nodes generated
but not expanded yet. The value v of the node is initialized as some heuristic function
(i.e. estimated cost-to-go) of the corresponding state and then updated to reflect the

best (i.e. smallest) child node value plus action cost 1.

When the search process encounters an unexpanded node, it checks whether this node

represents the goal state g. If it does, the search halts, and the action is selected

based on a softmax probability distribution (lines 10-12). If the node is not the goal,

it is expanded, generating all potential successor states while excluding any previously

visited states to prevent duplication. Each new successor state is assigned an initial value

reflecting the anticipated remaining cost (lines 14-18). This value is then propagated

backward to the root node (line 20) to inform subsequent decisions.

Once the adaptive lookahead planner reaches the decision threshold, it employs the

softmax function to calculate the probabilities for each action choice (line 23), guiding

the agent’s next move.

We use a goal-directed example to show how the Adaptive Lookahead planner generates

human-like planning times and actions using a value-based example. Here we simply

assume the cost of action is 1 and the value denotes the estimated cost-to-go. In this

configuration the best successor state would be the minimal value.

In the example shown in Figure 3.1, I set the decision threshold at 1 and initiate the pro-

cess from the current state, denoted as s0 (Figure 3.1a). In the first iteration, we expand
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the start node by generating all applicable actions: a1, a2, a3. The initial heuristic values

for these actions are 3, 4, and 5, respectively (see Figure 3.1b). The difference between

the best child node, s1, and the second-best child node, s2, is 1, exactly matching the

decision threshold, so we continue. In the second iteration, we select to expand s1 and

generate two successor states, s4 and s5. The value of s1 is updated to reflect the best

child node plus action cost, resulting in min(6, 5) + 1 = 6 (refer to Figure 3.1c). Now,

the difference between the top two child nodes is still 1, prompting us to continue. In the

subsequent iteration (Figure 3.1d), we choose to expand s2 and generate two successor

states, s6 and s7. The value of s2 remains at 4, calculated as min(3, 5) + 1 = 4. As the

difference is still 1, we must continue. By the fourth iteration (Figure 3.1e), we expand

s3 and introduce a new node, s8, with a generated value of 5. Consequently, the value of

s3 is updated to 6. At this point, the difference between the top two child nodes becomes

6 − 4 = 2, exceeding the decision threshold, allowing us to terminate the process. The

planning time required is 4. If the decision threshold is larger than 2, then the search

needs to continue until the difference between the two best successors is larger than 2.

3.4.4 Implementation

All classical planners, as well as the heuristics were implemented using the LAPKT

framework [142]. BrFS, and the online planners were implemented in Python. For

4CAPS, I used v1.2 of the TOL model.

3.5 Behavioral Experiment

To allow us to compare the planners just described, I ran a behavioral experiment

to collect fine-grained behavioral data (including response times) as participants solve

instances of the TOL. Berg et al. [36] previously ran a comprehensive experiment on

the TOL, but their data are not publicly available. I therefore ran my own experiment

using the same problem instances that they considered.

My experiment included two between-participant conditions: a full condition and a

no-constraint condition. In the full condition participants were asked to form a full

plan to the target configuration before making their first move, and given feedback

after each instance indicating whether they had found an optimal solution. In the
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no-constraint condition participants were simply asked to solve the task without any

further instruction. The full condition matches the procedure used by Berg et al. [36],

and explicitly instructs participants to act as a classical offline planner. In the absence

of this instruction, I anticipated that participants would behave more like an online

planner.

Overall, we want to

1. Evaluate a set of planners and ask which provides the best account of human initial

planning time and action selection.

2. Test whether these two measurements (and best planner) will be different when I

explicitly ask participants to form a complete plan.

I pre-registered the behavioral experiment on AsPredicted (see https://aspredicted.

org/STK_41D). The experiment was programmed in javascript using the jspsych toolbox

[143].

Instances. Following Berg et al. [36], I considered all 117 problem instances with opti-

mal solutions between 4 and 7 in length. For each instance, I generate a corresponding

PDDL file automatically using the Python package Tarski [144].

Participants. 239 participants from standard sample 6 completed the experiment on

Prolific. Participants were randomly assigned to one of the two conditions, and com-

pleted 39 TOL instances randomly picked from 117 instances. My final data set included

130 participants in the full condition and 109 in the no-constraint condition.

Outliers. Observations with abnormal response times were excluded according to a

preregistered criterion. For each instance, responses more than 3 standard deviations

away from the mean initial planning time for that instance were considered abnormal.

As a result, 239 out of 9321 (2.5%) responses are classified as outliers and excluded from

my analysis.

6Standard sample refers to a sample that matches the demographic distribution of the general pop-
ulation of all Prolific users with English reading proficiency.

https://aspredicted.org/STK_41D
https://aspredicted.org/STK_41D


Chapter 3 Automated Planning Algorithms and Human Performance 49

(a) (b) (c)

Figure 3.2: Comparison between the full and no-constraint conditions at participant
level. (a) Extra moves (b) Optimal first action proportions (c) Initial planning times.

Each data point shows the average performance across trials for each participant.

3.6 Results

I consider two behavioral measures: the initial action selected for an instance and the

initial planning time, or the time taken to select the initial action. Focusing on the first

action only simplifies my analyses and facilitates comparisons across a relatively large

set of planners.

3.6.1 Human Performance in Two Conditions

I first compare human performance across the two conditions (full vs no-constraint) as

shown in Figure 3.2. I focus on three performance measures. Extra moves (Figure 3.2a)

is defined as the difference between the length of the plan provided by a participant

and the length of the optimal plan. I also computed the proportion of participants who

select an optimal first move (Figure 3.2b), and considered the time required to select

this move (Figure 3.2c).

Figure 3.2 shows that participants in the full condition tend to generate plans that are

1.16 steps shorter than plans in the no-constraint condition, and that the first move

in the full condition is more likely to be optimal (61% vs 44%). On average, however,

participants in the full condition take an extra 11.23 seconds to produce this first move.

Student’s t-tests suggest that all three differences are statistically significant: extra

moves (t(238) = −8.12, p < 0.0001), optimal first action proportion (t(238) = 10.85, p <

0.0001) and initial planning time (t(238) = 15.07, p < 0.0001).



Chapter 3 Automated Planning Algorithms and Human Performance 50

Figure 3.3: Extra moves vs initial planning times at participant level

Each data point in Figure 3.2 shows a participant rather than an instance, but an analysis

at the level of problem instances produced converging results. For a given instance, plans

generated in the full condition tend to have fewer steps (t(116) = −7.99, p < 0.0001),

are more likely to include an optimal first move (t(116) = 12.51, p < 0.0001), and have

a longer planning time for the the first move (t(116) = 20.29, p < 0.0001).

I then explored the relationship between extra moves and initial planning time at the

participant level. I found participants in full condition with longer initial planning time

generally have better solution quality (r(129) = −0.47, p < 0.0001) but I did not find

the same pattern for no-constraint condition (r(108) = −0.21, p = 0.03).

As shown in Figure 3.3, there is no correlation between initial planning time and ex-

tra moves in the no-constraint condition (r(108) = −0.01, p = 0.94) while in the full

condition they have a positive correlation (r(129) = 0.49, p < 0.001), indicating that in

the no-constraint condition, the initial planning time does not appear to significantly

influence the overall solution quality, whereas it does in the full condition.

All of these results suggest that my condition manipulation had the expected effect, and

that participants rely on different problem-solving strategies across the two conditions. I

can now ask which planners provide the best account of responses in the two conditions.
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3.6.2 Predicting Action Selection

I first evaluate the extent to which the models can accurately predict the first action

selected by participants. For each instance, I use the behavioral data to estimate a

distribution over initial actions chosen for that instance. I compare these distributions

with distributions derived from the models using cross-entropy, which is commonly used

as a measure of how well the model can approximate human responses. Since most of

the models are non-stochastic and assign a probability of 1 to one action and 0 to all

others, inspired by Jarušek and Pelánek [42], I incorporated a noise parameter set to

0.05, distributed uniformly across all applicable actions, to mitigate the issue of zero

probabilities. This is to say, to maintain a valid probability distribution, I renormalized

the sum of the action probabilities to 0.95, with the remaining 0.05 allocated to a random

action selection policy.

The results are summarized in Figure 3.4. Across both conditions, the online plan-

ners outperform the classical planners, and A-LH achieves the best overall performance

(smallest cross-entropy). The paired t-tests showed that A-LH had a significant advan-

tage over the second best planners in both conditions (t(116) = −5.04, p < 0.0001 for the

full condition with LH4 and t(116) = −4.98, p < 0.0001 for the no-constraint condition

with LH3). Although the poor performance of classical planners was anticipated in the

no-constraint condition, the fact that they performed worse than the random baseline,

despite participants being instructed to behave like classical planners in the full con-

dition, is noteworthy. This finding indicates that classical planners may have limited

psychological validity even under conditions that are most favorable to them. Never-

theless, the observation that LH4 is the second best planner in the full condition and

LH3 is the second best planner in the no-constraint condition suggests that individuals

might engage in deeper thinking in the full condition.

3.6.3 Predicting Initial Planning Time

We now turn to initial planning times, and use Linear Mixed Effects Models to evaluate

our family of planners. I consider the following models:

• Base model M0: IPT = 1 + (1|instance) + (1|participant), fixed intercept plus

random intercepts for participants and instances.
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(a) (b)

Figure 3.4: Evaluation of planner predictions about initial action selection. (a) Cross-
entropy of human distribution with respect to model distribution for the full condition.
(b) Cross-entropy for the no-constraint condition. Each data point shows the cross-

entropy for one instance, and smaller values of cross-entropy indicate better fits.

• Order model M1: IPT = 1+order+(1|instance)+(1|participant), fixed intercept

and order effect plus random intercepts for participants and instances.

• Condition model M2: IPT = 1 + condition + (1|instance) + (1|participant),

fixed intercept and condition effect plus random intercepts for participants and

instances.

• Full model M3: IPT = 1+order+condition+(1|instance)+(1|participant), fixed

intercept, condition effect and order effect plus random intercepts for participants

and instances.

The models take initial planning time (IPT, measured in milliseconds) as the dependent

variable, and include fixed effects for condition (full or no-constraint) and order (an

integer from 1 to 39 that indicates the order in which a participant encountered a

given instance). The models also include random effects for instance and participant

that assume normally distributed variability for both factors, which are denoted as

1|instance and 1|participant respectively. I obtained similar results regardless of whether
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instance is treated as a fixed or a random effect. We use Bayesian Information Criterion

(BIC) to quantitatively compare the models. BIC is a statistical measure used for

model selection that balances model fit and complexity by penalizing models with more

parameters. It is commonly employed in situations where multiple competing models

are under consideration, helping to identify the most suitable model favoring simpler

models with comparable explanatory power.

As expected, the full model performed better than the three simpler alternatives that

omit either or both of the fixed effects. The BIC value was smaller for the full model

than for the three alternatives by a factor of at least 81.

For the full model, the estimate for condition is 11192.72 (95%CI [9734.34, 12651.33]),

which suggests that responses were around 11 seconds slower in the full condition com-

pared to the no-constraint condition. The estimate for order was -102 (95%CI [-123.36,

-81.19]), suggesting that participants became around 0.1 second faster with each addi-

tional instance that they solved. This order effect is consistent with the work of Berg

et al. [36], who report that solution times decrease with experience.

For each planner, I then asked whether the full model could be improved by replacing

the random effect of instance with a fixed effect for planner response time, which is

operationalized as the number of states expanded by a planner. For example, if the

adaptive lookahead model predicted human planning times perfectly, then including

response times for this model as a predictor in the full model should allow the resulting

regression model to perfectly account for the human data (see Equation 3.1). BIC

values for each of these regression models are shown in Table 3.1. Among the fixed

lookahead models, LH4 and LH6 achieved the best performance in the no-constraint

and full conditions respectively.

IPT ∼ 1 + condition + order + model prediction + (1|participant) (3.1)

Table 3.1 also includes baselines that result from replacing the random effect in Equa-

tion 3.1 with fixed effects for optimal cost (OC, or the length of the shortest solution)

and start hierarchy (SH, see Figure 1.3c). I consider both optimal cost and start hierar-

chy because these structural parameters predicted human performance best among the

full set considered by Berg et al. [36].
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Table 3.1: BIC scores for regression models that take initial planning time as the
dependent variable and incorporate planner predictions or structural parameters (OC
and SH). For readability, scores are shown as offsets relative to 110066 (full condition)

and 82053 (no-constraint condition).

Category Planner full no-constraint

Baseline
random 625 141
OC 47 114
SH 584 0

Cognitive Architecture 4CAPS 120 89

Classical Planner
BFS 38 101
A* 4 83
GBFS 162 104

Online Planner

LH1 597 78
LH2 598 80
LH3 597 79
LH4 342 70
LH5 110 88
LH6 52 95
LH7 87 110
A-LH 0 87

As expected, the online planners perform better than the classical planners in the no-

constraint condition. In the full condition, one of the classical planners (A*) performs

relatively well but the best planner for this condition is the adaptive lookahead model.

My results for planning time are therefore broadly compatible with the finding in Figure

3 that the adaptive lookahead planner performs well across both conditions.

Table 3.1 reveals, however, that the single best predictor for the no-constraint condition

is not a planner but rather the Start Hierarchy parameter shown in Figure 1.3c. It

makes sense that participants should respond quickly when there is only one possible

initial action (i.e. the instance is completely unambiguous), but common sense and pre-

vious work [36] suggest that people’s responses are influenced by factors that go beyond

Start Hierarchy alone. The strong performance of Start Hierarchy for the no-constraint

condition therefore suggests that all of the planners that I evaluated are relatively far

from a comprehensive account of human responses to no-constraint condition.

3.6.4 Individual Differences

The analysis summarized by Table 3.1 used individual-level data but did not focus on

individual differences. A similar regression approach, however, can be applied to the
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(a) (b)

Figure 3.5: (a) Individual-level analysis of initial planning times. Panels (a) and (b)
show regression scores for the full and no-constraint conditions, and each data point
represents an individual participant that is identified as an outlier for that particular

planner.

subset of the data provided by a single participant, which yields regression scores indi-

cating the extent to which each planner or structural parameter predicts the responses

of that participant. Distributions of these regression scores across individuals are shown

in Figure 3.5a and Figure 3.5b. Consistent with Table 3.1, the individual level analysis

suggests that the adaptive lookahead and A* planners provide the best account of the

full condition, and that Start Hierarchy provides the best account of the no-constraint

condition. In the full condition, A* and the adaptive lookahead planner account for

the responses of some individuals relatively well (regression scores around 0.6), but in

the no-constraint condition no regression score for any individual exceeds 0.5. The re-

sults therefore suggest that none of the models provides a good account of individual

performance in the no-constraint condition.

3.7 Discussion and Conclusion

I applied a set of planners to the TOL task and evaluated their ability to predict actions

and response times collected in a new behavioral experiment. Prior work on the TOL

task often asks participants to form a complete plan before acting [36], and in this

condition I found that an adaptive lookahead planner provides the best account of both

actions and response times. This planner allows the size of the search tree to depend on

the difficulty of the current instance, and the good performance of this planner suggests
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that people flexibly navigate a speed-accuracy tradeoff when approaching sequential

decision-making tasks.

The differences I observed between the full and no-constraint conditions confirm that

people’s problem solving strategies depend on task requirements, but my planner eval-

uation did not provide a consistent picture about performance in the no-constraint con-

dition. The adaptive lookahead planner provided the best account of action selection

in this condition, but my analysis of response times found that none of the planners

was more predictive than a simple structural parameter (Start Hierarchy). It may not

be surprising that removing task constraints increases variability and makes experimen-

tal data more difficult to model, but my results suggest that more work is needed to

develop a satisfying account of human performance in this condition. In this study, I

used a regression model to account for the impact of condition and order independent

of the current adaptive lookahead planner. However, it is important to note that the

planner is highly adaptable and can capture these effects by incorporating adjustable

components. For example, the condition effect could be controlled by adjusting the deci-

sion threshold, such that a larger threshold in the full condition induces deeper thinking

depth. Additionally, the order effect could be modeled as a more accurate heuristic esti-

mation as participants gain more experience. These components could also potentially

be adjusted to model the various degrees of suboptimality observed in human problem-

solving. Therefore, exploring these possibilities is a crucial future direction in this field

of research.

I presented a simple initial analysis of individual participants that revealed substantial

variability, and future work can model individual differences more directly by introducing

individual-level parameters to the models. For example, the success of the current

adaptive lookahead model motivates future versions of the model that allow the decision

threshold to vary across individuals.

When using the planning-based approach to model human behavior, it is important to

consider not only the planner but also the alignment between human mental representa-

tions and the problem representation used by the planner. At least two representations

of the TOL task can be considered. My analysis treated pick-and-put as a single action,

but an alternative modeling approach treats pick and put as two separate actions. I

evaluated both representations and found that both of them led to similar conclusions,
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but more targeted experiments may be able to reveal which of the two is closer to the

representation used by people. Similarly, my models used the goal-counting heuristic,

but I also evaluated other general heuristics derived from widely used relaxations such as

the delete-relaxation [21], and found that these alternative heuristics produced similar

results in my setting. Future studies, however, can consider experiments that aim to

distinguish which of these heuristics provide the best account of human behavior.

This work might be criticized for only considering the initial action and planning time,

which is a limited approach to comparing planning algorithms with human responses

in sequential decision making. However, my results show that even predicting human

initial action or planning time is harder than expected. While the following planning

stages are very likely to depend on the initial planning stage, identifying a promising

model to mimic human behavior for the initial planning stage is a good start towards a

complete model for predicting full observations.

Perhaps the most general message from my work is that the planning-based approach to

human problem solving deserves to be revisited. My results suggest that even relatively

simple tasks such as the Tower of London continue to present challenges for cognitive

models, and combining ideas from both cognitive psychology and AI planning continues

to be a promising way to address these challenges.

3.8 Summary

In this chapter, I investigate RQ1: ”Which algorithm best emulates human responses,

including both action selection and response times, in sequential decision-making tasks?”

I use automated planning algorithms to simulate human decision-making in terms of

action selection and planning time, and found that the novel adaptive lookahead planner

performed better than the other algorithms I considered.

Two potential directions for future exploration stand out as particularly noteworthy.

Firstly, simulating human behavior encompasses multiple levels, as proposed by Mattar

et al. [15]. The initial stage involves action selection, followed by reaction time. More-

over, a more sophisticated model should strive to replicate intricate data such as eye

tracking or even more complex datasets like neuroimaging data. While my model may

not fully capture processes like eye tracking or neural activity within the human brain,
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it could be valuable in the context of human-agent interaction. It serves as a practical

tool for agents to approximate and predict human behavior.

Secondly, the conventional approach in computational cognitive modeling involves in-

corporating specific parameters to account for individual differences, as demonstrated

in prior work by Callaway and colleagues [19, 63, 64]. However, my primary aim is to

use this model as a general-purpose tool for AI systems targeting diverse populations.

