
Width-Based Backward Search

by

Chao Lei

Student number: 820094

Supervisor: Dr Nir Lipovetzky

The Master Research Project for 75 credit points

Subject Code COMP90068

in the

Department of Computer Science

Melbourne School of Science

THE UNIVERSITY OF MELBOURNE

2020-10-31

THE UNIVERSITY OF MELBOURNE

Abstract

Department of Computer Science

Melbourne School of Science

Master of Computer Scince

by Chao Lei

Student number: 820094

The current study on duality mapping proposed by Suda (2013) is a viable strategy to

turn progression (forward search) into regression (backward search), and the experiment

results suggest that the dual versions of standard IPCs benchmark domains are quite

difficult to solve for heuristic-based search. We adopt width-based search (IW and SIW)

in this thesis to test the performance on dual problems. The experiment results show

that dual problems can be solved efficiently when the goal state is restricted to single

fluent, but it becomes challenging when the goal state contains conjunctive fluents.

Then, we turn serialized iterated width, SIW, best-first width search with the evaluation

function f 5, BFWS(f 5), and the polynomial variants of BFWS(f 5), k -BFWS(f 5) from

progression into regression by modifying the state space. Results show that the backward

versions are uncompetitive with the forward versions but still outperform in some IPCs

benchmark domains in all SIW, BFWS(f 5) and k -BFWS(f 5).

Furthermore, we build a bidirectional search, k -BFWBS by integrating forward and

backward k -BFWS(f 5) with six different combinations. Although these six combinations

cannot solve more problems than only adopting forward k -BFWS(f 5) among tested IPCs

benchmark domains, they are distinctive. However, if we run forward k -BFWS(f 5) first

and then run backward k -BFWS(f 5), it outperforms only running forward k -BFWS(f 5),

which proves that backward search is useful.

All results in this thesis indicate that although backward search is uncompetitive and

multiple issues still exist, it is still worthy of having a deep exploration of backward

search since it not only finds more plans in some domains but also proposes a different

perspective to analyse classical planning tasks. Meanwhile, we point out the weaknesses

of backward search and give relevant solutions, and a new method complete domain is

presented to perfect backward search.

Declaration of Authorship

I, Chao Lei, declare that this thesis titled, Width-Based Backward Search and the work

presented in it are my own. I confirm that:

� this thesis does not incorporate without acknowledgement any material previously

submitted for a degree or diploma in any university; and that to the best of my

knowledge and belief it does not contain any material previously published or

written by another person where due reference is not made in the text.

� where necessary I have received clearance for this research from the University’s

Ethics Committee and have submitted all required data to the School

� the thesis is 23969 words in length (excluding text in images, table, bibliographies

and appendices).

Signed: Chao Lei

Date: 2020-10-31

ii

Acknowledgements

I am thankful to my supervisor Dr Nir Lipovetzky for his dedicated assistance, encour-

agement, guidance, motivation, insightful comments, hard questions, and for sharing

their knowledge throughout this project.

My sincere thanks to my family, and in particular, my girlfriend, have always been

supportive and understanding. They make this journey worthwhile.

iii

Contents

Abstract i

Declaration of Authorship ii

Acknowledgements iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Introduction of Planning . 1

1.2 Application of classical planning . 2

1.2.1 Aerospace . 2

1.2.2 Web Service Composition . 3

1.2.3 Robot Planning . 3

1.2.4 Traffic Control . 4

1.3 Related Works . 4

1.3.1 Planning Language . 4

1.3.2 Forward Search . 5

1.3.3 Backward Search . 7

1.3.4 Bidirectional Search . 9

1.4 Research Gap . 11

1.4.1 Research Questions . 11

1.5 Organization . 12

2 Preliminaries 15

2.1 Classical Planning . 15

2.2 STRIPS . 16

2.3 PDDL . 17

2.4 Complexity . 19

2.5 Heuristic . 19

2.5.1 Delete-Relaxation Based Heuristics 20

2.5.2 The Max and Additive Heuristic 21

2.5.3 The FF Heuristic . 21

2.5.4 Heuristic Family hm . 22

iv

Contents v

2.6 Planning as Heuristic Search . 23

2.6.1 Best-First Search . 23

2.6.2 Greedy Best-First Search . 23

2.7 Width-Based Search . 24

2.7.1 Novelty . 24

2.7.2 Iterated Width . 25

2.7.3 Serialization . 26

2.7.4 Serialized Iterated Width . 27

2.7.5 GBFS-W . 28

2.7.6 Best-First Width Search . 29

2.8 Backward Search . 30

2.9 Bidirectional Search . 31

2.10 Duality . 32

3 Duality Width-Based Search 34

3.1 IW with Duality Mapping . 34

3.1.1 Experiments about Effective Width 34

3.1.2 Experiments about Solved problems 36

3.1.3 Results Analysis . 36

3.1.3.1 Reason For Solved More Problems 36

3.1.3.2 Reason For Lower Effective Width 37

3.1.4 Summary . 40

3.2 SIW with Duality Mapping . 40

3.2.1 Experiments . 41

3.2.2 Results Analysis . 41

3.2.3 Summary . 42

4 Backward Width-Based Search 43

4.1 Backward SIW . 43

4.1.1 Experiments . 45

4.1.2 Result Analysis . 45

4.2 Backward SIW Improvement . 47

4.2.1 Goal Consistency Check . 47

4.2.2 Negative Fluents . 50

4.2.3 Experiments . 50

4.2.4 Result Analysis . 52

4.3 Summary . 54

5 Backward Best First Width Search 55

5.1 BFWS(f 5) Backward Modification . 55

5.2 Experiments . 57

5.3 Result Analysis . 59

5.4 Summary . 59

6 Bidirectional Search 60

6.1 k -BFWBS . 60

6.1.1 Six Different Combinations . 61

6.2 Experiments . 62

Contents vi

6.3 Result Analysis . 67

6.4 Summary . 69

7 Discussion and Further Work 71

7.1 Importance of Backward Search . 71

7.2 Challenges of Backward Search . 72

7.2.1 Challenge of Partial State . 72

7.2.2 Challenge of Mutex Detection . 72

7.2.3 Challenge of Forward Domain Description 73

7.2.4 Further Work . 75

8 Conclusion 76

A An Appendix 83

List of Figures

3.1 Blocks World domain example . 38

4.1 Floortile domain example . 52

vii

List of Tables

3.1 Effective width of single goal problems. P is number of resulting problems.
Other columns show percentage of problems with effective width 1, 2, or
greater . 35

3.2 IW solved problems . 36

3.3 Fig represents the average number of fluents in both initial and goal states
among tested 27 domains. Percentage is calculated by Fig dividing the
average number of goal fluents among tested 27 domains. 37

3.4 ANFIS is the average number of fluents in the initial state among tested
27 domains . 37

3.5 SIW solved original problems vs. solved dual problems. The number of
solved dual and original problems in each domain by SIW is shown in A.2. 41

3.6 the number of original and dual problems solved within 180 seconds by
the respective planners. 41

4.1 Forward SIW vs. backward SIW. P is the number of problems in each
domain. F-SIW is forward SIW. B-SIW is backward SIW. S is the number
of solved problems. Q is average plan length and T is average time in
seconds. The red highlight means backward search outperforms forward
search. 46

4.2 Backward SIW vs. improved backward SIW. P is the number of problems
in each domain. B-SIW is backward SIW ; B-SIW+ is the improved back-
ward SIW. S is the number of solved problems. Q is average plan length
and T is average time in seconds. The red highlight means backward
search outperforms forward search. 51

5.1 Backward BFWS(f 5) vs. forward BFWS(f 5); backward k -BFWS vs.
forward k -BFWS where k=2. F means forward search while B means
backward search. The red highlight means backward search outperforms
forward search. The average time and average quality for each domain is
shown in A.1 . 58

6.1 Total solved problems with six different k -BFWBS combinations and
three baselines. The red highlight means better than forward search.
P is the number of problems in each domain. S is the number of solved
problems. 63

6.2 Forward search solved problems with six different k -BFWBS combina-
tions and two baselines. P is the number of problems in each domain. FS
is the number of the forward search solved problems. The last row is the
percentage of forward search solved problems among total solved problems. 64

viii

List of Tables ix

6.3 Backward search solved problems with six different k -BFWBS combina-
tions and two baselines. P is the number of problems in each domain.
BS is the number of backward search solved problems. The last row is
the percentage of backward search solved problems among total solved
problems. 65

6.4 Problems solved when search meets in the middle with six different k -
BFWBS combinations. P is the number of problems in each domain. M
is the number of solved problems when the search meets in the middle.
The last row is the percentage of the meet-in-the-middle solved problems
among total solved problems . 66

A.1 Backward BFWS(f5) vs. forward BFWS(f5); backward k -BFWS vs.
forward k -BFWS where k=2. F-k is the forward k -BFWS; B-k is the
backward k -BFWS, F-f5 is the forward BFWS(f5); B-f5 is the backward
BFWS(f5). P is the number of problems in each domain. S is the number
of solved problems. Q is average plan length and T is average time in
seconds. 87

A.2 SIW solved original problems vs. dual problems. P is the number of
problems in each domain. Original is the solved original problems; Dual
is the solved dual problems . 88

Chapter 1

Introduction

1.1 Introduction of Planning

Artificial Intelligence (AI), as the most prevalent topic in science and engineering fields,

was emerged soon after World War II, with the name present since 1956. AI currently

contains a vast variety of sub-fields, ranging from general functions (learning and per-

ception) to specific programs: such as playing chess, explaining mathematical theorems,

writing poetry, autopilot on a crowded street, and diagnosing diseases. Although AI

may be understood with different perspectives and goals from different people, a com-

mon expectation is to process rational actions for optimal solutions. In other words, an

intelligent agent can decide the most suitable action in the expected situation.

A critical part of AI is called Intelligent Planning, which generates a sequence of actions

and achieves goals through a plan. Since 1960s, the research in Intelligent Planning

was started by computer scientists. Some also use the name as Automated Planning.

Planning is the study about how to extract a sequence of actions that can achieve a goal

state from the initial state. The environments which are assessed in planning are required

to be fully observable, deterministic, finite, static (change happens only when the agent

acts), and discrete (in time, action, objects, and effects). These elements are called

classical planning environments. In recent years, the research of Intelligent Planning

has been progressed with the development of model design and research investigation,

and more attention has been raised in the areas of classical Intelligent Planning.

1

Main Text 2

Starting from the first International Planning Competition(IPC) in 1998, IPCs have

established a series of standard model areas in the field of classical planning environ-

ments, with the purpose of promoting the birth of advanced planning algorithms and

enhancing intelligent planning rapid development. These planning benchmarks include

blocks word, robots, airport scheduling, pipeline transportation, logistics scheduling, and

the benchmarks have been continuously expanding. Meanwhile, with the efforts and

participation from many researchers, the intelligent planning has a rapid development

in search algorithms, and the number of solved problems have been replaced with the

time consumption and plan quality, which is the evaluation criteria for assessing the

program performance. At present, the common standard in performance evaluation for

planning is to find out the best possible solution advised by planners (systems that solve

the planning problems) while keeping the time spent within 30 minutes.

1.2 Application of classical planning

1.2.1 Aerospace

Aerospace is an important application field in intelligent planning. The Automated

Scheduling and Planning ENvironment (ASPEN) developed by NASA is currently acting

as an outstanding intelligent planning system in the aerospace industry (Fukunaga et al.,

1997). This system is widely used in spacecraft for outer space missions. Its main job

is to convert high-level engineering operation instructions into lower levels in order to

realise the semi-automatic control of the spacecraft. In addition, it can quickly and easily

control the spacecraft to complete some targeted tasks, at which the commander makes

orders on specific goals as operation tasks. The action sequence will be automatically

extracted by the planning system to achieve the required tasks.

In NASA’s Deep Space One mission, an autonomous remote agent system (RA) was

adopted for planning, executing, and monitoring the behaviors of the space crafts

(Bernard et al., 1999). RA works with intelligent planning methods to obtain plans

that can achieve these goals based on the received tasks. Through intelligent planning

technology, the ground control personnel can simply set up and use the planning targets

to interact with the remote RA, for example, sending an instruction as taking photos of

the planet at a certain moment. Then, RA can automatically plan the detailed actions

Main Text 3

that are required to complete the task, which can simplify the operation and command

procedures for the whole event. Therefore, intelligent planning technologies enable and

enhance the spacecraft industry to operate with relatively intelligent and autonomous

control capabilities.

1.2.2 Web Service Composition

At the current stage, web service composition methods are mainly divided into the

workflow-based method and the intelligent planning-based method. In the intelligent

planning method, the web service composition problem is compiled as an intelligent

planning problem. During the concurrent process, the web service is compiled into

planning actions, with preconditions, add and delete effects. The sequence of web service

is implemented as the sequence of actions in the planning problems.

Currently, there are many popular and effective systems of web service composition

planning. For example, SHOP2 is a hierarchical task network planning system (Sirin

et al., 2004). In this system, all candidate services are described by OWL-S, and a

complete conversion algorithm is used to convert web services into SHOP2 domain.

Then, the SHOP2 planner recursively separates the combined tasks into many subtasks

until a single web service can solve each subtask.

1.2.3 Robot Planning

Robot planning is a classic application field in intelligent planning which is also a very

cutting-edge research field. The current main research fields include perception planning,

path planning, planning communication, and task planning. For example, a project

called Martha is used for studying how to control and manage autonomous robots (Alami

et al., 1998), for example, docker robots on existing sites. Docker robots are implemented

with multiple technical planning functions, such as path planning, perception planning,

planning communication, and task planning. The assigned tasks can be accomplished

through autonomous planning and operations by docker robot. Each task includes steps

of moving to a loading point, lifting a container, and moving to an unloading point.

Meanwhile, the research on human-machine combination planning is becoming more

popular. More robots are designed to achieve tasks in human-computer interaction

Main Text 4

environments. These tasks are often difficult or dangerous for humans, such as city

search and rescue mission (Allen and Ferguson, 2002; Malasky et al., 2005; Suchman

and Suchman, 2007; Suchman, 1987). In the urban search and rescue scenarios, human

operators only need to communicate with the robot remotely and provide high-level

instructions and mission goals. The robot then starts to analyse and processes the

instructions received, with the goal of how to achieve the missions automatically in the

planning system (de Greef et al., 2009; Thornburg and Thomas, 2009).

1.2.4 Traffic Control

The idea of urban traffic control UTC is introduced by Wood (1993). It is designed

for solving practical traffic problems by controlling traffic lights. Urban traffic control

provides irreplaceable benefits for mitigating urban traffic congestion. However, there

are two remaining issues when applying intelligent planning technology for traffic man-

agement activities. The first question is how to generate a control model which can

provide and respond to sound effects in the traffic; the second question is how to plan

and manage urban transportation networks. It is well known that the environment of

road junctions is often very complex and frequently changeable. Due to the elements of

the randomness, dynamics, and diversity of control methods, the model applied in most

cases are not able to simulate the actual traffic details comprehensively. Literature from

Pozanco et al. (2018) proposed the APTC system, which constantly updates the motion

model for applying dynamic traffic scenarios. The method is operated by monitoring

the real-time status of each road junction and using a domain-related model update.

For large-scale transportation networks, the system divides the network into sub-areas

based on the traffic volume which is changing with time. The system then implements

distributed planning and integrates the planning results collectively.

1.3 Related Works

1.3.1 Planning Language

Fikes and Nilsson (1971) introduced the Propositional STRIPS language which is the

most popular formalism for describing planning tasks. The STRIPS task is described

Main Text 5

as the initial and goal states which are formed by conjunctions of Propositional atoms

and are assisted by a set of actions with a precondition, add and delete lists. This for-

malism can capture complex domains; hence it is adopted for description benchmarks in

IPCs. After that, STRIPS developed a profound influence on later languages. Pednault

(1989) present a language called Action Description Language (ADL) in particular for

robots which is built on the basis of STRIPS with the supplementary universal quan-

tifiers, existential quantifiers, and conditional effects. ADL replaces the closed world

assumption in STRIPS into the open world assumption. McDermott et al. (1998) is the

first researcher who proposed the Planning Domain Definition Language (PDDL) in the

1998’s IPC, which has been developed as the standard problem description language.

By combining the characteristics of STRIPS and ADL, PDDL had been improved to

meet the requirements for acting as the official language for later IPCs (Bacchus, 2001;

Garćıa-Olaya et al., 2011; Gerevini et al., 2009; Hoffmann and Edelkamp, 2005; Long

and Fox, 2003; McDermott, 2000). After that, each competition is also evolving with

growth and progress for PDDL. By adopting a universal formalism when defining plan-

ning domains, PDDL supports faster growth in the field via enabling reuse of research,

leading to a more straightforward comparison among systems and approaches. STRIPS,

ADL and PDDL, are all based on state variables. Each viable state of the world is an

assignment of values to the state variables, and the values of the state variables modified

when actions are executed.

1.3.2 Forward Search

There are two fundamental search methods in the planning tasks, forward search and

backward search (Russell and Norvig, 2010). Forward search proceeds regularly from

the initial state to the goal state, by applying actions to generate successors at each

state while backward search regresses the goal over actions to create subgoals until the

initial state subsume a subgoal.

Researchers have been studying forward classical Intelligent Planning for more than

half a century. The earliest research began in 1956 from the studies of Logic Theorist

program and then General Problem Solver (GPS) (Newell et al., 1959). These intelli-

gent planning systems, especially GPS systems, have been acting as important roles in

Main Text 6

artificial intelligence development, although real life planning problems are not solved

yet.

Kautz et al. (1992) proposed a method as transforming a planning problem into a satisfi-

able (SAT) problem. Blum and Furst (1997) raised a new idea of research method, called

planning graph. It acts fundamentally different from other common planning methods.

Planning graph provided a new perspective on the planning problem in STRIPS-like

domains, based on constructing and analysing a compact graph structure. Before start

to search, a planning graph will be created to represent subsequent achievable facts in

the following level based on the forward application of feasible actions at the present

level. Nodes in the plan graph are shown as possible states, and the edges denote reach-

ability through a certain action. The first level acts as the initial state, and the last

level includes all the facts included in the goal state, and the mutually exclusive relations

between facts and actions are maintained at each level of the plan graph. The planning

graph can apply the constraints inherent in the problem in order to reduce the amount

of search needed. Later, the Blackbox planning system (Kautz and Selman, 1999) which

unifies the planning as satisfiability framework with the plan graph approach to STRIPS

planning, had an extraordinary performance in the first IPC competition.

From 2000 to 2015, more advanced planning systems had begun to be presented in

IPCs. These planning systems operate with heuristic search algorithms such as FF

(Hoffmann and Nebel, 2001), FD (Helmert, 2006) and LAMA (Richter and Westphal,

2010) dominating several of the past editions of IPCs. Heuristic search is one of the

most successful computation methods for planning (Bonet and Geffner, 2001; Hoffmann

and Nebel, 2001). The basic component of this method is the automatic derivation of a

heuristic function that uses modelling language (such as STRIPS or PDDL) to inform

the search from the declarative representation of the problem (McDermott, 1996). This

is usually combined with appropriate search strategies and some search improvements,

such as useful operations, continuous evaluation, and multiple search methods (Helmert,

2006; Hoffmann and Nebel, 2001).

Recently, width-based search has been developed different from heuristic search, as the

significant progress in the planning field. Because of the support from structural, goal

agnostic notion of state novelty, width-based search can mitigate the reliance on heuris-

tics (Lipovetzky and Geffner, 2012). By assigning novelty value to states, width-based

Main Text 7

search has a powerful exploration mechanism. Meanwhile, Lipovetzky and Geffner

(2017) demonstrated state-of-the-art satisficing planning strategies collectively called

Best-First Width Search (BFWS), which combines width-based search with traditional

heuristics in the greedy best-first search. After adding pruning of search states which

are not novel enough, the incomplete but polynomial search k -BFWS can solve similar

instances compared with IPCs winner planners such as LAMA and FF.

1.3.3 Backward Search

The idea of forward search is also called progression. On the opposite, backward search

is called regression that belongs to a different branch. Regression for satisficing planning

has a long history. Green (1981) conducted the original work of regression on theorem-

proving based approaches.

By adopting the planning graph, Blum and Furst (1997) built a regression planner

Graphplan. The Graphplan uses planning graph to regress as the heuristic search based

on the heuristic function hG and search algorithm Iterative Deepening A* (IDA*). The

hG is given by the index j of the first level in the graph that contains the atoms in s

without a mutex. The notion of (structural) mutex is that pair of atoms which cannot

be both true in any reachable states and which can be computed in polynomial time

(Blum and Furst, 1997). In each iteration of IDA*, it is a depth-first search and prunes

the branch when the sum of the accumulated cost g(n) and the estimated cost h(n)

beyond a given threshold.

In satisficing planning, HSPr (Bonet and Geffner, 2001), as one of the best known

backward search planners, conducts a weighted A* algorithm (Pohl, 1970) with additive

heuristic, hadd. HSPr is operating as the backward version of HSP2. HSP2 performs a

forward search from the initial state to goal state and repetitively computes the heuristic

at every state. While HSPr conducts a regression from the goal state to initial sate and

HSPr avoids the repetitive computation of the atom costs and heuristic hadd at every

state. It computes these costs from the initial state and conducts a regression from

the goal state. In this case, the estimated costs acquired for all atoms from the initial

state could be directly utilised since the estimated distance from the goal state to the

initial state is equivalent to the distance from the goal state to the initial state. Due

to the faster computation of heuristic in HSPr, it can explore more nodes in the same

Main Text 8

time and create better plans than HSP2 in some domains. However, HSPr is not perfect

since the recomputed heuristic contains indispensable information in many domains, and

regression often generates spurious states. However, HSPr and HSP2 show competitive

performance when compared with Graphplan. Although HSPr and Graphpan perform

with different algorithms and heuristic in regression, they both encountered the same

type of problems. Regression usually generates states which cannot achieve to any

solutions. To solve this problem, mutexes are applied in HSPr and Graphpan to prune

unreachable states in regression.

