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Abstract. Diverse, top-k, and top-quality planning are concerned
with the generation of sets of solutions to sequential decision prob-
lems. Previously this area has been the domain of classical planners
that require a symbolic model of the problem instance. This paper
proposes a novel alternative approach that uses Monte Carlo Tree
Search (MCTS), enabling application to problems for which only
a black-box simulation model is available. We present a procedure
for extracting bounded sets of plans from pre-generated search trees
in best-first order, and a metric for evaluating the relative quality of
paths through a search tree. We demonstrate this approach on a path-
planning problem with hidden information, and suggest adaptations to
the MCTS algorithm to increase the diversity of generated plans. Our
results show that our method can generate diverse and high-quality
plan sets in domains where classical planners are not applicable.

1 Introduction

Automated planning is a model-based approach to the discovery of
solutions to sequential decision problems. In typical applications, a
search algorithm generates a single strategy or action sequence to
solve a specific planning task. This paper explores the generation
of bounded sets of plans, described as diverse, top-k, or top-quality
planning when the set is bounded by diversity, cardinality, or quality,
respectively. Planners that produce plan sets have applications in a
wide range of fields, including planning for problems with incomplete
or unknown user preferences [18], scenario prediction for risk man-
agement [27], plan recognition [28], plan repair [10], and explanation
generation [5]. Our research is motivated by the discovery of novel
agent behaviours in the context of operations research [16, 19, 23],
recently proposed as an input to deceptive mission planning [3].

Previous approaches to generating plan sets have focused on clas-
sical planning, typically employing repeated calls to off-the-shelf
solvers [14, 24, 29, 30]. Such approaches take advantage of structural
features of the planning problem for efficient solution discovery, and
hence require a symbolic model of the domain and problem instance
in a declarative planning language such as STRIPS or PDDL. We
consider problems for which a declarative model is not available, and
classical planners cannot be used off-the-shelf as action effects are not
known before execution. Instead, a black-box simulator provides a
sample of a successor state and reward given an input state and action.
Such problems are particularly widespread in operations research,
where Monte Carlo simulation is used to study complex sociotechni-
cal systems [20]. These simulations include high-fidelity models of
cyber-physical systems, such as fighter aircraft, that are impractical
or impossible to model in symbolic planning languages.

Monte Carlo Tree Search (MCTS) is an alternative approach to

planning that has achieved considerable success in complex domains
with large branching factors [6]. Unlike classic planners, MCTS does
not require a symbolic model of the planning problem, and can be used
when only a generative model is available. While it is commonly used
for online, adversarial planning, building a new search tree at each
time-step to estimate the best single action from a given state, it has
also proven to be effective in offline and single-player contexts, such
as those studied in previous research on diverse, top-k and top-quality
planning problems.

In this paper, we present a novel method for extracting bounded
sets of plans from pre-generated search trees. While we focus on
MCTS, our approach may be applied to any tree search algorithm that
backpropagates node values. We additionally propose a metric for the
relative quality of paths in a search tree, based on expected return, that
guarantees best-first ordering. We present proofs for soundness and
completeness, and discuss modifications to the MCTS algorithm to
increase the diversity of generated plans. Finally, we provide an em-
pirical evaluation in a path-planning scenario with hidden information,
and discuss the practicality of our approach for diverse, top-k and
top-quality planning. The experimental results suggest that diverse
planning is most effective for problems with moderate to high levels
of hidden information, where any decrease in efficiency is offset by
an increased probability of success.

In line with related work, this paper considers the generation of plan
sets in the context of deterministic single-player planning problems.
The extension of our approach to multi-agent problems is left for
future work.

2 Related Work

Previous works have explored top-k, top-quality and diverse planning
using either generalisations of A* search known as K* [24], or re-
planning approaches that repeatedly reformulate the planning task
to forbid a growing set of solutions [14, 29]. Approaches based on
K* require a heuristic function that may be difficult to obtain, and
are outperformed by replanning approaches for small values of k,
while replanning approaches incur significant additional cost as the
size of the plan set increases. Additionally, replanning approaches
require a symbolic model of the domain and problem instance in a
declarative planning language such as STRIPS or PDDL, and as a
result cannot be applied to problems for which only a black-box sim-
ulation model is available. This limitation also applies when deriving
domain-independent heuristics for K*-based approaches.