The concept of personalized modeling, such as for a personal AI assistant, entails the

complex task of tailoring the model and fine-tuning personalized parameters. It presents

another interesting challenge which is not the focus of this thesis. For an in-depth dis-

cussion of this topic (i.e. how to adapt the adaptive lookahead planner to fit individual’s

behavior), please refer to Chapter 6.1.3.

Up to this point, we’ve developed a model (i.e. the adaptive lookahead planner) capa-

ble of capturing human action selection and response times in problem-solving tasks.

However, a pivotal question remains: is this model useful in the context of human-agent

interaction? Can I develop algorithms that leverage this model to deduce and enhance

human behaviors to optimize system performance? In the subsequent two chapters, I

address these question by applying the adaptive lookahead planner to goal recognition

tasks, aiming to address these inquiries. In goal recognition, human-like models are

particularly valuable as they allow us to estimate the likelihood of observations. A more

accurate model has the potential to yield superior estimations, thereby enhancing the

overall performance of a goal recognition system.



Chapter 4

Timing Information in Goal

Recognition1

4.1 Introduction

Consider, once more, the warehouse setting, where two potential packages await prepa-

ration by a human worker. One of these packages consists of a single item, requiring

straightforward packaging, while the other presents a more complex packing challenge.

In the event that the robot assistant detects a worker thinking for an extended period,

it becomes important for the robot to infer the worker’s intention, enabling it to offer

more effective assistance.

As this example suggests, timing information might be helpful for goal inference. Real-

world interactions are embedded in time and timing information is almost always avail-

able. Current goal recognition algorithms, however, mostly focus on actions only and

rarely take auxiliary information such as timing into consideration [37, 39, 120, 145, 146].

In this chapter, I propose a new goal recognition framework that can exploit observed

planning times, and evaluate it using both synthetic and human data.

The problem of goal recognition is the task of inferring an actor’s real goal given a

sequence of observations and a set of possible goals. Early approaches to this prob-

lem often used a plan library to perform goal inference and matched the sequence of

1This chapter is adapted from the published article: “Goal Recognition with Timing Information”
Proceedings of the International Conference on Automated Planning and Scheduling. 2023

59
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observations with a library of historical observations associated with each goal candi-

date [38, 147]. Later, Ramirez and Geffner proposed a generative approach that uses

planning algorithms over planning models and is known as plan recognition as planning

(PRP) [37, 148]. For more detailed description of work in goal recognition, please refer

to chapter 2.2.

A small amount of work in AI and cognitive science has explored how auxiliary infor-

mation can be used to infer the mental states of others. Singh et al. [149] used gaze

information for intention recognition and found that gaze can help to reveal the hidden

goals of players in a boardgame. Gates et al. [150] developed a Bayesian model that

aims to capture how people use response times when inferring the preferences of an

actor who is observed to make a single decision. In this chapter, I generalize the same

underlying idea by exploring how timing information can be used in situations where

actors generate rich sequences of actions, not just one-shot decisions. Perhaps closest

to our own approach is the work of Avrahami-Zilberbrand et al. [151], who developed a

plan-recognition algorithm that incorporates constraints on action durations. My work

also highlights the role of time but focuses specifically on planning times that reflect the

effort exerted by the actor when selecting actions. Fagundes et al. [152] also talk about

timing constraints, but do not use these constraints to disambiguate goal recognition.

Figure 4.1 and Figure 4.2 illustrates two cases in which planning times are useful for goal

recognition. In the Sokoban example (Figure 4.1), the current position of the worker is

shown in color and the grey workers show the trajectory the worker followed to reach

this position. The actor is a real-time planner that performs a look-ahead search using

Manhattan distance as a heuristic, and because the computational resources of the actor

are limited it is not guaranteed to choose the optimal trajectory. Given the information

in Figure 4.1, goals A and B may seem equally likely because the observed trajectory

is consistent with optimal paths to both goals. But if we observe in addition that the

actor spent a relatively long time at the position shown, B now seems the more likely

goal because A is easily achieved with a single push to the left, whereas the actor has

to push the box away and then back to achieve B.

In Figure 4.1, timing information breaks a tie between two goals that seem equally likely

based on actions alone, but there may also be cases where timing information reverses

the conclusion that would follow from actions alone. Figure 4.2 shows an example based
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Figure 4.1: Timing information can break a tie between two goals. In this Sokoban
example, observing the actor stop and think at the position shown with blue jeans

suggests that the actor’s goal is to push the box to B rather than A.

on a navigation task. Here the observed action sequence suggests that B is the likely

goal because this sequence is consistent with an optimal path to B but not A. But if we

see that the actor spends a long time at the location shown, we might conclude that A

is the actual goal because there would be no reason for the actor to stop and think if

the goal were B rather than A.

Because timing information has received little attention in the literature, standard goal

recognition benchmarks do not include this information. Most existing agent models

do not produce useful planning times because they either allocate a constant amount of

planning time for each step or do not consider this factor at all [120, 145]. I, therefore,

use an adaptive lookahead planner (A-LH) inspired by human behaviour to generate

human-like timing information along with action sequences for standard goal recognition

benchmarks. I also use the same planner to develop timing-sensitive goal recognition

algorithms.
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Figure 4.2: Timing information can reverse the inference that would follow from
actions alone. In this navigation example, a protracted pause at the position shown in

purple suggests that the goal may be A rather than B.

To preview some of my results, I find that the extent to which timing information helps

in goal recognition depends on how closely the agent model assumed matches the agent

actually generating the observations. The adaptive lookahead planner draws on the

extensive response-time modelling literature in cognitive science [17, 153], but it is not

intended to capture all of the reasoning strategies that humans may use. Instead, the

planner relies on two simple assumptions about human planners: (a) people carry out

a forward search to make a decision (i.e. they are not reflex agents), and (b) planning

time depends only on the current state and the true goal. Assumption (b) does not

assume that people only consider the current state, as humans typically anticipate the

consequence of future moves. Instead, the assumption is that the planning time for one

move does not depend on the planning times for previous moves.

This chapter makes a sequence of four contributions. First, I formally introduce a goal
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recognition framework that incorporates timing information and a novel goal recognition

algorithm that can exploit this information. Second, inspired by the cognitive science

literature, I develop a real-time agent model, and use it to generate observations with

timing information for standard goal recognition benchmarks. Third, I use existing goal

recognition datasets to show that timing information can be helpful when my framework

can exploit an accurate model of timing. Finally, I show that the proposed goal recog-

nition algorithm can exploit timing information in sequences generated by humans, and

also accounts for human inferences in a behavioral study of goal recognition.

The next section reviews the relevant literature on goal recognition, online planning

agents and response time modelling. I then present the adaptive lookahead planner,

formulate the problem of goal recognition with timing information, and present an algo-

rithm that addresses this problem. Finally, I present a set of synthetic and behavioural

experiment results and discuss prospects for future work.

4.2 Background

4.2.1 Theory of Mind and Goal Recognition

For a comprehensive introduction to Theory of Mind and goal recognition, please see

Chapter 2. The subsequent paragraphs provide a brief review.

People’s ability to infer the mental states of others is known as Theory of Mind [154],

which is a classic topic in cognitive science. Many behavioural and neural studies have

been done in this area while its computational basis has been extensively explored in the

last two decades [117, 155]. In recent years, industry labs have paid increasing attention

to this field [156, 157] because AI systems that interact with humans (e.g. self-driving

cars) must be able to figure out the goals and intentions of human users.

In the literature on computational cognitive science, Baker et. al. developed a Bayesian

model of theory of mind and showed that it makes human-like judgements when infer-

ring people’s goals and beliefs [117]. Jara-Ettinger [3] further suggested that theory of

mind can be formalised as inverse reinforcement learning and involves inferring people’s

internal model of the world and their reward functions given some observed actions.
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The automated planning community has proposed a variety of models for efficiently

solving the goal recognition problem [37, 39]. It is still unknown whether these models

are able to account for human goal-recognition abilities but these models can inspire

hypotheses about how people carry out goal recognition. Integrating ideas from cogni-

tive science and automated planning literature is therefore a promising way to develop

computational models of human goal recognition.

4.2.2 Online Planning Algorithms and Suboptimal Behavior

When dealing with complex tasks with limited reasoning time, it is often impractical for

both humans and agent models to find a full plan from the current state to a goal state.

Unlike classical planning algorithms, online planning algorithms do not aim to find a full

plan but rather focus on choosing which single action should be executed at the current

state. A prominent approach used to develop online planning algorithms is Monte Carlo

Tree Search (MCTS), which has achieved striking success at playing Go [68]. MCTS

has also been explored as a model of human problem solving [59, 61].

Current algorithms in the field of goal recognition usually assume full rationality, i.e.

optimal behaviour for both the actor model and the observer model [37]. In contrast,

the cognitive literature suggests that people often depart from optimality [117, 150].

Masters and Sardina [120] explore how goal-recognition systems can reason about irra-

tional agents, but their approach has not yet been directly connected with research in

cognitive science.

4.2.3 Response-time Modeling

An extensive literature in psychology treats response times as a sign of underlying cog-

nitive mechanisms. A prominent approach in this area focuses on one-shot decision

making, and assumes that the decision-maker continually samples evidence about the

available response options until some decision criterion is reached. This “evidence ac-

cumulation” framework is widely used to account for both reaction times and choice

probabilities [17].

There are a variety of evidence accumulation models that make different assumptions,

and in recent years psychologists have explored which model gives the best account of
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behavioural data from perceptual decision-making tasks [17, 153]. Little work has been

done, however, in applying the evidence accumulation framework to sequential decision-

making problems. Solway and Botvinick [58] take a step in this direction by showing

how an evidence integration mechanism can be combined with a model-based tree search.

Their work, however, focuses on simple two-step plans that are significantly simpler than

those used in standard AI planning benchmarks. Ho et al. [158] also consider sequential

decision-making problems, and use value iteration to account for human reaction times.

4.3 Framework

In this section, we first describe an adaptive lookahead planner that aims to produce

human-like planning times by incorporating concepts from the evidence accumulation

literature. This planner closely aligns with the A-LH model introduced in Chapter

3, with the notable inclusion of a distinct stopping mechanism to accommodate non-

deterministic thinking time. Additionally, it adopts an average update approach instead

of a maximal update, a modification aimed at better mirroring the planning charac-

teristics exhibited by humans. We then propose a formal framework for modelling and

solving the problem of goal recognition with timing information.

4.3.1 Adaptive Lookahead Planner

The goal recognition algorithms proposed later require models of planning times, and

the datasets used to evaluate these algorithms must include planning times in addition

to actions. Standard AI planning algorithms do not generate human-like response times,

and we therefore developed a new online planning algorithm named adaptive lookahead

planner inspired by ideas from the evidence accumulation literature [17, 153].

Given a problem with a goal hypothesis g and start state s0, we carry out the tree

search described below until the goal state is found or the stop signal is triggered (see

Algorithm 2). The search tree starts with the current state s0, or a subtree with root

s0 from the last planning step if a memory mechanism is included, and the algorithm

traverses the tree using the UCB policy [141] until the leaf node is reached (lines 3-5). If

the leaf node is the goal state g, the tree search process stops (lines 8-9). Otherwise, the

node is expanded by generating all possible successor states except those states visited
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Algorithm 2 Adaptive Lookahead Planner 2

Input: goal hypothesis g, tree T from last run (if memory mechanism) or single node
tree (root node is the current state s0)
Output: Number of expanded nodes num (used as a proxy for the plan-
ning time for this step), Best subtree Tbest (or the sequence of actions to g if
found)

1: Let tree = T , state = s0, num = 0
2: while stop criterion does not hold do
3: while state has been expanded do
4: state = TreePolicy(state)
5: end while
6: num← num+ 1
7: T = Expand(state, T )
8: if state is g then
9: return num,ExtractSolution(T, g){Extract path from root node to g. The

output in this case is the planning time and the solution }
10: end if
11: state← s0
12: end while
13: return num, Tbest = ChooseBestChild(T )

previously to avoid generating repeated states. Each successor state is initialized with

the estimated cost-to-go and values of all ancestor nodes are then updated by averaging

the obtained values of all visits passing through the node (line 7).

After each iteration (expansion), the stop trigger is executed to check if enough infor-

mation has been collected to make the decision (line 2). The probability of triggering

the stop signal is calculated as

Pstop(s0, n) =
n

n+ I(s0)γ exp(−n/I(s0))
, (4.1)

where n is the number of iterations so far and γ is a parameter that controls the depth

of the trajectories considered. The state importance I(s) is defined as:

I(s) =
vs,a

(1 + β)vs,a′ − vs,a
. (4.2)

Here vs,a and vs,a′ denote the cost estimates that result from choosing the best appli-

cable action a and second-best applicable action a′ towards a given goal from state s.

The denominator of Equation 4.2 is therefore based on the estimated difference in cost

between the top two applicable actions, and a small constant parameter β is included

in order to avoid zero denominators when the top two applicable actions have the same
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Figure 4.3: Stopping probability in Equation 4.1 (γ = 10000)

costs. When the tree search stops, the agent model returns the number of iterations as

the planning time for the current state.

Equation 4.1 specifies the formulation of a probability distribution for generating a

stopping signal, which captures the idea that the actor will spend more planning time

on states that have two or more applicable actions that seem equally good (or nearly

so) while acting relatively fast in states with a dominating action. For an illustration

of the stop probability function, refer to Figure 4.3, which depicts how the probability

of stopping varies with certain parameters. This approach is broadly consistent with

the evidence accumulation literature, which suggests that people tend to keep gathering

evidence until one option emerges as the winner [17, 153]. Moreover, similar ideas of

state importance have been used to summarise state trajectories over Pacman games

[159].

Now I show how the Adaptive Lookahead planner generates human-like planning time

using a value-based example. Here I simply assume the cost of action is 0 and the
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value denotes the estimated expected utility of the node. In this configuration the

best successor state would be the maximal value rather than minimal value, thus the

definition of state importance becomes

I(s) =
vs,a

(1 + β)vs,a − vs,a′
. (4.3)

.

In this example we assume β = 0 and γ = 10 for simplicity. We start with the current

state s0 (fig 4.4a). In the first iteration we expand the start node by generating all the

applicable actions a1, a2, a3 and the initial values by the heuristic function are 5, 3, 1

respectively (fig 4.4b). Now the state importance I(s0) = 5
5−3 = 2.5, so the stopping

probability Pstop = 1
1+2.5∗10∗exp(−1/2.5) ≈ 6%. Assume we continue to next iteration.

In this iteration we choose expanding s1 by generating two successor states s4, s5 and

the value of s1 is updated to reflect the average gain of all visits (5 + 5 + 8)/3 = 6,

noting that it also includes the value obtained (i.e. 5) in the initial visit (fig 4.4c).

Now the state importance I(s0) = 6
6−3 = 2, and the stopping probability increases

to Pstop = 2
2+2∗exp(−2/2) ≈ 21%. Assume we still continue, and after next iteration

(fig 4.4d) the stopping probability becomes Pstop = 3
3+1.5∗10∗exp(−3/1.5) ≈ 60%. In the

next iteration when we expand s3 we will use a3 as the second best action rather than

a2 (fig 4.4e), thus the state importance increases to 6/(6 − 3) = 2 and the stopping

probability becomes Pstop = 4
4+2∗10∗exp(−4/2) ≈ 60%. If we still need to continue (very

unlucky), we will use UCB rule to choose s1 to visit then s5 (fig 4.4f) and this time the

state importance remains 2 and the stopping probability becomes 75%. Then assuming

the stop signal is triggered we can stop and the planning time for this state is 5.

4.3.2 Problem Formulation

We now formalize the problem of Goal Recognition with Timing information (GRT). For

simplicity, we assume a fully-observable deterministic environment, but the framework

and goal recognition algorithms introduced later can be extended to partial observability

and/or probabilistic settings by choosing appropriate cost-to-go estimators.

The planning domain is a planning problem without a goal, which can be defined as

follows.
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

Figure 4.4: The Adaptive Lookahead planner run on a value-based example. The dark
circles represent the node expanded and the light circles represent the node generated
but not expanded yet. The value v of the node is initialized as some heuristic function
of the corresponding state and then updated to reflect the average value of all visits

passing through the node.

Definition 4.1. A planning domain D = ⟨S, s0, A, f, c⟩ consists of a finite set of discrete

states S, an initial state s0 ∈ S, a finite set of actions A, a state transition function

f : S × A → S that maps a state-action pair (s, a) into another state s′ and a cost

function c : S × A → R which specifies the cost c(s, a) incurred when applying action

a ∈ A on state s ∈ S.

A planning problem D[g] is instantiated by adding a goal g to the planning domain D.

For a goal recognition problem, we have a set of possible goals along with a sequence of

observations in a planning domain.

Definition 4.2. A goal recognition problem with timing information (GRT) is a tuple

⟨D,G,Prior,O⟩, where D = ⟨S, s0, A, f, c⟩ is the planning domain, G = {g1, g2, ..., gn}
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is a set of possible goals for the planning domain, Prior is the prior probability over

G, and O is a sequence of observations ⟨a0, t0⟩, ..., ⟨am, tm⟩, where ai ∈ A is an action,

and ti is a non-negative real number denoting the planning time used to select ai for

execution.

The key difference compared to the classical goal recognition setup introduced in chapter

2 is that we include planning times in the observation sequence.

4.3.3 Timing-sensitive Goal Recognition Algorithm

We assume that actions and planning times only depend on the current state and the

true goal (Markovian), and that planning time and action are conditionally independent

on states and goals. The first assumption suggests individuals don’t need to remember

past states; the current state and the goal contain all the relevant information needed

to make a decision. The second assumption implies that planning time and the chosen

action are determined independently. While they may not be entirely accurate, these

assumptions offer a helpful approximation that allows us to estimate the likelihood.

Using a uniform prior, we can decompose the likelihood P (O|g) as :

P (O|g) =P (⟨a0, t0⟩, ..., ⟨am, tm⟩|g)

=

m∏
j=0

P (tj |g, ⟨a0, t0⟩, ..., ⟨aj−1, tj−1⟩)

P (aj |g, ⟨a0, t0⟩, ..., ⟨aj−1, tj−1⟩, tj)

=
m∏
j=0

P (aj |g, sj)
m∏
j=0

P (tj |g, sj)

We call the product
∏m

j=0 P (aj |g, sj) the action component and
∏m

j=0 P (tj |g, sj) the

timing component. The next section explains how we estimate both components, and I

then discuss how these components are combined to produce a GRT solution.

Action Component

I follow the PRP approach proposed by Ramı́rez and Geffner [37] to estimate
∏

j P (aj |g, sj).

Rather than estimating the probability for each step of the observation sequence, their
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approach approximates the full sequence directly as
∏

j P (aj |g, sj) ∝ exp(v∗s0(g) −

v∗s0(g,O)), where v∗s0(g) denotes the optimal (thus smallest) cost-to-go from start state s0

while v∗s0(g,O) represents the cost of the best path consistent with current observations

O. Their approach uses the full observation trajectory and is computationally expensive,

as optimal planning is hard unless approximated with suboptimal planners or suitable

relaxations [100]. Thus, we propose a novel method, namely real-time PRP via simu-

lation through the agent model we proposed. Compared to the original PRP, real-time

PRP assumes the problem to be Markovian and considers each step independently:

∏
j

P (aj |g, sj) ∝
∏
j

exp(vsj (g)− vsj (g, aj)),

where vsj (g) denotes the approximation of cost-to-go from the state sj and vsj (g, a)

denotes the approximation of cost-to-go if action a is taken on sj . This allows for

real-time performance instead of computing a full plan as in PRP.