A partial-order planner (POP) is a regression planner even though it only considers

the actions during the search, which means that the algorithm does not require special

cases for the initial and goal state (Weld, 1994). POP starts the search with the empty

plan for a problem and makes uncertain choices until causal links have supported all

conjuncts of the precondition of all actions, and the potential interference has protected

all threatened links. The ordering restrictions, O, of the final plan can specify only a

partial order. In this case, the plan is a sequence of actions when any total order is

consistent with O. The efficiency of the partial-order planner became faster and more

adaptable at gaining the quickest path. However, there will be more computational

power required for maintaining a queue of partial plans and sorting the queue.

At this stage, although some planners have been improving the search efficiency via

applying regression, these planners all recognised the importance of mutex pruning. But,

it is still unsatisfying for the result of impact analysis at the invariants on the current

planners, especially in regression. In the paper from Alcázar and Torralba (2015), the

study focused on evaluating the significance of the invariant adaptation when simplifying

search tasks at the preprocessing phase. A state invariant is a logical formula over the

atoms of a state that are true in all reachable states that may belong to a solution

path. They worked with two types of state invariants: mutual exclusivity (mutex) and

”exactly-1” invariant groups, and they pointed out the influence of spurious state/action

and the weakness of h2 in the detection. Finally, they computed the h2 in two directions,

forward and backward alternatively with fixed point procedure, and experiment results

suggest that it is very advantageous to exploit invariants in regression.

Suda (2013) raised a new research perspective to conduct backward search. Duality

mapping explains that there is no real difference between progression and regression in

Main Text 9

STRIPS planning because they are the dual versions of each other. In the dual version

of STRIPS problems, the initial state is the complements of goal state with respect to

all fluents of the search problem; while the goal state is the complements of initial state

with respect to all fluents of the search problems; Actions are reconstructed by swap-

ping its precondition and the delete list to formulate dual actions. The duality mapping

essentially transfers forward search into backward search and vice versa; hence this trans-

formation was used to obtain the new theoretical insights to help interpret regression.

Although more dual problems were solved via modifications of current heuristic-based

planners, which was inspired by regression, the dual IPCs benchmark domains are still

quite challenging to solve.

In the past decades, most search algorithms were designed based on the forward. There

are many reasons to explain why most current planners abandon backward search. For

example, techniques developed for forward search cannot be applied in backward search;

duplicate detection is more complex due to generated partial states, and spurious states

are hard to find during the search. Spurious states are those states containing a set

of facts that are unreachable from the initial state (Alcázar et al., 2013). Early re-

searches on heuristic search in classical planning studied both forward and backward

search (Bonet and Geffner, 2001), but these disadvantages cause the worse performance

of regression planners compared with progression planners. As a result, the research

about backward search in classical planning was interrupted in many cases.

1.3.4 Bidirectional Search

Besides backward search, the integration of forward and backward search has been widely

adopted and popularly named as the bidirectional search (Alcázar et al., 2013, 2014;

Felner et al., 2010; Kuroiwa and Fukunaga, 2020; Politowski and Pohl, 1984). In bidi-

rectional search, the applied forward and backward search start from the initial state

and the goal state and the search end when there is an intersection between the frontiers

of each search. In bidirectional searches, Openf and Closef are used to store generated

states and expanded states in the forward direction, and Openb and Closeb are used

to store generated states and expanded states in the backward direction. If heuristic

functions in bidirectional search estimate the distance from the current state to the

Main Text 10

fixed opposite goal state, we call it front-to-end, while if heuristic functions estimate the

distance from the current state to changing frontiers, we call it front-to-front.

Politowski and Pohl (1984) proposed the D-node Retargeting (DNR), front-to-front

heuristic search. Forward and backward search perform alternatively with Openf and

Openb, expanding n states in one direction and reverses the direction. The h-value of

the state s is the evaluated distance between s and a d -node. d node in forward is a

state with the highest gb(s) in Openb that gb(s) is the cost of the found path from s to

the goal state, and d node in backward is a state with the highest gf (s) in Openf that

gf (s) is the cost of the found path from s to the initial state.

Alcázar et al. (2014) developed a Bidirectional Classical Planner biFD, and experimented

series of bidirectional search strategies for detecting forward-backward frontier intersec-

tion. In biFD, forward and backward search interleave front-to-end and allocate the

search effort in the direction with the least time. In addition, they also discussed the

front-to-front variants with maintaining a set of states in the opposite frontier name as

Backward Generated Goals (BGGs). The h-value in front-to-front version is the esti-

mated cost from s to the state with the lowest hmax (Bonet and Geffner, 2001) among

BGGs. Furthermore, biFD detected the intersection of the forward frontiers and the

backward frontiers by comparing the frontiers through all states in the opposite BGGs.

They also proved that biFD achieved better overall coverage than regression planning.

Felner et al. (2010) proposed a Single-Frontier Bidirectional Search (SFBS) which be-

longs to the front-to-front heuristic search method. The main character in SFBS is

that a single queue ordered according to h(u, v) where u and v are states in opposite

frontiers, is adopted to replace the Open and Close for forward and backward search,

and this single queue shift focuses between the forward and backward search expansions

according to a jump policy. While, this elegant method poses a problem that a search

node corresponds to a pair of states (x, y), and there are multiple search nodes which

contain states x and y. Thus, SFBS requires the evaluation of h(u, w) for multiple w.

This is different from other unidirectional searches as well as bidirectional searches that

for state s, its heuristic value h(s) only needs to be evaluated at most once.

Kuroiwa and Fukunaga (2020) introduced a Top-to-Top Bidirectional Search (TTBS),

front-to-front bidirectional search strategy. TTBS can be treated as a variant of DNR

Main Text 11

with some improvements. Firstly, TTBS uses the top (lowest h-value) node of the op-

posite Open as d -node rather than the state with the highest g-value in DNR. Secondly,

TTBS limits the frequency of reevaluation heuristic value rather than reevaluates all

states in Open whenever d -node changed in DNR. To detect the intersection of forward

and backward search, TTBS checks if a generated state was already generated in the op-

posite direction. For quick intersection check, TTBS trades off the possibility of missed

intersections since it implements as looking up of hash sets where even if an entry S

in genb subsumes a forward generated state s, it is possible that s /∈ genb when S has

undefined values.

1.4 Research Gap

Inspired by the duality mapping, it is significant for us to explore the performance of

width-based search on dual problems since the notion of width has been adopted to build

state-of-the-art planners. Meanwhile, there is a knowledge gap that no current studies

have focused on conducting regression in width-based search and integrating forward

and backward width-based search. Thus, this thesis aims to test the performance of

width-based search when solving dual problems and explore regression in width-based

search as well as integrate regression and progression in width-based search. The research

questions this thesis will look into are as follows:

1.4.1 Research Questions

1) What is the performance of width-based search when solving dual problems?

2) What is the influence of duality mapping on width-based search?

3) How is regression adopted in width-based search?

4) Can backward width-based search solve the current problems?

5) Can backward width-based search solve different problems compared with forward

search?

6) Does the integration of forward width-based search and backward width-based

search have a better performance in planning?

Main Text 12

7) Is backward search competitive with forward search? If not, Why?

To answer the above questions, the research of this thesis will be carried out from the

following aspects:

• Following the duality mapping rules, generating the dual version problems, com-

paring the performance of width-based algorithms on the original problems and

dual problems.

• Starting from the design of state space, explaining the current STRIPS state mode,

comparing forward search with backward search to give the regression state space.

• Modifying the existing width-based search according to the regression state space,

testing the search performance of backward width-based search in different IPCs

benchmark domains.

• Integrating forward best first width search and backward best first width search

with different combinations, testing their performance and analysing the applicable

situations for each combination.

• According to the experiment results in this thesis, answering whether backward

search is competitive with forward search and proposing the challenges and further

research direction of backward search.

1.5 Organization

The content of this thesis is divided into eight chapters. The structure is as follows:

Chapter One: Introduction.

This chapter begins with the introduction of the research background and significance

of intelligent planning. Then we present the development history of intelligent planning

knowledge and existing application scenarios. The research gap is proposed via exten-

sive literature review, and then the research questions and content of this thesis are

elaborated.

Chapter Two: Preliminaries

Main Text 13

The second chapter illustrates the basic knowledge of classical planning. There are four

aspects which help readers build a comprehensive review of classical planning. Firstly,

the concept and basic language of classical planning are introduced. Secondly, the re-

gression state space is formulated by comparing the progression state space. Thirdly, the

required properties in regression are explained. Finally, bidirectional search techniques

are introduced.

Chapter Three, Duality Width-Based Search.

This chapter compares the performance of Iterated Width (IW) and Serialized Iterated

Width (SIW) in solving the dual problems and original problems in the IPCs benchmark

domains. Then we conduct a series of analysis to figure out the weakness when width-

based algorithm handles dual problems. Furthermore, we propose the regression state

space is necessary for the width-based algorithm to realise backward search.

Chapter Four, Width-Based Backward Search

This chapter explains the principle of width-based search and provides a detailed process

of changing forward SIW to backward SIW. Then, the impact of mutex during the

backward search is discussed, and the method to eliminate the negative effect of mutex

is applied to improve the regression performance. Then the IPCs benchmark domains

are used to compare the performance of forward and backward SIW. After that, we

use the fooltille domain as an example to explain the difference in performance between

forward and backward SIW.

Chapter Five: Backward Best First Width Based Search

This chapter follows the structure in the fourth chapter. The Best First Width Search

(BFWS) is first explained, and how it is processed via modifying BFWS and k -BFWS to

meet the regression state space, where k -BFWS is a polynomial but incomplete variant

of BFWS. Then, the mutex eliminating method is adopted to ensure the efficiency

of backward search in BFWS and k -BFWS. Besides, the available forward heuristic

functions in BFWS are transferred into the appropriate backward versions to ensure

that they provide not only sufficient information to guide regression, but also maintain

high efficiency of regression. Finally, the IPCs benchmark domains are used to compare

the performance of forward and backward BFSW and k -BFWS.

Chapter Six: Bidirectional Search

Main Text 14

This chapter starts with the introduction of bidirectional search. Then we integrate

backward k -BFWS and forward k -BFWS according to different heuristic value updating

techniques,front-to-end and front-to-front and different frontiers intersection methods,

check Head and check Close. Six combinations are considered. We compare these six

different combinations and propose characters of each combination method.

Chapter Seven: Discussion and Expectation

This chapter focuses on existing challenges in backward search. We first review the

significance of backward search. Then we analyse weaknesses of backward search in three

aspects: partial state, mutex detection and forward domain description, and we raise

possible solutions. There are limited experiments executed to prove our assumptions.

Finally, we propose further implications and research directions for backward search.

Chapter Eight: Conclusion.

This chapter gives a conclusion for this thesis. It reviews the research steps and main

topics in each chapter.

Chapter 2

Preliminaries

2.1 Classical Planning

A classical planning problem can be considered as a path-finding problem in a directed

graph. Nodes in this graph represent states, and edges represent actions that expand

parent nodes to child nodes under the constrain defined in actions. A plan in the classical

planning problem is a sequence of actions that transform the initial state into a goal

state, which corresponds with a path from the root node in the graph to leaf nodes

whose state is one of the goal states of problem. (Bonet and Geffner, 2001).

The state space provides the basic model for classical planning problems. A state space

consists of a set of states S, a set of actions A, a deterministic transition function F that

defines how actions map one state into another state, and the cost function C (a, s) that

estimates the cost of applying an action in a specific state. The state space combining

with the initial state s0 and a set of goal states SG is called the state model.

The state model of a classical planning problem can be represented as follows:

Definition 1.1 (Classical Planning Model).

A planning model is a tuple S = <S, s0, SG, A, f, C> where:

• S is a finite and discrete set of states s,

• s0 ∈ S is the initial state,

• SG ∈ S is a set of goal states,

15

Main Text 16

• A is a set of actions,

• A(s) ⊆ A are applicable actions in each state s ∈ S,

• s′ = f (s, a) is the state transition function for a ∈ A(s) from state s to state s′.

• C (a, s) denotes the cost of applying action a in state s.

the s(a) stands for an action applied in a state s based on the transition function f (s,

a). A state resulting from a series of actions is always defined as follows:

s[ε]= s

s[a0, . . . , an]= (s[a0,. . . ,an−1])an

A sequence of actions a0, a1, . . . , an, is the solution of classical plan problem when

generated state trajectory s0, s1 = f (s0, a0), . . . , sn+1 = f (sn, an) such that an ∈ A(sn)

is applicable in sn, and the sate sn+1 is a goal state, i.e, the sequence of actions a0, a1,

. . . , an is the plan of s0 to sn+1 if s[a0,. . . ,an] ∈ SG.

Normally, the cost function assigns the non-negative values to each action under a differ-

ent state. The cost of a plan can be represented as the total of the cost of its actions. If

there is no cost function in the state model, actions are assumed to become the uniform

cost and usually be assigned with value 1.

A plan is declared to be optimal when the total cost of actions is minimised among all

possible plans achieving a goal state. When the cost is uniform, the optimal plan is the

plan with the shortest path.

2.2 STRIPS

At the early stage, the declarative language is employed to build the state models. These

models are introduced by an explicit description of state space and explicitly coding the

transition function and the action applicability conditions to meet the target domain.

With new demands for describing more lager and complicated problems, numerating the

state space is not reasonable. In this case, one efficient approach is factored representa-

tions. A set of variables are assigned to the state when domains are finite and discrete.

Boolean variables, known as atoms, facts, or fluents, are the most frequent description

in planning. This representation is known as STRIPS (Fikes and Nilsson, 1971).

Main Text 17

A planning problem in STRIPS is also described by a tuple P = <F, O, I, G> where:

• F is a set of boolean variables, also known as fluents, facts, or atoms.

• O stands for a set of tuples, which represents a set of operators. Each operator has

the precondition, add and delete list under the form O = <Pre(o), Add(o), Del(o))>

where Pre(o), Add(o), Del(o) ⊆ F

• I denotes the initial state where I ⊆ F.

• G denotes the set of goal states where the G ⊆ F.

Comparing with the state model, the STRIPS problem P = <F, O, I, G> specifies a

progress state-space <S, s0, SG, A, f, C> by the STRIPS factored representation. Each

state s ∈ S is a subset s ⊆ F of the set of fluents in which the facts p ∈ s has the value

true, while the facts p′ ∈ F \ s are assumed to be false (Lipovetzky et al., 2013).

The initial state I is s0 ⊆ S. The set of goal states G are those states that meet the

goal condition, represented by SG = { s | G ⊆ s}. The actions A(s) ⊆ A can be applied

in a given state s when the preconditions are true in s, denoted as A(s) = { o | Pre(o)

⊆ s}. The transition function f transfers the state s into s′ = s - Del(o) + Add(o)

by applying operator o ∈ O at s, where placing the propositions in Add(o) to true and

placing the propositions in Del(o) to false.

A planning task has a solution if the state in the path s0, s1,. . . ,sn contains all goal

fluents, and this state is generated by a finite sequence of actions a0, a1,. . . ,an with the

condition that each action ai is applicable in si, and the state s0 is the initial state.

2.3 PDDL

Planning Domain Definition Language (PDDL) is a recent attempt method to standard-

ise the planning domain and problem description languages. Along with the characteris-

tics of STRIPS, PDDL also adds a finite number of predicates, variables, and constants

for enhancing the description capabilities. PDDL has become a standard problem de-

scription language in IPCs.

There are four characters in PDDL to define a search problem: the initial state, the

actions that are applicable in a state, the result of applying an action, and the goal test.

Main Text 18

Each state is represented as a combination of fluents that are instant and functionless.

For example, school
∧

major might represent the state of a student. There are two

assumptions when describing the state, closed world assumption and unique names as-

sumption. The fluents not mentioned are defined as false, and their names are unique

individuals. The states are designed carefully in work tasks that each state can be con-

sidered as a conjunction of fluents, which can be formed by logical inference McDermott

et al. (1998).

PDDL divides the classical planning problem into two parts: domain description and the

problem description (Yang et al., 2019). In PDDL, a set of problem descriptions belong

to a domain description. The domain description contains the domain name (the name

of each domain), requirements (the model elements declaration to the planner that the

PDDL model used), the object type definition, predicates, (properties of objects that

we are interested in, which can be true or false) and actions (a set of operators and

the description consisted of the action name, precondition, and effects with parameters

which will be instantiated with objects during execution). Actions are represented by

a set of action schemas that implicitly define the actions (a) and result (s, a) with

functions: ((s∪ Add(a)) \ Del(a)). The schema includes the action name, precondition,

effects and a list of variables related to this schema. The precondition and effects of

the action represent each conjunction of literals, as either positive or negative. The

precondition is used to evaluate the applicable action a at state s. The effects are used

to determine the result of executing the action a at state s by deleting fluents that are

negative literals named as delete list in the effects and adding fluents that are positive

literals named as add list in the effects. The problem description contains the problem

name, belongs domain name, objects things in the world that interest us, initial state,

(conjunction of fluents with instantiation following the closed-world assumption), and

goal state (the state where the search should end up).

Although it is well known that PDDL can effectively model many planning problems

by its powerful expressivity, most classical PDDL can encounter the STRIPS language

in which action preconditions are conjunctions of (positive) literals, and all effects are

unconditional. These planners instantiate the actions as defined in PDDL, which include

factors such as predicates, variables, and constants transformation into a propositional

representation in STRIPS. Thus, the STRIPS representation will be adopted in this

thesis, while the planner input files are domains and problems.

Main Text 19

It is necessary to explain the evolution process from STRIPS to PDDL. Because by

understanding this development and filling the knowledge gaps, the performance of

regression in different domains can be assessed and analysed more easily. For the purpose

of this dissertation, only STRIPS representation is used, without further discussion on

other representations.

2.4 Complexity

For a planning problem P in the factored representation, there are two decision prob-

lems to consider the theoretical complexity of this problem. One decision problem

PlanExt(P) asks that whether there exists a plan π for problem P. The other decision

problem PlanCost(P, k) is the question of whether there is a plan π with cost(π) < k for

the problem P, where k is a positive constant value. In the worst case, planning prob-

lems are unmanageable since both decision problems are PSPACE -complete (Bylander,

1994). Even though strict restrictions are adopted, the issues are still challenging. How-

ever, sub-optimal planning can sometimes be easy to operate, and hence the planning

procedures are generally assessed on a set of benchmarks, without considering the worst

case. If the algorithm focuses on finding a plan rather than an optimality guarantee

and pursuing the speed rather than quality, the problem is known as satisficing classical

planning.

2.5 Heuristic

The search algorithm is an uninformed search or bind search if the search selects all pos-

sible actions from the search space to find all possible solutions for the problem without

the help from supplementary information. By contrast, the informed search strategy can

find solutions more efficiently than uninformed strategy since it uses problem-specific

knowledge such as how far we are from the goal state and the current path cost. Through

applying the informed search, agents can spend less time to plan during the search with

more reasonable actions. The informed search algorithm uses the idea of heuristic, so

it is also named as heuristic search. The heuristic evaluation is a function which is ac-

cepted in the informed search, and it helps planners locate the most encouraging path.

The current state is treated as the input of a heuristic function, and the output is the

Main Text 20

estimation of the distance from the current state to the goal state. The well-designed

heuristic function h∗ maps any state to the optimal solution from that state. Heuristic

search is currently the most effective search method in IPCs and has been widely stud-

ied by researchers (Bonet and Geffner, 2001; Helmert, 2006; Hoffmann and Nebel, 2001;

Richter and Westphal, 2010). Therefore, in the rest of the section, we briefly review

heuristics and heuristic search algorithms.

An admissible heuristic function is given as: h(s) ≤ h∗ (s) for all states s ⊆ S. The h(s)

provides the lower bound estimated cost of the solution from s, while the h∗ (s) gives

the cost of the optimal plan. Hence, admissible heuristic never overestimates the cost of

the optimal solution from any state. The search algorithms explore first to states with

the lowest cost when admissible heuristics are applied. As a result, the algorithms are

guaranteed to find an optimal solution. Heuristic search, however, is not able to find the

best solution when the heuristic function is non-admissible, but it guarantees to find a

suitable solution within a reasonable time (Lipovetzky et al., 2013).

2.5.1 Delete-Relaxation Based Heuristics

The reasonable method to formulate the admissible or non-admissible heuristics is to

simplify the original problems with fewer restrictions on the actions, also known as

relaxation (Pearl, 1984a). The most adapted relaxation is delete-relaxation (Bonet and

Geffner, 2001) and it has been practiced quite successfully in the planner FF, FD and

LAMA. In delete-relaxation, the delete effects of actions are ignored, i.e. Del(o) = ∅

for all o ⊆ O, so the new state s′ is generated by only monotonically adding fluents in

the add list of applicable actions at current state s.

Given a STRIPS problem P = <F, O, I, G>, its delate relaxation P+ is represented by

the tuple P+ = <F, O+, I, G>, where:

O+ = { <Pre(o), Add(o), ∅ > | o ⊆ O}

The admissible heuristic (h+) in delete-relaxation problem P+ is the cost of the optimal

plan (π +). In delete-relaxation, each operator needs to be applied only once; then the

goal state can be achieved with no more than |O | actions since new states achieved in

Main Text 21

a relaxed plan increases monotonically. However, the computation of heuristic (h+) is

NP-hard (Bylander, 1994).