Recent works have proposed addressing diversity separately to top-
k and top-quality planning, by post-processing an existing set of plans.
One approach proposes a greedy method, iteratively selecting plans
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that maximise the diversity of the growing set [11], while another
finds an optimally diverse subset by solving a mixed-integer linear
programming problem [13]. However, since these approaches operate
on pre-generated sets of plans, they cannot be applied over simulators
without first using a method such as the one presented in this paper to
generate a top-k or top-quality set of plans.

MCTS has been applied to single-player problems in a variety of
domains, in some cases outperforming classical methods and achiev-
ing a level of performance comparable to the best hand-crafted ap-
proaches [4, 26]. Relevant applications have included constructing
an MCTS tree offline and querying the subsequent tree during game-
play [2], and employing offline MCTS to generate a Pareto set of
possible winning positions [22]. While the extraction of a single op-
timal plan from an MCTS tree has been considered in the context
of nested Monte Carlo search [8] and hierarchical task decompo-
sition [21], to our knowledge no previous work has explored the
generation of bounded sets of plans using MCTS; our synthesis of
these concepts appears to be unique.

3 Background and Preliminaries

3.1 Markov Decision Processes

A planning problem that provides rewards rather than explicit goals
is typically formulated as a Markov Decision Process (MDP). In
an MDP, an agent interacts with an environment by taking actions
and receiving rewards. The objective of the agent is to maximise
the expected cumulative reward it receives over time. An MDP is
defined by a tuple 〈S,A, T,R〉, where S is a set of possible states,
A is a set of actions available to the decision-maker, T (s, a, s′) is a
transition model, and R(s) is a reward function. The transition model
determines the probability of reaching state s′ after taking action a
in state s, while the reward function defines the reward received after
a transition. For deterministic problems, such as those considered
here, taking action a ∈ A in state s ∈ S always results in a unique
next state s′ ∈ S. A solution to an MDP is a plan or policy that
maximises the expected reward for the agent. A plan is a sequence
of actions π = {a0, . . . , an} that generates one or more sequences
of states {s0, . . . , sn}, where s0 is the initial problem state. A policy
is a mapping from states to actions that specifies the action to select
from any given state s ∈ S.

3.2 Search Trees

A game tree is a hierarchical graph structure that is used to model
and analyse sequential decision problems such as MDPs, where each
node represents a game state, and each edge a possible transition
from one state to another. A complete game tree includes every node
that is reachable from the initial state, capturing the full search space
for the decision problem. Due to computational limitations, in prac-
tical applications a partial game tree or search tree is usually used
instead, representing a subgraph of the complete tree that is con-
structed through repeated sampling of the search space. For example,
A* search builds a partial tree by selecting nodes based on a heuristic,
while Monte Carlo Tree Search employs simulated playouts. A plan
in a search tree corresponds to a path from the tree root to a leaf node.

3.3 Monte Carlo Tree Search (MCTS)

MCTS is a family of algorithms that apply stochastic game-tree search
to sequential decision problems. A search tree is generated that con-
tains nodes representing the visited subset of state-action pairs, with

each node maintaining an approximation of the value of a particular
transition. During each iteration, the MCTS algorithm selects a leaf
node by descending the tree from the root according to a tree policy,
expands the selected node if possible by adding a new child node,
executes a simulated playout according to a default policy, and back-
propagates the result by updating the statistics for each of the visited
nodes. After a predetermined time or number of iterations, the action
corresponding to the best child of the root node is returned.