Timing Component

We define expected planning time for state sj given goal g as t∗(sj , g), and decision cost

(which captures the total effort needed by an actor to choose the move at state sj when

pursuing goal g) as t(sj , g). In this project, we assume for simplicity that the decision

cost t(sj , g) is identical to tj , the time recorded in the observation sequence.

We use exp(−|t∗(sj , g) − t(sj , g)|) = exp(−|t∗(sj , g) − tj |) to estimate P (tj |g, sj). Two

approaches are proposed to approximate the expected planning time t∗(sj , g):

• Agent-based. Given goal g, t∗(sj , g) is defined as the number of iterations to

make the decision at state sj via simulation by the adaptive lookahead planner

described above.

• Importance-based. In this approach, t∗(sj , g) is estimated directly by the state

importance I(sj) defined in the adaptive lookahead planner shown in Equation 4.2.

Note that t∗(sj , g) and t(sj , g) may be measured on different scales. t(sj , g) is typically

measured in seconds, whereas t∗(sj , g) is generated by the timing component of the

model and has iterations or importance as units. To map between these different scales,

we normalize t∗(sj , g) by scaling its sum over sj to match the sum of t(sj , g).
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Combining Components

I use two approaches to combine the action and timing components. The first one adds

evidence from the two components and uses the resulting sum to rank the goals. Let

pt(g) be log
∏

j P (tj |g, sj) and pa(g) be the log
∏

j P (aj |g, sj) for the potential goal g.

Then the combined probability of goal g is pt(g)∑
j pt(gj)

+w pa(g)∑
j pa(gj)

where w is an adjustable

balance factor.

The second approach uses the evidence from the action component to rank the goals,

and relies on the timing component only to break ties. In this approach, the timing

component cannot reverse the inference suggested by the action component, and can

contribute only when the action component does not provide enough information to

infer a single most likely goal.

4.4 Synthetic Experiment

This section describes an experiment that uses standard goal-recognition data sets to

evaluate whether timing information can improve the performance of goal-recognition

algorithms. Existing goal recognition algorithms return the set of most likely goals,

and accuracy is typically used as an evaluation metric. Here I use fractional ranking to

evaluate the extent to which timing information helps distinguish between equally likely

goals. Fractional ranking generates the same mean rank as ordinal ranking but allows

for ties. For example, if the likelihoods of 4 potential goals were 0.8, 0.5, 0.5, 0.2, the

ordinal ranks would be 1,2,3,4 and the fractional ranks would be 1,2.5,2.5, 4.

For each instance, the performance of an algorithm is measured by the fractional rank

assigned by the algorithm to the true goal. The performance on an entire domain is

measured by the average performance across all instances of that domain. Given the

average fractional rank rD for an algorithm on each domain D, the overall normalized

score for that algorithm is
∑

D
2rD
kD+1 , where kD is the number of potential goals in domain

D. Note that kD+1
2 is the expected fractional rank achieved by a random algorithm in

the domain D. Overall, lower fractional ranks or normalized scores indicate better

performance.
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4.4.1 Experiment Configuration

I evaluated goal recognition algorithms on 10 domains from the goal recognition dataset

of Pereira et al. [39]. Because this dataset does not include timing information, we

used the adaptive lookahead planner to supplement the trajectories with times: for each

state s, I ran the adaptive lookahead planner (without memory mechanism) given the

real goal g and took the average number of iterations over 100 runs as the planning time

for that state. The planning time was recorded while the action chosen by the planner

was discarded to ensure that the trajectories remain consistent with the original dataset.

I use the satisfying planner DUAL-BFWS [85] to approximate the optimal cost-to-go

in the goal recognition algorithm PRP [37]. For initializing node values in the agent

model and computing the importance-based timing component, I use the Fast Forward

heuristic function hff [84]. All experiments were conducted on 4 servers each running

Intel®Xeon®Gold 6138 CPU @ 2.00GHz with 4 CPUs, and 8GB of RAM each.

All action costs were set to 1. Constants in the agent model (γ = 10000, β = 0.2) were

chosen manually so that the model generated human-like response times in navigation

tasks like Figure 4.2. Except when mentioned otherwise, the observation ratio is set to

0.25, which means that I use the first quarter of observations in a trajectory as the input

to the goal recognition algorithms. The adjustable weight w is set to 1, which means

that we weigh the action and timing components equally.

4.4.2 Experiment Results

Table 4.1 shows the performance of 8 goal-recognition algorithms along with a random

baseline.

Action-only Algorithms

Columns rtPRP and PRP in Table 4.1 show the results of real-time PRP and standard

PRP (both without a timing component). In Depots, Dwr, Miconic, Driverlog,

Ferry, BlocksWorld and Logistics, real-time PRP outperforms PRP. In Sokoban
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and EasyIpcGrid, PRP performs better while in IntrusionDetection, both ap-

proaches have the same performance. Overall, the normalized score for rtPRP is 6.06,

which is slightly better than the score of 6.22 achieved by PRP.

These results suggest that real-time PRP performs similarly to PRP, which implies

that computing a full solution might not be necessary for goal recognition even when

considering the action component alone.

Effect of Timing Components

When supplied with the agent-based timing component, rtPRP-a and PRP-a receive

overall scores of 3.76 and 3.82 respectively, while importance-based timing components

increase these scores to 7.48 and 7.10. The scores for importance-based timing compo-

nents are worse than those for the corresponding algorithms without timing components

(6.06 and 6.22). These results indicate that an accurate timing component can substan-

tially increase the performance of both PRP and rtPRP, but that incorporating evidence

from an inconsistent timing component using a sum can be harmful.

Using the timing component as a tiebreaker (AF-a) performs worse (4.43) than the

sum of evidence algorithms. On the other hand, AF-i (6.16) is slightly better than the

action-only algorithm PRP (6.22). These findings imply that the agent-based timing

component can sometimes reverse incorrect inferences made by the action component

alone, while even importance-based timing components can be helpful for breaking ties

between goals. They also suggest that non-linear evidence combination strategies are

likely to be superior to the simple sum used by rtPRP-i and PRP-i.

Observation Ratio

To explore whether timing information is especially valuable in scenarios with relatively

few observed actions, I ran rtPRP / rtPRP-a on BlocksWorld with observation ratios

set to 0.25, 0.5, 0.75 and 1.

Table 4.2 shows that given the timing goal recognition dataset, rtPRP-a has the largest

performance boost when fewest observations are available. As expected, timing infor-

mation appears to be especially valuable when the information conveyed by the action

trajectory is relatively minimal.
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Algorithm rtPRP rtPRP-a rtPRP-i PRP PRP-a PRP-i AF-a AF-i Random

Depots 4.61 2.46 5.14 4.96 3.36 5.32 3.71 5.09 5.5
Miconic 1.48 1.15 1.38 2.18 1.45 1.55 1.90 1.85 3.5
Dwr 2.98 1.57 3.70 3.38 2.04 3.52 2.50 3.38 3.5
Sokoban 3.52 2.05 3.55 2.02 1.23 2.50 1.41 2.09 3.5
EasyIpcGrid 3.58 1.74 3.45 3.07 1.44 3.73 1.31 3.21 5.5
Driverlog 2.93 1.71 2.98 3.14 1.54 3.21 2.18 3.04 3.5
IntrusionDetection 1.99 3.16 2.13 1.99 3.16 2.13 1.93 2.13 8.83
Ferry 1.71 1.14 2.64 2.04 1.39 2.52 1.82 2.02 4
BlocksWorld 4.43 2.83 10.08 5.84 2.54 9.51 2.88 5.76 11
Logistics 2.18 1.33 4.33 2.36 1.23 3.51 1.67 2.33 5.5

Normalized Score 6.06 3.76 7.48 6.22 3.82 7.10 4.43 6.16 10

Table 4.1: Performance of eight goal recognition algorithms on the timing goal recog-
nition dataset: real-time PRP (rtPRP), real-time PRP with agent-based timing com-
ponent (rtPRP-a), real-time PRP with importance-based timing component (rtPRP-i),
PRP, PRP with agent-based timing component (PRP-a), PRP with importance-based
timing component (PRP-i), action first with agent-based timing component (AF-a) and
action first with importance-based timing component (AF-i). The best algorithm for
each domain is shown in bold. Both AF-a and AF-i use PRP as the action component.

Ratio Quarter Half Three-quarter Full

rtPRP 2.53 1.5 1.17 1.03
rtPRP-a 1.67 1.17 1.13 1

Difference 0.86 0.33 0.04 0.03

Table 4.2: Performance of rtPRP-a and rtPRP on BlocksWorld with different
observation ratios.

4.4.3 Discussion

These results suggest that if we want to take advantage of timing information, then

we have to access an accurate timing model or at least a good approximation. My

experimental results are in line with the findings in theory of mind [154]: if you can

construct an accurate model of an actor’s mind, then you stand a good chance of correctly

inferring their intentions. On the other hand, an inaccurate model is likely to lead to

faulty inferences about others.

One possible criticism of my synthetic experimental setup is that the algorithms with the

agent-based model timing component rely on the same mechanism used to generate the

timing data, and it is therefore not surprising that timing information turns out to be

useful to infer the real goal. The next section addresses this concern by demonstrating

that the agent-based timing component is still useful when goal inference is performed

on human data. My results for synthetic data, however, still make a useful point: they

demonstrate that timing information can be used to distinguish between candidate goals
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that are not distinguishable based on action sequences alone (as in Figure 4.1), and can

even reverse weak inferences based on action sequences alone (as in Figure 4.2).

Over the past decade, several goal recognition algorithms have been developed based on

PRP that outperform the original PRP in certain conditions [39, 160]. These alternatives

may perform slightly better than PRP in Tables 4.1 and 4.2, but this would not affect my

main conclusions. For the behavioral experiments described in the next section, these

alternatives would yield the same goal inference as PRP because the action trajectories

provide no information about the goal.

4.5 Behavioral Experiments

The major question left open by our synthetic experiment is whether timing information

can still be exploited when the process generating planning times is not fully known.

In real-world settings, for example, we might aspire to make inferences about the goals

of human actors even in the absence of a veridical model of human planning. I there-

fore developed two behavioral experiments to explore whether the adaptive lookahead

planner matches humans closely enough to allow rtPRP-a to exploit timing information

when inferring the goals of humans.

4.5.1 Problem-solving Experiment

My first experiment collected human actions and planning times on a series of Sokoban

problems. We used these data to ask whether the adaptive lookahead planner can

generate human-like planning times, and whether timing information can be exploited

when inferring the goals of humans. Our experiment was carried out with approval from

Human Ethics Advisory Group at the University of Melbourne.

Experiment Configuration

50 participants (21 females and 29 males with a median age of 27) were recruited using

Prolific and asked to complete 24 Sokoban instances each.
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Figure 4.5: GRT set 2. One of the 4 potential goal positions is shown in the problem-
solving experiment, and the resulting timing is used for goal recognition.

Sokoban is a classic puzzle game where the player must push boxes to designated lo-

cations while navigating a maze-like environment. The goal is to successfully move all

the boxes to their targets without getting stuck or blocking the path. For simplicity,

all of my instances included a single box only. The 24 instances were designed to fall

into 6 sets, where each set includes 4 different goal positions located on the same map

configuration. One such set is shown in Figure 4.5. The presentation order of all 24

instances was randomized for each participant.

Within each set, the 4 goal positions were chosen as follows. A goal is deemed intuitive

if the first box push on an optimal path to the goal reduces the distance between the box

and the goal, and counter-intuitive otherwise. In Figure 4.5, goals IE and IH are intuitive

but goals CH and CE are not. Of the two intuitive goals, IE denotes the “easier” goal

and IH the “harder” goal, which in some instances can be unreachable. The difficulty

is formalized based on the number of nodes expanded by the A* algorithm. Similarly,

CH and CE denote the harder and easier of the two counter-intuitive goals. Choosing

goals in this way was inspired by results from the psychological literature suggesting that

people tend to spend more time planning when the solution length is long and when the

solution involves counter-intuitive moves [52, 104].

Human planning times are typically highly variable, and to minimize the variance we use

only the initial action and initial planning time to generate goal recognition instances
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Figure 4.6: Comparison between human initial planning time rank and agent model
prediction rank within each group. All instances have similar ranks, with a maximum

difference of 1.

with timing information (GRT). I generate 4 separate GRT instances for each set, and

each GRT instance includes all four goal positions (IE, IH, CE, and CH) as candidates.

All instances were designed so that the first move is forced: in Figure 4.5, for example,

the agent has no option except to move up on the first move. As a result the initial

action provides no information about the goal position, but the time taken before this

action is potentially informative.

Results and Discussion

Some of the “hard” goals in the task are actually unachievable, including goals IH and

CH in Figure 4.5. I used rtPRP-a as a goal recognition algorithm with both timing and

action components and rtPRP as an action-only algorithm.

First, I asked whether rtPRP-a generates human-like planning times. Within each set,

I ranked the 4 instances separately by human planning time and by the prediction of

rtPRP-a. Figure 4.6 compares these ranks. Most instances lie along the diagonal, which

means that rtPRP-a and humans both give the same rank to those instances. When the
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Figure 4.7: Performance of rtPRP-a on all GRT instances. The red dotted line
denotes the performance of the rtPRP algorithm (2.5) and the blue dotted line denotes

the average performance of rtPRP-a (1.75).

rtPRP-a ranking departs from the human ranking, the rank difference for any instance

is no more than 1.

I then applied rtPRP-a to the goal recognition task. Because the observation sequences

include a single action only, our previous method for aligning t (measured in seconds)

with t∗ (measured in iterations) no longer applies. I therefore align the two by using

ranks relative to the entire set of 24 instances. For example, the median t across this

set is mapped to the median t∗.

As presented in Figure 4.7, when choosing among 4 possible goals, rtPRP achieves an

average fractional rank of 2.5 (the same as random choice) because by design the initial

action is uninformative about the goal. rtPRP-a achieves an average ranking of 1.75,

and a paired t-test suggests that the improvement with respect to rtPRP is statistically

significant (t(23) = −3.89, p < 0.001).

Even though the adaptive lookahead planner is at best a coarse approximation of the

strategies used by the experimental participants, my results suggest that this approxi-

mation is good enough to be usefully incorporated into my goal recognition framework.
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Figure 4.8: Human and algorithm responses on the GRT instances. The effect of
thinking time is significant for humans (p < 0.05) and for rtPRP-a (p < 0.005) but

there is no effect for rtPRP. Error bars show the standard deviation of the mean.

4.5.2 Goal Recognition Experiment

My work is motivated in part by the idea that humans take timing information into

account when faced with goal recognition problems such as those in Figure 4.1. To

my knowledge, this idea has not been previously tested, and I therefore designed a

second behavioral experiment to verify that timing information can influence human

goal recognition.

Experiment Configuration

I designed 13 pairs of goal recognition instances based on the Sokoban domain. One

pair used the configuration in Figure 4.1. The instances in each pair included the same

map and the same two potential goals. One goal (e.g. A in Figure 4.2) was easy and the

other (e.g. B in Figure 4.2) was hard, where “hard” and “easy” are defined as for the

previous experiment using A*.

For each member of a pair, participants saw the same sequence of three actions, and

the only difference within a pair was the time observed for the third action. For “long”

instances, the time associated with the third action was 3 seconds, and for “short”

instances the time was only 0.5 seconds. The first two actions were always forced (e.g.

in Figure 4.1 an actor who does not backtrack has no option but to move up twice), and

the time for both actions was always set to 0.1 seconds.
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For each instance, participants observed the sequence of three actions and then indicated

whether A or B was more likely to be the goal pursued by the actor. For each pair of

instances, I anticipated that participants would be more likely to choose the hard goal

in the long version than the short version.

The same 50 participants who completed the problem-solving experiment also com-

pleted the goal-recognition experiment, and the goal-recognition experiment was always

completed second. As a result participants were familiar with the Sokoban domain by

the time they started the goal-recognition task. The presentation order of the 26 goal

recognition instances was randomized within participants.

Results and Discussion

Figure 4.8 shows the average probability of choosing the easy goal across all 13 pairs of

instances. As predicted, humans are more likely to choose the easy goal given a short

instance than when given the corresponding long instance. A paired t-test reveals that

this difference between long and short instances is statistically significant, and confirms

that human goal inference is sensitive to timing information. rtPRP-a (t(12) = 5.48, p <

0.001) shows the same pattern as humans (t(12) = 4.26, p = 0.001) but the action-only

algorithm rtPRP does not consider timing information and therefore generates identical

responses to short and long instances.

Although humans and rtPRP-a are both sensitive to timing information, they respond

differently to long instances. Humans prefer to choose easy goals even for long instances,

but rtPRP-a is more likely to choose hard goals than easy goals across the set of long

instances. This difference may reveal a lack of calibration between rtPRP-a and humans.

For example, if the true goal were easy, spending 3 seconds on a single move would be

highly anomalous according to rtPRP-a, but is apparently less anomalous according

to people. Future work can attempt to better calibrate the predictions of rtPRP-a by

aligning human and model planning times across responses to a large set of planning

problems.
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4.6 Future Directions

My framework opens up a number of additional directions for future work, and here I pro-

pose four that seem especially important. More comprehensive and broad discussion can

be found in Chapter 6. First, as mentioned in my discussion of the synthetic experiment,

a generative approach that makes accurate inferences based on human planning times

will need to incorporate an accurate generative model of human planning times. The

behavioral experiments suggest that the adaptive lookahead planner is accurate enough

to support useful inferences about human planners. This planner, however, is far from

a comprehensive account of human planning and future agent models can incorporate

additional factors that influence human planning times. For example, future models may

be able to capture the notion of action commitment by incorporating a meta-reasoning

process about when to stop searching and add the current best action to the execution

queue [161]. Future versions of the model can also take a bounded-rationality approach

and explicitly incorporate human memory limitations [125].

A second direction is to develop agent models that allow for individual differences. As

mentioned, my primary aim is to use this model as a general-purpose tool for AI systems

targeting broad populations. However, the behavioral data suggested that planning

strategies are highly variable across individuals: some participants seem to compute a

complete path to the goal, while others seem to focus only on the next few steps. Future

versions of the agent models could therefore include adjustable parameters that reflect

individual differences in planning strategies, and the values for these parameters could

be inferred on a per-participant basis.

Third, my current analyses assume that decision cost for a move (i.e. the total effort

required to select the move) is proportional to the observed time for that move. This

assumption holds if an agent is memoryless, and must carry out a fresh search on each

move without using any information computed on previous moves. In reality, how-

ever, decision costs may be amortized over multiple moves, because humans and other

memory-based agents may reuse information (such as search trees) computed on pre-

vious moves [61, 134]. This is also among the reasons why I stated previously that

the A-LH planner fails to capture the entirety of the human problem-solving process.

Future models can therefore consider ways to use observed planning times to infer the

total decision cost associated with each move. One possible approach is to model the
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total decision cost for a given move as a discounted accumulated sum that incorporates

some fraction of the observed times recorded for previous moves.