2.5.2 The Max and Additive Heuristic

Since the computation of the h+ is intractable, the max heuristic hmax and additive

heuristic hadd are introduced to approximate h +. hadd estimates pessimistically by

summing over the cost of a set of fluents. The hadd value at state s is always an upper

bound to the optimal cost h+ at s adopting the delete relaxation, and it is not admissible.

hmax estimates optimistically by adopting the maximum cost of an fluent in the set. The

cost of an fluent depends on the cost of its best supporter, and the best supporter is the

action which makes the fluent true with minimal estimated cost. The estimated cost of

an action is determined by the cost of fluents in its precondition (Bonet and Geffner,

2001). The hmax value at state s is always a lower bound to the optimal cost h+ at s

(Betz and Helmert, 2009). The max heuristic, unlike the additive heuristic, is admissible

because the cost of achieving all subgoals cannot be lower than the cost of achieving the

costliest subgoal.

2.5.3 The FF Heuristic

hFF estimates the distance from a given state s to the goal state using a greedy algorithm

based on relaxed planning graphs, and the heuristic value is the cost of suboptimal

relaxed plan extracted from relaxed planning graphs (Hoffmann and Nebel, 2001). The

FF heuristic computation contains two steps: One is building a relaxed planning graph

in progression; another is extracting relaxed plan in regression. The relaxed planning

graph includes two types of layer, the fluent layer and the action layer. The fluent layer

includes all facts that are true in the current state, and the action layer consists of all

applicable actions in the former fluent layer. In the relaxed planning graph, the first

fluent layer includes all fluents which are true in the initial state and then expands to the

action layer which contains all applicable actions at the initial state and then extends

to a new fluent layer which includes fluents added by applicable actions and along with

fluents held in the former fluent layer, without considering the delete list. The above-

repeated expansion processes will stop when there is no new fluent to add to the graph,

and then the whole graph is built in polynomial time (Blum and Furst, 1997). For the

Main Text 22

relaxed plan extraction, all best hmax supporters which add the goal fluents are inserted

into the relaxed plan first. Then the best hmax supporters adding the precondition

fluents of the best hmax supporters in the relaxed plan will be inserted into the relaxed

plan. These steps will be repeated until all precondition flunets of hmax supporters in

the relaxed plan are supported by other supporters, or they belong to the first fluent

layer. Then, the hFF value is the number of the best supporters in the relaxed plan

(Hoffmann and Nebel, 2001). The relaxed plan also can be defined recursively following

the hadd best supporters (Keyder, 2010). The best supporter of a fluent p /∈ s based on

hmax or hadd is the action a ∈ O(p) with the smallest h(a), where O(p) is the set of

actions in O that add p, and h(a) is the sum of heuristic values to achieve fluent q ∈

Pre(a)(Bonet and Geffner, 2001).

2.5.4 Heuristic Family hm

Geffner and Haslum (2000) introduced a whole family of admissible polynomial heuristics

hm that trade accuracy for efficiency by regressing. When m = 1, hm is hmax, and when

m is large enough, hm is the optimal heuristic function and equal to h*. Generally

speaking, hm treats the cost of the most expensive single fluent in the set, as the cost of

a set of fluents when m = 1; it treats the cost of the most expensive fluents pair in the

set, as the cost of a set of fluents when m = 2, and so on (Lipovetzky et al., 2013). With

the help of h2, the mutex fluents pair <p, q> is that the heuristic value of h2(<p, q>) is

infinite (Geffner and Haslum, 2000). hm is used to guide an IDA* search and evaluate the

performance of optimal planners (HSP, HSPr, and Graphplan) across several domains,

and it also gives some advice that the higher-order heuristics are helpful in the search,

but this requires sacrificing computing resources (Geffner and Haslum, 2000). However,

if we calculate it once at the search beginning, it is a reliable choice to guide regression

for optimal planning (Geffner and Haslum, 2000). hm contributes to a stable foundation

for exploring the heuristic search.

Main Text 23

2.6 Planning as Heuristic Search

Many algorithms have been proposed to perform a forward heuristic search in the state

space model effectively, such as Best-First Search (BFS) (Pearl, 1984b), Greedy Best-

First Search (GBFS) (Russell and Norvig, 2002), A∗ (Hart et al., 1968), and Weighted

A∗ (Pohl, 1970). All of these algorithms appeared powerful in previous planning tasks.

In this thesis, we discuss two of the most successful algorithms Best-First Search, and its

variant Greedy Best-First Search to help readers understand the following algorithms.

Greedy Best-First Search can combine with the width-based exploration to build the

state-of-the-art planning method Best First Width Search (BFWS), which we edit to

the regression version.

2.6.1 Best-First Search

Best-first search algorithms use two separate lists for saving search states, the Close list

and the Open list. The Open list stores the evaluated states s which have not been

expanded, while, the Close list saves states which have been already expanded. The

algorithm repeats the actions of choosing one state from the Open list, generating suc-

cessors of the selected state, inserting the selected state into the Close list, and putting

successors into the Open list based on the evaluated heuristic value. The algorithm

stops until the goal G is true in the selected state from the Open list for expansion.

Then the path is retrieved up to the initial state, and the solution is returned. Best-first

search algorithm stores all states in the Open list according to the linear combination of

accumulated cost up to states and the heuristic value.

2.6.2 Greedy Best-First Search

The greedy best-first search (GBFS) focuses on the state that is the closest to the goal

state. Thus, it only adopts heuristic functions to select states. At each state selection

step, it selects the state with minimum heuristic value to ensure that this state is as

close to the goal state as it can without considering the cost of the path. As a result,

even in a finite search space, GBFS search is still incomplete. There are seven steps to

describe the Greedy-Best-first search logically:

Main Text 24

• Step 1: Place the initial state into the Open list.

• Step 2: If the Open list is empty, stop and return failure.

• Step 3: Select the state s with the lowest value h(s) from the Open list.

• Step 4: Check selected state s, whether it is a goal state. If it is the goal state,

then return plan and terminate the search, else move to Step 5.

• Step 5: Expand the state s, generate the successors s′ of state s, and insert state

s into the Close list.

• Step 6: For each successor s′, the algorithm calculates heuristic value h(s′) and

then check whether the state s′ is in Open or Close list. If not, add it to the Open

list based on evaluated heuristic value h(s′).

• Step 7: Return to Step 2.

GBFS has been successfully adopted by satisficing classical planners because GBFS is

likely to lead to a solution quickly.

2.7 Width-Based Search

2.7.1 Novelty

Lipovetzky and Geffner (2012) introduced a width parameter from a different perspec-

tive, which can restrict the complexity of classical planning problems. The width-based

algorithms employ a powerful exploration mechanism based on a structural goal-agnostic

notion novelty. The specific definition of novelty is described as the new state s is the

first state that makes tuples of fluents true, and the size of the smallest tuple of fluents

is the novelty of s. If the new state does not make any new tuples of fluents true, the

novelty of s is n + 1 where n is the number of variables.

Following example will serve to explain this, there are four fluents {a, b, c, d} in the

problem P = <F, O, I, G>, and not mentioned fluents are false. The first generated

state s in the search problem P is {a, b}, and it is the first state which makes the tuple of

fluent {a}, tuple of fluent {b} and tuple of fluents {a, b} true. The definition of novelty

Main Text 25

is the minimum tuple size in the state, so the novelty of s is 1 where the minimum tuple

is {a} or {b}. The novelty of the successor s′ = {b, c} of state s is 1 since the newest

tuple is {c}. While the novelty of state s′′ = {a, c}, which is generated by s′, is 2 since

s′′ is the first state which makes the tuple of fluents {a, c} true, not tuple {a} which is

made true in s and not tuple {c} which is made true in s′. While if the newly generated

state does not make any new tuples of fluents true, such as new states {a, b} or {b, c}

or {a, c}, the novelty of theses new states will be 5.

2.7.2 Iterated Width

Lipovetzky and Geffner (2012) proposed a algorithm, called Iterated Width (IW), con-

sists of a sequence of IW (i) for i = 0, 1, 2, . . . and each IW (i) is one i -width search.

IW (i) is a BFS search with state pruning. In each i -width search processes, if the bound

is set to 2 (i = 2), this means the search will only keep new states whose novelty is less or

equal to 2, while states will be pruned if the novelty is beyond 2. If we set the bound to

0 (i = 0), there is no new state generated during the search. If we set the bound to 1 (i

= 1), there will generate n new states where n is the number of fluents in this problem.

Furthermore, if the bond is set to n, the n-width search only removes duplicate states.

In conclusion, IW (i) is a breadth-first search that prunes newly generated states when

their novelty is greater than i.

IW (i) algorithm is complete for problems whose widths are bounded by I, while it is

not necessarily complete since IW (i) always tries to use the minimum width to solve

the problem. This means that IW algorithm solves the problem in IW (i) where i is

smaller than the problem truly width. This minimum width of problem P is called the

effective width we(P), and the effective width is always smaller than or equal to the

width of the problem w(P). The effective width is not well-present with definition, but

it can directly reduce the time complexity during running IW algorithm to search the

goal. Since for a solvable problem P with width w, IW (w) solves P optimally in time

exponential in w.

The experiment results provided by Lipovetzky and Geffner (2012), shows that almost

90% of problems in IPCs benchmark domains have a low width (1 or 2) when there is

only one fluent in the goal state by splitting the problem with N atomic goals into N

Main Text 26

problems with a single goal fluent. It is noteworthy that IW outperforms other blind-

search algorithms such as Iterative Deepening (ID) and Breadth-First Search (BrFS) and

is competitive with standard heuristic-based search GBFS + hadd at single-goal problems.

There is confirmed certainty that by adopting the width notion in breadth-first search

for pruning new states whose novelty is above the default value, the performance of blind

search procedure can be significantly enhanced. This also suggests that the complexity

of problems depends on conjunctive goals. In fact, this thought has already been raised

previously, and the goal decomposition is critical and essential as a planning method to

handle this situation.

2.7.3 Serialization

Lipovetzky and Geffner (2012) raised a concept called “serialization” which is used

for applying the width notion in the benchmark problems with conjunctive goals. A

serialization d for a problem P = <F, O, I, G> is defined as a sequence of formulas

G1, . . . , Gm, where m is the number of fluents in G. G1 only contains one fluent in

G ; G2 is extended by G1 adding one more fluent from G ; G3 is generated by the same

method as mentioned in G2, and so on; Gm contains all fluents in G, so Gm = G. The

serialization decomposes the original problem P into a set of subproblems Pd = P1, . . . ,

Pm. P1 represents one subproblem of P, but the goal state is G1, and P2 represents one

subproblem of P, but the goal state is G2 and so on. If each subproblem can be optimally

solved, the initial state of subproblem Pi should be the last generated state from the

subproblem P i-1, which optimally solves the goal G i-1. The width of a problem in a

given serialization d is written as w(p, d), which is the max-width over the subproblems

in Pd.

The most important contribution of problem serializing is that both width and effective

width can be reduced distinctly via decomposing the multigoal problem into a set of

subproblems. As a result, this allows the IW algorithm to run on actual IPCs bench-

marks competitively. The IW algorithm can be directly applied in these multigoal

problems without applying the serialization. However, both width and effective width

are too large, which conflicts with the original intention of the IW algorithm that the

lower width in classical benchmarks is associated with the affordable time and space

complexity.

Main Text 27

2.7.4 Serialized Iterated Width

A search algorithm called Serialized Iterated Width (SIW) was proposed by Lipovetzky

and Geffner (2012). In order to realize the serialization of problems and find the solution

in each subproblem Pk, k = 1,. . . ,|G |. SIW is formed by a sequence of IW, and it

sequentially calls IW procedure over |G | subproblems where the G is the number of

fluents in the goal state. Since IW acts as a blind-search procedure, SIW is able to

take such advantage that the goal state of the problem is not required to be informed

in advance, and only requires the goal state at the end of the search. The features of

IW in SIW are used both for decomposing problems into a sequence of subproblems

and solving them individually. The plan for the problem is the serialization of plans

obtained from all subproblems.

Serialized Iterated Width at a classic planning problem P = <F, O, I, G> is defined

as that SIW is a serial of IW over the problems Pk = <F, O, Ik, Gk>, k = 1,. . . ,|G |,

(Lipovetzky and Geffner, 2012) where

1. I 1 = I,

2. Gk is the first consistent set of fluents achieved from Ik such that Gk−1⊂ Gk ⊆ G

and |Gk| = k ; G0 = ∅,

3. I k+1 is the achieved state of Gk, where 1 < k < |G |.

SIW starts with calling 1-th IW with the initial state I in P. Then IW will sequentially

call i -width search to find the goal G1 ⊆ G. If G1 is achieved in one newly generated

state s1, an goal consistency check will be executed for s1 to check whether G can be

consistently achieved. The goal consistency check estimates whether the hmax value of

s1 is infinite when the actions which delete the achieved goal G1 are excluded (Bonet

and Geffner, 2001). 1-th IW will stop if the hmax value is not infinite. Then SIW will

run 2-th IW with the initial state s1. 2-th IW stops when IW generates a state s2 that

achieves two goals G2 where G2 ⊆G, and s2 passes the goal consistency check. Then the

same processes will be repeated till k-th IW generates the state sk which includes the

Gk = G. The whole processes continue without the help from heuristics, and the goal

will be identified till IW generates a set of fluents G′ when Gk− 1 ⊂ Gk ⊆ G and |G′| =

k. The solution for SIW is a concatenating of solutions for each subproblem, P1, . . . ,

Pk, where k = |G |. This is the procedure of adopting IW for SIW at both constructing

the serialization and solving the subproblems.

Main Text 28

Because IW is a non-optimality algorithm, SIW keeps the same feature which cannot

guarantee the optimality of results. Additionally, the original goals of SIW are split

into a set of subgoals which cannot be guaranteed for reachability; therefore, SIW is

absolutely not complete. However, SIW still acts as a powerful blind-search algorithm

since it can reduce the effective width in each subproblem. The effective width of a

problem in IW is restricted by its actual width w(P), which cannot be guaranteed

in SIW. Lipovetzky and Geffner (2012) compared SIW with Greedy Best-First Search

adopting additive heuristic hadd in the heuristic search planner. The results indicate

that SIW performance becomes powerful if the problem decomposition and the non-

goal oriented form of pruning in IW are both employed, and it is competitive with the

best heuristic estimators hadd. The experiment results also show that the effective width

of subproblems in the selected domains is ranged from 1 to 4, and the average effective

width is between 1 and 2.

2.7.5 GBFS-W

The notion of width shows great potentials to assist blind-search algorithms for finding

solutions easily. However, there is no doubt that heuristic search still is the mainstream

method in classical planning. However, if there are heuristic plateaus occurred during

heuristic search such as GBFS, an issue remains as the heuristics function becomes blind.

When a large number of iterations in GBFS do not generate states with a lower heuristic

value, heuristic plateaus will form, and newly generated states in the Open list keep the

same heuristic value (Hoffmann and Edelkamp, 2005).

Due to the conspicuous performance of width-based blind search in IPCs benchmark

domains, the combination of heuristic and width is expected to overcome the difficulties

in classing planning. Lipovetzky and Geffner (2017) introduced the integration of the

width-based exploration with the standard greedy best-first search algorithm, named

as GBFS-W, and it has been successfully employed by high-performance planners. In

order to break the heuristic plateaus, the novelty is adopted. In the GBFS-W algorithm,

the novelty only affects the search if the greedy best-first search is obstructed. The

experiment results show an obvious improvement after adopting GBFS-W.

Main Text 29

2.7.6 Best-First Width Search

In the context of the best-first search with lexicographic “preferences”, this combination

can generate a search algorithm family which is called best-first width search (BFWS)

Lipovetzky and Geffner (2017). The “preferences” of a state can be defined as the joint

of two or more heuristics and novelty measures. With lexicographic ordering implemen-

tation, the evaluation function which is used to guide to BFWS can be represented as

f = <h, w>, where h are the heuristic functions used in BFWS, and w is the novelty

measurement function. w and h perform the lexicographic order, and this order can be

simply understood as the importance of each notion.

Even if the definition of novelty in IW algorithm is described clearly, the novelty is

measured slightly different by taking multiple functions into account. In BFWS, novelty

w(s) is the smallest size of the fluents tuple which is first true in the newly generated

state s and false in all states s′ generated before s when these states have same heuristic

values. For example, if there are m heuristic functions adopted in BFWS, w(s) will be

written as w<h1,. . . ,hm>(s). The w(s) for the specific i -th heuristic, represents as whi(s),

is 1 iff s is the first state that makes one fluent true but false in all states s′ generated

before s where hi(s) = hi(s
′) for all 1≤j≤m.

BFWS adopting the f 1 evaluation function is named as BFWS(f 1) where f 1 = <h, w>.

In BFWS(f 1), the value of w(s) would not be computed exactly for efficiency reasons

where novelty is 1 or greater than 1. In BFWS(f 1) the state s′ generated before state

s is favored if s′ has the smallest heuristic value or with the lowest novelty where s

and s′ have the same heuristic value. If the role of h(s) and w(s) in BFWS changed,

lexicographic ordering will be redesigned with the primary role as novelty for guiding

the search, and with the secondary role as heuristic to break plateaus. The evaluation

function, in the above description, is represented as f 2 = <w, h>. The preferred states

in BFWS(f 2) are those with the smallest novelty and among those, the one that produce

the smallest heuristic value. As a result, BFWS(f 2) is not greedy and may expand states

that do not have the minimum heuristic value in Open list. The f 3 evaluation function

which adopts the landmark heuristic as the first role and employs the FF heuristic as the

second role can be written as f 3 = <hL, hFF >. The landmark heuristic estimates the

distance to the goal state G from a given state s to be the number of landmarks that still

need to be achieved, from the landmark graph built once from the initial state (Hoffmann

Main Text 30

et al., 2004). If w(s) remains as the primary role in the search and combine hL and hFF

to break plateaus, the performance of this integration becomes more competitive than

merely adopting f 3 = <hL, hFF>. It forms as BFWS(f 4) algorithm, which works with

the evaluation function as f 4 = <w, hL, hFF> with w = whL , whFF
.

The most powerful algorithms among the BFWS algorithm family is BFWS(f 5), where

the evaluation function is f 5 = <w, #g>. The f 5 evaluation function uses #g to break

ties where #g represents the number of unachieved top problem goals in the current state

and uses w to guide the search as the primary influence factor where w is computed

under counter #g and counter #r. As a result, w is written as w = w#g, #r . #r

represents the number of fluents that have been true in the latest relax plan, and the

relax plan is only computed when the number of unachieved goals decreased in a new

state s′. Then, all children states generated from s′ will keep the same relax plan till a

new children state achieves more goals. The fluents Fπ in a relax plan π are fluents in

the preconditions or positive effects of actions a in π (Lipovetzky and Geffner, 2017).

BFWS(f 5) prefers novelty measures with a 3-value precision (namely, w(s) is 1, 2, or

greater than 2) rather than 2-value in BFWS(f 1) since it takes advantage that #g and

#r are computationally cheap.

2.8 Backward Search

Backward, as an old idea in planning, searches from the goal state rather than forward

from the initial state. However, a set of fluents {p, q, r} in the forward initial state

describes the unique state where fluents p, q and r are true, and other fluents are false.

Conversely, the same set of fluents only represents fluents p, q and r are true if this set

of fluents appears in backward states, so the backward states are also named as partial

states.

The regression state space can be defined in analogy to the progression state space. The

regression space Rp associate with a STRPS problem (F, O, I, G) is given by the tuple

Rp = <S, s0, SG, A, f, C> where

• The states s are set of flutes from F which are same in progression but they should be

viewed as the subgoals to be met, corresponding to a set of world states that satisfy it.

Main Text 31

• The initial state s0 is the goal state G.

•The goal states SG are states from which s⊆I.

• The actions A(s) applied in a given state s are a∈O when the delete fluents are not

included in s denoted as Del(a) ∩ s = φ for consistency, and at least one fluent in the

add list appears in s denoted as Add(a) ∩ s 6= φ for relevance.

• The transition function f transfers the state s into s′ = s - Add(a) + Pre(a) by

applying applicable actions a∈O.

• C (a,s) is 1 if not specific declaration.

Similar to progression, the solution of regression is a finite sequence of actions a0, a1,

. . . , an, applied in a sequence of applicable states s0, s1, . . . , sn, using the transition

function s i+1 = f (ai, si), for i=0, 1, . . . , n, a i∈A(si), and the sn+1 = f (an , sn)∈ SG.

Different from progression, search states s in regression also represent the subgoals to be

met, and it is important to keep backward search manageable. One solution is discarding

non-relevant actions. The new states s′ should be filtered out if it is a stronger subgoal

s′⊇s when s regresses over the not-relevant actions, since it is more challenging to

regress over s′ to meet the goal than regress over s. So it is crucial for the performance

of regression to only regress over actions that are relevant for the current state.

By comparing progression and regression, there are many interesting points worth notic-

ing. The initial state I in progression plays a similar role to the one played by G in

regression and vice verse. Meanwhile, the precondition and delete list of each action ex-

change their roles in a certain way. Actually, the above similarities are not a coincidence,

and progression and regression are strictly related proved by the duality mapping.

2.9 Bidirectional Search

Backward search has already been applied earlier in the graph search, but how to conduct

effective graph searching is a prominent problem with many attempted practices. The

most commonly used search methods are breath-first search (BFS) and depth-first search

(DFS). In the general graph, BFS and DFS start the search in one direction from the

Main Text 32

initial point to the target point. Conversely, we can also start to search from both

directions, such as, by using bidirectional search.