The tree policy balances exploitation of nodes with high value
estimates against exploration of nodes with low visit counts by recur-
sively applying a multi-armed bandit policy, such as UCB1 [1] which
selects the node that maximises the value:

UCB1(σ) = Q(σ) + C

√
2 lnn

nσ
(1)

where Q(σ) is the value estimate for node σ, nσ and n are the number
of times the node and its parent have been visited respectively, and
C is a positive constant balancing exploration and exploitation. The
node value considered by the tree policy, Q(σ), is the average reward
based on repeated Monte Carlo playouts, representing an estimate
of the expected return for choosing the corresponding action in the
previous state:

Q(σ) = Q(s, a) =
zσ
nσ

(2)

where s and a are the state and action leading to the node, and zσ
is the total reward received at σ. As results are backpropagated, the
q-value for each node also represents the weighted average of the
values of its set of child nodes C(σ):

Q(σ) =
1∑

σ′∈C(σ) nσ′

∑
σ′∈C(σ)

nσ′Q(σ′) (3)

Previous research has demonstrated that MCTS performance can be
improved in single-player games by choosing the final move according
to the maximum playout result rather than the average, since there is
no adversary to prevent optimistic play [4]. In such cases, the q-value
that is used for action selection is the maximum child value:

Qmax(σ) = max
σ′∈C(σ)

Q(σ′) (4)

For games that award a win or loss to the player, Q(σ) may be
considered an estimate of the probability that the player will win after
visiting the node, when following the tree and default policies.

3.4 Diverse, Top-k and Top-Quality Planning

The generation of multiple solutions to a planning problem, rather
than a single optimal plan, is known as diverse, top-k, or top-quality
planning, depending on the attributes used to bound the plan set.
Where top-k planning restricts the set of plans to a fixed size, top-
quality planning enforces a minimum solution quality, and diverse
planning adds a constraint on plan similarity. We note here the dis-
tinction between a plan in the context of classical planning, being a
sequence that successfully achieves an explicit goal, and a plan in the
context of an MDP, being any sequence with an associated expected
return.

Top-k planning addresses the problem of finding a finite set of
plans of size k, such that no plan with greater quality exists outside
of the set according to some measure of plan quality provided by the
user [9, 24, 29]. Top-k planning extends the well-studied k shortest
paths problem, and is typically applied to problems requiring sets
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of high-quality but similar plans, such as plan repair [10]. Single
planning may be considered a special case of top-k planning, for
which k = 1. Drawing on classical planning [29], a top-k planning
problem may be defined for an MDP as follows:

Definition 1 (Top-k planning problem).
Given a planning problem Π = 〈S,A, T,R〉, measure of plan quality
Qplan(π), and natural number k, find a subset P in the set of all
plans PΠ such that:

1. there exists no plan ψ ∈ PΠ with ψ /∈ P that has quality Qplan(ψ)
greater than some plan π ∈ P , and

2. |P| = k if |PΠ| ≥ k, or |P| = |PΠ| otherwise.

Note that k is regarded as a constraint rather than a requirement [18],
where some works consider the problem to be unsolvable if fewer
than k plans are found.

Top-quality planning is a variation on top-k planning wherein the
plan set is subject to limits on quality, rather than cardinality [12,
25, 32]. This approach is useful when the user does not require a
specific number of plans, but has well-defined constraints that bound
acceptable solutions. Drawing on classical planning [12], a top-quality
planning problem may be defined for an MDP as follows:

Definition 2 (Top-quality planning problem).
Given a planning problem Π = 〈S,A, T,R〉, measure of plan quality
Qplan(π), and quality constraint q, find the set of plans P ⊂ PΠ,
where P = {π ∈ PΠ | Qplan(π) ≥ q}.

Diverse planning considers the problem of generating sets of plans
that are meaningfully different according to some measure of plan
distance. Diversity is defined as the minimum or average pairwise
distance within a set of plans, and has been approached using both
qualitative measures [17], and domain-independent, quantitative mea-
sures [18]. Diverse planning is typically combined with a bound on
plan set cardinality [7, 18], in some cases with an additional bound
on plan quality [11, 25]. We consider the problem of maximising
quality given a bound on diversity, in contrast to recent works that
maximise diversity given a bound on quality [11, 13]. This approach
is more applicable to our domains of interest, which typically re-
quire the highest-quality plans with sufficient diversity, rather than
the most diverse set of plans. A quality-optimal, diversity-bounded
top-k planning problem may be defined for an MDP as follows:

Definition 3 (Diverse top-k-quality planning problem).
Given a planning problem Π = 〈S,A, T,R〉, natural number k,
measure of plan quality Qplan(π), quality constraint q, measure of
minimum pairwise distance D(π,P), and distance constraint d, find
a maximal subset P in the set of all plans PΠ such that:

1. there exists no plan ψ ∈ PΠ, ψ /∈ P that has diversity D(ψ,P) ≥
d and quality Qplan(ψ) greater than some plan π ∈ P , and

2. for all π ∈ P , D(π,P − π) ≥ d, and
3. for all π ∈ P , Qplan(π) ≥ q, and
4. |P| ≤ k.