Finally, although timing information is often informative about the goals of an actor,

this relationship may not hold in contexts in which actors use strategies other than

forward search to make decisions. In some scenarios, especially when people are dealing

with familiar situations, they might act immediately in a reflex way without thinking

or reasoning [59]. Whether or not actors carry out forward search could potentially be

inferred on the basis of timing information. Future extensions of the agent model could

therefore adopt a hierarchical approach that supports two inferential phases: the first

phase aims to identify moves for which an actor has relied on forward search, and the

second phase uses thinking time of these moves to infer the goal pursued by the actor.

4.7 Conclusion

Goal recognition is an important problem for both AI and cognitive science researchers.

Most work in this area considers action sequences only, but I showed that humans are

sensitive to timing information and introduced a goal recognition framework that can

take timing information into account. To develop and evaluate this framework I intro-

duced an adaptive lookahead planner with a response-time mechanism inspired by the

evidence accumulation literature in cognitive science. My results suggest that incorpo-

rating an accurate model of timing is a promising way to improve the performance of

goal recognition algorithms, and that the adaptive lookahead planner captures human

planning closely enough to support useful inferences about the goals pursued by human

actors. Because timing information is easy to acquire and generally observable, exploit-

ing this information can potentially provide payoffs across many different settings.

4.8 Summary

In this chapter, I explored RQ2: ”How can a human-like planning algorithm be lever-

aged to enhance the performance of methods for goal recognition?”. Departing from

conventional goal recognition approaches, I introduced a novel goal recognition frame-

work that incorporates timing information and illustrated how the adaptive lookahead
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planner can be used to formulate a timing-sensitive goal recognition algorithm within

this framework.

In addition, I conducted human experiments to illustrate the practicality of timing-

sensitive goal recognition algorithms when interacting with humans. Two findings

emerged from the results of these experiments. Firstly, humans might act without real-

izing the unsolvability of a goal as the actor, and human observers might interpret an

actor’s true objective as an unattainable goal. Secondly, humans do exhibit sensitivity to

timing information, although their behavior does not align perfectly with the predictions

of the timing-sensitive goal recognition algorithm. This opens up several questions for

investigation: What factors could influence human goal inference? How does solvability

come into play? What mechanisms underlie human goal inference? In the upcoming

chapter, I use a Bayesian goal inference framework to address these questions.



Chapter 5

Human Goal Recognition as

Bayesian Inference1

5.1 Introduction

Once again, imagine yourself as a warehouse worker, overseeing the operations while

an AI robot assistant is navigating the facility. You observe the robot approaching a

secured door, and in this scenario, two potential goals are in play: gaining access to the

storage room located behind the locked door or proceeding to the shelf just outside the

door. If you notice the robot pausing for an extended period right outside the door,

it could suggest an intent to enter the locked room, even though this goal is currently

unachievable. In this situation, you have the capability to assist by using your private key

to grant access. However, if the robot simply continues past the door without stopping,

you might infer that its goal is to visit the shelf, a goal that is readily achievable.

As this example illustrates, in Chapter 4 I have shown that people’s ability to infer the

intentions of others may be influenced by factors such as timing information in addition

to observed actions [149, 150]. Furthermore, individuals can sometimes infer goals that

the actor cannot currently achieve. However, most existing goal recognition focus on

actions alone, neglecting the broader context, and they struggle to handle situations

involving unsolvable goals [37, 39, 120, 145, 146]. In this chapter, I draw on behavioral

1This chapter is adapted from the article accepted by AAMAS23: “Human Goal Recognition as
Bayesian Inference: Investigating the Impact of Actions, Timing, and Goal Solvability.”
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experiments to explore how goal recognition in humans is influenced by three kinds of

information: actions, timing, and goal solvability.

Goal recognition is the problem of inferring an actor’s real goal given a sequence of

observations and a set of possible goals. Two notable approaches that draw on Bayesian

inference [162] have emerged in the literature. In 2009, Baker et al. [9] introduced the

inverse planning Bayesian model, aimed at simulating human plan recognition by mod-

eling human Theory of Mind formally as planning. Around the same time, Ramı́rez and

Geffner [8] independently proposed a generative approach that uses planning algorithms

over planning models and is known as plan recognition as planning (PRP).

Beyond actions alone, a small group of researchers in AI and cognitive science have

explored how additional sources of information help to convey what others are thinking.

Singh et al. [149] used gaze data to infer people’s intentions and discovered that gaze can

help uncover the hidden goals of players in a board game. Gates et al. [150] developed

a Bayesian model that explains how people use response times as a cue to preferences

in one-shot decision making situations. In Chapter 3 I generalized the underlying idea

and explored how timing information can be used in situations where actors generate

rich sequences of actions, not just one-shot decisions. While both Berke et al. [19] and

I report that people are sensitive to timing information (in Chapter 4), there have been

no comprehensive attempts to understand the extent to which timing affects human goal

inferences.

Beyond actions and timing, the solvability of candidate goals provides a third relevant

cue that may influence people’s goal inferences. It seems plausible that people tend

to assume that actors are working towards achievable goals, because actors often have

accurate beliefs and actors are unlikely to waste effort working towards goals that they

believe to be unachievable. To the best of our knowledge, however, there has been

very little work on the impact of solvability in goal-recognition scenarios. Psychological

studies of solvability judgments generally focus on tasks like unscrambling anagrams,

[163, 164], and planning scenarios have received little attention. I therefore consider

solvability in addition to actions and timing information, and develop an experiment

that aims to understand how these three factors influence goal inference in humans.

Figure 5.1, Figure 5.2, and Figure 5.3 suggest how the three factors can be studied using

goal-recognition tasks within the domain of Sokoban. In all cases the actor is required
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Figure 5.1: An action map. The red goal is achievable but the green goal is not, and
the actor moves left at the key step.

(a) (b)

Figure 5.2: (a) An easy-goal map. The red goal is easy to achieve but the path to
the green goal is more complex. At the key move (not shown) the actor pushes the box
to the left. (b) A second easy-goal map. The red goal is easy to achieve but the green
goal is not achievable. The key move (again not shown) involves a push to the left.

to push a box towards a goal, and the observer must infer which of two candidate goals

the actor is working towards. Figure 5.1 is used to study the effect of observed actions.

If the actor moves left at the key step shown as a pink arrow, people typically infer that

the goal must be the green club, but had the actor moved right instead the red heart

would be more probable. Figures 5.2a and 5.2b feature two identical maps with distinct
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Figure 5.3: A competing-path map. There is one good path (red arrows) to the red
goal and two good paths (green arrows) to the green goal. The actor moves up at the

key step.

green goal positions, with Figure 5.2a representing a solvable green goal and Figure 5.2b

an unsolvable one. The probability assigned to the red goal may increase when the

green goal is unsolvable rather than solvable. In Figure 5.3, there is a single viable path

towards the red heart but two possible paths towards the green club. If the agent thinks

for a long time before taking the key step shown as a pink arrow, one possible inference

is that the goal is green and the agent is deciding which of the two paths to pursue. In

contrast, the red goal provides no plausible explanation of an extended pause before the

key step.

The evidence available in conventional goal recognition tasks includes one or more ob-

served actions, but I also consider scenarios using maps similar to those in previous

figures but where no actions are observed. We refer to these instances as prior in-

stances, because they probe expectations in advance of observing any actions. These

prior instances allow us to investigate how solvability influences goal-recognition when

other sources of information are absent. For instance, in Figure 5.1, in the absence of

any observations, individuals may exhibit a slight preference for the solvable goal (the

red heart). Previous Bayesian models of goal recognition typically assume a uniform

prior [9, 37, 38, 148], but a small body of recent work has explored how actions observed

in previous instances shape the priors that observers apply to new goal-recognition in-

stances [165, 166]. Here I take a different approach, and explore how the prior reflects

structural properties such as solvability and solution complexity rather than previously-

observed sequences of actions.
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To preview my results, I find that solvability influences people’s goal-recognition judg-

ments when no actions have been observed, but that this factor may be subsumed by

a more general notion of solution complexity. When actions are observed, however,

solvability appears to play a minimal role, and people’s goal-recognition inferences are

shaped instead by actions (as a primary factor) and timing information (as a secondary

factor). I evaluate a suite of formal models and find that human goal inference is

well-captured using Bayesian inference, and in particular that a Bayesian model which

incorporates an online planner provides a good account of human judgments.

This chapter makes several contributions. First, I carry out a comprehensive behavioral

experiment aimed at thoroughly investigating the factors that influence human goal

recognition. This study provides a strong foundation for the development of computa-

tional models of human goal inference. Second, I expand upon the adaptive lookahead

planner introduced in Chapter 4 by integrating a component that allows the planner to

recognize unsolvable goals. Third, I introduce a human-like goal recognition algorithm

that relies on Bayesian inference, and show that it provides a good account of human

behavior.

5.2 A Bayesian Framework for Goal Recognition

We now formalize the problem of goal recognition and introduce a Bayesian framework

for this problem. I follow the notation commonly used in the planning community

[8, 38, 148], but the same general approach has been applied in the cognitive science

literature [9]. Given we are incorporating timing information, the problem formulation

can be found in definition 4.2.

Goal recognition can then be carried out using

P (G|O) ∝ Prior(G)LL(O,G), (5.1)

where P (G|O) is the posterior distribution over goals, Prior(G) is the prior P (G) and

LL(O,G) the likelihood P (O|G). Following the framework introduced in the last chap-

ter, we decompose the likelihood LL(O,G) into two components: the timing com-

ponent LLT (O,G) := P (⟨t0, t1, ..., tm⟩|G) and the action component LLA(O,G) :=

P (⟨a0, a1, ..., am⟩|G), allowing for independent calculations.
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While solvability, actions, and timing might all influence human goal inference, a Bayesian

perspective suggests a fundamental distinction between solvability and the other two fac-

tors. Solvability is an inherent property of the goal and should therefore be captured by

Prior(G) within the Bayesian model. In contrast, actions and timing are aspects of O,

the observation sequence, and should be incorporated in the likelihood LL(O,G).

Because previous Bayesian accounts of goal recognition usually assume a uniform prior [9,

37, 38, 148], they focus on estimating the likelihood term LL(O,G). Specifically, this

involves determining the probability of generating the provided observation sequence O

given the goal G. Most goal-recognition models rely on standard planning algorithms

that do not handle scenarios in which the goal G is unsolvable. For example, in PRP

and following approaches, unsolvable goals are typically filtered out from consideration

at the outset.

Some approaches avoid the assumption that the actor is rational (i.e. follow the optimal

path) [9, 38, 145] like I did in Chapters 3 and 4, and can therefore estimate the likelihood

of an unachievable goal. I go beyond these approaches by using a novel solvability-aware

planner that can decide whether a goal is unsolvable based on the adaptive lookahead

planner (see Algorithm 3).

As shown in Algorithm 3, the Solvability-aware Adaptive Lookahead commences by

setting up the initial conditions, where the current state is defined and a set is prepared to

track which states have been explored (line 1). It constructs a tree from the current state

(line 4), signaling the start of the search process. The algorithm then enters a loop (lines

2-42), repeatedly examining the search tree to determine the next best move like adaptive

lookahead planner we described in Chapter 4. The new solvability-aware mechanism is

implemented by keeping track of whether any new states have been discovered, and

the downtime counter is resetting if novel states are found (lines 35-41). This counter

increases with each loop iteration until the algorithm concludes that no solution exists

if the downtime exceeds a predetermined limit (line 42). Through this approach, the

algorithm mirrors human decision-making by considering both new possibilities and

existing knowledge, all while navigating through the search space efficiently.

Although I provide a limited evaluation of this planner as an account of human plan-

ning, my primary focus is on evaluating the Bayesian model of goal recognition that

incorporates this planner as a component.
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Algorithm 3 Solvability-aware Adaptive Lookahead

Parameters: Stopping temprature β, Exploration constant C, JoS (Judgement of Solv-
ablity) Threshold T Input: Search space P , Search goal g, Current state s0
Output: Solvability of the problem (True/False)

1: Let downTime← 0, sc ← s0, visitedStates← set()
2: while downTime < T do
3:

4: Let tree← Tree(sc), n← 0 {Construct a tree rooted on state sc}
5: Let node ← tree.root, v′ ← −∞, v′′ ← −∞{v′ and v′′ denote the best child node

value and second best child node value of the root node respectively}
6:

7: {use adaptive lookahead to find the next move and record the thinking time as n,
stopping probabilitiy is defined as Pstop(s0, n) =

n
n+I(s0)γ exp(−n/I(s0))

}
8: while tree.root is expanded and stop not triggered do
9: while node is expanded do

10: node← UCBSelect(node, C)
11: end while
12:

13: if node.state is g then
14: a← softmaxSelect(tree.root), n
15: break
16: end if
17:

18: n← n+ 1
19: for succ in P.successors(node.state) do
20: node.children.add(Node(succ, gc(succ))) {Initialize the new generated node

using goal counting heuristic}
21: tree.update(gc(succ)) {Backpropagate the new evidence so values of all an-

cestor nodes are updated by averaging the obtained values of all visits passing
through the node}

22: end for
23:

24: Update v′, v′′

25: I(s) = v′

(1+β)v′−v′′

26: end while
27:

28: a← softmaxSelect(tree.root), n
29: sc ← P.execute(sc, a)
30:

31:

32: if sc is g then
33: return True
34: end if
35:

36: if There is any novel state in tree that not in visitedStates then
37: add novel states to visitedStates
38: downTime← 0
39: else
40: downTime← downTime+ n
41: end if
42: end while
43: return False
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5.3 Experiment Configuration

To explore how actions, timing and solvability influence goal recognition and to test

competing computational models I conducted a human experiment using the Sokoban

domain. Although goal recognition is our primary focus, the experiment began with a

planning phase in which participants were asked to solve 23 Sokoban problems. 9 of

these problems were unsolvable, and participants could press a specified button at any

stage if they believed that the current instance was unsolvable.

Participants then moved on to a goal-recognition phase using the same maps presented

in the planning phase. Each instance presented a Sokoban map with two possible goal

positions marked as A and B. Participants were asked to infer the actor’s goal, and pro-

vided responses on a six point Likert scale labeled “very confident A”, “fairly confident

A“, “slightly confident A,“ “slightly confident B,” and so on. For subsequent analyses

we mapped these six responses to probabilities {0, 0.2, 0.4, 0.6, 0.8, 1}, where each

probability represents the probability of choosing goal B [167]. For example, if three

participants chose “very confident A” and two chose “slightly confident B” the average

response would be 3×0+2×0.6
2+3 = 1.2

5 = 0.24.

The stimuli for the goal recognition phase belong to one of three types, and included

20 prior instances, 40 observation instances and 9 filler instances. The presentation

order of these instances was fully randomized. Identical map configurations and goal

positions were used for the prior and observation instances, but the prior instances

required participants to infer the actor’s goal without having observed any actions. In

all filler instances participants observed the player pressing the button to declare the

instance unsolvable. Responses to these instances will not be analyzed, and they were

included only to reinforce the possibility that the goal might be unsolvable.

The observation instances included pairs that share identical maps and potential goal

positions but differ in a single key step (see Figures 5.1 and 5.3). This key step refers

to the first step at which a player who does not backtrack has multiple options. Within

each pair, either the action for this step or the response time for the action at this step

can vary. There are 20 pairs in total, corresponding to the 20 instances in the prior

type.
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The observation instances can be organized into three subtypes. Action pairs differ

based on the action taken for the key step (see Figure 5.1). I hypothesize that changing

the action at this step will influence human inferences regardless of the solvability of the

potential goals.

The remaining two subtypes allow me to study the influence of timing information.

Easy-goal pairs use maps where one goal is easy to solve and the other goal is either

solvable or unsolvable (Figure 5.2a and 5.2b). In this subtype, the thinking time for the

key step varies. I hypothesize that increasing the thinking time at this step will decrease

participant’s confidence that the actor is aiming for the easy goal, because achieving the

easy goal should not require a prolonged pause at any stage.

Competing-path pairs (the third and final subtype) include cases in which one goal (e.g.

the green goal in Figure 5.3) requires a choice between two possible actions at the key

step, but the other goal suggests only one natural action at this step. As for easy-goal

pairs, I vary the thinking time observed at the key step. I hypothesize that increasing

the thinking time at this step will suggest that the actor is choosing between two paths,

and therefore aiming for the competing-path goal rather than the alternative.

For each map configuration, I started with a goal-recognition instance featuring two

solvable goals. I then created additional instances by moving each solvable goal in

turn to either an adjacent unsolvable position or an unsolvable position with similar

properties (e.g. Manhattan Distance from the start position). Figure 5.2a shows an

original instance with two solvable goals, and Figure 5.2b is a variant in which the

green goal is unsolvable. Manipulating solvability in this way allows me to explore the

influence of solvability on human goal inference.

The experiment was pre-registered on AsPredicted (https://aspredicted.org/YRN Y96)

and was approved by Melbourne University Ethic Committee. I recruited 100 standard

sample participants (63 females and 37 males with a median age of 28) on Prolific, and 5

were excluded because they had more than 3 abnormal responses in the problem solving

phase. For each instance, responses more than 3 standard deviations away from the

mean total time and total steps for that instance were considered abnormal.
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5.4 Human Problem Solving Behaviour

The problem-solving phase in the experiment serves three primary purposes. Firstly, it

aims to validate the effectiveness of our manipulation of observations (i.e. actions or

thinking times) in the goal recognition phase. Secondly, it seeks to analyze participants’

strategies when faced with an unsolvable goal. Lastly, it involves a comparative as-

sessment of the performance between the solvability-aware adaptive lookahead planner

(sA-LH) and human participants across Sokoban instances. We convert the number of

iterations generated from sA-LH into seconds by normalizing it, ensuring that the total

planning time for all instances is the same across humans and sA-LH.

Across the action maps, the majority of participants (88%) make choices that match

our manipulation in the goal recognition phase, which is consistent with the model’s

prediction (82%) as shown in Figure 5.4a. For instance, as shown in Figure 5.1, selecting

the green goal represents a choice that is consistent with our manipulation. Across easy-

goal maps (e.g. Figure 5.4b), participants spend less time on the easy goal, with an

average of 2.84 seconds compared to 7.75 seconds for the harder goal. The model’s

prediction shows a similar trend: 1.41 seconds for the easy goal and 8.24 seconds for the

hard goal. Across competing-path maps, both human participants and the model show a

small but statistically significant difference in planning times for the two goals. Human

planning times increase from 5.94 seconds to 6.83 seconds, and the model predicts an

increase from 5.68 to 7.04 seconds (see Figure 5.4c). These results indicate that the

manipulations in the goal recognition experiments are well-grounded and also suggest

that the sA-LH planner provides a good account of human behavior in the Sokoban

domain.