Bidirectional search in the graph traversal is used to find the shortest path from the

initial state to the goal state in a directed graph. The algorithm runs two searches at the

same time. One searches forward from the initial state and the other searches backward

from the goal state. When two search routes meet in the middle, the bidirectional search

stops. Assuming a tree with a branch factor b, the distance between the initial state

and the goal state is d. The time and space complexity of forward and backward search

are both O(bd/2) if two searches meet in the middle, and the sum of time or space

complexity of these two searches is much smaller than the time or space complexity

O(bd) of one direction search. There is no doubt that bidirectional search reduces the

time and space complexity when two searches meet in the middle.

Standard bidirectional search has Openf and Closedf for forward search, and Openb and

Closedb for backward search. There are mainly two heuristic value updating methods in

bidirectional search. The front-to-end uses two heuristic functions to guide the search.

They are hf which evaluates the distance from states in Openf to hgoal, the goal state of

the problem, and hb which assesses the distance from hstart, the initial state of problem

to states in Openb. The front-to-front estimates the heuristic values of states according

to how close they are to the opposite search frontiers by computing the heuristic h(u, v)

between all pair of states u and v in the frontiers rather than the goal state and initial

state. The front-to-front would be possible to expand the closest state to the opposite

search frontier and possibly leads to meet-in-the-middle behavior.

2.10 Duality

Suda (2013) mentioned the notion of duality STRIPS planning task which adopts the

duality mapping to generate the dual version of every STRIPS task. The duality map-

ping includes three steps. Firstly, the precondition and delete list of original action a

=(Pre(a), Add(a), Del(a)) will be exchanged to generate the dual action ad =(Del(a),

Add(a), Pre(a)), and the dual actions set is represented as Ad = {ad|a∈A}. Secondly,

the initial state I is the complement of the goal state G with respect to all fluents F.

Thirdly, the goal state G is the complement of the initial state I with respect to all

Main Text 33

fluents F. So, the dual version of a planning task P = (F, I, G, A) is Pd = (F, (F\G),

(F\I), Ad).

The most important theorem for the dual task is that for every planning task P = (F, I,

G, A) the dual task Pd has a solution if and only if P does. This theorem confirms that

there is no substantial difference between progression and regression STRIPS planning,

and the described transformation essentially turns progression into regression and vice

versa.

Chapter 3

Duality Width-Based Search

This chapter will discuss the performance of IW and SIW algorithms when meeting

dual STRIPS problems, and it will present a detailed analysis of the influence of duality

mapping on width-based search. In the description of duality mapping, the main idea

emphasises three points: There is no difference between forward search and backward

search; forward search can be transferred to backward search via duality mapping, and

the duality mapping is a way to generate new search problems. In other words, the

duality mapping changes the input format of the problems rather than changes the

state space to realise the backward effect.

3.1 IW with Duality Mapping

3.1.1 Experiments about Effective Width

To have an overview of width concept in dual problems, we first run IW on dual prob-

lems. In the experiments, there are 27 domains and 1100 problems selected from the

satisficing tracks of previous IPCs. Meanwhile, we generate the dual version of these

problems following the duality mapping rules and call the domains as dual domains if

all problems are transferred into the dual version and call domains as original domains

if all problems do not apply the duality mapping. Then both original problems and dual

problems with N goals fluents are split into N problems with one atomic fluent. We run

IW algorithm on dual problems with the single goal fluent and original problems with

34

Main Text 35

Domain P we=1 we=2 we>2

Original Dual Original Dual Original Dual Original Dual
barman 281 7056 10% 100% 0% 0% 90% 0%
blocks world 3714 398836 28% 100% 72% 0% 0% 0%
driverlog 259 5716 45% 100% 55% 0% 0% 0%
elevators 752 28264 0% 100% 100% 0% 0% 0%
ferry 210 2970 8% 100% 92% 0% 0% 0%
floortile 506 2604 97% 100% 3% 0% 0% 0%
freecell 320 14889 11% 100% 74% 0% 15% 0%
gripper 460 1400 0% 100% 100% 0% 0% 0%
hanoi 465 6325 100% 100% 0% 0% 0% 0%
logistics 10134 774028 12% 100% 88% 0% 0% 0%
mystery 86 24044 6% 100% 67% 0% 16% 0%
nomystery 210 6022 0% 100% 100% 0% 0% 0%
parcprinter 1128 7900 84% 100% 16% 0% 0% 0%
parking 686 36762 72% 100% 28% 0% 0% 0%
pegsol 660 1320 90% 100% 10% 0% 0% 0%
pipesworld 369 23360 60% 100% 37% 0% 3% 0%
rovers 179 2549 63% 100% 37% 0% 0% 0%
scanalyzer 500 3324 100% 100% 0% 0% 0% 0%
snake 754 8798 100% 100% 0% 0% 0% 0%
sokoban 112 5455 32% 100% 35% 0% 33% 0%
storage 240 14132 100% 100% 0% 0% 0% 0%
termes 410 2395 56% 100% 3% 0% 41% 0%
transport 345 83551 0% 100% 100% 0% 0% 0%
tyreworld 1980 41195 53% 100% 47% 0% 0% 0%
visitall 57194 114388 100% 100% 0% 0% 0% 0%
woodworking 1777 11641 100% 100% 0% 0% 0% 0%
zenotravel 219 4239 21% 100% 79% 0% 0% 0%

Summary 83950 1633163 50% 100% 43% 0% 7% 0%

Table 3.1: Effective width of single goal problems. P is number of resulting problems.
Other columns show percentage of problems with effective width 1, 2, or greater

the single goal fluent to compare the average effective width. All experiments discussed

below run on the cloud computer with clock speeds of 2.0 GHz Xeon processor, using a

10GB memory limit. We use a time cutoff of 30 minutes for 3.1.

All together 83950 original problems and 1633163 dual problems are presented. For each

domain, a total number of problems coming from dual version and original version are

respectively counted, and the percentage of problems which can be solved with effective

width k equal to 1, 2, or greater than 2 is presented. The last row in 3.1 describes the

average percentage of effective width over all domains.

For original problems, there are 50% with we = 1, 43% with we = 2, and less than 7%

with we > 2. However, for dual problems, there are 100% with w e=1. Because the time

Main Text 36

Original Dual

Total Problems 83950 1633163
Solved Problems 76008 1633163
Percentage 90.54% 100%

Table 3.2: IW solved problems

complexity of IW (k) is exponential in k and we is always smaller than or equal to k,

this means that all dual problems with the single goal fluent are solved in linear, while

the majority of original problems with the single goal fluent need linear or quadratic in

the number of problem fluents to solve.

3.1.2 Experiments about Solved problems

We also compare the number of solved problems by IW among tested original and

dual domains with 1633163 dual problems with the single goal fluent and 83950 original

problems with then single goal fluent respectively. The results are shown in 3.2 with

the same running conditions but no time cutoff. IW solves near 90% original problems

while 100% dual problems. The results suggest that IW manages to exploit the low

width of dual problems much better than original problems.

3.1.3 Results Analysis

There are two reasons to explain that the effective width of dual problems is much lower

than original problems, and IW solves more dual problems than original problems.

• Firstly, duality mapping creates a lot of goal fluents in the initial state. It means

that many goal fluents are already true in the initial state without searching.

• Secondly, duality mapping makes more fluents true in the initial state. Hence, the

goal state can be achieved easily by few actions, and this can reduce the possibility

of novelty value beyond the setting.

3.1.3.1 Reason For Solved More Problems

To testify the first reason, we compare the average number of fluents which are true

in both initial state and goal state between tested original and dual domains. We also

Main Text 37

Original Dual

Fig 5 818
Percentage 12.26% 95.93%

Table 3.3: Fig represents the average number of fluents in both initial and goal states
among tested 27 domains. Percentage is calculated by Fig dividing the average number

of goal fluents among tested 27 domains.

Original Dual

ANFIS 39 835

Table 3.4: ANFIS is the average number of fluents in the initial state among tested
27 domains

compare the average percentage of these fluents among all fluents in the goal state

between tested dual and original domains. The results are summarized in 3.3.

The results indicate that nearly 96% goal fluents are already true in the initial state in

dual problems while this percentage is only 12 in original problems. As a result, many

goal fluents are already true in the initial state without searching.

3.1.3.2 Reason For Lower Effective Width

To justify whether the duality mapping generates more fluents in the initial state, we

compare the average number of fluents in the initial state between tested original and

dual domains. The results are shown in 3.4. On average, there are 39 initial fluents in

original domains while 835 initial fluents in dual domains. It is clear that there are more

initial fluents in dual domains.

Then we try to explain why the effective width is lower in dual problems when a lot of

fluents are true in the initial state. The effective width, we(P) for a problem P with

the single fluent in the goal state is the minimum width used to solve P. Actually, the

algorithm IW does not know this width before the search; thus, it calls IW (i) in order,

starting from i = 0. The minimum value of i for IW (i) to solve P is the effective width

of P (Lipovetzky and Geffner, 2012). In other words, original problems need to call

IW (i) where i > 1 to solve single goal problems, but dual problems only need to call

IW (i) where i = 1 to solve single goal problems based on our experiment in 3.1, and i

is the minimum novelty value.

Main Text 38

Here, we use the blocks word domain as an example to explain why dual problems only

need novelty 1 to solve single goal problems rather than higher than 1. There are two

methods to explain this reason. The first way is more systematic like what Lipovetzky

et al. (2013) detailed proof stated that the blocks World, logistics, gripper, and n-puzzle

domains have a bounded width of 2, as long as the goals are restricted to single fluent.

This proof process needs the help of tuple graph and optimal implication, so it goes

beyond the scope of our discussion. The second way is that we propose a simplified

problem as an example to prove that the original problem needs IW (2) to solve while

the dual problem only needs IW (1). Even if this simplified problem cannot include all

situations in the blocks world domain, it is easy to understand and can illustrate the

overview of the duality mapping.

The blocks world domain is one classical untyped STRIPS domain, where stackable

blocks need to be re-assembled on a table with unlimited space. There is a robot arm

which stacks a block onto a block, unstacks a block from a block, puts down a block, or

picks up a block. The initial state defines a complete state while the goal state defines

only the required relations between any of two blocks.

Figure 3.1: Blocks World domain example

For a problem P = <F, O, I, G>, where

I = {on(a, c), on(c, b), handempty}, G = {on(a, b)},

F = {ontable(a), ontable(b), ontable(c), clear(a), clear(b), clear(c), on(a, b), on(b, a),

on(a, c), on(c, a), on(b, c), on(c, b), handempty},

O = {(:action pick-up :precondition (and (clear ?x) (ontable ?x) (handempty)) :Add

((holding ?x)) :Del ((ontable ?x) (clear ?x) (handempty)))

Main Text 39

(:action stack :precondition (and (holding, ?x), (clear ?y)) :Add ((clear ?x),

(handempty) (on ?x, ?y)) :Del ((holding ?x), (clear ?y)))

(:action put-down :precondition ((holding ?x)) :Add ((clear ?x), (handempty)

(ontable ?x)) :Del ((holding ?x)))

(:action unstack :precondition (and, (on ?x, ?y) (handempty), (clear ?x)) :Add

((holding ?x), (clear ?y)) :Del ((on ?x, ?y) (handempty), (clear ?x))

) where (not = ?x ?y)) }

We first set the max novelty value to 1. For problem P, the only possible action path,

a sequence of actions, to map the initial state to the goal state is unstack(a, c), put-

down(a), unstack(c, b), putdown(c), pick-up(a), and stack(a, b). In this action path,

the fluent in the add list of action pick-up(a) is already rue before we execute the action

pick-up(a) since the fluent holding(a) is true after we execute the action unstack(a, c).

As a result, if we apply the action pick-up(a) after we applied unstack(a, c), the novelty

value of newly generated state is higher than 1, and this newly generated state will be

pruned. If we set the max novelty value to 2, the action pick-up(a) can generate a new

pair of fluents <holding(a),clear(b)> and hence the newly generated state will not be

pruned and lead to mapping the goal state finally.

Next, we show the duality mapping can reduce the novelty value to 1. For a P = <F,

O, I, G>, the dual problem Pd = <F, Od, (F\G), (F\I)>, where

I = {ontable(a), ontable(b), ontable(c), clear(a), clear(b), clear(c), on(b, a), on(a, c),

on(c, a), on(b, c), on(c, b), handempty},

G = {ontable(a), ontable(b), ontable(c), clear(a), clear(b), clear(c), on(a, b), on(b, a),

on(c, a), on(b, c))},

The fluents F and actions will not be repeated shown since they are the same as those

in the original problem P. Even if dual actions are generated by exchanging the delete

list and precondition of original actions, in the blocks word domain the delete list and

precondition include same fluents in each action. As a result, dual actions are the same

as original actions in the blocks word domain.

We can find that only the fluent on(a, b) is in the goal state but not in the initial state.

We first set the max novelty value to 1. For problem Pd, the only possible action path

Main Text 40

to map the dual initial state to the dual goal state is stack(a, b). Since fluents holding

(a) and clear (b) in the delete list of action stack(a, b) are both true in the initial state,

the action stack(a, b) can be directly applied in the initial state to achieve the goal sate,

and it can generate the new fluent on(a, b). So when the novelty value is 1, IW can

solve the dual problem Pd with single goal fluent on(a, b).

According to the above analysis, the main reason for the duality mapping reducing

effective width of problems is that the duality mapping makes more fluents true in the

initial state. In other words, the majority of actions can be directly applied in the initial

state, and this reduces the proposition-dependency to achieve the goal state. Therefore,

the goal state can be achieved easily with few actions and lower effective width.

3.1.4 Summary

To sum up, the duality mapping changes the structure of initial and goal state in original

problems, so the width of original problems has also been changed. The influence of

duality mapping should be argued in a more careful way in width-based search.

In fact, the comparison of IW algorithm solving dual problems and original problems

with the single goal fluent not only describes the effective width of dual benchmarks

and original benchmarks but also implies the complexity of benchmarks coming from

conjunctive goals. In the field of planning, the goal decomposition is treated as a vital

and typical technique. The old intuition also suggests that the planner appears powerful

when solving conjunctive goals through some form of decomposition if it can efficiently

solve problems with the single goal fluent.

3.2 SIW with Duality Mapping

SIW is a search algorithm that uses the iterated width (IW) both for constructing

a serialization of the problem and solving the resulting subproblems (Lipovetzky and

Geffner, 2012). The following part will compare the performance of SIW running on

the dual problems with conjunctive goals and original problems with conjunctive goals.

Main Text 41

Solved Original Problems Solved Dual Problems

Summary (1417) 720 22

Table 3.5: SIW solved original problems vs. solved dual problems. The number of
solved dual and original problems in each domain by SIW is shown in A.2.

FF LAMA Mp

Original 1009 1192 1114
Dual 136 175 329

Table 3.6: the number of original and dual problems solved within 180 seconds by
the respective planners.

3.2.1 Experiments

The tested benchmark domains come from the satisficing tracks of IPCs of years 1998–2018.

The dual problems are generated based on the duality mapping rules. SIW is written

in C++, and use Metric-FF as an ADL to Propositional STRIPS compiler. The exper-

iments are conducted on the cloud computer at 2.0 GHz Xeon processor and 10 GB of

RAM. Time and memory outs after 30 minutes or 10GB. The novelty bound is set to 2

to ensure efficiency. The results are summarized in 3.5.

3.2.2 Results Analysis

According to the results in 3.5, it is obvious that SIW cannot solve the majority of dual

problems compared with original problems. SIW only solved 22 dual problems, but

SIW solved 720 original problems among tested 1417 problems. Besides, according to

the results in A.2, if there is no problem solved in domains without the duality mapping,

these problems still cannot be solved after applying the duality mapping. This result

seems to conflict with the intuition that the difficulty of solving problems with the

single goal fluent is positively correlative with solving these problems with conjunctive

goal fluents. To explain this conflict, we did the following analysis.

It is worth noting that the experiment results represented by (Suda, 2013) also show

that dual problems are harder to solve when applying heuristic-based planners such as

FF, LAMA and Mp, and the experiment results coming from Suda (2013) are shown in

3.6.

In 3.6, all tested domains are collected from the satisficing tracks of IPCs of years

1998–2011. Together 1564 problems are collective. There is an apparent gap between

Main Text 42

solved original problems and solved dual problems. However, in the worst case, FF

planner still solved 136 dual problems. Comparing solved dual problems with solved

original problems, the percentage is nearly 14. This percentage is increased to nearly 30

in Mp planner while it is in only 1.5 in SIW. It is extremely lower than other planners.

Suda (2013) proposed two reasons for the difficulty of dual problems: One is that adopted

planners do not check the usefulness of actions; the other is that invariant information is

not recovered by planners. After improvements, heuristic-based planners indeed solved

more dual problems but still fewer than original problems. Even if two authentic reasons

raised by Suda can explain why SIW solved limited dual problems, there is still another

unique reason for width-based search, which must be emphasised.

Let us recall the processes of SIW. SIW uses IW both for constructing a serialization of

problems and for solving resulting subproblems. The IW algorithm, calls IW (i) for i =

0, 1, 2, . . . , sequentially over each subproblem until all subproblems are solved. IW (i)

is a breadth-first search that prunes newly generated states when its novelty values are

higher than i (Lipovetzky and Geffner, 2012). The above review shows that the novelty

decides the further generated states in SIW. The novelty can be treated simply as the

minimum size of newly generated tuple of fluents in the search states. The average

number of initial fluents in dual problems suggests that the majority of fluents are true

in the initial state so that it is harder to find new tuples of fluents during the search, and

lots of states are pruned due to the novelty threshold, and it causes search end finally.

3.2.3 Summary

To conclude, the duality mapping provides a new perspective to understand the rela-

tionship between progression and regression, but the current search strategies, especially

width-based search, cannot handle this mapping very well. In practice, the differences

between original problems and dual problems follow from asymmetries (with respect

to the mapping) of the concrete benchmarks, and they are not inherent to the search

models themselves.

Chapter 4

Backward Width-Based Search

Even if the duality mapping allows us to transfer the search from progression into re-

gression easily with only editing input problems, SIW is unaccommodated with it since

the novelty applied in SIW needs the precise and succinct initial state in each domain.

It is now still hard to make a conclusion that backward search is not suitable for SIW.

Actually, there are two possible ways of interpreting the duality mapping, which are

either new standalone problems or part of the new algorithm. If we treat the duality

mapping as new problems, it only proves that SIW is not efficient when meeting duality

mapping problems. When we treat the duality mapping as a part of the new algorithm,

we show next that it is better to generate backward SIW by changing the progression

state space into the regression state space.

4.1 Backward SIW

For changing forward SIW to backward SIW. We base our modifications for the pro-

gression state space on the following rules.

• We refer to SIW that searches backward from the goal rather than forward from

the initial state.

• The goal states are the states for which states are the subset of the initial state

rather than the goal states defined in forward search.

43

Main Text 44

• At the beginning of backward SIW, the mutex pairs are detected by computing

the h2 value of each fluents pair.

• The transition function deletes fluents in the add list of applicable actions and

adds fluents in the precondition of applicable actions from the current state to

generate the new state.

• The set of applicable actions are relevant, consistent and not mutex. Relevance

means the intersection between the add list of applicable actions and current state

should not be empty; consistency means the intersection between the delete list

applicable actions and current state should be empty; not mutex means newly

generated states should not contain any mutex pairs.

• The goal consistency check will be concocted, when the new state s′ is generated.

If s′ achieves a new goal fluent, the reachable check is conducted. A reachable table

is formulated with all fluents in problem p to be false and then set the fluents in s′

to be true at beginning. Other fluents turn to be true gradually with fixed point

procedure if those fluents are in the precondition of relevant actions. Action a is

relevant with reachable table when the intersection of add list of a with positive

fluents in reachable table should not be empty and a cannot delete any achieved

goal fluents. If all fluents in the goal state are true in the reachable table when the

reachable table will never change, the new state s′ is the new initial state for next

IW ; otherwise, s′ will be inserted into the Open list and wait to be expanded in

the following search after all unachieved goal fluents are checked.

• In backward SIW, the effects of add list is the same as the effects of delete list, while

the effects of preconditions are the same as the effects of add list, and the effects

of the delete list are the same as the effects of precondition with the consistency

check.

Backward SIW usually finds some states s that are not reachable from the initial state

s0. These unreadable states will waste the mass of memory and computing resource

and cause search cannot find the plan. To discard these unreadable states in backward

search, Blum and Furst (1997) proposed the notion of mutex pair which is the pair of

unreachable fluents. For example, in the blocks word domain, the following state may

be generated during regression.

Main Text 45

s = {on(b, a), holding (d)}

After applying the action unstack(d, a) = {pre:{on(d, a), handempty, clear(d)},

add :{ holding (d), clear(a)}, del :{on(d, a), handempty, clear(d)}, the newly

generated state s′ would be:

s′ = {on(b, a), on(d, a), handempty, clear(d)}.

The state s′ represents a situation in which the block b is on the block a, and the block

b is also on the block a. It is obvious that this state is unreachable in the blocks word

domain when the initial state is correct. In the planning perspective, the heuristic value

would be assigned to infinite to fluent pair <on(b, a), on(d, a)>. Here, we adopt the h2

heuristic to calculate the heuristic value of all fluents pairs at the search beginning. If

any states contain the fluents pair that the h2 value is infinite, this state will be pruned.