The solution to a diverse planning problem is hence a Pareto set
balancing diversity and quality. Diverse planning by this definition
may be considered a generalisation of top-k and top-quality plan-
ning, since either alternative may be achieved by setting the diversity
constraint to zero.

4 Plan Extraction from Search Trees

MCTS is typically used for online decision-making, informing the
selection of a single action by generating a new partial tree at each

time step that provides an estimate of the value of each transition
from the current state. However, MCTS may also be used to generate
plans by extracting action sequences from the search tree, where a
plan in this context corresponds to any path from the tree root to a
leaf node. In the simplest case, the optimal plan may be extracted
by starting at the root node and recursively selecting the child node
with the maximum q-value until a leaf node is reached, returning
the corresponding action sequence (plan α in Fig. 1). Generating a
set of plans is more complex, requiring a method for extracting and
comparing alternative plans in a search tree without the benefit of
explicit plan costs. The following sections introduce a measure for
the relative quality of paths through a search tree, and a process for
extracting plans in best-first order subject to various constraints.

4.1 Plan Quality Metric

Unlike in classical planning, where the quality of a plan is naturally
defined by the sum of action costs [12], in standard MCTS implemen-
tations rewards are assumed to be received only in terminal states.
Nodes instead track the backpropagated results of simulated playouts,
typically in the form of a win or loss. We propose a quality measure
that is based on expected return relative to the optimal plan, rather
than plan cost:

Definition 4 (Relative Plan Quality).
Given a node sequence (plan) representing a path through a search
tree, π = {σ0, . . . , σn}, the relative quality of π is defined as the
product of the regret due to suboptimal action choices, quantified as
the reduction in expected return attributed to each node in the plan:

Qplan(π) =

n−1∏
i=0

Q(σi+1)

maxσ′∈C(σi) Q(σ′)
(5)

where Q(σ) ∈ R
+ is the backpropagated quality of node σ, and

C(σi) is the set of child nodes of σi.

An example of plan quality calculation for a search tree is provided
in Fig. 1. It follows that the top plan in any tree has a relative quality
equal to one, since by definition the optimal plan selects the best
available action in each state. This approach provides a natural basis
for comparing plans with different lengths: given two plans of unequal
length p and q with |p| < |q|, the quality of p is equal to the quality
of a plan p′ padded with optimal actions such that |p′| = |q|.

The absolute quality for any plan, corresponding to the expected
return at the initial state when following the tree policy, may be
calculated by multiplying the relative plan quality by the q-value of
the root node. This absolute quality may vary greatly, since it depends
on both the problem definition and the growth of the MCTS tree. By
defining plan quality relative to the optimal plan, the metric defined
above can be used to bound plan sets without knowledge of the actual
q-value estimates in the tree.

Since the relative quality of a plan is defined as the product of the
quality of its action choices, it follows that the quality for any sub-plan
must be greater than or equal to the quality of the complete plan:

Lemma 1. If π is a sequence of nodes {σ0, . . . , σn} representing
a path through a search tree with backpropagated node values, then
any subsequence ψ ⊂ π has quality Qplan(ψ) ≥ Qplan(π).

Proof. Let Qplan(π) be the quality of π as defined by Eq. 5. Since
Qplan(π) is the product of the q-value ratio corresponding to each
node σ ∈ π, and each ratio lies in the range [0, 1] as the denominator
cannot be greater than the divisor, then ∀(ψ ⊂ π) : Qplan(ψ) ≥
Qplan(π).

L. Benke et al. / Diverse, Top-k, and Top-Quality Planning Over Simulators 233



14/24

5/10 9/14

2/44/51/5

2/30/1

7/10

Figure 1: Illustration of relative plan quality calculation for a search
tree with backpropagated rewards. Plan quality is defined by the re-
duction in expected return attributed to each node on the path (Eq. 5).