We further examined the number of steps taken before participants became aware that

unsolvable instances were in fact unsolvable. The results depicted in Figure 5.5 demon-

strate a positive correlation between the model’s predictions and human responses. The

majority of participants demonstrated behavior resembling that of online planners, tak-

ing an average of 15.23 steps, indicating that, on average, participants take approxi-

mately 15 steps before recognizing the unsolvability of the goal. The model predicted

a much higher average of 35.78 steps. This divergence might be attributed to partic-

ipants’ general lack of patience when carrying out online experiments. A minority of

participants do recognize goals as unsolvable before carrying out any actions, and failing
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(a) (b) (c)

Figure 5.4: (a) Proportion of participant choices for the action in action maps. Cons
means consistent with our manipulation in the goal recognition phase. The model
employs softmax action selection with a temperature parameter set to 5. (b) Average
Planning time for easy and hard goals in easy-goal maps. The effect of thinking time
is significant for both human and model (p < 0.001). Error bars show the standard
deviation of the mean and planning time measured in seconds. (c) Average Planning
time for competing and no-competing goals in competing-path maps. The effect of
thinking time is significant for both human and model (p < 0.05). Error bars show the

standard deviation of the mean and planning time measured in seconds.

Figure 5.5: Number of steps taken in unsolvable instances for humans (x-axis) and
the model (y-axis). Human responses and model predictions are strongly correlated

(r(7) = 0.65, p = 0.05).

to capture the responses of these participants may also contribute to the difference be-

tween model predictions and average human responses. Nevertheless, the data strongly

suggest that the majority of people should be characterized as online planners in the

experimental context.
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Model Model String (CL ∼) Prior Action Easy-goal Competing-path

M0 (1|participant) + (1|map) 6762.8 6252.6 2591.2 5463.8
M1 soA+ soB + soA ∗ soB + (1|participant) + (1|map) 6741.3 6272.5 2597.1 5439.5
M2 obs+ (1|participant) + (1|map) N/A 4621.3 2552.4 5466.2
M3 soA+ soB + soA ∗ soB + obs+ (1|participant) + (1|map) N/A 4636.9 2558.3 5441.7

Table 5.1: Bayesian Information Criterion (BIC) of models in regression analysis.
The best model for each set of instances (i.e. each column) is shown using bold. The

dependent variable CL is the probability assigned to goal A.

5.5 Human Goal Recognition

I use mixed effects models to fit the human responses in the goal recognition phase. In

these models, the variable CL represents the confidence level towards goal A, ranging

from 0 to 1. The variables soA and soB correspond to the solvability of goals A and

B, respectively, with 1 denoting solvability and -1 denoting unsolvability. In the action

maps, goal A represents the rightmost goal, while goal B represents the leftmost goal.

In easy-goal maps, goal A is designated as the easy goal, while goal B is identified as the

hard goal. In competing-path maps, goal A signifies the no-competion goal, while goal B

denotes the competing-paths goal. The variable obs indicates whether the observation

(i.e. action or planning time) is consistent with goal A (1 denotes consistent, -1 denotes

inconsistent) if available. The model also includes random effects for participant and

map configuration. All p-values subsequently reported are based on log-likelihood ratio

tests carried out for prior instances and each subtype of observation instances. The

models and summary of regression results can be found in Table 5.1.

5.5.1 Prior Instances

In prior instances, I present a map without any observed actions to determine how

solvability or other static properties would influence the human prior PriorH(G) over

the potential goals. My hypothesis is that humans will prefer solvable goals in cases

where one goal is solvable and the other is unsolvable. As shown in Figure 5.6a, the

overall choice percentage of solvable goals stands at 61.16% (the sum of blue bars), and

the average confidence level of choosing solvable goal is 0.59. This result confirms a clear

preference for goals that can be solved.

The log-likelihood ratio test of prior instances yields χ2(3) = 44.185, p < 0.001. Model

M1 demonstrates a strong fit, implying that the impact of solvability is evident. Specif-

ically, the 95% Confidence Interval (CI) for regression coefficient of soA is [-0.05, -0.02],
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Figure 5.6: (a) Response distribution for prior instances where goal A is solvable and
goal B is not. Blue bars indicate a preference for solvable goal A while red bars represent
a preference for unsolvable goal B. (b) Comparison between human responses and the
easiness model. The x-axis represents the model’s predicted probability of choosing the
easy goal, and the y-axis represents the human prior observed in the experiment. The
instances are represented as circles, crosses or stars based on whether neither, one or
both goals are unsolvable. (c) Response distribution from Figure 5.6a broken down by

the three subtypes.

while the 95% CI of soB is [0.02, 0.05]. These findings confirm our hypothesis —-

when one target is solvable, participants are more likely to infer that the solvable target

represents the actual goal.

When I look deeper into the differences between various types of scenarios, I notice that

distinct map layouts affect how much participants rely on solvability (see Figure 5.6c).

Specifically, in the action maps, where the primary contrast between the goals is solv-

ability, a consistent pattern emerges: participants tend to lean toward solvable goals.

Most participants, however, express only a slightly confident viewpoint. This suggests

that even though participants recognize the importance of solvability, the evidence sup-

porting it might not be strong enough to firmly guide their conclusions.

In the easy-goal maps, the findings reveal a substantial number of participants who

exhibit strong confidence in favor of the target being solvable rather than unsolvable.

This finding, however, prompts the question of whether this confidence stems solely

from solvability or is influenced by other characteristics within the easy-goal maps. As
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mentioned already, within these maps the solvable goal coincides with the easier goal.

In order to further explore the possible role of easiness, I compared responses to maps

that were similar except that the hard goal was solvable rather than unsolvable. I found

that solvability itself does not significantly impact human inference; rather, individuals

consistently lean towards the easier goal, irrespective of the solvability status of the

other goal.

For competing-path maps, solvability continues to shape human judgments, but in a

different way. Among the responses, 54.74% show a preference for the solvable goal,

resulting in an mean confidence level of 0.57. This is even higher than the 0.56 confidence

level in the action maps. Interestingly, when participants choose a solvable goal, their

behavior stands out from when they pick an unsolvable one. While they don’t seem very

sure about choosing an unsolvable goal, their confidence is more balanced when they

opt for a solvable goal.

Our findings suggest that human goal inference is influenced by the difficulty of goals,

from easily solvable to inherently challenging scenarios. An unsolvable goal might repre-

sent an extreme version of a difficult goal. To test this idea, I developed a simple model

called the Easiness Prior Model to fit the human prior. In this model, I operationalize

the difficulty of each solvable goal g as the sum of the optimal (i.e. shortest) path length

opt(g) and a smoothing parameter o (set to 5 in our analyses). This parameter captures

the baseline cognitive effort demanded by the task (e.g. effort to process the map, rec-

ognize the actor and goal locations, etc). I further assume that unsolvable goals have

the same difficulty score (s = 26) as the most difficult solvable goal in the experiments.

Overall, the difficulty score for goal g is defined as sg = o+min(c, opt(g)). Let sA and

sB represent the cognitive difficulty values for goals A and B respectively in the prior

instances. To reflect the notion that easier goals (with shorter optimal paths) have a

higher prior, we use

⟨Prior(A), P rior(B)⟩ = ⟨ sB
(sA + sB)

,
sA

(sA + sB)
⟩. (5.2)

As shown in Figure 5.6b, my model closely aligns with the actual prior probabilities

observed in the prior instances (Pearson correlation test: r(18) = 0.91, p < 0.001). This
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finding suggests that our simple easiness model can effectively mimic human decision-

making when no observations are available: preference for solvable over unsolvable goals

maybe an instance of a more general preference for easier over harder goals.

5.5.2 Observation Instances

The observation instances consists of pairs that share identical maps and potential goal

configurations but differ in a single key step. This key step refers to the first action

where a player who does not backtrack has multiple options. Within each pair, either

the action for this step or the response time for the action can vary. Each pair also

corresponds to a prior instance which shares the same map and goal configurations

without including any observations.

There are three specific subtypes within the observation pairs, which also corresponds

to three different types of maps in the prior instances. In what follows I consider the

three subtypes separately.

Action Pairs

The result confirm my hypothesis: solvability rarely contributes to the final decision

in goal choice when actions are informative. Regardless of whether the goal is solvable

or unsolvable, the shift in goal preference, compared to the prior (that slightly favors

the solvable goal), aligns with the guidance provided by action observations. When the

action supports to the unsolvable goal, the confidence level for the solvable goal shifts

from 0.56 to 0.24, and when the action supports to the solvable goal, the confidence

level for that goal increases to 0.81. I also ran a log-likelihood ratio test to verify the

hypothesis (see Table 5.1).

Among the models considered, Model M2 demonstrates the best fit ((χ2(1) = 1638.7, p <

0.001)), as evidenced by its lowest Bayesian Information Criterion (BIC) value. The 95%

CI for the regression coefficient of obs falls within the range of [-0.32, -0.3]. Conversely,

neither soA nor soB contributes meaningful information to the confidence level in this

context. Notably, Model M1 even exhibits a higher BIC value than the baseline model

(M0), indicating that solvability fails to enhance the model fit.
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Easy-goal Pairs

Compared to the prior condition, regardless of the time actors take to think about the

key steps, human responses shift towards the easy goal in the presence of observations.

This shift is evident as the confidence level for the easy goal changes from 0.69 to 0.86

given short thinking time. However, when a long thinking time (consistent with hard

goals in our hypothesis) is observed, this shift is somewhat less pronounced (0.69 to 0.75).

Additionally, I observed that this pattern remains consistent, irrespective of whether the

hard goal is solvable or not.

I performed an identical log-likelihood ratio test using easiness to establish obs: short

thinking time is consistent with easy goal A (assigned 1) and long thinking time is

aligned with hard goal B (assigned -1). The results aligned with my initial intuition:

Model M2 exhibits the most favorable fit (χ2(1) = 45.425, p < 0.001). This underscores

the notion that thinking time is useful for inferring the confidence level, while solvabil-

ity’s contribution remains negligible. The 95% confidence interval for the regression

coefficient of the intercept spans from 0.26 to 0.34, indicating a strong tendency among

participants to favor the easier target choice. Furthermore, the 95% confidence interval

for the regression coefficient of obs (i.e. long/short thinking time) falls within the range

of [0.04, 0.07]. This outcome emphasizes that the manipulation of thinking time can

exert a notable influence on the confidence level, contributing to statistically significant

variations in participants’ goal inference processes.

Competing-path Pairs

Broadly speaking, the patterns observed within the competing-path pairs align closely

with those of the easy-goal pairs. In particular, when participants observe the actions,

their preferences shift towards the no-competition goals whether they spend more or

less time. Unlike the easy-goal instances, the initial distribution of competing-path maps

is nearly uniform (with confidence level to the no-competition goal of 0.5) as shown

in Figure 5.6c. With consistent observations (i.e. short thinking time) favoring the

no-competition goal, the confidence level to that goal increases to 0.58. Surprisingly,

even with inconsistent observations (i.e. long thinking time), the confidence level still

increases to 0.56. This result implies that our definition of consistency (long/short
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thinking time) may not be the primary factor observers take into account during goal

inference.

I applied the same log-likelihood test using number of competing path as the standard

to establish obs: short thinking time is consistent with no-competition goal A (assigned

1) and long thinking time is aligned with competing-path goal B (assigned -1). All

three models yield significantly better fits than the baseline model, with Model M1 –

which considers only solvability – achieving the optimal fit (χ2(2) = 41.442, p < 0.001)

based on BIC. In the comprehensive Model M3, the 95% confidence interval for the

regression coefficient of soB lies between [-0.07, -0.04], while the intervals for soA and

obs encompass [0.00, 0.04] and [0.00, 0.03] respectively. These results indicate that in

this context, the solvability of competing goal B presents a substantial impact on human

inferences, while the solvability of the no-competing goal A and the influence of thinking

time are comparatively more modest. Increased awareness of solvability of competing

goals suggests individuals may allocate more time to plan for these goals, aligning with

the assumption in sA-LH and my results in previous two chapters.

5.5.3 Model Comparison

I now evaluate a range of models by comparing them against human goal inference

behavior. These models are formulated within the same Bayesian framework (Equa-

tion 5.1) but use 3 different priors Prior(·) (uniform prior, easiness prior model shown

in Equation 5.2, empirical prior based on our problem solving data) and 5 different like-

lihoods LL(·, ·) (offline-planning likelihood, online-planning likelihood, online-planning

likelihood with actions only, empirical likelihood, empirical likelihood with actions only).

For offline-planning likelihood estimation, I adopt the PRP approach outlined by Ramı́rez

and Geffner [37]. This approach is not designed to handle unsolvable goals, but as orig-

inally formulated it consistently prioritizes solvable goals ahead of unsolvable goals. All

easy-goal and competing-path maps were intentionally designed so that actions would

be uninformative about the goal, and in these cases the offline likelihood assigns equal

weight to both targets.
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The online likelihood is derived from 100 simulations conducted using the solvability-

aware adaptive lookahead planner (sA-LH). To minimize variance in our model predic-

tions, I focus solely on the likelihood associated with the key step, as the other two steps

are predetermined. Specifically, I need to calculate the action component LLA and the

timing component LLT separately for each goal and then combine them. For the action

component, the likelihood is estimated by dividing the number of action choices made

in the simulations by the total number of simulations (i.e. 100). As illustrated by Fig-

ure 5.4a, I previously confirmed that sA-LH aligns with human action choices in action

instances. In the remaining two types of instances, we found that actions still provide

valuable information for goal inference. In action instances, since the simulated times for

both targets are the same, the timing likelihood LLT effectively makes no contribution.

In easy-goal and competing-path instances, the timing likelihood is computed under the

assumption that LL(·, g) follows a Gaussian distribution with a mean determined by the

average number of sampled iterations needed to achieve goal g. I further assume that

long and short thinking times in the goal-recognition experiment correspond respectively

to the average number of iterations generated by sA-LH for hard and easy goals.

The empirical likelihood draws inspiration from the inverse planning approach intro-

duced by Baker et al. [9]. I estimate the empirical action and timing likelihoods in the

same way as the sA-LH likelihoods except that the samples are based on human re-

sponses collected during the problem-solving phase instead of simulations from sA-LH.

For example, the mean and standard deviation for the Gaussian timing likelihood are

based on the human responses provided during the problem-solving phase.

For both the online and empirical likelihoods, I consider variants that incorporate only

the action component LLA. These variants are useful for establishing whether timing

information is needed to account for our human goal-recognition data. For all log-

likelihood calculations, we add a small value of 0.025 to both options to prevent the

occurrence of zero probabilities.

Results and Discussion

As shown in Fig 5.7, the Easiness prior with online likelihood (actions only) achieves

the best overall performance as measured by the log-likelihood assigned to the entire

data set. Comparing the rows of Fig 5.7 suggests that the contribution of the prior
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Figure 5.7: Comparison between model predictions and human inferences. All model
labels show the prior followed by the likelihood: for example, uniform + emp is the
model with uniform Prior and the empirical likelihood. emp(a) and online(a) are
likelihoods that incorporate actions but not timing information. For readability, log
likelihoods (higher is better) are shown as offsets relative to the log likelihood of the

uniform+offline model.

is important but small. In contrast, comparing the columns reveals that changing the

likelihood can have a dramatic effect on model performance.

It is striking that the online likelihoods seems comparable or superior to the empirical

likelihoods even though the empirical likelihoods were directly fit to human behavioral

data. The online likelihoods are based on the A-LH planner, and the strong performance

of these likelihoods suggests that the A-LH planner provides a robust and reliable account

of human behavior. In contrast, the offline likelihood performs substantially worse than

the online and empirical likelihoods, suggesting that the participants implicitly assumed

that the actor in the goal-recognition task relied on an online planning strategy.

Comparing results for likelihoods with and without timing information suggests that

timing information is not needed to account for the behavioral data, and that incor-

porating this information may slightly impair model performance. Although the online

likelihoods with and without timing information yield similar levels of performance, the

two show distinct patterns across the three map types. Of the two online likelihoods, the

action-only version performs worse across easy-goal maps, but better across the other
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two map types. This finding suggests that timing information may be beneficial in spe-

cific scenarios even though it provided no overall boost in performance across our entire

data set.

Although varying the prior does not affect model performance as much as varying the

likelihood, it is notable that the Easiness prior model and the empirical prior achieve

similar levels of performance. This finding provides additional support for our previous

finding (see Fig 5.6b) that the Easiness model is well-aligned with human judgments.

5.6 Related Work

Ramı́rez and Geffner [37], along with subsequent researchers such as Vered et al. [38] and

Masters and Sardina [120], introduced the Plan Recognition as Planning (PRP) approach

that uses planning to estimate the likelihood. I evaluated this approach (referred to as

the offline likelihood) as a baseline. This approach assumes agent rationality and focuses

exclusively on actions, leaving unaddressed the explicit treatment of unsolvable goals.

Berke et al. [19] have explored the influence of timing information on human understand-

ing of others. Their study, however, is not anchored in the domain of goal recognition,

and they rely on a domain-specific algorithm for likelihood estimation.

Baker et al. [9] introduced a Bayesian framework for human goal inference and con-

ducted a systematic human experiment demonstrating their model’s ability to achieve

human-like inference, but did not consider the influence of timing and solvability. They

acknowledged the possibility of a non-uniform prior in humans, but did not explore this

idea experimentally.

Some recent research has considered non-uniform priors in goal recognition [165, 166].

These approaches, however, focus mainly on incorporating past information into the

prior within the context of sequential Bayesian updating. We depart from this approach

by investigating how domain-independent factors (i.e solvability and easiness) influence

human priors.
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5.7 Conclusion

In this study I used a Bayesian framework to systematically investigate the influence of

actions, timing, and goal solvability on goal recognition. Through an in-depth analysis

of human responses in the Sokoban domain, I found that while actions are typically

attributed the highest importance, timing and goal solvability also influence goal recog-

nition, particularly in scenarios where actions offer limited information. Leveraging these

insights, I developed a goal recognition model that closely aligns with human inferences,

surpassing the performance of existing algorithms.

My work explored role of the prior, which is often overlooked in the literature. My

results suggest that humans rely on a prior that incorporates factors such as solvability

and perceived goal difficulty. I formulated a model of the prior (the Easiness model) that

proved successful in accounting for human responses, both before and after any actions

had been observed. However, our model comparison results also indicate that, for the

purpose of modeling human inference, uniform priors may remain a viable and pragmatic

choice. But this observation should not be extended to numerous real-world scenarios.

Consider, for instance, a personalized assistant that relies on a uniform prior; in such

cases, the assistant’s functionality would be severely limited and ineffective. A final

consideration regarding priors is how humans might formulate them. Some readers may

argue that prior should be immediately available regardless of the reasoning process and

should not require inference of task difficulty. However, in this thesis, prior specifically

denotes human inference without directly observing the actor’s behavior. This includes

information such as goal solvability or other structural parameters unaffected by the

actor’s behavior. This interpretation of prior diverges from the psychological definition,

which usually denotes beliefs formed without a reasoning process.

I extended the Adaptive Lookahead Planner to capture human behavior in the pres-

ence of unsolvable goals, and our model comparison suggests that this extended model

is useful for estimating the likelihood term required by the Bayesian goal-recognition

framework. This planner, however, departs from human behavior in some respects (e.g.

by taking more steps before recognizing a goal as unsolvable), and future work should

aim to improve it further.
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The evaluation of the influence of actions, timing, and solvability suggested that actions

(when available) have a dominant influence on people’s choices. This finding provides

some justification for the standard emphasis on actions within the goal-recognition litera-

ture. Nevertheless, my observations also revealed the influence of solvability and timing,

particularly in situations where actions are uninformative. My results seem broadly

compatible with an information-seeking approach [168] to goal-recognition in which hu-

mans focus initially on actions but turn to other factors such as timing and solvability if

actions prove uninformative. Future work can explore this information-seeking approach

in more detail and compare it with the traditional Bayesian approach.