The above method is not guaranteed to find all mutex pairs, yet it can be computed

fast, and in many domains, it appears to detect all obvious unreachable states.

4.1.1 Experiments

In the experiments, all tested domains are selected from the satisficing tracks of IPCs

of years 1998–2018. we compare the performance of backward SIW with forward SIW

by using Metric-FF as an ADL to Propositional STRIPS compiler. It is conducted

on the cloud computer running at 2.0 GHz Xeon processor and 10 GB of RAM; time

and memory outs after 30 minutes or 10 GB. The novelty bound is set to 2 to ensure

efficiency. The comparisons are summarized in 4.1.

4.1.2 Result Analysis

Backward SIW indeed solved more problems compared with the duality mapping among

tested 1417 problems, 141 vs. 22, but compared with forward SIW which solved 710

problems, backward SIW is still not competitive. The average plan length in backward

SIW is shorter than in forward SIW, and backward SIW needs less average time to

solve problems. This does not mean that backward SIW has better performance since

we find that backward SIW usually stops at the beginning of the search and shows no

plan found. In addition, if problems cannot be solved by forward SIW, neither backward

Main Text 46

Domain P S T Q
F-SIW B-SIW F-SIW B-SIW F-SIW B-SIW

agricola18 20 0 0 0.00 0.00 0.00 0.00
airport 50 49 0 62.45 0.00 177.10 0.00
barman14 20 0 0 0.00 0.00 0.00 0.00
blocks world 50 27 10 78.64 76.01 104.88 102.40
caldera18 20 10 0 58.04 0.00 20.10 0.00
caldera-split-18 20 0 0 0.00 0.00 0.00 0.00
childsnack14 20 0 0 0.00 0.00 0.00 0.00
cybersec 30 0 0 0.00 0.00 0.00 0.00
data-network18 20 3 0 6.23 0.00 36.67 0.00
depot 22 18 0 9.80 0.00 47.06 0.00
driverlog 20 7 0 0.07 0.00 25.43 0.00
elevators11 20 18 0 317.01 0.00 219.56 0.00
ferry 30 30 30 0.00 0.02 24.33 31.30
floortile14 20 0 2 0.00 0.07 0.00 108.50
ged14 20 0 0 0.00 0.00 0.00 0.00
gripper 20 20 20 0.07 0.29 91.00 95.00
hanoi 30 3 3 2.53 3.03 3.67 6.67
hiking14 20 0 0 0.00 0.00 0.00 0.00
logistics 50 26 2 199.89 10.02 152.05 35.00
miconic 50 50 50 0.12 0.57 58.46 25.41
mprime 70 60 0 33.94 0.00 7.77 0.00
mystery 60 33 0 0.90 0.00 7.18 0.00
no-mprime 35 30 0 34.75 0.00 7.80 0.00
no-mystery 30 16 0 0.91 0.00 7.13 0.00
nomystery11 20 1 0 0.01 0.00 30.00 0.00
openstacks 30 0 0 0.00 0.00 0.00 0.00
openstacks14 20 0 0 0.00 0.00 0.00 0.00
parcprinter11 20 20 16 0.02 0.02 78.35 68.13
parking14 20 20 0 129.17 0.00 65.00 0.00
pathways 30 15 0 28.81 0.00 94.13 0.00
pegsol11 20 0 0 0.00 0.00 0.00 0.00
pipesworld06 50 24 0 45.00 0.00 33.79 0.00
pipesworld-notankage 50 19 0 1.67 0.00 32.74 0.00
pipesworld-tankage 50 24 0 45.59 0.00 33.79 0.00
rovers 20 20 3 1.80 0.00 35.50 12.67
scanalyzer11 20 17 0 13.99 0.00 35.00 0.00
settlers18 20 0 0 0.00 0.00 0.00 0.00
snake18 20 0 0 0.00 0.00 0.00 0.00
sokoban11 20 1 0 0.04 0.00 429.00 0.00
spider18 20 0 0 0.00 0.00 0.00 0.00
storage 30 23 0 2.80 0.00 22.91 0.00
termes18 20 0 0 0.00 0.00 0.00 0.00
thoughtful14 20 15 0 0.28 0.00 95.47 0.00
tpp 30 10 4 0.09 0.02 39.60 17.50
transport14 20 14 0 704.39 0.00 326.36 0.00
trucks 30 3 0 0.31 0.00 25.67 0.00
tyreworld 30 26 0 237.78 0.00 156.50 0.00
visitall14 20 20 0 145.87 0.00 2916.85 0.00
woodworking11 20 19 0 14.26 0.00 71.16 0.00
zenotravel 20 19 1 0.79 0.00 36.47 6.00
summary 1417 710 141 64.06 10.01 163.19 56.51

Table 4.1: Forward SIW vs. backward SIW. P is the number of problems in each
domain. F-SIW is forward SIW. B-SIW is backward SIW. S is the number of solved
problems. Q is average plan length and T is average time in seconds. The red highlight

means backward search outperforms forward search.

Main Text 47

SIW can, except in the floortile domain. Backward SIW still leaves much to be desired,

so we propose tow improvement methods for it.

4.2 Backward SIW Improvement

Two issues still exist in backward SIW ; One is that the goal consistency check does not

consider the order between each goal fluent; another is that the backward goal state does

not include the negative fluents. To solve these issues in backward SIW, the following

improvements are adopted.

4.2.1 Goal Consistency Check

The order between each goal fluent is extracted from the goal-order graph by considering

the preceding relationship, and the goal-order graph always builds at the beginning of

both forward and backward search. In forward search, the goal-order for two-goal fluents

<p ,q> can be described as p preceding q and q requiring p if all actions add p but

edel with q, and as q preceding p and p requiring q if all actions add q but edel with

p. In backward search, the goal-order for two-goal fluents <p ,q> can be described as p

preceding q and q requiring p, if all actions require p but edel with q, and as q preceding

p and p requiring q if all actions require q but edel with p. The action a edel with fluent

p in forward search means that the h2 value of fluents pairs generated by fluent p with

any one of fluents in the add list of a is infinite, or pairs generated by fluent p with any

one of fluents in the precondition of a is infinite or fluent p appears in the delete list of

a. The action a edel with fluent p in backward search means that the h2 value of fluents

pairs generated by fluent p with any one of fluents in the precondition of a is infinite,

or fluent p appears in the add list of a.

In forward SIW, the mutex pairs detection is not important since few unreachable states

will be generated. As a result, the mutex pairs detection can be ignored in forward

SIW ; hence the action a edel with fluent p in forward SIW is simplified to the fluent

p belonging to the delete list of a. However, the mutex pairs detection is indispensable

in backward search, so the goal-order graph built in backward SIW can describe a more

detailed preceding relationship between each goal fluent. Now backward SIW is updated

Main Text 48

with goal-order graph built at the beginning of the search, and the preceding relationship

of each goal fluent is adopted in the new goal consistency check.

The new goal consistency check will be conducted, when one new state s′ is generated.

If there is a new leaf goal fluent achieved in s′, the reachable check is adopted. The leaf

goal fluents are those fluents that no fluents precedes them. In the reachable check, a

reachable table is formulated by making all fluents false, then making fluents in s′ true

at beginning. Other fluents turn to be true gradually with fixed point procedure if they

are in the precondition of relevant actions. In the new goal consistency check, the action

a is relevant with reachable table when the intersection of add list of a with positive

fluent in reachable table should not be empty, and a cannot delete any achieved and

original goal fluents. If all fluents in the goal state are true in the reachable table when

the reachable table never change, s′ is the new initial state for next IW, and the leaf

goal fluents will be updated based on removing consumed fluents (fluents make true)

and adding fluents without fluents preceding them; otherwise s′ will be inserted into the

Open list and wait to be expanded in the following search after all leaf goal fluents are

checked.

To keep the extraction of relevant actions efficiently, we need to exclude all actions which

can delete the achieved and origin goal fluents in a reasonable way. We list all necessary

symbols for explaining the new goal consistency check.

• EX are all excluded actions;

• FG are achieved goals fluents;

• Fgi is each achieved goal fluent; i=1, 2, . . . , n and n is the size of FG;

• FUG are unachieved goal fluents;

• Fugi is each unachieved goal fluent; i=1, 2,. . . , n and n is the size of FUG;

• FOG are original goal fluents;

• Fogi is each original goal fluent; i=1, 2, . . . , n and n is the size of FOG;

• FLG are leaf goal fluents;

• Flgi is each leaf goal fluent; i=1, 2, . . . , n where n is the size of FLG;

Main Text 49

• EXf are the excluded actions because of deleting fluent f.

In the new goal consistency check, if a new leaf goal fluent F lg1 is achieved in the newly

generated state s′, we first exclude the actions which can delete the F lg1 and FG. These

excluded actions should contain F lg1 and FG in the add list because of the regression

state space. The EX is updated by EX ∪ EXF lg1
∪ EXF g1

∪ EXF g2
, . . . ,∪EXF gn

. Then,

if an original goal fluent F og1 is in s′, and F og1 is not equal to F lg1 as well as F og1 is

not in FG, we will check whether F og1 is in the add list of all excluded actions EX. If

true, the actions which delete F og1 also need to be excluded. Then EX is updated by

EX∪EXFogi
. This process repeats with fixed point procedure till all FL and FOG fluents

are checked, and EX keeps fixed size. The algorithm of new backward goal consistency

check is described in 1, and the original backward goal consistency check is described in

2 for comparing.

Algorithm 1: New Backward Goal Consistency Check

for Flgi in FLG do
if Flgi ∈ s then

EX = ∅
EXo = ∅
FG = FG∪Flgi

EX = EX∪EXFg1
∪ EXFg2

, . . . ,∪EXFgn

while EX \ EXo 6= ∅ do
EXo = EX
for Fogi in FOG do

if Fogi 6= Flgi ∧ Fogi ∈ s then
if EX delete Fogi then

EX = EX∪EXFogi

end

end

end

end
if reachable check then

return True
else

FG = FG \Flgi

end

end

end

Main Text 50

Algorithm 2: Original Backward Goal Consistency Check

for Fugi in FUG do
if Fugi ∈ s then

EX = ∅
FG = FG∪Fugi

FUG = FUG\Fugi

EX = EX∪EXFg1
∪ EXFg1

, . . . ,∪EXFgn

if reachable check then
return True

else
FG = FG \Fugi

FUG = FUG∪Fugi

end

end

end

4.2.2 Negative Fluents

Another improvement for backward SIW is adding negative fluents into the backward

goal state. To put it simply, we use G to represent the goal state and use I to represent

the initial state in backward search. If the state s contains negative fluents, this means

that corresponding positive fluents are false in s. We adopt this idea in backward

search to ensure that fluents not in G should be false since G meets the closed world

assumption. We believe that negative fluents in backward search can reduce the number

of applicable actions since some of those actions are not consistent with states generated

during backward search. In backward SIW, negative fluents Fn∗ are generated from

fluents F* in I but not in G, and these negative fluents Fn∗ are added into G. Meanwhile,

if actions contain F* in the add list, the delete list and precondition should add Fn∗;

if actions contain F* in the delete list, Fn∗ should also be added into the add list.

One could argue that we can generate negative fluents for all positive fluents, and add

these negative fluents into G since all not mentioned fluents in G should be false. It

is reasonable, but not suitable for backward SIW since the goal-order of each negative

fluent is too complex to allow IW to serialize subproblems.

4.2.3 Experiments

We use the same domains and running conditions as in table 4.1 to compare the improved

backward SIW with the original backward SIW. The results are summarized in 4.2.

Main Text 51

Domain P S T Q

F-SIW B-SIW B-SIW+ F-SIW B-SIW B-SIW+ F-SIW B-SIW B-SIW+
agricola18 20 0 0 0 0.00 0 0 0.00 0 0
airport 50 49 0 0 62.45 0 0 177.10 0 0
barman14 20 0 0 0 0.00 0 0 0.00 0 0
blocks world 50 27 10 26 78.64 79.01 44.98 104.88 102.40 113.63
caldera18 20 10 0 0 58.04 0 0 20.10 0 0
caldera18 20 0 0 0 0.00 0 0 0.00 0 0
childsnack14 20 0 0 0 0.00 0 0 0.00 0 0
cybersec 30 0 0 0 0.00 0 0 0.00 0 0
data-network18 20 3 0 0 6.23 0 0 36.67 0 0
depot 22 18 0 0 9.80 0 0 47.06 0 0
driverlog 20 7 0 4 0.07 0 0.02 25.43 0 27.00
elevators11 20 18 0 0 317.01 0 0 219.56 0 0
ferry 30 30 30 30 0.00 0.02 0 24.33 31.30 24.40
floortile14 20 0 2 12 0.00 0.07 0.03 0.00 108.50 119.63
ged14 20 0 0 0 0.00 0 0 0.00 0 0
gripper 20 20 20 20 0.07 0.29 0.02 91.00 95.00 89.00
hanoi 30 3 3 1 2.53 3.03 8.75 3.67 6.67 2.00
hiking14 20 0 0 0 0.00 0 0 0.00 0 0
logistics 50 26 2 18 199.89 10.02 31.05 152.05 35.00 110.17
miconic 50 50 50 50 0.12 0.57 0.09 58.46 25.41 27.49
mprime 70 60 0 4 33.94 0 12.89 7.77 0 26.75
mystery 60 33 0 0 0.90 0 0 7.18 0 0
no-mprime 35 30 0 4 34.75 0 12.89 7.80 0 26.75
no-mystery 30 16 0 0 0.91 0 0 7.13 0 0
nomystery11 20 1 0 7 0.01 0 0.13 30.00 0 39.57
openstacks 30 0 0 29 0.00 0 2.60 0.00 0 147.59
openstacks14 20 0 0 20 0.00 0 64.27 0.00 0 932.00
parcprinter11 20 20 16 16 0.02 0.02 0.03 78.35 68.13 68.13
parking14 20 20 0 0 129.17 0 0 65.00 0 0
pathways 30 15 0 0 28.81 0 0 94.13 0 0
pegsol11 20 0 0 0 0.00 0 0 0.00 0 0
pipesworld06 50 24 0 0 45.00 0 0 33.79 0 0
pipesworld-notankage 50 19 0 0 1.67 0 0 32.74 0 0
pipesworld-tankage 50 24 0 0 45.59 0 0 33.79 0 0
rovers 20 20 3 11 1.80 0.00 0.07 35.50 12.67 37.64
scanalyzer11 20 17 0 14 13.99 0 15.41 35.00 0 39.00
settlers18 20 0 0 0 0.00 0 0 0.00 0 0
snake18 20 0 0 0 0.00 0 0 0.00 0 0
sokoban11 20 1 1 0 0.04 0 0 429.00 0 0
spider18 20 0 0 0 0.00 0 0 0.00 0 0
storage 30 23 0 0 2.80 0 0 22.91 0 0
termes18 20 0 0 0 0.00 0 0 0.00 0 0
thoughtful14 20 15 0 0 0.28 0 0 95.47 0 0
tpp 30 10 4 4 0.09 0.00 0.00 39.60 17.5 9.50
transport14 20 14 0 0 704.39 0 0 326.36 0 0
trucks 30 3 0 1 0.31 0 0.02 25.67 0 36.67
tyreworld 30 26 0 27 237.78 0 24.84 156.50 0 162.04
visitall14 20 20 0 8 145.87 0 112.39 2916.85 0 2517.85
woodworking11 20 19 0 0 14.26 0 0 71.16 0 0
zenotravel 20 19 1 1 0.79 0.00 0.00 36.47 6.00 6.00

summary 1417 710 141 321 64.06 10.01 18.36 163.19 56.51 217.2

Table 4.2: Backward SIW vs. improved backward SIW. P is the number of problems
in each domain. B-SIW is backward SIW ; B-SIW+ is the improved backward SIW. S
is the number of solved problems. Q is average plan length and T is average time in

seconds. The red highlight means backward search outperforms forward search.

Main Text 52

4.2.4 Result Analysis

According to the results summarised in the 4.2, backward SIW solved more problems

after improvement compared with without improvement, 321 vs. 141. The improved

backward SIW also needs less average time to find the plan, but the average plan length

is longer than forward SIW. Meanwhile, the features of backward search are more clearly

showed in the 4.2. For the domains floortile, nomystery, openstacks and tyreworld the

improved backward SIW outperforms forward SIW. For the floortile, backward search

always outperforms forward search, no matter the improvement, so we select this domain

to explain why backward search can outperform forward search in some domains.

Figure 4.1: Floortile domain example

In the floortile domain A.3, many robots use various colours to paint patterns in floor

tiles. The robots can move up, down, left and right around the floor tiles, and they

can paint with only one colour at a time, but they can change their spray guns to any

available colours. The robots can only paint the tile that is in front (up) or behind

(down) them. Robots cannot stand on the tiles if these tiles have been painted. For the

IPC set, robots need to move on a large rectangular space made up of tiles, and they need

to paint the tiles with black or white colour. All painting tasks follow the same layout:

The goal state describes that the first row of tiles is blank, and other rows of tiles are

painted with two different colours; the initial state gives the initial positions of robots,

Main Text 53

the colours of spray guns at the beginning and the clear tiles which can be painted.

We need to mention that the goal state only contains the rows of tiles which should be

painted rather than the first blank row of tiles since the goal state only contains fluents

we concerned in classical planning. To help readers understand the goal state easily, we

add the context of blank tiles in the goal state description. The floortile domain is hard

in forward search because robots could only paint tiles in front of them but not those

behind them. If painting tiles are from behind, it may result in a no solution search.

However, backward search changes problems manageable. In backward search, the search

starts from the goals state, which contains the information of blank tiles of the first row,

and other rows of tiles are painted with two different colours. Backward search tries

to clear tiles to achieve the initial state. In backward search, the actions which clear

the tiles are those actions which paint the tiles. If we want to clear one white tile with

position (1, 1), there are four possible actions:

• a1 where prea1 = {(clear tile (1, 1)), (robot-at robot1 tile (2, 1)), (robot-has, robot1

white)}, adda1 = {painted tile (1, 1) white}, dela1 = {clear tile (1, 1)};

• a2 where prea2 = {(clear tile (1, 1)), (robot-at robot2 tile (2, 1)), (robot-has, robot2

white)}, adda2 = {painted tile (1, 1) white}, dela2 = {clear tile (1, 1)};

• a3 where prea3 = {(clear tile (1, 1)), (robot-at robot1 tile (0, 1)), (robot-has, robot1

white)}, adda3 = {painted tile (1, 1) white}, dela3 = {clear tile (1, 1)};

• a4 where prea4 = {(clear tile (1, 1)), (robot-at robot2 tile (0, 1)), (robot-has, robot2

white)}, adda4 = {painted tile (1, 1) white}, dela4 = {clear tile (1, 1)};

In backward search, all these four actions can clear grid (1,1) since the clear fluent {clear

tile (1, 1)} appears in the precondition. In backward search, actions a1 and a2 clear the

tile (1, 1) when the places of robot1 and robot2 are behind of the tile where the robots

are located at (2, 1), while actions a3 and a4 clear the tile when the robot places are in

front of the tile (1, 1) where the robots are located at (0,1). When we try to apply the

actions a1 and a2 to generate the new states, the h2 value of fluents pairs <(robot-at

robot1 tile (2,1))/(robot-at robot2 tile (2,1)), (painted tile (2,1) white)/(painted tile (2,1)

black)> in newly generated states would be infinite, since no robots can stand on a

painted tile. As a result, only a3 and a4 are accepted since the added fluents (robot-at

Main Text 54

robot1 tile (0,1)) and (robot-at robot2 tile (0,1)) would not conflict with the fluent (tile

(0,1) blank) which is not painted.

According to the above analysis, in backward search, only the actions which clear tiles

when robots are in front of these tiles are applied to find the plan. These available

actions will keep search space manageable since robots only paint tiles in front of them.

4.3 Summary

To conclude, backward SIW is uncompetitive with forward SIW, even though we im-

proved backward SIW with the new goal consistency check and negative fluents. How-

ever, backward SIW proposes a new perspective to analyse the planning tasks. In

some domains, backward SIW can not solve any problem such as elevators, parking

and woodworking, but backward SIW can outperform in other domains. Meanwhile, for

the floortile domain, it is hard to find a plan in progression since the precondition can-

not describe the trap. These deliberate designs in progression make regression simpler

since progression and regression are asymmetries. The asymmetry character forces us

to dig out the reasons why backward search sometimes performs better but sometimes

worse. Such uncertainty requires more attempts in different search algorithms. Gener-

ally, width-based search also can adopt the regression state space, and its performance

is reasonable.

Chapter 5

Backward Best First Width

Search

A standard width-based method, SIW procedure has been proved competitive with

greedy best-first search planner using of the additive heuristic hadd by (Lipovetzky and

Geffner, 2012). Nevertheless, SIW is not state-of-the-art. To analyse the performance

of the state-of-the-art width-based search after applying backward modifications, we

change the best-first width search (BFWS) to backward version.

BFWS is a family of search algorithms. In the BFWS family, the best first search is

integrated with the width-based exploration to produce a serial of planning algorithms.

In BFWS, the evaluations functions combine lexicographically to break ties and some

of which express novelty based preferences. BFWS(f 5) manages to outperform LAMA

which wins IPCs twice, without applying many techniques that have been found essential

for performance in recent years (Lipovetzky and Geffner, 2017). The evolution function

f 5 weights the state by novelty measures and break the ties by the number of the

unachieved goals. The following backward modifications are based on BFWS(f 5) since

the state-of-the-art performance is important in classical planning.