4.2 Plan Extraction Algorithm

We present a process for extracting top plans from a search tree in
Algorithm 1. The algorithm is general and can be applied to diverse,
top-k, or top-quality planning problems by adjusting the bounding
constraints and metrics accordingly. The search tree is traversed by
incrementally expanding plans in order of quality, representing a best-
first search of the plan space defined by the pre-generated tree. During
execution of the algorithm, the open list O contains a queue of node
sequences ordered by quality using the metric defined in Section 4.1.
These partial-depth sequences extend from the root node and are
described as plan stems following a similar concept [33]. On each
iteration of the outer loop, the highest-priority plan stem π is removed
from the open list (line 6), and a set of extended plans is generated,
each with length |π| + 1, by successively appending each child of
the final node of π (lines 7–10). The quality of these new plan stems
is evaluated, and any that meet the required minimum quality q are
added to the open list (lines 11–15). If π was not expanded, then the
plan has reached a leaf node, and if it meets the specified diversity
requirement d, the complete plan is added to the final set of top plans
P (lines 17–19). Ties in plan quality are broken using diversity by
continuing to evaluate plans until a lower-quality plan is found (lines
20–28). The process is repeated until the open list is empty, or the
desired number of plans, k, has been generated.

Lemma 2. At each step of the algorithm, the open list O contains a
set of plan stems guaranteed to produce one or more complete plans
with quality Qplan(ψ ∈ O) ≥ q.

Proof. Let σ be the final node of a plan stem π in O with plan qual-
ity Qplan(π) ≥ q. Since the q-value of node σ, Q(σ), is equal to
the weighted average (Eq. 3) or maximum (Eq. 4) of the q-values
of its child nodes, there necessarily exists at least one child σ′ such
that Q(σ′) ≥ Q(σ). By Eq. 5, the quality of the extended plan
corresponding to the best child is equal to Qplan(π). Applied recur-
sively, a sequence ψ must exist extending to a leaf node with quality
Qplan(ψ) = Qplan(π), and hence each plan stem in O is guaranteed
to produce at least one complete plan with quality Qplan(ψ) ≥ q.

Algorithm 1: Plan Extraction
Input: T � root node of tree

Qplan(π) � quality metric
D(π,P) � diversity metric
k ∈ Z

+ � cardinality constraint
q ∈ [0, 1] � quality constraint
d ∈ [0, 1] � diversity constraint

Output: P � set of top plans

1 P ← ∅
2 πT ← 〈T 〉 � seed plan containing tree root
3 O ← PriorityQueue() � open list
4 O.push(πT , priority = 1)

5 while O �= ∅ do

6 π ← O.pop-max() � highest-priority plan stem
7 σ ← π.get-last() � last node of plan stem
8 expanded ← False

9 foreach σ′ ∈ σ.child-nodes() do

10 π′ ← π + σ′ � extended plan stem
11 qπ′ ← Qplan(π

′) � quality of new plan

12 if qπ′ ≥ q then

13 O.push(π′, priority = qπ′ )
14 expanded ← True
15 end

16 end

17 if ¬expanded ∧ (D(π,P) ≥ d) then

18 if |P| < k then

19 P .push(π) � add to set of top plans
20 else

21 qmin ← minx∈PQplan(x)
22 if (d = 0) ∨ (Qplan(π) < qmin) then

23 break

24 Pqmin ← {x | x ∈ P, Qplan(x) = qmin}
25 πdmin ← argminx∈Pqmin

D(x,P − x)

26 if D(π,P) > D(πdmin,P − πdmin) then

27 P .replace(πdmin, π) � break quality tie
28 end

29 end

30 end

31 end

32 return P

4.3 Theoretical Analysis

We describe Algorithm 1 as sound and complete for a given search
tree if the set of returned plans satisfies the conditions for top-k, top-
quality or diverse planning as defined in Section 3.4. That is, the
algorithm is sound if each plan in the returned set is guaranteed to
meet the requirements for quality and diversity, and complete if every
such plan in the tree is guaranteed to be found.

Theorem 1 (Soundness). The plan extraction process presented in
Algorithm 1 is sound with respect to a pre-generated search tree, such
that no plan of higher quality can exist in the tree outside of the
returned plan set.