Finally, I conducted a thorough examination of Bayesian inference and the commonly

used mirroring approach (i.e. planning for likelihood estimation) discussed in previous

work [9, 37, 38]. The empirical model, which relies on problem-solving data, exhibits

a strong alignment with human goal inference. This finding suggests that humans may

indeed rely on Bayesian inference and mirroring to carry out goal-recognition. I also

introduced a goal recognition model (the model that combines the easiness prior with

the online likelihood) that can be implemented independently of human problem-solving

data while generating human-like goal inferences. I expect that this model may prove to

be useful in a range of downstream applications, including explainable goal recognition

[169] and transparent planning, a process focused on selecting actions that effectively

convey the actor’s intentions to observers [14]. Researchers in these domains may be able

to leverage this model to advance the development of more interpretable AI behavior.

5.8 Summary

In this chapter, I considered RQ3: How do humans carry out goal inference, and can

this inference be captured within a Bayesian framework? My investigation reveals that

the Bayesian framework exhibits the capability to capture human inference, with factors

such as action, thinking time, and goal solvability contributing to the inference in various

scenarios.

So far, we have already covered various scenarios in human-agent interaction in the

context of goal recognition. However, many questions remain open and worthy of future

exploration. Key areas for consideration include the development of more sophisticated
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human-like models, the potential integration of learning approaches into our framework,

and the practical application of our research findings in real-world contexts.

In the next chapter, I discuss these questions and propose potential avenues for future

research.



Chapter 6

Future Directions

In Chapters 3, 4, and 5, we explored planning algorithms with a focus on mirroring

human behavior in action selection and planning time. This investigation serves as a

foundational step towards a comprehensive understanding of human problem solving and

goal recognition strategies through the lens of automated planning techniques. Given

the foundational nature of this research, there exists a breadth of possibilities for deeper

exploration.

At the conclusion of each chapter, we briefly introduced potential future research direc-

tions. In this section, we will engage in a thorough discussion of these paths, aiming to

outline a more detailed and structured research agenda for each area.

6.1 Problem Solving

In my exploration of problem solving, I have developed adaptive lookahead planners

that successfully emulate human behavior in terms of choosing actions and timing them,

specifically within puzzle configurations such as the TOL and Sokoban domains. The

model presented, though efficient, is part of an ongoing effort to develop computational

counterparts that closely emulate human problem-solving processes. Its fidelity could

be significantly enhanced by evaluating and potentially revising its components, such as

the policies for selecting actions and backpropogate values [170].

For example, there are two potential methods for value backpropagation. The first

method is max backup, which involves selecting the maximum value from the child nodes

108
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and propagating it back to the parent node. This approach can be particularly effective

in scenarios where maximizing performance is the primary objective. Another method

is average backup, where the average value of all child nodes is calculated and then used

for the parent node’s value. This technique might be more suitable in environments

where a balanced approach is needed, taking into account various possible outcomes.

Indeed, it would be interesting to investigate which of these two backpropagation meth-

ods more accurately mirrors human problem-solving mechanisms. Determining this

could be achieved through experimental approaches such as direct measurement, for in-

stance, using self-reporting techniques where participants detail their decision making

process. This could provide insight into whether they tend to use maximal outcomes

(aligning with max backup) or consider a balance of possibilities (in line with average

backup).

Furthermore, identifying the specific scenarios where each method is most applicable

could be beneficial. Different problem solving contexts may call for distinct approaches;

for instance, max backup might be more suitable in highly competitive or goal-oriented

scenarios, while average backup could be better in situations that require risk assessment

or dealing with uncertainty.

Beyond a more thorough consideration of component choices, the model also overlooks

certain key characteristics inherent in human cognitive processes. First of all, it func-

tions statically, without capturing the progression of learning that naturally occurs with

repeated problem solving attempts. Integrating these dynamic elements—specifically,

the capacity for individuals to evolve and optimize their approach to problem solving—is

a substantial challenge [64].

Moreover, the planner operates on the assumption that each planning session begins from

scratch, disregarding any previous planning efforts. In contrast, human decision-making

benefits from working memory mechanisms (i.e. previous solutions and strategies can

inform and streamline current problem solving endeavors). Integrating this aspect of

cognitive recall is crucial, as real-world problem solving often builds upon prior knowl-

edge and planning [171].

Additionally, while my work’s goal has been to construct a computational model that
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captures human average behavior, the variability in individual problem solving ap-

proaches cannot be overstated. Tailoring the model to accommodate individual dif-

ferences is vital for its application in real-world scenarios [64, 117].

In the following parts, I will illustrate potential methodologies for overcoming these

challenges within the framework of adaptive lookahead. This will include strategies for

modeling learning effects, working memory mechanisms, and individual behavioral differ-

ence, thereby enhancing the model’s applicability and precision in simulating human-like

problem solving in more realistic settings.

6.1.1 Learning Effects

Learning effects refer to improvements in performance or efficiency that occur as a

result of repeated practice or experience with a particular task or activity. Essentially,

as individuals become more familiar with a task, they often become better at it. This

improvement can be observed in various ways, such as faster completion times, higher

accuracy rates, or the ability to perform the task with less cognitive effort. Within

my behavioral experiments, learning effects are consistently observed, reflecting their

widespread presence across various cognitive tasks.

In the context of cognitive psychology and education, learning effects are associated with

how practice or study leads to long-term changes in mental processes and knowledge

retention. In artificial intelligence and computational modeling, learning effects can be

simulated by algorithms that adjust and optimize their performance as they process

more data or encounter similar tasks over time.

Approaches that are centered around learning, such as machine learning algorithms,

inherently exhibit learning effects, adapting and refining their performance as they gain

more data or experience [69]. In contrast, model-based methods typically rely on static

models that do not change over time. Despite this, there are promising strategies that

can be integrated into model-based frameworks to mimic learning effects [15].

For instance, with increased experience, individuals can develop richer and more effi-

cient ways of representing a problem. Taking TOL as an example, players may begin to

recognize patterns in the puzzle over time. Instead of seeing move one followed by move

two, they see a singular operation leading to a desired outcome, effectively compressing
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several steps into one mental leap. This cognitive compression, or chunking, mirrors

the technique where larger tasks are broken down into meaningful segments or hierar-

chies [80, 99, 172], each with its own goal leading up to the final objective. This can be

modeled by merging states or actions into higher-order chunks within the AI system, re-

ducing the cognitive load and simplifying the decision process. This process is explored

as learning macro action and HTNS and also learning heurstics in planning[173–175].

Another potential improvement in representation with experience involves selective at-

tention to relevant information while disregarding what is irrelevant [176]. As individuals

become more adept at the TOL task, they learn to focus on the aspects that are crucial

for solving the puzzle and ignore distractions. For example, an experienced TOL player

might start ignoring the color of the pegs while a beginner might consider all elements

of the puzzle. This refined approach is akin to a filter, where the player’s cognitive

resources are conserved by attending only to the components that directly affect the

outcome, such as the positions that need to be filled and the shortest sequence of moves

to achieve that end, effectively streamlining the problem solving process [176, 177].

Beyond the development of environment models, the proficiency of a player might also

be reflected in the enhancement of heuristic functions [178]. Heuristic functions become

more precise with practice, offering improved guidance through the maze of possibilities.

As players gain insight into the pattern of the game, these guiding heuristics are refined

to more adeptly drive towards successful outcomes. For example, with experience, a

TOL player may develop a better understanding of the puzzle, enabling them to more

accurately judge the goodness or potential of a particular peg configuration. They might

intuitively recognize that certain arrangements of disks are steps toward an optimal

solution, while others are further from the goal state.

While we have discussed several model-based explanations for the learning effect, the

challenge of systematically incorporating these insights into an automated planning

framework persists. Determining whether such an integration can accurately capture

human learning effects remains an unresolved question. As the section concludes, we

acknowledge this area as a frontier for future research, offering both a challenge and an

opportunity to deepen our understanding of learning and problem solving within the

crossfield between cognitive science and AI.
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6.1.2 Working Memory Mechanism

Learning effects can be viewed as a facet of long-term memory, which is responsible for

storing information over lengthy durations. This includes declarative memory, encom-

passing facts and explicit knowledge, as well as procedural memory, which relates to the

methods and processes involved in tasks like puzzle-solving. In addition to these, an-

other critical memory mechanism integral to problem-solving is working memory [179].

This type of memory is engaged in the active manipulation of information necessary

for task completion. It temporarily holds data that can be actively used and altered,

such as tracking the sequence of moves in a puzzle or integrating search results from

previous steps to inform current decisions. For example, in our behavioral experiments,

participants exerted considerable effort in planning their first move upon encountering

the puzzle. This finding suggests that the cognitive process involved in problem solving

does not reset at each step. Instead, participants appear to build upon the results of

their previous planning. This indicates a form of cognitive efficiency where prior work

is retained and recycled.

Subgoaling is one of the significant concepts in cognitive psychology and AI that dis-

cuss the utilization of working memory during problem solving activities [33, 179, 180].

Subgoaling involves breaking down a larger task into smaller, more manageable objec-

tives, which can make complex problems easier to navigate. This method of problem

decomposition allows individuals to focus on achieving interim goals, providing a sense

of progress and direction that can guide them toward the ultimate solution. Subgoal-

ing, which likely arises from learning effects and the influence of long-term memory—as

exemplified by the Tower of London (TOL) scenario discussed previously—is critically

underpinned by working memory. This cognitive function is key in maintaining in-

terim objectives and their associated strategies in a readily accessible state, facilitating

ongoing cognitive processing and strategy execution. Related research in these areas ex-

amines how individuals utilize working memory to dynamically manage and adjust their

problem-solving strategies. Studies have shown that individuals with greater working

memory capacity are often better at tasks that require subgoaling, as they can juggle

more information and potential strategies at once [180].

Like learning effects, understanding how automated planning algorithms can explain

subgoaling and working memory mechanisms is still an open question. In the next
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part, I introduce an initial attempt to combine model-based search with these cognitive

strategies.

Conversion between observed time and total planning effort

In Chapter 4, for simplicity I made the assumption that the planning effort is identical

to the time recorded in the observation sequence. This assumption may not strictly hold

because people or agents might rely on working memory to reuse information computed

in previous planning phases, which means the total planning effort and observed planning

time might be different. Here I describe some preliminary research that aims to fill in

this gap.

We define total planning effort as the cognitive resources an individual dedicates to

make a decision. This effort represents an internal cognitive activity that is not directly

measurable from the outside. Initially, this total planning effort is equal to the observed

planning time when an individual is first presented with a task. However, it is highly

likely that in subsequent states, the total planning effort exceeds the observed planning

time. This is because individuals carry forward some of the cognitive effort invested in

earlier stages, which is not captured in the time observed for later decisions. Thus, I

propose a simple conversion to estimate the total planning effort from observed planning

time. To be specific, we can use a discounted accumulated sum to calculate the total

planning effort t(si) for each state si from timing observation sequence ti, ti−1, ..., t1 as

t(si) = ti + λti−1 + λ2ti−2 + ... + λi−1t1, where λ is a constant factor representing the

discount for previous observed planning time. For example, if we observe the agent spend

100 time units on the first step, 200 time units on the second step, 50 units on the third

step, then the real planning time for the third step is t = 50+200∗0.8+100∗0.82 = 274

if we choose the discount rate λ = 0.8. The intuition behind this approach comes from

both computer science and cognitive science: from the perspective of online planning

algorithms, this mechanism can be considered as reusing the previous subtree [181] and

many researchers in cognitive science argue that humans use a similar process to solve

complex problems [61, 134]. Under this framework, we can also model the memoryless

agent by setting the discount factor to 0.
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To test the validity of this conversion method, I looked at the similarity (i.e. cosine

distance) between the timing sequence generated by the planner without memory mech-

anism used in my experiment and the planner with memory mechanism. The memoryless

planner generates the the real planning effort (target sequence) while the planner with

memory mechanism generates observed planning times that need to be converted into

real planning effort. We considered instances where both agents have the same sequence

of actions, where only BlocksWorld and EasyIpcGrid fall under this category. In

BlocksWorld, this conversion (λ is set to 0.8 empirically) brings up the similarity

from 0.75 to 0.96 on 30 instances. In EasyIpcGrid, the similarity increases to 0.98

from 0.59 by the same conversion on 34 instances.

The preliminary findings presented here suggest that our conversion method is a promis-

ing approach for estimating the total planning effort from observed planning times.

However, further research is needed to refine this model and explore its broader appli-

cations. Future studies could investigate the impact of varying the discount factor λ on

the accuracy of the conversion, potentially tailoring it to individual differences in cogni-

tive processing speeds and strategies. Additionally, exploring how this model performs

across a wider range of tasks and environments would help validate its generalizability

and effectiveness.

Another avenue of research could examine the neurological underpinnings of the dis-

counting mechanism, seeking correlations between our model and neural activity ob-

served during problem-solving tasks [182]. This could bridge the gap between compu-

tational modeling and cognitive neuroscience, offering deeper insights into how humans

naturally integrate past planning efforts into current problem solving activities.

In summary, this subsection lays the groundwork for a novel method of understanding

and simulating planning effort in both humans and artificial agents. The potential

for this work to contribute to the fields of cognitive science, and artificial intelligence is

substantial, and this exploration marks just an initial step in realizing the comprehensive

potential of this approach.
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6.1.3 Individual Differences

Learning effects demonstrate how an individual’s problem-solving strategies evolve over

time, even when facing the same task repeatedly. This contrasts with the concept

of individual differences, which acknowledges that different people naturally possess

distinct approaches to problem solving from the outset [183, 184]. In Chapter 3, I

highlighted these individual differences through the lens of the Tower of London task.

Furthermore, in Chapter 5, we observed a diverse array of problem-solving behaviors,

particularly when participants were confronted with goals that could not be solved. In

this section, I consider these inherent individual variations in more detail.

While the primary focus of my thesis does not center on crafting behavior models that

predict individual actions with high precision, the significance of such models cannot be

overstated in practical applications. The field of cognitive science considers the under-

standing and modeling of individual differences to be a pivotal issue. Research, such as

that conducted by Callaway et al. [64], introduces models that incorporate adjustable

parameters tailored to each individual, aligning the model’s performance with personal

behavior. This approach is increasingly prevalent in computational cognitive science, re-

flecting a shift toward personalized modeling that captures the unique cognitive profiles

of different individuals.

As discussed at the end of Chapters 3 and 4, the adaptive lookahead planner that I

proposed is very flexible, capable of reflecting individual differences by integrating cus-

tomizable components. For instance, individuals may vary in their decision thresholds or

in the parameters governing their stopping probabilities during problem solving. More-

over, they may employ distinct problem representations or exhibit preferences for certain

states over others. These personal attributes can be effectively captured by the adapt-

able nature of the lookahead planner, allowing for a more personalized and accurate

modeling of individual problem solving strategies.

Although there are various methods to investigate individual differences in the con-

text of problem solving, I propose two particularly promising avenues for exploration.

The first approach involves the use of clustering methods. Clustering algorithms are

unsupervised learning techniques that organize objects into groups, or clusters, based

on their similarities. These techniques have been effectively employed across numerous
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disciplines—including data mining, pattern recognition, image analysis, information re-

trieval, and bioinformatics—to unearth patterns and structures within datasets [185].

Recently, applications of clustering algorithms in cognitive research have provided valu-

able insights into human individual differences [186–189]. Within the problem solving

context, clustering can serve as a powerful pre-processing step to categorize participants

into distinct groups based on their approach to tasks. After clustering, it is feasible to

apply different types of algorithms, such as online versus offline planning algorithms, to

better match and predict the behavior of each group. This approach can yield a more

nuanced understanding of the strategic variations individuals employ when faced with

complex problems.

A second promising avenue to understanding individual differences in problem solving is

to examine a range of cognitive factors, including working memory capacity, attentional

control, and others. By employing standardized cognitive tasks designed to assess these

abilities [190, 191], we can investigate their direct correlation with parameters in planning

algorithms. For instance, an individual’s working memory capacity may correspond to

the constraints they impose on the number of nodes they consider and the depth to which

they search in a given task. By applying standard working memory tests, such as the

Operation Span or Reading Span [191], we can explore the potential positive correlation

between an individual’s working memory capacity and the number of expanded nodes

in the model that best fits their behavior. It would be interesting to explore whether

specific cognitive capacities can be predictive of, or even dictate, certain algorithmic

parameters that individuals naturally employ during problem-solving.

6.2 Goal Recognition

In Chapter 4, I detailed algorithms that factor in human cognitive processes for the pur-

pose of goal recognition. Subsequently, in Chapter 5, I explored the design of algorithms

that aim to replicate human approaches to identifying goals. This section will discuss

potential directions for future research and refinement within these two domains.
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6.2.1 Beyond Simple Lab Tasks

The tasks employed in my research, such as the Tower of London, Sokoban, and others

found in goal recognition benchmarks, are laboratory-based and represent a consider-

able simplification of real-world scenarios. Therefore, a natural progression for future

research is to investigate the applicability of the algorithms I have developed in real-

world contexts. To this end, I propose a specific real-world problem that could serve as

a valuable focus for subsequent research.

Consider the application of the timing-sensitive goal recognition algorithm in a smart

home assistant system. This system aims to comprehend the habits and behavior pat-

terns of users to minimize manual intervention in appliance usage. To effectively fulfill

this objective, the smart home system must be capable of inferring residents’ intentions in

real-time and responding with suitable assistance, such as adjusting household appliance

settings accordingly. Goal and intent recognition have been increasingly implemented in

smart homes by some researchers, as seen in the works of Rafferty et al. [192] and [171].

Wilken and Stuckenschmidt [193] introduced classical planning method (i.e. PRP) into

the smart home environment and showed it can achieve better performance than purely

statistical approach.

The timing-sensitive goal recognition algorithm can contribute to the inference part thus

improve the overall usefulness of the system. The same approach used by [171] can be

used to gather sensor data, to convert them into atomic actions and to define a library

of goals that might be pursued by the resident. Currently, the sensor system is capable

of collecting precise timing information [171]. This data is directly accessible for further

analysis. Then we describe problems using PDDL by modelling them as a state space

model as presented in Wilken and Stuckenschmidt [193]. This methodology allows

the generation of numerous goal recognition tasks that incorporate timing information.

These tasks are derived from the sensor data and can be processed using the timing-

sensitive goal recognition algorithms discussed in Chapters 4 and 5. Eventually, the

system can potentially use inferred goal to offer appropriate help to users.