5.1 BFWS(f 5) Backward Modification

Not only the state space needs to be transferred from progression to regression as men-

tioned in SIW without considering the goal consistent check, but also the computation

55

Main Text 56

method of the forward heuristic value needs to be changed when building backward

BFWS(f 5). Forward BFWS(f 5) with evaluation function f 5 = <w, #g> consists of #

g(s), the number of top problem goals that are not true in s, and w(s), the novelty of s

when given both counter #g(s) and counter #r(s). In the backward version, the first

change is the computation method of #g(s). In backward version, #g(s) is sum of the

number of goal fluents that are not true in s and the number of fluents in s that are not

true in the goal state G. For example, in the blocks word domain,

the forward initial state:

I={ ontable (a), on(b, a), clear(b), handempty}

the forward goal state:

G={ ontable (a), ontable (b), clear (a), clear (b), handempty }

the newly generated state s during forward search:

s={ ontable(a), holding(b), clear(a)}

The value of forward #g(s) is 3 since the unachieved goals are {ontable (b), clear (b),

handempty}. While the value of backward #g(s) is 5 since the unachieved backward

goals are {on(b, a), clear(b), handempty}, and fluents in s but not in the backward

goal state are {holding(b), clear(a)} when the initial state is treated as the goal state

and the goal state is treated as the initial state in backward search. This modification

is based on the regression goal check method that the goal state is achieved when the

expanded state is the subset of the forward initial state.

The above analysis ignores the order between each goal fluent for the seek of an easy

understanding. In fact, the order between each goal fluent is considered in both forward

and backward search, and it is extracted by considering the preceding relationship, as

mentioned in backward SIW.

The other alteration is the computations of #r. Lipovetzky and Geffner (2017) give a

specific definition of #r(s): “If π is the set of actions in the last relaxed plan computed

in the way to state s and R is the set of fluents associated with such a plan, then #

r(s) is the number of atoms in R that have been made true in some state s′′ in the

way from s to s′ including these two states”. In progression, the formulation of the

relax plan need to recompute best supporters in every new state s. It is time-consuming

Main Text 57

and not efficient. While the recomputation could be avoided by performing the search

backward from the goal state rather than forward from the initial state. In forward

search, best supporters need to be recomputed many times as long as the new states

generate since the initialisation of best supporters is based on the newly generated state

to achieve the goal state. However, in backward search, the new states are the sub-goals

of the problem. As a result, best supporters just need to compute once at the beginning

of backward search and adopt the initial state to initialise and reuse them to extract

the relax plan. In addition, for STRIPS problems, the set of fluents R associated with

a forward relax plan is given by fluents in the add list of actions in the forward relax

plan. Following the rules about applying actions in the regression space state, the set of

fluents R associated with a backward relax plan is given by fluents in the precondition

of actions in the backward relax plan. For backward #r(s), we generate the relax plan

forward but extract R backward.

Other backward modifications would not be details explained in this thesis. They all

obey the rules, replacing the positive effects with precondition effects, replacing the

negative effects with positive effects, and replacing the precondition effects with negative

effects under the consistency check.

5.2 Experiments

We selected backward BFWS(f 5) and backward k-BFWS(f 5) in backward BFWS family

as examples to compare with their forward versions. BFWS(f 5) is a complete search

algorithm, and k-BFWS(f 5) as a variant of BFWS(f 5) is polynomial but incomplete

through pruning the states s whose novelty w(s) exceeds the bound k. The value of k is

equal to 2 in the following experiments for the purpose of keeping efficiency. Algorithms

implemented are based on LAPKT. Experiments coverage over benchmarks from the

satisficing tracks of IPCs of years 1998–2018 and are performed on the cloud computer

with 2.0GHz Xeon processor; time and memory outs after 30 min or 10GB. 5.1 shows the

results of the comparison between forward and backward two different BFWS algorithms.

Main Text 58

Domain F-k -BFWS B-k -BFWS F-BFWS(f 5) B-BFWS(f 5)
agricola18 (20) 0 0 0 0
airport (50) 37 25 37 25
barman14 (20) 20 0 20 0
blocks world (50) 30 30 30 30
caldera18 (20) 0 0 0 0
caldera-split-18 (20) 0 0 0 0
childsnack14 (20) 0 6 2 4
cybersec (30) 15 10 0 10
data-network18 (20) 8 0 8 0
depot (22) 22 3 22 3
driverlog (20) 20 20 20 20
elevators11 (20) 20 13 20 13
ferry (30) 30 30 30 30
floortile14 (20) 2 20 2 20
ged14 (20) 19 0 19 0
gripper (20) 20 20 20 20
hanoi (30) 4 6 11 13
hiking14 (20) 3 2 5 5
logistics (50) 44 21 47 22
miconic (50) 50 50 50 50
mprime (70) 65 2 65 4
mystery (60) 38 14 38 15
no-mprime (35) 32 1 32 1
no-mystery (30) 19 7 19 8
nomystery11 (20) 13 10 14 11
openstacks (30) 27 26 27 26
openstacks14 (20) 15 0 15 0
parcprinter11 (20) 13 18 13 18
parking14 (20) 20 0 20 0
pathways(30) 24 5 24 6
pegsol11(20) 9 1 20 5
pipesworld06(50) 30 6 34 6
pipesworld-notankage (50) 50 15 50 15
pipesworld-tankage (50) 30 6 34 6
rovers (20) 20 19 20 19
scanalyzer11 (20) 18 20 18 20
settlers18 (20) 0 0 0 0
snake18 (20) 11 0 10 0
sokoban11 (20) 5 1 15 1
spider18 (20) 13 0 13 0
storage (30) 29 14 29 15
termes18 (20) 1 2 10 8
thoughtful14 (20) 20 5 20 5
tpp (30) 30 10 30 12
transport14 (20) 7 0 6 0
trucks (30) 7 14 9 14
tyreworld (30) 30 12 30 12
visitall14 (20) 19 17 19 17
woodworking11 (20) 20 11 20 11
zenotravel (20) 20 20 20 20
total coverage (1417) 979 512 1017 540
average time 101.70 66.78 76.96 66.79
average quality 169.29 163.10 185.62 199.07

Table 5.1: Backward BFWS(f 5) vs. forward BFWS(f 5); backward k -BFWS vs.
forward k -BFWS where k=2. F means forward search while B means backward search.
The red highlight means backward search outperforms forward search. The average

time and average quality for each domain is shown in A.1

Main Text 59

5.3 Result Analysis

The experiment results show that forward k -BFWS(f 5) solved 979 problems among

total 1417 problems while backward k -BFWS(f 5) solved 512 problems. Although back-

ward k -BFWS(f 5) solved fewer problems than forward search, it outperforms forward

search in the domains like childsnack, floortile, parcprinter and scanalyzer ; however,

in domains like barman, ged and parking, forward k -BFWS(f 5) solved 20, 16 and 14

problems respectively among 20 problems where backward search cannot do anything

about problems. It is worth noting that backward k -BFWS(f 5) needs less time to find

the plan compared with forward k -BFWS(f 5), 66.78 sec vs. 101.70 sec, and the same

is true in BFWS(f 5), 66.79 sec (backward) vs. 76.96 sec (forward). For the average

plan length, backward k -BFWS(f 5) can find the plan with the shorter length while this

advantage is gone in BFWS(f 5).

Then as 5.1 indicates that forward BFWS(f 5) solved 1017 problems among total 1417

problems and an extra of 38 problems compared with forward k -BFWS(f 5). Backward

BFWS(f 5) solved 540 problems and an extra of 28 problems compared with backward

k -BFWS(f 5). This is reasonsable since BFWS(f 5) is complete search. The feature

of complete search does improve the incomplete forward and backward search slightly.

Moreover, if all problems in some domains like barman, ged, parking, cannot be solved

by backward k -BFWS(f 5), neither can backward BFWS(f 5) solve these problems.

5.4 Summary

To conclude, backward k -BFWS(f 5) is not competitive with forward k -BFWS(f 5), and

the same is true when backward BFWS(f 5) is compared with forward BFWS(f 5). Mean-

while, the complete forward and backward search really solved more problems, but this

improvement is limited. Especially in some domains, complete backward search has no

positive effect since the average plan length is increased. This result suggests that the

complete search cannot offset the weakness of backward search and that some bench-

mark domains are still quite challenging for backward search. Then we propose another

method to offset the weaknesses of forward and backward search in different domains

by integrating forward search with backward search.

Chapter 6

Bidirectional Search

Besides the independent forward and backward search, the possibility to perform the com-

bined forward and backward search already exists. This bidirectional method concur-

rently searches in both forward and backward directions, which has been successfully

applied in optimal classical planning, and the use now still keeps expanding since it saves

time and space complexity when problems can be solved meet-in-the-middle as proved

in 2.9.

Bidirectional search provides a platform to perform backward BFWS as a competitive

search strategy. Standard bidirectional search has two Open and Close lists, Openf and

Closef for forward search and the Openb and Closeb for backward search. The plan is

found when the forward and backward frontiers intersect. Besides, according to different

heuristic value updating methods, bidirectional search can be divided into front-to-front

version and front-to-end version.

6.1 k-BFWBS

Bidirectional search used in this thesis can be treated as a simplification of TTBS (Felner

et al., 2010) with some modifications. Firstly, TTBS reevaluates the heuristic value of

states in Open if d is not similar to D(s), where d is the top (lowest h-value) state in

the opposite Open; D(s) is the state which is the d -node when s is evaluated; similar

means d is D(s) or a successor of D(s). While in this thesis, the top node d is only used

to evaluate the heuristic value of successors of state s in the opposite Open, and the

60

Main Text 61

reevaluation is removed since we optimistically believe that bidirectional search always

keeps progression under the direction of the top state (with the lowest heuristic value) in

frontiers and the directions of its successors. Secondly, TTBS deems the goal achieved

under two conditions: The forward or backward expanded state s intersects with the

original goal state or with d, for forward SG⊆s∨d⊆s, for backward S⊆s0∨S⊆d ; the

forward or backward state s′ generated by state s intersect with states generated by d,

for forward s′∈genb, for backward s′∈genf. Furthermore, the intersection detection of

s′∈genb or s′∈genf is implemented as looking up of hash sets. This is efficient, but it

possibly misses intersections. In contrast, we take two different goal check methods in

our bidirectional search.

1. We detect the intersection of the state s which has the lowest h-value in Open with

all states in the opposite Close (named as check Close).

2. We detect the intersection of the state s which has lowest h-value in Open with d

(named as check Head).

Besides different goal check methods, different h-value updating methods front-to-front

and front-to-end are also adopted.

6.1.1 Six Different Combinations

Bidirectional search in this thesis integrates forward k -BFWS(f 5) and backward k -

BFWS(f 5) with six different combinations.

1. The #g and #r are evaluated by front-to-end and goal check with check Head,

named as FB H;

2. The #g and #r are evaluated by front-to-end and goal check with check Close,

named as FB C;

3. The #g is evaluated by front-to-end while #r is reevaluated by front-to-front and

goal check with check Head, named as FB R H;

4. Both #g and #r are reevaluated by front-to-front and goal check with check Head,

named as FB R G H;

Main Text 62

5. Both #g and #r are reevaluated by front-to-front and goal check with check Head.

Meanwhile, if forward or backward search stops, the other search will try to achieve

the top state (with lowest h-value) in the opposite Close, named as FB R G C H;

6. Both #g and #r are reevaluated by front-to-front and goal check with check Close,

named as FB R G C.

This k -BFWS(f 5) based bidirectional search is named as k -BFWBS. In this thesis,

forward k -BFWS(f 5) and backward k -BFWS(f 5) alternate in 1-step each. k -BFWBS

keeps searching when forward k -BFWS(f 5) or backward k -BFWS(f 5) stops. Forward

search stops when Openf = ∅, and backward search stops when Openb = ∅, and k -

BFWBS changes to single forward or backward search when one search stops. It returns

no solution until forward k -BFWS(f 5) and backward k -BFWS(f 5) both stop.

6.2 Experiments

To better analyse the performance of six different combinations, three baselines are

selected.

1. Only run forward k -BFWS(f 5);

2. Only run backward k -BFWS(f 5);

3. Forward k -BFWS(f 5) is executed first, and then backward k -BFWS(f 5) is exe-

cuted if the plan is not found by forward k -BFWS(f 5)), named as FB.

Selected benchmark domains come from the satisficing tracks of IPCs of years 1998–2018

in our experiments, and the results about total solved problems are summarised in

6.1. Three main aspects, problems solved by forward search in 6.2, problems solved by

backward search in 6.3, and problems solved when the search meets in the middle in

6.4, are used to evaluate k -BFWBS. The meet-in-the-middle is an important aspect as it

can reduce the time and space complexity. k -BFWBS is implemented by using LAPKT

toolkit. All experiments are performed on the cloud computer with 2.0GHz Intel Xeon

processors with time outing after 30 min and memory outing after 10GB.

Main Text 63

Domain P S

F B FB FB H FB C FB R H FB R G H FB R G C FB R G C H
agricola18 20 0 0 0 0 0 0 0 0 0
airport 50 37 25 46 27 24 27 14 18 14
barman14 20 20 0 20 20 1 20 0 0 0
blocks world 50 30 30 45 24 25 25 12 17 19
caldera18 20 0 0 0 0 0 0 0 0 0
caldera-split-18 20 0 0 0 0 0 0 0 0 0
childsnack14 20 0 6 2 6 2 3 1 0 1
cybersec 30 15 10 19 12 4 12 6 6 6
data-network18 20 8 0 8 7 4 5 0 1 0
depot 22 22 3 22 22 21 22 3 4 3
driverlog 20 20 20 20 20 20 20 14 17 14
elevators11 20 20 13 20 20 10 14 0 0 0
ferry 30 30 30 30 30 30 30 30 30 23
floortile14 20 2 20 20 20 20 20 19 18 19
ged14 20 19 0 19 18 15 17 0 0 0
gripper 20 20 20 20 20 20 20 19 20 19
hanoi 30 4 6 6 6 6 6 4 4 4
hiking14 20 3 2 3 5 1 1 0 0 0
logistics 50 44 21 44 37 17 35 10 3 15
miconic 50 50 50 50 50 50 50 39 20 45
mprime 70 65 2 65 58 55 53 49 54 49
mystery 60 38 14 38 35 32 30 29 25 29
no-mprime 35 32 1 32 27 26 26 24 27 24
no-mystery 30 19 7 19 17 16 15 15 11 15
nomystery11 20 13 10 13 11 9 11 2 2 2
openstacks 30 27 26 27 27 25 27 10 18 10
openstacks14 20 15 0 15 0 0 0 0 0 0
parcprinter11 20 13 18 18 18 16 18 1 2 1
parking14 20 20 0 20 20 20 20 0 0 0
pathways 30 24 5 24 24 22 24 5 4 5
pegsol11 20 9 1 9 9 11 9 0 7 2
pipesworld06 50 30 6 30 30 30 29 12 10 12
pipesworld-notankage 50 50 15 50 49 45 47 23 16 22
pipesworld-tankage 50 30 6 30 30 30 29 12 10 12
rovers 20 20 19 20 20 20 20 15 11 15
scanalyzer11 20 18 20 20 20 20 20 6 13 6
settlers18 20 0 0 0 0 0 0 0 0 0
snake18 20 11 0 11 6 3 5 1 2 1
sokoban11 20 5 1 5 5 2 5 1 1 2
spider18 20 13 0 13 9 7 8 0 0 0
storage 30 29 14 29 29 27 27 16 17 16
termes18 20 1 2 2 2 0 2 1 1 0
thoughtful14 20 20 5 20 20 16 17 5 5 5
tpp 30 30 10 30 30 20 24 9 7 9
transport14 20 7 0 7 6 2 2 0 0 0
trucks 30 7 14 10 13 10 13 6 4 6
tyreworld 30 30 12 30 30 30 30 3 3 3
visitall14 20 19 17 20 18 18 17 0 0 0
woodworking11 20 20 11 20 20 20 20 1 1 1
zenotravel 20 20 20 20 20 20 20 18 18 18

summary 1417 979 512 1041 947 822 895 435 427 447

Table 6.1: Total solved problems with six different k -BFWBS combinations and three
baselines. The red highlight means better than forward search. P is the number of

problems in each domain. S is the number of solved problems.

Main Text 64

Domain P FS

F FB FB H FB C FB R H FB R G H FB R G C FB R G C H
agricola18 20 0 0 0 0 0 0 0 0
airport 50 37 37 7 0 7 3 3 3
barman14 20 20 20 20 0 20 0 0 0
blocks world 50 30 30 14 0 10 0 0 0
caldera18 20 0 0 0 0 0 0 0 0
caldera-split-18 20 0 0 0 0 0 0 0 0
childsnack14 20 0 0 0 0 0 0 0 0
cybersec 30 15 15 2 0 2 0 0 0
data-network18 20 8 8 7 2 5 0 0 0
depot 22 22 22 22 16 22 2 0 2
driverlog 20 20 20 20 15 20 0 0 0
elevators11 20 20 20 20 9 14 0 0 0
ferry 30 30 30 28 3 28 0 0 0
floortile14 20 2 2 0 0 0 0 0 0
ged14 20 19 19 18 15 17 0 0 0
gripper 20 20 20 0 0 0 0 0 0
hanoi 30 4 4 2 2 2 3 1 3
hiking14 20 3 3 3 0 0 0 0 0
logistics 50 44 44 35 1 34 1 0 1
miconic 50 50 50 2 0 22 5 0 4
mprime 70 65 65 58 51 53 44 8 44
mystery 60 38 38 34 23 29 28 1 28
no-mprime 35 32 32 27 25 26 22 4 22
no-mystery 30 19 19 16 12 14 14 1 14
nomystery11 20 13 13 6 0 6 0 0 1
openstacks 30 27 27 14 9 14 0 0 0
openstacks14 20 15 15 0 0 0 0 0 0
parcprinter11 20 13 13 3 0 3 0 0 0
parking14 20 20 20 20 19 20 0 0 0
pathways 30 24 24 21 0 21 2 0 2
pegsol11 20 9 9 9 2 9 0 0 0
pipesworld06 50 30 30 29 25 28 7 0 7
pipesworld-notankage 50 50 50 48 38 46 17 0 17
pipesworld-tankage 50 30 30 29 25 28 7 0 7
rovers 20 20 20 13 12 13 4 0 4
scanalyzer11 20 18 18 5 4 5 0 0 0
settlers18 20 0 0 0 0 0 0 0 0
snake18 20 11 11 6 2 5 1 0 1
sokoban11 20 5 5 4 0 4 0 0 1
spider18 20 13 13 9 6 8 0 0 0
storage 30 29 29 27 24 25 12 2 12
termes18 20 1 1 0 0 0 0 0 0
thoughtful14 20 20 20 20 5 17 4 2 4
tpp 30 30 30 29 14 23 4 0 4
transport14 20 7 7 6 2 2 0 0 0
trucks 30 7 7 2 1 2 6 0 6
tyreworld 30 30 30 30 0 30 0 0 0
visitall14 20 19 19 8 0 7 0 0 0
woodworking11 20 20 20 19 19 19 0 0 0
zenotravel 20 20 20 8 6 8 2 1 2

summary 1417 979 979 700 387 668 188 23 189

percentage - 100% 92% 74% 47% 74% 43% 5% 42%

Table 6.2: Forward search solved problems with six different k -BFWBS combinations
and two baselines. P is the number of problems in each domain. FS is the number of
the forward search solved problems. The last row is the percentage of forward search

solved problems among total solved problems.

Main Text 65

Domain P BS

B FB FB H FB C FB R H FB R G H FB R G C FB R G C H
agricola18 20 0 0 0 0 0 0 0 0
airport 50 25 9 15 0 15 1 0 1
barman14 20 0 0 0 0 0 0 0 0
blocks world 50 30 15 5 0 5 10 0 2
caldera18 20 0 0 0 0 0 0 0 0
caldera-split-18 20 0 0 0 0 0 0 0 0
childsnack14 20 6 2 6 2 3 1 0 1
cybersec 30 10 4 10 2 10 0 0 0
data-network18 20 0 0 0 0 0 0 0 0
depot 22 3 0 0 0 0 0 0 0
driverlog 20 20 0 0 0 0 11 0 11
elevators11 20 13 0 0 0 0 0 0 0
ferry 30 30 0 0 0 0 25 0 18
floortile14 20 20 18 20 19 20 13 0 13
ged14 20 0 0 0 0 0 0 0 0
gripper 20 20 0 20 0 20 18 0 18
hanoi 30 6 2 2 0 2 0 0 0
hiking14 20 2 0 2 0 1 0 0 0
logistics 50 21 0 2 0 1 7 0 2
miconic 50 50 0 3 0 8 0 0 1
mprime 70 2 0 0 0 0 2 0 2
mystery 60 14 0 1 0 1 0 0 0
no-mprime 35 1 0 0 0 0 1 0 1
no-mystery 30 7 0 1 0 1 0 0 0
nomystery11 20 10 0 5 0 5 2 0 1
openstacks 30 26 0 13 0 13 1 0 1
openstacks14 20 0 0 0 0 0 0 0 0
parcprinter11 20 18 5 15 0 15 0 0 0
parking14 20 0 0 0 0 0 0 0 0
pathways 30 5 0 1 0 1 0 0 0
pegsol11 20 1 0 0 0 0 0 0 2
pipesworld06 50 6 0 1 0 1 2 0 2
pipesworld-notankage 50 15 0 1 0 1 3 0 2
pipesworld-tankage 50 6 0 1 0 1 2 0 2
rovers 20 19 0 6 0 6 4 0 4
scanalyzer11 20 20 2 9 2 9 1 0 1
settlers18 20 0 0 0 0 0 0 0 0
snake18 20 0 0 0 0 0 0 0 0
sokoban11 20 1 0 0 0 0 0 0 0
spider18 20 0 0 0 0 0 0 0 0
storage 30 14 0 1 0 1 0 0 0
termes18 20 2 1 2 0 2 1 0 0
thoughtful14 20 5 0 0 0 0 0 0 0
tpp 30 10 0 0 0 0 0 0 0
transport14 20 0 0 0 0 0 0 0 0
trucks 30 14 3 11 0 11 0 0 0
tyreworld 30 12 0 0 0 0 0 0 0
visitall14 20 17 1 0 0 0 0 0 0
woodworking11 20 11 0 1 1 1 0 0 0
zenotravel 20 20 0 12 5 12 15 1 15

summary 1417 512 62 166 31 166 120 1 100

percentage - 100% 8% 18% 4% 18% 27% 0.20% 22%

Table 6.3: Backward search solved problems with six different k -BFWBS combina-
tions and two baselines. P is the number of problems in each domain. BS is the number
of backward search solved problems. The last row is the percentage of backward search

solved problems among total solved problems.