Proof. By contradiction: Assume that there exists in the tree some
plan ψ, with quality Qplan(ψ) that is greater than Qplan(π), the
quality of a plan π in the top plan set. Recall that a plan corresponds
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to a sequence of nodes starting at the tree root, and hence that ψ
and π must share a common branching point. From Algorithm 1, a
new plan is added to the open list for each child of the node at the
branching point with sufficient corresponding plan quality (lines 9–
15). Following Lemma 1, any subsequence of ψ, including all possible
prefixes, must have quality greater than or equal to Qplan(ψ). Since
Qplan(ψ) > Qplan(π), a prefix of ψ must exist in the open list
with quality greater than the quality of the plan π. The outer loop of
Algorithm 1 selects plans from the open list in order of plan quality,
and since a prefix of ψ with quality Qplan(ψ) > Qplan(π) exists
in the list, it is necessarily selected before π. Thus ψ must be added
to the top plan set before π, so the assumption is not true, and the
theorem holds.

Theorem 2 (Completeness). The plan extraction process presented
in Algorithm 1 is complete with respect to a pre-generated search tree,
such that the set of returned plans contains every top plan in the tree
that meets the requirements for quality and diversity.

Proof. From Lemma 1, for each top plan in the search tree, every
subsequence must have greater or equal quality. Since the open list
is populated by expanding nodes starting at the root node, a prefix of
each top plan is necessarily added to the open list on the first iteration,
and by Theorem 1 the complete plan must eventually be added to
the set of top plans before any plan with lower quality. The outer
loop continues until either k plans have been generated or the open
list is empty, and hence all top plans in the tree are extracted by the
algorithm.

It has been demonstrated that given an infinite number of episodes,
the probability of UCB1 selecting a suboptimal action at any given
node converges to zero [15], and MCTS with UCB1 is hence optimal.
It follows that if Algorithm 1 is sound and complete with respect
to a given search tree, and MCTS converges to the optimal policy
given sufficient time and memory, then Algorithm 1 is also sound and
complete with respect to the complete decision problem.

4.4 Complexity Analysis

The worst-case complexity for top-k plan extraction given a pre-
generated search tree is O(k ·d), where d is the depth of the tree. Since
the algorithm extracts plans in order of quality, the first k iterations of
the loop produce the top-k plans, and each iteration expands at most
d nodes. The complexity for top-quality is O(p · d), where p is the
number of leaf nodes (paths) in the tree and d is the depth. However,
this worst case is unlikely in practice, and will occur only if all plans
in the tree are above the quality limit. The algorithm assesses the
plans in order of quality, so if there are k plans with a quality above
the threshold, the algorithm assesses k · d nodes; however, we do not
know k a priori. For diverse planning, the worst-case complexity is
O(p · d) – at worst, we are required to assess all paths in the tree. For
all of these, in practice, since the tree is fully traversed at least once
during its creation, even the worst case represents a fraction of the
planning process. We provide empirical results in Section 6.

5 Diverse Planning with MCTS

When applied to top-k or top-quality planning problems, the algorithm
presented in the previous section bounds the set of generated solutions
according to a cardinality constraint k, a quality constraint q, or both.
This approach guarantees the generation of a set of plans such that
no plan of greater quality exists outside of the returned set. However,

these plans are not guaranteed to differ significantly from one another,
and may represent minor variations of the top plan, particularly given
MCTS biases exploration toward the most promising branches of
the game tree. In some applications this is desirable, such as plan
recognition [28] or plan repair [10]. In other situations, such as course
of action generation or travel planning [17], the user desires a set
of plans that are meaningfully distinct according to some qualitative
or quantitative measure, to provide greater coverage of the solution
space.

5.1 Diverse Plan Extraction

To enforce diversity in the plan set generated by Algorithm 1, each
complete plan is evaluated against the growing set of top plans, and
any that do not meet the required diversity are rejected (line 17). The
diversity of a candidate plan, D(π,P), is a measure of its dissimilarity
to the set of plans P . Plan diversity is calculated from the minimum
pairwise distance relative to P , which may be based on qualitative
measures that are specific to the domain, or quantitative measures that
are domain-independent.