To see how timing information can enhance the performance of a smart home, consider

a system involving a sensor-equipped refrigerator. When a user pauses for an extended

period before the refrigerator, say over a minute, this duration, captured by the sensor,

typically indicates an intention to prepare something to eat. This inference is based



Chapter 6 Future Directions 118

on the assumption that the user is evaluating contents, contemplating meal options,

or organizing ingredients. The smart home system, leveraging this timing information,

can offer contextual assistance such as suggesting recipes based on available ingredients,

activating kitchen lights, preheating the oven, or playing background music. Conversely,

a brief pause, lasting only a few seconds, is interpreted as a simple action, like reaching for

a drink. The system can respond by highlighting hydration options or subtly illuminating

the water dispenser, which may be especially useful during nighttime. These scenarios

exemplify how timing information, by providing deeper insights into user behavior, can

transform a smart home system into a more responsive and intuitive entity, adept at

catering to the immediate and specific needs of its users. Later, we will discuss a potential

framework for integrating knowledge about specific users using the same example.

Before we proceed to the next subsection, it’s important to note another limitation of

the approach in this thesis, which hinders its application in real-world contexts. We

assume explicit reasoning in problem-solving, and we expect the observer to adopt this

assumption and conduct simulations to infer the intentions of the actors (i.e., simulation

theory). However, as mentioned in the previous section, individuals may engage in

reflective reasoning in many real-world scenarios, particularly when tasks are familiar or

straightforward. In such cases, if the observer still assumes that the actor is employing

explicit reasoning or uses this information to infer planning time, their conclusions may

not be accurate (Berke, 2023). Furthermore, it is possible that individuals employ theory

theory instead of simulation theory as observers, suggesting that likelihood estimation

may not solely result from simulation, as posited in Chapter 5. These aspects warrant

further investigation.

6.2.2 Goal Recognition for Human Actor

While the timing-sensitive goal recognition algorithm I proposed demonstrates superior

performance over existing algorithms in various scenarios, substantial work remains to

enhance its applicability in real-world contexts. In this part, I will outline two potential

directions for further development: incorporating methods based on machine learning

and devising strategies for personalized prior knowledge acquisition.
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Combining Learning-based Method with Goal Recognition

Automated planning methods grounded in model-based approaches have shown promis-

ing results in controlled, synthetic benchmarks. However, their performance often di-

minishes in more complex and unpredictable real-world environments where complete

information about the environment or the actors within it is not readily available. Re-

searchers such as Pereira et al. [39], Ramı́rez and Geffner [37], and Vered et al. [38] have

noted these shortcomings. To bridge this gap, there have been efforts to employ reinforce-

ment learning and deep learning frameworks, yet these approaches frequently encounter

difficulties in achieving effective generalization across diverse scenarios [3, 112, 194, 195].

Despite these challenges, there are instances where the application of learning methods

to planning algorithms has yielded success [111, 196]. Nonetheless, the fusion of learning

and planning in the realm of goal recognition remains a significant hurdle. Developing a

robust mechanism that effectively integrates these paradigms is crucial for advancing the

field and addressing the current limitations faced by goal recognition models in dynamic

environments.

In this work, I present a novel learning challenge: the prediction of thinking time. This

project marks the first attempt to incorporate timing information into goal recognition,

and the process of generating and evaluating timing likelihood emerges as a fresh area

of study.

Specifically, in this project, likelihood estimation is conducted via simulations using

adaptive lookahead planners. The strength of this model-based method lies in its in-

dependence from training datasets, coupled with the ability to integrate theoretical

constructs from cognitive science, like drift-diffusion models, directly into the algorithm.

Nonetheless, there remains considerable room for improvement in refining the model to

more accurately reflect human response times. Many different factors influence thinking

time during problem-solving, and the forward search algorithm employed here relies

on a set of assumptions that may not accurately reflect the full breadth of human

cognitive activity, particularly in naturalistic contexts. For instance, one assumption is

that individuals are entirely focused on the task at hand and perform explicit reasoning,

which diverges from common real-world scenarios where multitasking is prevalent. In

many scenarios, people might rely on reflective planning instead of explicit reasoning,

when the task is familiar or easy. Furthermore,
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These essential simplifications, which make the simulation process more manageable,

may not always align with the behaviors we see in human subjects. Consequently, the

application of machine learning or deep learning techniques to predict thinking time is a

promising direction. These methods have the capacity to consider a multitude of factors

and can learn to predict outcomes without a precise characterization of the underlying

mechanisms.

One potential way to approach thinking time in sequential decision-making relies on time

series approach [197]. Here is a research plan to study it through learning techniques:

• Data Collection: Collect a dataset of thinking times from individuals engaged

in sequential decision-making tasks, ensuring data is sequential and time-stamped.

• Feature Engineering: Extract features from the data that may influence think-

ing time, including both constant features (those that remain unchanged through-

out the problem-solving process, like goal configuration and map size) and local

features (attributes related to each intermediate state, such as task difficulty and

attention level).

• Time Series Analysis: Apply time series analysis to understand patterns in

thinking times, and select a forecasting model, such as ARIMA [198], LSTM net-

works [199], or RNNs [200]. These models are particularly adept at handling the

temporal dynamics present in goal recognition tasks. For instance, LSTM can ef-

fectively capture long-term dependencies in sequences of decisions, which is crucial

in understanding how earlier actions and thinking times in a task may influence

later thinking times.

• Model Training and Prediction: Train the model on historical thinking time

data, allowing it to learn and make future predictions.

Using these steps, a learning approach can help uncover the dynamics of thinking time in

sequential decision-making, potentially leading to the development of predictive models

that could anticipate an individual’s decision making pace and improve the design of

systems that are sensitive to human timing requirements.
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Customized Knowledge

In Chapter 5, we explore a novel dimension often overlooked in previous literature,

which is that priors are not always uniform. This is achieved by introducing a domain-

independent prior function, which is based on the task’s difficulty level. We show the

validity of our proposed prior by empirically measuring human priors and incorporating

them into the human-like goal inference algorithm. It is crucial to understand that

this prior assumes an observer’s beliefs about an actor’s goal preferences (i.e. prefer

to easy goals). However, in practical settings, different actors may exhibit diverse goal

preferences, and accurately reflecting these variations is vital for the success of real-world

applications. Furthermore, my approach employs a model-based method to estimate

likelihood through an adaptive lookahead planner. This approach implies that we assume

the actor plans and thinks in a manner similar to the planner, which is a significant

assumption. In this section, we explore how to relax these assumptions using a practical

example, underscoring the importance of tailoring our approach to individual actors’

unique preferences for more effective goal recognition.

Let’s consider an example in the context of a smart home assistant again. The assistant

observes the residents’ behaviors to recognize their goals and adjust the household appli-

ances usage accordingly. Suppose the assistant notices that a resident is turning off the

light in the room. A uniform prior might suggest that the goal is always to save energy.

However, individual preferences could indicate different goals. For instance, Resident A

is environmentally conscious and has their energy-saving intent correctly identified by

the assistant. For Resident B, however, who perhaps has a preference for dim lighting

and only turns off lights to create a relaxed atmosphere, an overarching assumption

by the assistant could misinterpret this action, leading to unintended adjustments like

powering down other appliances, which do not align with Resident B’s actual intent.

This example demonstrates that recognizing unique goal preferences is crucial for the

goal recognition system to make accurate inferences and take appropriate actions.

In the smart home scenario, the critical role of behavior patterns (likelihood) in goal

recognition should also be acknowledged, separate from individual preferences (prior).

Consider a sophisticated thermostat system monitoring two residents, each exhibiting

unique behavior patterns: Resident A typically raises the thermostat before exercising,

suggesting a desire for a warmer environment during physical activity, and lowers it while
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watching TV, indicating a preference for a cooler setting during leisure. On the other

hand, Resident B exhibits the opposite behavior, decreasing the thermostat temperature

before exercise and increasing it during TV time. These specific actions serve as key

indicators, guiding the system to infer the immediate goals of each resident accurately. A

standard system might erroneously apply the same model for interpreting these actions

to both residents, potentially resulting in inappropriate temperature adjustments. In

contrast, by understanding the unique behavior patterns of each individual, the smart

thermostat can more accurately predict and respond to their current needs.

To address the challenge of learning individual preferences and behavior pattern in a

smart home context, as highlighted in the example, the following research plan can be

implemented:

• Data Collection: Implement a system for continuous monitoring of resident in-

teractions with the smart home environment. This includes tracking usage patterns

of appliances, light usage, and other relevant activities.

• Behavioral Analysis: Conduct a thorough analysis of the collected data to

uncover patterns indicative of personal preferences or goals. This analysis could

be performed using a knowledge-based approach, where human input labels the

data, or through an unsupervised learning approach to autonomously discover

significant patterns.

• Preference Profiling: Based on the analysis, construct detailed profiles that in-

cludes both preference (i.e. prior) and behavior pattern (i.e. likelihood estmation)

for each individual. In a learning-based approach, these profiles might be repre-

sented as vectors. Conversely, in a knowledge-based approach, such as planning,

users could be categorized according to different planning strategies or varying

hyperparameters in the algorithm.

• Predictive Modeling: Develop a predictive model that can anticipate an indi-

vidual’s goals based on their current actions. This model will utilize the created

profiles to tailor its predictions to each resident.

• Continuous Learning: Establish a feedback loop that allows residents to provide

input on the system’s interpretations. This feedback is crucial for continually
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refining and updating the model, particularly in enhancing the accuracy of the prior

distribution and likelihood estimation within the goal recognition algorithm [111].

By following this methodology, the smart home assistant could dynamically learn and

adapt to the unique and potentially changing preferences of each resident, leading to

more accurate goal recognition and a more personalized user experience.

6.2.3 Human Goal Recognition Mechanism

In Chapter 5, my focus was on demonstrating the application of Bayesian inference in

understanding patterns in human goal recognition behavior. However, this framework

does not completely capture all observed phenomena. For example, in situations where

actions do not provide explicit information, I observed that factors like solvability and

timing become more significant. This aligns with the information-seeking model of goal

recognition [168], suggesting that humans actively seek out additional information for

decision making. This contrasts with the traditional passive Bayesian inference ap-

proach, which relies on the availability of all pertinent information. Such observations

indicate a need to consider dynamic information-gathering processes in our understand-

ing of human goal recognition, particularly in scenarios involving multiple sources of

information.

Information-seeking conceptualizes goal recognition as an active decision making pro-

cess, where individuals are not mere passive observers but active participants who seek

out data to inform their understanding of others’ objectives. This paradigm shifts the

focus from passive inference to a more dynamic interaction with the environment, where

gathering additional information is a strategic component of recognizing goals.

To construct models of human goal recognition based on information-seeking, one could

follow these steps [181]:

• Identifying Relevant Factors for Goal Recognition: Begin by determining

the key factors that influence goal recognition. These might include observable

actions, the solvability of a task, and the time spent in decision-making. Under-

standing which elements are most influential will guide the subsequent stages of

model development.
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• Information Priority Assessment: Conduct behavioral experiments, poten-

tially involving the manipulation of participants’ attention and eye tracking tech-

nique might be employed to gather data on where and how attention is focused [201].

This step aims to assess the priority of various pieces of information in the context

of goal inference, helping to determine the relative weight or importance of each

factor in the observer’s decision-making process.

• Computational Modelling: Develop a sophisticated computational model that

simulates the observer’s decision-making process in seeking information. This

model should intricately factor in the current level of uncertainty, as well as the

cost and practicality of acquiring new data. It should also determine which types

of information to pursue, taking into account their priority and accessibility. The

model must be fine-tuned and validated to align with actual human inference col-

lected in the behavior experiments [168].

Exploring how humans adaptively integrate an actor’s preferences and behavior pat-

terns into goal inference is an intriguing avenue for future research. This aspect could

be rigorously examined through cognitive experiments by manipulating the preference

and behavior patterns of the actor observed. As highlighted by the research of Jara-

Ettinger et al. [202], even young children have the capacity to develop varied mental

models for others, implying a fundamental human ability in this domain. Studying the

specific contexts of goal recognition in which individuals rely on limited information to

construct mental models of others is valuable, as it not only enriches our understanding

of human behavior but also has potential implications for the advancement of algorithms

as elaborated in Section 6.2.2.



Chapter 7

Conclusion

The thesis introduces new methodologies and concepts in problem solving and goal

recognition, integrating insights from both automated planning and cognitive science.

Central to this work is the development of planners that mimic human cognitive pro-

cesses, drawing inspiration from cognitive science theories about evidence accumulation.

These human-like planners adeptly simulate human action selection and response times

across a range of scenarios. Equipped with these planners, we also introduce a new

framework of goal recognition that is able to use information beyond action. The use-

fulness of our approach has been validated in both problem-solving and goal recognition

tasks. Additionally, the research advances a Bayesian framework that combines a prior

based on goal difficulty with a likelihood derived from an online planner. This combined

approach has been shown to accurately forecast human goal inference, highlighting the

nuanced nature of human decision-making and the potential of these models to capture

such complexities.

The work detailed in this thesis predominantly adopts a human-centered approach,

meaning that the underlying concepts and theories are constructed based on the ex-

tensive literature in cognitive and social sciences. In contrast to most previous studies

within the computer science literature, such an approach is particularly effective in en-

hancing performance within the context of human-agent interactions, which is supported

by the empirical results presented in this thesis. This chapter summarizes the research

contributions, insights and findings derived from addressing the main research questions
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outlined in Chapter 1 (as shown in Table 7.1), and also discusses the limitations associ-

ated with each contribution. All datasets, algorithms and software packages developed

for the projects in the thesis can be found at https://github.com/chen-yuan-zhang.

7.1 Human-like Planning Algorithm

To address RQ1 (see 7.1), I examine how well various existing planning algorithms

from AI perform in the Tower of London (TOL) task, with a focus on replicating human

actions and response times.

The development of computational models of human problem solving is grounded in the

long history of problem-solving research in cognitive science [22, 203]. This background,

starting from the early days of AI with the Logic Theorist, is crucial for understanding

the evolution and potential of these algorithms in simulating human decision-making in

sequential tasks. However, these cognitive models often face challenges when integrated

into modern AI systems because they are usually domain-specific and not easy to im-

plement by modern programming language. Therefore, it becomes important to explore

whether algorithms from the field of AI could be used to mimic human behavior more

effectively in these systems.

The decision to use planning algorithms to mimic human behavior is grounded in sev-

eral key factors. First, these algorithms are designed to be a general problem solver

than other learning-based algorithms in computer science, mirroring the versatility and

adaptability of human problem-solving skills. Unlike methods requiring extensive do-

main specific information, planning algorithms can operate with a broad range of general

knowledge, making them more flexible and applicable in varied scenarios. This charac-

teristic is particularly important as it aligns closely with how humans often approach

problems: not with exhaustive, specific information, but with adaptable strategies and

a general understanding of the task. Lastly, the application of these algorithms in

modern AI systems presents an opportunity to create more human-like, intuitive AI so-

lutions. Integrating planning algorithms that replicate human decision-making processes

into AI systems can bring these systems closer to natural human thought patterns and

problem-solving approaches. This alignment has the potential to improve human-AI

collaboration.
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Research Question Objectives Contribution

RQ1: Which al-
gorithm is most
suitable for emulat-
ing human responses
(both action selec-
tion and response
times) in sequential
decision making
tasks?

1. Compare existing model-
based algorithms with hu-
man responses, focusing on
action selection and re-
sponse times within the
context of sequential deci-
sion making tasks.

2. Develop a human-like plan-
ning algorithm

1. An Adaptive Lookahead
Planner that generates
human-like actions and
planning times

RQ2: How can a
human-like plan-
ning algorithm be
leveraged to enhance
the performance of
methods for goal
recognition ?

1. Develop a framework to in-
tegrate auxiliary informa-
tion into the task of goal
recognition.

2. Create a timing-sensitive
goal recognition algorithm
that uses a human-like
planning algorithm for es-
timating the likelihood.

3. Enhance the overall per-
formance of goal recogni-
tion system by incorporat-
ing timing information and
human-like planning algo-
rithm.

1. A new goal recognition
benchmark that extends
existing goal recognition
benchmarks by incorporat-
ing timing information de-
rived from the human-like
planning algorithm.

2. A framework for goal
recognition that integrates
timing information and a
novel timing-sensitive goal
recognition algorithm.

RQ3: How do
humans carry out
goal inference, and
can this inference
be captured within
a Bayesian frame-
work?

1. Conduct an in-depth anal-
ysis to identify and un-
derstand factors that affect
human goal recognition.

2. Develop a computational
model, grounded in the
Bayesian framework, that
effectively simulates the
human goal inference pro-
cess.

1. A comprehensive behav-
ioral experiment to thor-
oughly investigate the fac-
tors that influence human
goal recognition.

2. A novel planner to identify
and respond to unsolvable
goals.

3. A human-like goal recog-
nition algorithm that
uses Bayesian inference
to mimic human goal
inference.

Table 7.1: Research contributions
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In addressing RQ1, the TOL task was transformed into the Planning Domain Definition

Language (PDDL). This transformation is key for applying planning algorithms to a

cognitive task, providing a method for comparing algorithmic planning with human

problem-solving strategies. A behavioral experiment was conducted to gather data for

comparing human decision making with predictions from planning algorithms. The

experiment, with instructing participants either to find the best path or to find any

path, was designed to collect empirical evidence crucial for assessing how closely these

algorithms emulate human actions and response times.

In addition to existing planning algorithms, I proposed the adaptive lookahead plan-

ner (A-LH), a novel approach designed to mimic the human problem solving process.

The uniqueness of this planner lies in its adaptive planning horizon, which optimizes

based on the complexity of the task, drawing inspiration from the concepts of evidence

integration and human meta-reasoning. The A-LH uses the upper confidence bound

(UCB) algorithm for action selection and continues to search until there is a significant

difference in the value between the best and the second best actions, as determined by

a goal-counting heuristic. This adaptive mechanism allows the A-LH planner to flexibly

adjust its search depth in response to different scenarios.

The research found that the adaptive lookahead planner was more effective than multiple

competing approaches at predicting human behavior in structured scenarios, suggesting

it as a suitable algorithm for emulating human responses in sequential decision making

tasks. However, this work is not without its limitations. A notable constraint lies in

the current model’s ability to fully encapsulate the breadth and diversity of human

problem solving strategies, especially in less structured decision making scenarios, such

as emergency response, where decision must be made quickly based on incomplete or

rapidly changing information. These scenarios often present a wide range of variables and

unpredictable elements that human cognition can navigate with remarkable flexibility.

The current implementation, while effective in structured tasks like the Tower of London,

may not yet fully mirror this aspect of human cognition.
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7.2 Timing-sensitive Goal Recognition Algorithm

Goal recognition is the task of identifying an actor’s objectives based on their actions and

contextual information within a given environment. Current goal recognition algorithms

primarily focus on the actor’s actions, assuming that these actions are rational. However,

additional auxiliary information can be useful, and that actors’ behavior may not always

be optimal. To address these aspects, I incorporate a human-like planning algorithm

(i.e. the adaptive lookahead planner). This integration addresses two aspects of RQ2

(see 7.1): First, it accounts better for non-optimal behavior than do standard methods.

Second, it considers the time spent on planning, which provides insights into the actor’s

internal cognitive processes.