Main Text 66

Domain P M

FB H FB C FB R H FB R G H FB R G C FB R G C H
agricola18 20 0 0 0 0 0 0
airport 50 5 24 5 10 15 10
barman14 20 0 1 0 0 0 0
blocks world 50 5 25 10 2 17 17
caldera18 20 0 0 0 0 0 0
caldera-split-18 20 0 0 0 0 0 0
childsnack14 20 0 0 0 0 0 0
cybersec 30 0 2 0 6 6 6
data-network18 20 0 2 0 0 1 0
depot 22 0 5 0 1 4 1
driverlog 20 0 5 0 3 17 3
elevators11 20 0 1 0 0 0 0
ferry 30 2 27 2 5 30 5
floortile14 20 0 1 0 6 18 6
ged14 20 0 0 0 0 0 0
gripper 20 0 20 0 1 20 1
hanoi 30 2 4 2 1 3 1
hiking14 20 0 1 0 0 0 0
logistics 50 0 16 0 2 3 13
miconic 50 45 50 20 34 20 40
mprime 70 0 4 0 3 46 3
mystery 60 0 9 0 1 24 1
no-mprime 35 0 1 0 1 23 1
no-mystery 30 0 4 0 1 10 1
nomystery11 20 0 9 0 0 2 0
openstacks 30 0 16 0 9 18 9
openstacks14 20 0 0 0 0 0 0
parcprinter11 20 0 16 0 1 2 1
parking14 20 0 1 0 0 0 0
pathways 30 2 22 2 3 4 3
pegsol11 20 0 9 0 0 7 0
pipesworld06 50 0 5 0 3 10 3
pipesworld-notankage 50 0 7 0 3 16 3
pipesworld-tankage 50 0 5 0 3 10 3
rovers 20 1 8 1 7 11 7
scanalyzer11 20 6 14 6 5 13 5
settlers18 20 0 0 0 0 0 0
snake18 20 0 1 0 0 2 0
sokoban11 20 1 2 1 1 1 1
spider18 20 0 1 0 0 0 0
storage 30 1 3 1 4 15 4
termes18 20 0 0 0 0 1 0
thoughtful14 20 0 11 0 1 3 1
tpp 30 1 6 1 5 7 5
transport14 20 0 0 0 0 0 0
trucks 30 0 9 0 0 4 0
tyreworld 30 0 30 0 3 3 3
visitall14 20 10 18 10 0 0 0
woodworking11 20 0 0 0 1 1 1
zenotravel 20 0 9 0 1 16 1

summary 1417 81 404 61 127 403 159

percentage - 9% 49% 7% 30% 94% 36%

Table 6.4: Problems solved when search meets in the middle with six different k -
BFWBS combinations. P is the number of problems in each domain. M is the number
of solved problems when the search meets in the middle. The last row is the percentage

of the meet-in-the-middle solved problems among total solved problems

.

Main Text 67

6.3 Result Analysis

FB solved the most problems compared with other search strategies. Among 1417

problems, FB solved 1041 problems which is much higher than problems solved by only

running forward k -BFWS(f 5) or backward k -BFWS(f 5); hence, backward search solved

different problems compared with forward search. Especially, in the floortile domain,

the majority of problems are solved by backward search, and the same is true in other six

combinations. As a result, even though backward search is uncompetitive with forward

search, it is still helpful to solve more problems.

k -BFWBS with front-to-end and check Head (FB H) solved 947 problems, which is

similar to the number of 979 problems solved by only running forward k -BFWS(f 5).

Among 947 problems, 81 problems are solved by meet-in-the-middle, which is nearly

9%. This result shows that FB H is competitive with forward k -BFWS(f 5), but it still

does not outperform forward k -BFWS(f 5). Two reasons can explain this. For one thing,

FB H needs to switch between forward search and backward search, while forward k -

BFWS(f 5) avoids this process. For the other thing, problems solved by forward and

backward search meet-in-the-middle are limited. It means that with the same searching

time, only running forward search can execute the search more deeply while forward or

backward search in FB H cannot reach the same depth.

Besides the difference of total solved problems, the FB H solved 700 problems by for-

ward search among total solved 947 problems, nearly 74%; however, the FB H only

solved 166 problems by backward search among total solved 947 problems, nearly 18%.

Although 18 percent of solved problems by backward search is higher than what other

two combinations FB C and FB R G C have done, the gap between problems solved by

forward and by backward is obvious. To be honest, forward search still plays a more

important role in k -BFWBS among all tested combinations.

k -BFWBS with front-to-end and check Close (FB C) solved 822 problems which are

fewer than what forward k -BFWS(f 5) and FB H did. It is true that the check Close is

time-consuming since it checks the expanded state with all states in the opposite Close

so that it can avoid the lost intersection. Among solved 822 problems, 404 problems are

solved in the middle, and the percentage is nearly 49, which is quite higher than FB H.

Main Text 68

In FB H and FB C, the heuristic evolution methods are based on the front-to-end. In

other words, FB H and FB C can be regarded as running forward k -BFWS(f 5) and

backward k -BFWS(f 5) concurrently with the check Head and check Close added during

the search. This modification is slight and easily achieved. With these slight modi-

fications, both FB H and FB C outperforms backward k -BFWS(f 5) obviously which

only solved 512 problems among total 1417 problems. For the domains floortile and

parcprinter, backward k -BFWS(f 5) solved more problems than forward k -BFWS(f 5).

Similarly, both FB H and FB C solved more problems than forward k -BFWS(f 5) in

these domains. To conclude, the k -BFWBS with modifications on goal check methods

does offset the weakness of each other, forward search and backward search.

The following four combinations of FB R H, FB R G H, FB R G C and FB R G C H

are discussed together since they all update the heuristic value based on the front-to-

front. Different from FB H and FB C, which only add new goal check method, the

modification of these four searches are more complex since the computation of heuristic

value also needs to be changed, but it can help the search meet in the middle.

k -BFWBS with front-to-front #r updating and check Head (FB R H) solved 895 prob-

lems. This number is fewer than forward k -BFWS(f 5) and FB H, but is bigger than

FB C. Among solved 895 problems, 668 problems are solved by forward search, which

is nearly 74%; 166 problems are solved by backward search, which is nearly 18%; 61

problems are solved in the middle, which is nearly 7%. Compared with the FB H, the

percentage of problems solved in the middle is nearly the same, 9% for FB H and 7%

for FB R H. However the fort-to-front h-value updating causes fewer problems solved

in FB R H compared with FB H since the updated h-value cannot ensure the goal state

is reachable. This influence is limited in FB R H since #r just assists the computation

of novelty in k -BFWS(f 5).

k -BFWBS with front-to-front #r and #g updating and check Head (FB R G H) solved

435 problems. Among 435 problems, 188 problems are solved by forward search, which

is nearly 43%; 120 problems are solved by backward search, which is nearly 27%, and

127 problems are solved in the middle, which is nearly 30%.

Compared with FB R H, the number of solved problems decrease from 915 to 435 while

the percentage of problems solved in the middle increases from 7 in FB R H to 30 in

FB R G H. This result suggests that the fort-to-front #g h-value updating can increase

Main Text 69

the possibility of meet-in-the-middle, but it also causes fewer problems solved. The

influence of fort-to-front #g updating is significant since #g plays an important role

in k -BFWS(f 5) to break ties. Interestingly, in FB R G H, the percentage of problems

solved by backward search is nearly 27, which is the highest percentage among tested

combinations.

FB R G C H solved 447 problems among total. FB R G C H updates #r and #g with

front-to-front and check goal state with check Head. Meanwhile, if one search stops, the

other search will keep trying to meet the top state in opposite Close in FB R G C H.

Among solved 447 problems, forward search solved 189 problems, which is nearly 42%;

backward search solved 100 problems, which is nearly 22%; and 159 problems are solved

in the middle, which is nearly 36%. Compared with FB R G H, the number of total

solved problems and the percentage of forward, backward and meet-in-the-middle solved

problems are slightly different. This is reasonable since the modification of trying to meet

the top state in opposite Close aims to force FB R G C H to have more chances to meet

in the middle, and the number of solved problems when the search meets in the middle

indeed increases from 127 in FB R G H to 159 in FB R G C H.

k -BFWBS with front-to-front #r and #g updating and check Close (FB R G C) solved

427 problems which is the least among all combinations. Among 427 problems, forward

search solved 23 problems; backward search only solved 1 problem; 403 problems are

solved in the middle, and the percentage is 94, which is the highest. In FB R G C, all

modifications work for meet-in-the-middle, and these attempts are resultful.

6.4 Summary

The FB solved the most problems compared with other tested search strategies, and

it means that backward search is helpful to solve more problems when combining with

forward search. k -BFWBS can outperform backward k -BFWS(f 5) search when #g is

updated with front-to-end, but it becomes worse when #g is updated with front-to-front.

The updating methods about #r also can influence the performance of k -BFWBS, but

it is not as powerful as #g such as FB R H. However, after adopting the front-to-front

#g updating in FB R H, more problems can be solved meet-in-the-middle. Meanwhile,

the front-to-front #g updating with check Head is more in favor of backward search,

Main Text 70

since the percentage of solved problems by backward is higher than other combinations

with front-to-end #g updating. For example, in FB H and FB R H, the percentage of

solved problems by backward search are both 18 while in FB R G H and FB R G C H,

the percentage is 27 and 22 respectively. Other features are check Close and check Head.

It is clear that check Close is powerful to help the search meet in the middle while it

causes fewer solved problems. In contrast, check Head can ensure the number of solved

problems but cannot help the search meet in the middle.

Chapter 7

Discussion and Further Work

7.1 Importance of Backward Search

The above analysis demonstrates backward search is uncompetitive with forward search

in both SIW and BFWS. Even if we try to integrate forward and backward k -BFWS

to build k -BFWBS, it still can not outperform forward k -BFWS. It is hard to conclude

that backward search is useless. Actually, there are two possible ways to interpret the

results. We may either view backward search as a different perspective to understand the

classical planning or treat backward search as a form of the search algorithm to compete

with other search algorithms. We prefer the first view in this thesis. Even though

current researches on regression suggest that regression is harder than progression and

that planners solved fewer problems after converting to the backward version as showed

in the above experiments, regression is still worth analysing since it not only explains the

search process from goal state but also has outperformed progression in some domains.

Meanwhile, if we run forward search first and then run backward search such as FB,

more problems are solved compared with only running forward search.

71

Main Text 72

7.2 Challenges of Backward Search

7.2.1 Challenge of Partial State

For backward search, we adopt a series of techniques to keep the search manageable,

but some issues have not been solved yet. In the following part, we move to the problem

definition to review backward search. In the regression state space, partial states com-

monly exist. In partial states, the included fluents are true, but other excluded fluents

are possibly true. In other words, in regression, there are multiple uncertain fluents that

they should be true but not be included in the generated states. We raise the following

question that whether backward search can perform better if we reduce this uncertainty.

We propose a goal state complement solution in this thesis. The goal state as the initial

state for backward search determines the number of positive fluents at search beginning,

while the goal state keeps the same characters as the partial states in regression. The

fluents in the goal state are certainly true, but other fluents are uncertain. As a result,

we specify the goal state by adding certainly positive fluents into it. Even though we do

not achieve the complement of all partial states in regression, the goal state complement

method also removes some useless search paths and speeds up the search. We add the

fluent Fn into the goal state with the simple rule that the fluent Fn can be added into

the goal state if there is an action including Fn and goal fluents in the add list, and Fn

is not mutex with any one of goal fluents. The goal state complement method has not

been formalised efficiently, so limited domains are tested. The results show that the goal

state complement can reduce the number of generated and expanded states in domains

blocks world, parking and elevators.

7.2.2 Challenge of Mutex Detection

The mutex check is another reason which causes backward search harder. As mentioned,

all newly generated states should check that all pairs of fluents in that states are mutex

or not. If one pair of fluents is mutex in state s, the newly generated state s should

be pruned. The mutex check can ensure the generated states are reachable from the

initial state to reduce the search paths. On the other hand, if the mutex check cannot

detect all unreachable states, the search paths will increase and waste the computing

Main Text 73

resource. In this thesis, the mutex means the h2 value of the pair of fluents is infinite

while the h2 cannot capture all mutexes. For example, in one IPC domain elevator,

there are three passengers who want to use the elevators. But during backward search,

the h2 regards the pair of fluents <passenger p0 at floor n0, elevator slow1 hold 3

passengers> is reachable since the h2 value is not infinite after computing. However, it

should be infinite since there are only three passengers, but four passengers are described

in this fluents pair. A lot of efforts have been paid to improve the detection of mutex,

but it is an NP-hard problem if all mutexes need to be detected. Even if other mutex

computation methods are better than h2 such as h3, it is still uncompleted and hampers

backward search efficiency.

7.2.3 Challenge of Forward Domain Description

Besides the mutex detection, the complete domain description also can remove the un-

reachable states. Compared with the mutex detection, complete domain description

is more easily achieved, and it does not require complex computation. In the previ-

ous researches, the word complete has never been used to describe the domains since

researchers assume that all benchmark domains in IPCs are defined with enough infor-

mation to conduct the search. However, the IPCs benchmark domains are described

for forward search rather than backward search. The forward domains only contain

all information needed to conduct forward search while it is not enough for backward

search. Previous researches all avoided this issue since the researches about backward

search mainly focus on the algorithms. The complete domain is defined as:

• complete domains should contain all necessary description to conduct forward

search but should not mislead backward search when adopting these domains

One reasonable way to build the complete domains is modifying the current domains

with additional restrictions. Although we have not formulated a series of rules to transfer

the forward domains to complete domains, we use the parking domains as an example

to demonstrate the necessary restrictions in complete domains.

In parking domain shown in A.4, the task is to park cars on the street with n curb

locations. One curb can park one car, and the other car can park in front of this car.

Main Text 74

The goal is to find a solution to move from one configuration of parked cars to another

configuration by moving cars from one curb location to another. The description of one

action in parking domain is shown as follows.

(:action move-car-to-car :parameters (?car - car ?carsrc - car ?cardest - car)

:precondition (and (car -clear ?car) (car -clear ?cardest) (behind -car ?car ?carsrc)

(at-curb ?cardest))

:effect (and (not (car -clear ?cardest)) (car -clear ?carsrc) (behind -car ?car ?cardest)

(not (behind -car ?car ?carsrc)) (increase (total-cost) 1)))

The action move-car-to-car can move the car which is in the front of carsrc to the

front of cardest. Even if some incorrect actions such as (move-car -to-car car1 car1

car1), (move-car -to-car car1 car1 car0) and (move-car -to-car car1 car0 car1) would

be generated based on this forward actions description, forward search still can perform

very well since these incorrect actions would not be applied due to the unreachable

precondition. However, in backward search, these incorrect actions would be applied.

For example:

(:action (move-car-to-car car1 car0 car1)

:Precondition((car-clear car1), (behind-car car1car0), (at-curb car1))

:Add ((car-clear car0), (behind-car car1 car1))

:Del ((car-clear car1), (behind-car car1 car0)))

This action can be applied after the relevance and consistency check, but it generates

the impossible fluent (behind -car car1 car1) in backward search and leads to no plan

found finally.

One reasonable solution is modifying this action description to make it complete with

additional restrictions that the moved car should not be the car behind itself, carsrc,

and should not be the car at the moving destination, cardest. After that a complete

action description is shown as following.

(:action move-car-to-car :parameters (?car - car ?carsrc - car ?cardest - car)

:precondition (and (car -clear ?car) (car -clear ?cardest) (behind -car ?car ?carsrc)

(at-curb ?cardest)) (not (=? car ?cardest)) (not (=? car ?carsrc))

:effect (and (not (car -clear ?cardest)) (car -clear ?carsrc) (behind -car ?car ?cardest)

(not (behind -car ?car ?carsrc)) (increase (total-cost) 1)))

Main Text 75

By adopting this complete action description, all incorrect actions mentioned above

would not be generated. In the parking domain, another actions also should be per-

fected like move-car-to-car to ensure the whole domain is complete. In PDDL, the

domain description contains the domain name, requirements, the object type definition,

predicates, and actions. Based on our observation, only the forward action descriptions

can cause the forward domain incomplete. Hence the complete domains can be regarded

as a serial of complete actions in original forward domains.

7.2.4 Further Work

In this thesis, we mainly focus on backward width-based search while the performance of

backward heuristic-based search would not be included. It is worth comparing backward

heuristic-based search with backward width-based search so that we are able to analyse

the influence of the regression state space on each search strategy. Meanwhile, in the k -

BFWBS, the check Close method is not effective enough since we need to look through all

states in the opposite Close list, and it also impacts on the number of solved problems

compared with check Head. The further work should focus on finding more effective

algorithms for the check Close such as only checking states with novelty 1 in the opposite

Close list or using the symbolic representation like binary decision diagram. In addition,

the results of applying two different #r and #g updating methods, front-to-end and

front-to-front, in k -BFWBS have been discussed. Some further work should be done to

improve these two updating methods in k -BFWBS to solve more problems and help the

search meet in the middle. Finally, the methods to improve the mutex detection, partial

state complement and complete domain description are also worthy of study. Although

these three problems are more serious in backward search and can be ignored in forward

search, we should not neglect these issues as they deserve further study.

Chapter 8

Conclusion

In this thesis, the research about duality mapping enlightens us to explore the perfor-

mance of width-based search on dual problems since they are quite difficult to solve for

modern heuristic-based search. The experiment results suggest that the effective width

of dual problems is reduced significantly compared with original problems when the goal

state is restricted to a single fluent. We use the blocks word domain as an example to

explain the reasons and forecast that dual problems with conjunctive goal fluents should

be easily solved by SIW. However, SIW cannot solve the majority of dual problems

because of the novelty, compared with heuristic-based search.

Then we build backward SIW and tow types of backward BFWS which are suitable

for a wide range of IPCs benchmark domains. Backward search as an old strategy to

search from the goal state has been widely adopted in the optimal planning, and related

researches have proposed many issues which make backward search difficult. This thesis

has studied and presents the relevant solutions in the SIW, BFWS(f 5) and k -BFWS(f 5).

In the regression state space, the new goal consistency check, negative fluents generat-

ing, unreachable states pruning and heuristic updating methods are modelled via exten-

sive literature review to ensure that backward search is manageable. Backward SIW,

BFWS(f 5) and k -BFWS(f 5)) have been tested in the IPCs benchmark domains, and

a sensitivity analysis is conducted to analyse the influence of regression modifications

on forward search. The results suggest that backward search is uncompetitive with

forward search in all SIW, BFWS(f 5) and k -BFWS(f 5). However, all backward SIW,

76

Main Text 77

BFWS(f 5) and k -BFWS(f 5) can outperform forward versions in some domains, such as

the floortile which is used as an example to explain the reasons.

After that, we integrate forward and backward k -BFWS(f 5) into k -BFWBS with six

different combinations by considering two different heuristic updating methods and two

different goal check methods. Although these combinations cannot solve more problems

than only running forward k -BFWS(f 5) or FB among tested IPCs benchmark domains,

these six bidirectional search algorithms are distinctive. It is worth noting that FB,

which runs forward search first and then run backward search if forward search cannot

find the plan, does solve the most problems compared with other search strategies, and

this result shows that backward search is helpful to solve more problems.

In the end, we discuss the positive attitudes that researchers should hold toward back-

ward search even if it is uncompetitive compared with forward search. In addition, the

present studies are lack of detailed analysis of the mutex computation, partial state

complement and complete domain description. Even if we propose some methods to

improve these missing fields in backward search, we sincerely hope further studies of

backward search would be undertaken together with increasing implementation of it in

the current planners to eliminate the existing problems.

Bibliography

Alami, R., Fleury, S., Herrb, M., Ingrand, F., and Robert, F. (1998). Multi-robot

cooperation in the martha project. IEEE Robotics & Automation Magazine, 5(1):36–

47.

Alcázar, V., Borrajo, D., Fernández, S., and Fuentetaja, R. (2013). Revisiting regression

in planning. In Twenty-Third International Joint Conference on Artificial Intelligence.

Citeseer.

Alcázar, V., Fernández, S., and Borrajo, D. (2014). Analyzing the impact of partial

states on duplicate detection and collision of frontiers. In ICAPS. Citeseer.

Alcázar, V. and Torralba, A. (2015). A reminder about the importance of computing

and exploiting invariants in planning. In Twenty-Fifth International Conference on

Automated Planning and Scheduling.

Allen, J. and Ferguson, G. (2002). Human-machine collaborative planning. In Pro-

ceedings of the Third International NASA Workshop on Planning and Scheduling for

Space, pages 27–29.

Bacchus, F. (2001). Aips 2000 planning competition: The fifth international conference

on artificial intelligence planning and scheduling systems. Ai magazine, 22(3):47–47.

Bernard, D., Doyle, R., Riedel, E., Rouquette, N., Wyatt, J., Lowry, M., and Nayak, P.

(1999). Autonomy and software technology on nasa’s deep space one. IEEE Intelligent

Systems and their Applications, 14(3):10–15.

Betz, C. and Helmert, M. (2009). Planning with h+ in theory and practice. In Annual

Conference on Artificial Intelligence, pages 9–16. Springer.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.

Artificial intelligence, 90(1-2):281–300.

78

Bibliography 79

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence.

2001 Jun; 129 (1-2): 5-33.

Bylander, T. (1994). The computational complexity of propositional strips planning.

Artificial Intelligence, 69(1-2):165–204.

de Greef, T., Oomes, A. H., and Neerincx, M. A. (2009). Distilling support opportunities

to improve urban search and rescue missions. In International Conference on Human-

Computer Interaction, pages 703–712. Springer.

Felner, A., Moldenhauer, C., Sturtevant, N. R., and Schaeffer, J. (2010). Single-frontier

bidirectional search. In AAAI.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application of

theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208.

Fukunaga, A., Rabideau, G., Chien, S., and Yan, D. (1997). Aspen: A framework for

automated planning and scheduling of spacecraft control and operations. In Proc.

International Symposium on AI, Robotics and Automation in Space.

Garćıa-Olaya, Á., Jiménez, S., and Linares López, C. (2011). The 2011 international

planning competition.

Geffner, P. H. H. and Haslum, P. (2000). Admissible heuristics for optimal planning.

In Proceedings of the 5th Internat. Conf. of AI Planning Systems (AIPS 2000), pages

140–149.

Gerevini, A. E., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009). Determin-

istic planning in the fifth international planning competition: Pddl3 and experimental

evaluation of the planners. Artificial Intelligence, 173(5-6):619–668.

Green, C. (1981). Application of theorem proving to problem solving. In Readings in

Artificial Intelligence, pages 202–222. Elsevier.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107.

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelli-

gence Research, 26:191–246.

Bibliography 80

Hoffmann, J. and Edelkamp, S. (2005). The fourth international planning competition.

Journal of Artificial Intelligence Research, 24(519-579):5.

Hoffmann, J. and Nebel, B. (2001). The ff planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

Hoffmann, J., Porteous, J., and Sebastia, L. (2004). Ordered landmarks in planning.

Journal of Artificial Intelligence Research, 22:215–278.

Kautz, H. and Selman, B. (1999). Unifying sat-based and graph-based planning. In

IJCAI, volume 99, pages 318–325.

Kautz, H. A., Selman, B., et al. (1992). Planning as satisfiability. In ECAI, volume 92,

pages 359–363. Citeseer.

Keyder, E. (2010). New Heuristics For Classical Planning With Action Costs. PhD

thesis, PhD thesis, Universitat Pompeu Fabra, 2010. 13, 40, 98.

Kuroiwa, R. and Fukunaga, A. (2020). Front-to-front heuristic search for satisficing

classical planning. In Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, pages 4098–4105.

Lipovetzky, N. et al. (2013). Structure and inference in classical planning. PhD thesis,

Universitat Pompeu Fabra.

Lipovetzky, N. and Geffner, H. (2012). Width and serialization of classical planning

problems.

Lipovetzky, N. and Geffner, H. (2017). Best-first width search: Exploration and ex-

ploitation in classical planning. In AAAI, pages 3590–3596.

Long, D. and Fox, M. (2003). The 3rd international planning competition: Results and

analysis. Journal of Artificial Intelligence Research, 20:1–59.

Malasky, J., Forest, L. M., Kahn, A. C., and Key, J. R. (2005). Experimental evaluation

of human-machine collaborative algorithms in planning for multiple uavs. In 2005

IEEE International Conference on Systems, Man and Cybernetics, volume 3, pages

2469–2475. IEEE.

Bibliography 81

McDermott, D. (1996). A heuristic estimator for means-ends analysis in planning. In

AIPS’96 Proceedings of the Third International Conference on Artificial Intelligence

Planning Systems, pages 142–149.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D.,

and Wilkins, D. (1998). Pddl-the planning domain definition language.

McDermott, D. M. (2000). The 1998 ai planning systems competition. AI magazine,

21(2):35–35.

Newell, A., Shaw, J. C., and Simon, H. A. (1959). Report on a general problem solving

program. In IFIP congress, volume 256, page 64. Pittsburgh, PA.

Pearl, J. (1984a). Heuristics addison-wesley. Reading, MA.

Pearl, J. (1984b). Intelligent search strategies for computer problem solving. Addision

Wesley.

Pednault, E. P. (1989). Adl: Exploring the middle ground between strips and the

situation calculus. Kr, 89:324–332.

Pohl, I. (1970). First results on the effect of error in heuristic search. Machine Intelli-

gence, 5:219–236.

Politowski, G. and Pohl, I. (1984). D-node retargeting in bidirectional heuristic search.

In AAAI, pages 274–277.

Pozanco, A., Fernández, S., and Borrajo, D. (2018). Distributed planning and model

learning for urban traffic control. KEPS 2018, page 20.

Richter, S. and Westphal, M. (2010). The lama planner: Guiding cost-based anytime

planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177.

Russell, S. and Norvig, P. (2002). Artificial intelligence: a modern approach. pages

94–95.

Russell, S. J. and Norvig, P. (2010). Artificial intelligence-a modern approach, third

international edition.

Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D. (2004). Htn planning for web

service composition using shop2. Journal of Web Semantics, 1(4):377–396.

Bibliography 82

Suchman, L. and Suchman, L. A. (2007). Human-machine reconfigurations: Plans and

situated actions. Cambridge university press.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine

communication. Cambridge university press.

Suda, M. (2013). Duality in strips planning. Computer Science, 53(491):1191–1196.

Thornburg, K. M. and Thomas, G. W. (2009). Robotic exploration utility for urban

search and rescue tasks. JCP, 4(10):975–980.

Weld, D. S. (1994). An introduction to least commitment planning. AI magazine,

15(4):27–27.

Wood, K. (1993). Urban traffic control: Systems review. Project report; 41.

Yang, K., Tian, C., Zhang, N., Duan, Z., and Du, H. (2019). A temporal logic program-

ming approach to planning. Journal of Combinatorial Optimization.

Appendix A

An Appendix

;;created by tomas de la rosa

;;domain for painting floor tiles with two colors

(define (domain floor-tile)

(:requirements :typing :action-costs)

(:types robot tile color - object)

(:predicates

(robot-at ?r - robot ?x - tile)

(up ?x - tile ?y - tile)

(down ?x - tile ?y - tile)

(right ?x - tile ?y - tile)

(left ?x - tile ?y - tile)

(clear ?x - tile)

(painted ?x - tile ?c - color)

(robot-has ?r - robot ?c - color)

(available-color ?c - color)

(free-color ?r - robot))

(:functions (total-cost))

(:action change-color

:parameters (?r - robot ?c - color ?c2 - color)

:precondition (and (robot-has ?r ?c) (available-color ?c2))

:effect (and (not (robot-has ?r ?c)) (robot-has ?r ?c2)

(increase (total-cost) 5))

83

Appendix 84

(:action paint-up

:parameters (?r - robot ?y - tile ?x - tile ?c - color)

:precondition (and (robot-has ?r ?c) (robot-at ?r ?x) (up ?y ?x) (clear ?y))

:effect (and (not (clear ?y)) (painted ?y ?c)

(increase (total-cost) 2)))

(:action paint-down

:parameters (?r - robot ?y - tile ?x - tile ?c - color)

:precondition (and (robot-has ?r ?c) (robot-at ?r ?x) (down ?y ?x) (clear ?y))

:effect (and (not (clear ?y)) (painted ?y ?c)

(increase (total-cost) 2)))

(:action up

:parameters (?r - robot ?x - tile ?y - tile)

:precondition (and (robot-at ?r ?x) (up ?y ?x) (clear ?y))

:effect (and (robot-at ?r ?y) (not (robot-at ?r ?x))

(clear ?x) (not (clear ?y))

(increase (total-cost) 3)))

(:action down

:parameters (?r - robot ?x - tile ?y - tile)

:precondition (and (robot-at ?r ?x) (down ?y ?x) (clear ?y))

:effect (and (robot-at ?r ?y) (not (robot-at ?r ?x))

(clear ?x) (not (clear ?y))

(increase (total-cost) 1)))

(:action right

:parameters (?r - robot ?x - tile ?y - tile)

:precondition (and (robot-at ?r ?x) (right ?y ?x) (clear ?y))

:effect (and (robot-at ?r ?y) (not (robot-at ?r ?x))

(clear ?x) (not (clear ?y))

(increase (total-cost) 1)))

Appendix 85

(:action left

:parameters (?r - robot ?x - tile ?y - tile)

:precondition (and (robot-at ?r ?x) (left ?y ?x) (clear ?y))

:effect (and (robot-at ?r ?y) (not (robot-at ?r ?x))

(clear ?x) (not (clear ?y))

(increase (total-cost) 1))))

(define (domain parking)

(:requirements :strips :typing :action-costs)

(:types car curb)

(:predicates,(at-curb ?car - car),

(at-curb-num ?car - car ?curb - curb),

(behind-car ?car ?front-car - car),

(car-clear ?car - car),

(curb-clear ?curb - curb))

(:functions (total-cost) - number)

(:action move-curb-to-curb

:parameters (?car - car ?curbsrc ?curbdest - curb)

:precondition (and (car-clear ?car)(curb-clear ?curbdest)(at-curb-num ?car ?curbsrc))

:effect (and

(not (curb-clear ?curbdest))

(curb-clear ?curbsrc)

(at-curb-num ?car ?curbdest)

(not (at-curb-num ?car ?curbsrc))

(increase (total-cost) 1)))

Appendix 86

(:action move-curb-to-car

:parameters (?car - car ?curbsrc - curb ?cardest - car)

:precondition (and (car-clear ?car)(car-clear ?cardest)(at-curb-num ?car ?curbsrc)(at-curb ?cardest))

:effect (and

(not (car-clear ?cardest))

(curb-clear ?curbsrc)

(behind-car ?car ?cardest)

(not (at-curb-num ?car ?curbsrc))

(not (at-curb ?car))

(increase (total-cost) 1)))

(:action move-car-to-curb

:parameters (?car - car ?carsrc - car ?curbdest - curb)

:precondition (and (car-clear ?car)(curb-clear ?curbdest)(behind-car ?car ?carsrc))

:effect (and

(not (curb-clear ?curbdest))

(car-clear ?carsrc)

(at-curb-num ?car ?curbdest)

(not (behind-car ?car ?carsrc))

(at-curb ?car)

(increase (total-cost) 1)))

(:action move-car-to-car

:parameters (?car - car ?carsrc - car ?cardest - car)

:precondition (and (car-clear ?car)(car-clear ?cardest)(behind-car ?car ?carsrc)(at-curb ?cardest))

:effect (and

(not (car-clear ?cardest))

(car-clear ?carsrc)

(behind-car ?car ?cardest)

(not (behind-car ?car ?carsrc))

(increase (total-cost) 1))))

Appendix 87

Domain p S T Q

F-k B-k F-f5 B-f5 F-k B-k F-f5 B-f5 F-k B-k F-f5 B-f5
agricola-sat18 20 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
airport 50 37 25 37 25 13.26 36.06 14.36 35.29 116.24 112.56 116.30 112.56
barman14 20 20 0 20 0 15.53 0.00 13.99 0.00 179.10 0.00 179.30 0.00
blocks world 50 30 30 30 30 17.05 88.67 22.88 84.23 112.87 192.77 114.75 198.10
caldera18 20 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
caldera-split-18 20 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
childsnack14 20 0 6 2 4 0.00 266.23 15.02 177.36 0.00 58.67 56.00 64.25
cybersec 30 15 10 0 10 1327.15 137.94 0.00 130.40 39.80 51.60 0.00 51.60
data-network18 20 8 0 8 0 195.76 0.00 255.86 0.00 59.88 0.00 66.88 0.00
depot 22 22 3 22 3 1.76 85.13 1.75 76.60 54.23 33.67 55.18 35.00
driverlog 20 20 20 20 20 0.79 9.11 0.77 8.86 52.40 72.20 52.85 72.55
elevators11 20 20 13 20 13 40.66 323.57 43.74 331.86 249.65 345.69 249.80 345.46
ferry 30 30 30 30 30 0.01 0.02 0.01 0.02 24.73 30.17 24.83 30.10
floortile14 20 2 20 2 20 1.08 0.16 2.99 0.14 42.00 107.30 43.00 105.10
ged14 20 19 0 19 0 136.83 0.00 138.19 0.00 142.47 0.00 142.47 0.00
gripper 20 20 20 20 20 0.16 0.30 0.16 0.28 91.00 91.00 91.00 91.00
hanoi 30 4 6 11 13 2.30 0.00 45.50 94.82 6.50 23.50 371.18 1309.15
hiking14 20 3 2 5 5 117.32 445.63 149.70 115.08 90.33 129.00 61.40 61.40
logistics 50 44 21 47 22 133.62 90.07 143.39 81.09 366.31 372.25 366.43 370.81
miconic 50 50 50 50 50 0.23 0.28 0.20 0.27 61.55 58.89 61.51 59.11
mprime 70 65 2 65 4 59.10 6.92 25.95 63.84 9.17 10.50 9.55 18.50
mystery 60 38 14 38 15 48.48 13.06 38.94 30.04 8.97 13.07 9.47 11.60
no-mprime 35 32 1 32 1 54.12 13.13 27.29 11.02 9.19 10.00 9.50 10.00
no-mystery 30 19 7 19 8 59.97 1.32 43.09 16.78 9.00 10.43 9.63 11.50
nomystery11 20 13 10 14 11 220.90 28.90 77.37 138.12 40.46 36.70 39.43 35.45
openstacks 30 27 26 27 26 38.03 58.77 41.04 58.26 127.04 111.04 126.85 110.92
openstacks14 20 15 0 15 0 571.53 0.00 567.58 0.00 774.67 0.00 774.67 0.00
parcprinter11 20 13 18 13 18 35.60 2.61 44.26 2.53 66.92 71.56 66.92 71.56
parking14 20 20 0 20 0 11.42 0.00 11.37 0.00 64.95 0.00 64.95 0.00
pathways 30 24 5 24 6 6.30 24.59 6.99 21.09 129.88 31.40 129.96 32.00
pegsol11 20 9 1 20 5 0.13 1.48 9.45 96.32 28.44 29.00 29.55 36.60
pipesworld06 50 30 6 34 6 196.56 19.65 258.73 20.86 37.47 47.50 40.35 58.50
pipesworld-notankage 50 50 15 50 15 30.74 7.44 20.68 65.77 47.30 58.33 47.08 68.53
pipesworld-tankage 50 30 6 34 6 228.80 17.58 262.25 18.60 37.47 47.50 40.35 58.50
rovers 20 20 19 20 19 0.32 1.26 0.29 0.82 35.70 43.26 35.30 44.42
scanalyzer11 20 18 20 18 20 5.39 4.01 5.62 5.25 35.61 44.05 34.94 45.15
settlers18 20 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
snake18 20 11 0 10 0 385.34 0.00 336.88 0.00 79.00 0.00 81.40 0.00
sokoban11 20 5 1 15 1 8.01 0.05 68.68 0.05 190.00 429.00 214.47 429.00
spider18 20 13 0 13 0 185.96 0.00 184.19 0.00 240.31 0.00 240.31 0.00
storage 30 29 14 29 15 18.73 1.49 20.25 5.90 41.62 21.86 41.45 23.20
termes18 20 1 2 10 8 3.47 5.06 241.08 130.44 245.00 433.00 622.20 515.25
thoughtful14 20 20 5 20 5 31.36 44.42 38.09 27.88 92.75 43.80 93.70 44.60
tpp 30 30 10 30 12 23.58 25.23 24.18 41.56 127.80 41.90 127.57 49.83
transport14 20 7 0 6 0 278.16 0.00 144.73 0.00 286.00 0.00 243.00 0.00
trucks 30 7 14 9 14 9.45 70.16 45.49 35.50 27.57 35.14 29.00 34.93
tyreworld 30 30 12 30 12 10.23 33.38 10.66 30.13 181.10 144.33 181.03 141.50
visitall14 20 19 17 19 17 26.72 596.73 33.57 569.97 2843.00 2655.41 2843.00 2655.41
woodworking11 20 20 11 20 11 22.93 3.52 24.00 3.25 69.10 79.18 69.10 79.18
zenotravel 20 20 20 20 20 1.85 7.10 2.01 7.84 43.35 70.50 45.15 72.15

summary 1417 979 512 1017 540 101.70 66.78 76.96 66.79 169.29 163.10 185.62 199.07

Table A.1: Backward BFWS(f5) vs. forward BFWS(f5); backward k -BFWS vs.
forward k -BFWS where k=2. F-k is the forward k -BFWS; B-k is the backward k -
BFWS, F-f5 is the forward BFWS(f5); B-f5 is the backward BFWS(f5). P is the
number of problems in each domain. S is the number of solved problems. Q is average

plan length and T is average time in seconds.

Appendix 88

Domain p Solved

Original Dual
agricola18 20 0 0
airport 50 49 0
barman14 20 0 0
blocks world 50 37 0
caldera18 20 10 10
caldera-split-18 20 0 0
childsnack14 20 0 0
cybersec 30 0 0
data-network18 20 3 0
depot 22 18 0
driverlog 20 7 0
elevators11 20 18 0
ferry 30 30 0
floortile14 20 0 0
ged14 20 0 0
gripper 20 20 0
hanoi 30 3 1
hiking14 20 0 0
logistics 50 26 0
miconic 50 50 5
mprime 70 60 0
mystery 60 33 0
no-mprime 35 30 0
no-mystery 30 16 0
nomystery11 20 1 0
openstacks 30 0 0
openstacks14 20 0 0
parcprinter11 20 20 0
parking14 20 20 0
pathways 30 15 0
pegsol11 20 0 0
pipesworld06 50 24 0
pipesworld-notankage 50 19 0
pipesworld-tankage 50 24 0
rovers 20 20 1
scanalyzer11 20 17 0
settlers18 20 0 0
snake18 20 0 0
sokoban11 20 1 0
spider18 20 0 0
storage 30 23 1
termes18 20 0 0
thoughtful14 20 15 0
tpp 30 10 4
transport14 20 14 0
trucks 30 3 0
tyreworld 30 26 0
visitall14 20 20 0
woodworking11 20 19 0
zenotravel 20 19 0

summary 1417 720 22

Table A.2: SIW solved original problems vs. dual problems. P is the number of
problems in each domain. Original is the solved original problems; Dual is the solved

dual problems

	Abstract
	Declaration of Authorship
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction of Planning
	1.2 Application of classical planning
	1.2.1 Aerospace
	1.2.2 Web Service Composition
	1.2.3 Robot Planning
	1.2.4 Traffic Control

	1.3 Related Works
	1.3.1 Planning Language
	1.3.2 Forward Search
	1.3.3 Backward Search
	1.3.4 Bidirectional Search

	1.4 Research Gap
	1.4.1 Research Questions

	1.5 Organization

	2 Preliminaries
	2.1 Classical Planning
	2.2 STRIPS
	2.3 PDDL
	2.4 Complexity
	2.5 Heuristic
	2.5.1 Delete-Relaxation Based Heuristics
	2.5.2 The Max and Additive Heuristic
	2.5.3 The FF Heuristic
	2.5.4 Heuristic Family hm

	2.6 Planning as Heuristic Search
	2.6.1 Best-First Search
	2.6.2 Greedy Best-First Search

	2.7 Width-Based Search
	2.7.1 Novelty
	2.7.2 Iterated Width
	2.7.3 Serialization
	2.7.4 Serialized Iterated Width
	2.7.5 GBFS-W
	2.7.6 Best-First Width Search

	2.8 Backward Search
	2.9 Bidirectional Search
	2.10 Duality

	3 Duality Width-Based Search
	3.1 IW with Duality Mapping
	3.1.1 Experiments about Effective Width
	3.1.2 Experiments about Solved problems
	3.1.3 Results Analysis
	3.1.3.1 Reason For Solved More Problems
	3.1.3.2 Reason For Lower Effective Width

	3.1.4 Summary

	3.2 SIW with Duality Mapping
	3.2.1 Experiments
	3.2.2 Results Analysis
	3.2.3 Summary

	4 Backward Width-Based Search
	4.1 Backward SIW
	4.1.1 Experiments
	4.1.2 Result Analysis

	4.2 Backward SIW Improvement
	4.2.1 Goal Consistency Check
	4.2.2 Negative Fluents
	4.2.3 Experiments
	4.2.4 Result Analysis

	4.3 Summary

	5 Backward Best First Width Search
	5.1 BFWS(f5) Backward Modification
	5.2 Experiments
	5.3 Result Analysis
	5.4 Summary

	6 Bidirectional Search
	6.1 k-BFWBS
	6.1.1 Six Different Combinations

	6.2 Experiments
	6.3 Result Analysis
	6.4 Summary

	7 Discussion and Further Work
	7.1 Importance of Backward Search
	7.2 Challenges of Backward Search
	7.2.1 Challenge of Partial State
	7.2.2 Challenge of Mutex Detection
	7.2.3 Challenge of Forward Domain Description
	7.2.4 Further Work

	8 Conclusion
	A An Appendix