The core of this work is the introduction of a novel goal recognition framework that

incorporates timing information. This framework departs from the traditional approach

in AI goal recognition, which predominantly focuses on the actions observed [37, 38,

120, 166]. Recognizing that timing information is a crucial aspect often used in human

inference about others’ goals, the framework aims to exploit this dimension.

Before introducing the timing-sensitive goal recognition algorithm, I first appended tim-

ing data, generated by the adaptive lookahead planner, to standard goal recognition

benchmarks [39]. This timing data, produced by the adaptive lookahead planner, simu-

lates human-like thinking times. To effectively use this timing information, I developed

the timing-sensitive goal recognition algorithm. The algorithm operates under the as-

sumption that both actions and planning times depend solely on the current state and the

true goal. It uses a Markovian approach where planning time and action are considered

conditionally independent. The algorithm decomposes the likelihood of an observation

sequence into two components: the action component and the timing component. This

decomposition allows the algorithm to separately evaluate the likelihood of actions and

their associated planning times, which are then combined to produce a comprehensive

goal recognition solution.

Subsequently, a synthetic experiment is conducted to evaluate the effectiveness of my

approach in addressing RQ2. I use standard goal recognition benchmarks with timing

information to compare the performance of the timing-sensitive goal recognition algo-

rithm against existing goal recognition algorithms. The results shows the successful
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exploitation of timing information in goal recognition, especially when observed actions

are not informative.

The major question left open by our synthetic experiment is whether timing infor-

mation can still be exploited when the process generating planning times is not fully

known. I therefore developed two behavioral experiments to explore whether the adap-

tive lookahead planner matches humans closely enough to allow the timing-sensitive goal

recognition algorithm to exploit timing information when inferring the goals of humans.

In the first experiment, 50 participants completed 24 Sokoban puzzle instances each.

The goal was to understand if the adaptive lookahead planner could generate human-

like planning times and if timing information could be used for inferring human goals.

The results showed a standard goal recognition algorithm achieved an average fractional

rank of 2.5 (similar to random choice), while timing-sensitive goal recognitin algorithm

performed better with an average rank of 1.75. This finding indicates that the adaptive

lookahead planner is not only effective in generating human-like planning times but can

also serve as a useful component in goal recognition algorithm.

The second experiment was designed to test if humans consider timing information in

goal recognition tasks. The experiment involved 13 pairs of goal recognition instances

from the Sokoban domain. Each pair of instances had the same map and two potential

goals (one easy and one hard), but varied in the timing observed for the third action (3

seconds for “long” instances and 0.5 seconds for “short” ones). Participants were asked

to choose between the two goals after observing a sequence of three actions. The results

showed a statistically significant tendency for participants to choose the hard goal more

often in the long version than in the short version of each pair. This result suggests

a potential alignment between human goal inference processes and the timing-sensitive

goal recognition algorithm, thereby providing a key insight in response to RQ3 discussed

in the following section.

7.3 Computational Models for Human Goal Recognition

In addressing RQ2, we developed a timing-sensitive goal recognition algorithm designed

to infer the goals of human actors. This work, however, did not address the question

of how humans themselves perform goal inference. This aspect becomes particularly
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critical in scenarios where a human observer is interacting with an AI system. In such

cases, it is essential for the AI system to ensure transparency in its behavior [14]. By

combining the adaptive lookahead planner with the principles of Bayesian inference, we

address RQ3 (see 7.1) by developing a model of human goal recognition.

In the experiment, participants were presented with pairs of Sokoban puzzle instances,

each pair sharing the same map but differing in key aspects, such as action, solvability

and thinking time. The aim was to discern how these factors influence goal recognition.

The experiments were categorized into action pairs, easy-goal pairs, and competing-

path pairs, each designed to test different hypotheses about goal inference. The results

revealed that while actions appear to be a primary factor in goal recognition other

elements such as the easiness of the goal and the presence of competing paths also

significantly influence decision-making. This was particularly evident in situations where

the actions were less informative.

The experiment provides a solid foundation for developing computational models that

can accurately simulate human goal inference processes. By thoroughly examining how

humans infer goals, we gain invaluable insights into what kind of factors should be

integrated into computational models of goal inference. In the existing literature, the

Bayesian framework is a prevalent tool in goal recognition research across both cognitive

science and AI disciplines [37, 117]. However, a common limitation in these studies is

the oversight of the role of prior, coupled with likelihood estimations are either based

on empirical data [117] or do not adequately account for human factors [37]. In this

work, I address these weaknesses by considering the non-uniform prior and enhancing

the likelihood estimation to more accurately reflect human goal inference.

Moving away from the uniform prior, my study indicates that human priors depend on

factors like solvability and perceived goal difficulty. We developed a prior model based

on the goal difficulty, effectively predicting human responses in scenarios with or without

observed actions. This easiness model is notable not only for its effectiveness but also

for its domain independence, making it a versatile tool that can be applied in many

contexts.

For the estimation of likelihood, we considered not only the offline likelihood, which is

based on classical planning algorithms commonly used in the planning literature [37, 38],

but also evaluated empirical and online likelihood approaches. The empirical likelihood
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was derived from the problem-solving data collected from the same group of participants,

aligning the model’s predictions closely with human inferences and thereby support-

ing the mirroring approach [38]. Additionally, the online likelihood, sourced from the

adaptive lookahead planner, allowed the model to achieve performance on par with the

empirical likelihood, effectively matching human behavior as well. This results indicates

that it is possible to achieve human-like goal inferences without relying on empirical

problem-solving data.

Overall, my work on RQ3 showed a strong correspondence between Bayesian inference

models and human goal inference patterns. In addition, I introduced a novel Bayesian

goal recognition model that combines the easiness prior with the online likelihood and

closely replicates human goal inferences without relying on human problem-solving data

and . This model holds potential for applications in explainable goal recognition and

transparent planning, offering a path for researchers to develop more interpretable AI

systems.

7.4 Final Remarks

This thesis sits at the crossroads of cognitive science and automated planning, show-

casing the potential of model-based approaches in modern AI algorithms to describe

human behavior. The contributions made in this work take some steps toward advanc-

ing our understanding of human-like intelligence. While learning-based approaches have

achieved significant success across many domains, the symbolic nature of human rea-

soning remains a crucial element of human intelligence. Our research underscores the

importance of integrating insights from cognitive science into AI systems to move closer

to the realization of human-like intelligence.



Appendix A

PDDL files for the Tower of

London Task

PDDL files are grounded so that they can be run by LAPKT planners.

A.1 Domain file

(define (domain TOL)

(:requirements :equality)

(:types

)

(:constants

)

(:predicates

(free-loc_0_0 )

(free-loc_1_0 )

(free-loc_1_1 )

(free-loc_2_0 )
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(free-loc_2_1 )

(free-loc_2_2 )

(clear-b_0 )

(clear-b_1 )

(clear-b_2 )

(at-b_0-loc_0_0 )

(at-b_1-loc_0_0 )

(at-b_2-loc_0_0 )

(at-b_0-loc_1_0 )

(at-b_1-loc_1_0 )

(at-b_2-loc_1_0 )

(at-b_0-loc_1_1 )

(at-b_1-loc_1_1 )

(at-b_2-loc_1_1 )

(at-b_0-loc_2_0 )

(at-b_1-loc_2_0 )

(at-b_2-loc_2_0 )

(at-b_0-loc_2_1 )

(at-b_1-loc_2_1 )

(at-b_2-loc_2_1 )

(at-b_0-loc_2_2 )

(at-b_1-loc_2_2 )

(at-b_2-loc_2_2 )

)

(:functions

)

(:action move_0

:parameters ()
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:precondition (and (and (and (and (and (at-b_0-loc_1_1 ) (at-b_1-loc_2_0 ))

(at-b_2-loc_1_0 )) (free-loc_2_1 )) (clear-b_0 )) (clear-b_1 ))

:effect (and

(not (at-b_0-loc_1_1 ))

(not (clear-b_1 ))

(not (free-loc_2_1 ))

(at-b_0-loc_2_1 )

(clear-b_2 )

(free-loc_1_1 ))

)

(:action move_1

:parameters ()

:precondition (and (and (and (and (and (at-b_0-loc_1_1 ) (at-b_1-loc_2_1 ))

(at-b_2-loc_1_0 )) (free-loc_2_2 )) (clear-b_0 )) (clear-b_1 ))

:effect (and

(not (at-b_0-loc_1_1 ))

(not (clear-b_1 ))

(not (free-loc_2_2 ))

(at-b_0-loc_2_2 )

(clear-b_2 )

(free-loc_1_1 ))

)

(:action move_2

:parameters ()

:precondition (and (and (and (and (and (at-b_0-loc_2_1 ) (at-b_1-loc_1_0 ))

(at-b_2-loc_2_0 )) (free-loc_1_1 )) (clear-b_0 )) (clear-b_1 ))

:effect (and

(not (at-b_0-loc_2_1 ))

(not (clear-b_1 ))

(not (free-loc_1_1 ))
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(at-b_0-loc_1_1 )

(clear-b_2 )

(free-loc_2_1 ))

)

...

(:action move_113

:parameters ()

:precondition (and (and (at-b_2-loc_2_0 ) (free-loc_1_0 )) (clear-b_2 ))

:effect (and

(not (at-b_2-loc_2_0 ))

(not (free-loc_1_0 ))

(at-b_2-loc_1_0 )

(free-loc_2_0 ))

)

)

A.2 Problem file

(define (problem TOLproblem1)

(:domain TOL)

(:objects

)

(:init

(free-loc_0_0 )

(free-loc_1_0 )

(free-loc_1_1 )
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(at-b_0-loc_2_0 )

(at-b_1-loc_2_1 )

(at-b_2-loc_2_2 )

(clear-b_2 )

)

(:goal

(and (at-b_1-loc_2_2 ) (and (at-b_2-loc_2_1 ) (at-b_0-loc_2_0 )))

)

)
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PDDL files for the Sokoban Task

PDDL files are grounded so that they can be run by LAPKT planners.

B.1 Domain file

(define (domain Sokoban)

(:requirements :equality)

(:types

object

)

(:constants

)

(:predicates

(at-loc_0_8 )

(box-loc_0_8 )

(clear-loc_0_8 )

(at-loc_0_9 )

(box-loc_0_9 )

(clear-loc_0_9 )
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...

(at-loc_7_10 )

(box-loc_7_10 )

(clear-loc_7_10 )

)

(:functions

)

(:action move-loc_0_8-loc_1_8

:parameters ()

:precondition (and (clear-loc_1_8 ) (at-loc_0_8 ))

:effect (and

(not (at-loc_0_8 ))

(not (clear-loc_1_8 ))

(at-loc_1_8 )

(clear-loc_0_8 ))

)

(:action move-loc_1_8-loc_0_8

:parameters ()

:precondition (and (clear-loc_0_8 ) (at-loc_1_8 ))

:effect (and

(not (at-loc_1_8 ))

(not (clear-loc_0_8 ))

(at-loc_0_8 )

(clear-loc_1_8 ))

)
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...

(:action move-loc_7_10-loc_7_9

:parameters ()

:precondition (and (clear-loc_7_9 ) (at-loc_7_10 ))

:effect (and

(not (at-loc_7_10 ))

(not (clear-loc_7_9 ))

(at-loc_7_9 )

(clear-loc_7_10 ))

)

(:action push-loc_0_10-loc_1_10

:parameters ()

:precondition (and (and (clear-loc_2_10 ) (at-loc_0_10 )) (box-loc_1_10 ))

:effect (and

(not (at-loc_0_10 ))

(not (box-loc_1_10 ))

(not (clear-loc_2_10 ))

(at-loc_1_10 )

(box-loc_2_10 )

(clear-loc_0_10 ))

)

(:action push-loc_2_10-loc_1_10

:parameters ()

:precondition (and (and (clear-loc_0_10 ) (at-loc_2_10 )) (box-loc_1_10 ))

:effect (and

(not (at-loc_2_10 ))
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(not (box-loc_1_10 ))

(not (clear-loc_0_10 ))

(at-loc_1_10 )

(box-loc_0_10 )

(clear-loc_2_10 ))

)

...

(:action push-loc_7_10-loc_7_9

:parameters ()

:precondition (and (and (clear-loc_7_8 ) (at-loc_7_10 )) (box-loc_7_9 ))

:effect (and

(not (at-loc_7_10 ))

(not (box-loc_7_9 ))

(not (clear-loc_7_8 ))

(at-loc_7_9 )

(box-loc_7_8 )

(clear-loc_7_10 ))

)

)

B.2 Problem file

(define (problem instance_30001)

(:domain Sokoban)

(:objects

)
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(:init

(box-loc_3_5 )

(at-loc_6_5 )

(clear-loc_0_8 )

(clear-loc_0_9 )

...

(clear-loc_7_10 )

)

(:goal

(box-loc_1_1 )

)

)
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Pre-registration Documents

C.1 Pre-registration document for the Tower of London

experiment (Chapter 3)

1. Have any data been collected for this study already?

No, no data have been collected for this study yet.

2. What’s the main question being asked or hypothesis being tested in this study?

Our primary goal is to evaluate a set of computational models and ask which

provides the best account of human initial planning time.Our secondary goal is

to test whether initial planning times (and best computational model) will be

different when we explicitly ask participants to form a complete plan.

3. Describe the key dependent variable(s) specifying how they will be measured.

Initial planning time. (The response time before the first move.)

4. How many and which conditions will participants be assigned to?

Participants will be randomly assigned to two conditions. In the ”classical planning

condition” participants are asked to form a complete plan to the target configu-

ration before making their first move. In the ”default” condition participants are

just asked to solve the task without any further instruction.

5. Specify exactly which analyses you will conduct to examine the main question/hy-

pothesis.
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• We will compute Pearson correlations between model ”thinking times” (which

correspond to the number of nodes expanded by a model) and human initial

planning times (measured in seconds).

• We will run a regression analysis similar to that described by Berg to explore

the relationship between initial planning time and the structural parameters

considered by them (minimum moves, start hierarchy, goal hierarchy, number

of paths, number of move choices)

• To test the hypothesis that response times in the classical planning condition

will be longer than in the default condition, we’ll use mixed models with

random effects for participant and instance:

M1 : responsetime condition+ (1|participant) + (1|instance)

and

M0 : responsetime (1|participant) + (1|instance)

We’ll use a likelihood ratio test to compare M1 with M0.

6. Describe exactly how outliers will be defined and handled, and your precise rule(s)

for excluding observations.

We will exclude observations with abnormal response times. For each instance,

responses more than 3 standard deviations away from the mean initial planning

time for that instance will be considered abnormal.

7. How many observations will be collected or what will determine sample size? No

need to justify decision, but be precise about exactly how the number will be deter-

mined.

For each condition, we will have 120 participants (thus 240 overall). Each partici-

pant will solve 39 randomly chosen instances, and there are 117 instances in total.

Each instance will therefore be completed by around 40 participants per condition.

8. Anything else you would like to pre-register? (e.g., secondary analyses, variables

collected for exploratory purposes, unusual analyses planned?)

Nothing else to pre-register.
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C.2 Pre-registration document for the Sokoban experiment

(Chapter 5)

1. Have any data been collected for this study already?

No, no data have been collected for this study yet.

2. What’s the main question being asked or hypothesis being tested in this study?

Our goal is to test how solvability and observation affect human goal recognition,

and to evaluate computational models based on how well they capture human

inference. To this end, we have developed three qualitative hypotheses: first, that

people rely on a prior that favors solvable goals and use solvability as a cue before

any actions have been observed; second, observed action can dominate people’s

goal inference even when some of the goals are unsolvable ; and third, observed

thinking time affects human goal inference, but to a weaker extent than observed

action.

3. Describe the key dependent variable(s) specifying how they will be measured.

The key dependent variable in this study is a participants’ response indicating

their preference between two potential goals. These responses will be provided on

a 6-point Likert scale, and we’ll treat this scale as an interval scale.

4. How many and which conditions will participants be assigned to?

All participants will respond to the same instances, which will be presented in a

random order. Prior to encountering these instances, participants will engage in

a problem-solving phase involving Sokoban puzzles. The data from this problem-

solving phase are mostly relevant to a different project that focuses on evaluating

models of human planning, and analyses for this other project have been outlined

in a separate preregistration document.

For this project, we will use data from the problem-solving phase to see how closely

our goal-recognition manipulations align with actual human problem solving be-

havior. In addition, we will use these data to derive a ”rationality” parameter for

each participant, and this parameter may be used when analyzing goal recognition

data.
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5. Specify exactly which analyses you will conduct to examine the main question/hy-

pothesis.

The stimuli for the goal recognition phase belong to one of three types. The

first type is a map without any observed actions. The hypothesis is that humans

will prefer solvable goals in these cases. To investigate the influence of solvability

on human responses, specifically measured by confidence level, we will conduct a

log-likelihood ratio test using the following regression models:

M0: CL (1—participant) + (1—map)

M1: CL (1—participant) + (1—map) + soA + soB + soA * soB

In these models, CL represents the confidence level, which ranges from -2.5 to

2.5. The variables soA and soB indicate the solvability of goal A and goal B,

respectively (1 denotes solvable, -1 denotes unsolvable).

The second type consists of pairs that share identical maps and potential goal

configurations but differ in a single key step. This key step refers to the first

action where a player who does not backtrack has multiple options. Within each

pair, either the action for this step or the response time for the action can vary.

To assess the influence of solvability and observation on human responses, we will

conduct log-likelihood ratio tests using the following regression models:

M0 : CL (1|participant) + (1|map)

and

M1 : CL (1|participant) + (1|map) + soA+ soB + soA ∗ soB

and

M2 : CL (1|participant) + (1|map) + obs

and

M3 : CL (1|participant) + (1|map) + soA+ soB + soA ∗ soB + obs

Where obs indicates whether the observation (i.e. action or planning time) is

consistent with goal A (1 denotes consistent, -1 denotes inconsistent)
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The third type consists of filler instances in which participants observe the player

pressing the button to declare the instance unsolvable. We may run exploratory

analyses of responses to these filler items, but have not preregistered any hypothe-

ses about the fillers.

After analyzing the human data independently, we will assess a set of models by

contrasting them with human inferences. The models comprise a set of Bayesian

models with distinct priors (uniform prior v.s. Solvability weighted prior) and

likelihood computations (sample based likelihood v.s. offline likelihood, strong

sampling vs weak sampling). This evaluation will involve performing a regression

analysis between the posterior of each model and the likert scales collected during

the experiment.

We will also explore the influence of individual differences on goal recognition.

Specifically, participants will be categorized as rational or non-rational based on

their performance in the problem-solving task. We will then examine whether

different goal recognition models align with these categories.

6. Describe exactly how outliers will be defined and handled, and your precise rule(s)

for excluding observations.

We will exclude responses that deviate more than 3 standard deviations from

the mean time, considering them abnormal during the analysis. Furthermore, if

a participant has more than 3 abnormal responses, we will exclude all of their

responses from the analysis.

7. How many observations will be collected or what will determine sample size? No

need to justify decision, but be precise about exactly how the number will be deter-

mined.

We will recruit 100 participants with the aim of retaining at least 90 per instance

after exclusions.

8. Anything else you would like to pre-register? (e.g., secondary analyses, variables

collected for exploratory purposes, unusual analyses planned?)

Nothing else to pre-register.
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