A number of domain-independent plan distance measures have
been presented in previous works, typically comparing states, actions,
causal links, or landmarks [7, 30], requiring varying degrees of prob-
lem and domain theory. Given a basis for comparison, each plan is
aggregated as either an unordered set or a position-sensitive sequence,
and a difference is calculated between each pair of plans. We assume a
distance measure is provided by the user, and for the remainder of this
paper employ a simple diversity metric based on state set distance:

δ(π, ψ) =
|π − ψ|
|π| (6)

where π and ψ are plans, and π − ψ is a one-way set difference.
That is, δ(π, ψ) is the fraction of unique states in π that are not in ψ
(for simplicity, a plan here represents a set of states). The diversity
metric used when considering a new plan π in Algorithm 1 is then its
minimum distance from any plan in the existing plan set P:

D(π,P) = min
ψ∈P

δ(π, ψ) (7)

Theorem 3. The diverse plan set generated by Algorithm 1 is Pareto-
optimal: there exists no alternative set that dominates the returned set
with respect to quality and diversity.

Proof. From Algorithm 1, plans are added to the final plan set in
order of quality (lines 6 and 19), breaking ties using diversity (lines
20–28), and bounded by the diversity constraint d (line 17). It follows
that every plan π ∈ P has quality no less than any plan ψ /∈ P with
diversity D(ψ,P) ≥ d, and hence there is no set outside of P that can
increase quality without decreasing diversity, or vice versa. Therefore,
the set is Pareto-optimal with respect to quality and diversity.

5.2 Diverse Multi-Armed Bandit Policies

The diverse-planning approach described in the previous section col-
lects diverse plans from a pre-generated search tree, and as a result
relies on sufficient diversity in the planning process used to build the
tree. MCTS naturally biases exploration toward the most promising
areas of the search space. As a result, the highest-quality branches in
the tree are likely to be clustered with the optimal plan. While this
side effect may be desirable for top-k and top-quality planning, it may
lead to starvation of branches that are distant from the optimal plan,
and hence reduce the diversity of the final plan set.
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To address this, we propose two approaches to increasing the di-
versity of the pre-generated MCTS tree. The first and most obvious
solution is to increase the bias constant that balances exploration and
exploitation in the selection policy used during construction of the
tree (e.g. C in Eq. 1), to encourage exploration of less-promising areas
of the solution space. This approach incurs a performance penalty,
sacrificing tree depth for breadth and hence requiring a higher number
of iterations for the MCTS tree to produce reliable value estimates.
Furthermore, the additional exploration is undirected and does not
necessarily bias the search toward high-quality diverse plans.

To direct tree exploration toward diverse solutions, we propose a
second approach that extends the bandit policy by explicitly consid-
ering diversity. During the selection phase of the MCTS algorithm,
the value of each node σ considered by the multi-armed bandit pol-
icy is augmented with the diversity of the corresponding plan stem
πσ = {σ0, . . . , σ}. For example, the UCB1 formula (Eq. 1) may be
modified to include an additional term:

DiverseUCB1(σ) = Q(σ) + C

√
2 lnn

nσ
+D(πσ,P) (8)

where D(πσ,P) is the diversity of the plan stem π relative to a
set of plans P . Similar to Algorithm 1, plan diversity is defined
relative to a bounded set of high-quality plans extracted from the
partially-constructed tree, in this case updated dynamically as the tree
is constructed. Exploration of this approach is left for future work.

6 Experimental Validation

To evaluate our approach, we test the plan extraction algorithm over a
path-planning problem with hidden information. This experiment is
provided as a proof of concept for generating plan sets over black-box
simulators, in the absence of a benchmark for such problems. In the
problem scenario, a mission planner must deliver medical supplies
on a battlefield using a set of delivery drones, while avoiding hostile
forces. The planner is provided with a map and goal location, but the
locations of enemy combatants are unknown. Enemy combatants will
shoot down the drones if they pass nearby. The scenario objective is
to generate a set of plans that maximises the probability of at least
one drone successfully reaching the target. The source code for the
simulator and experiments is available at http://bit.ly/3WnQxme.

Three configurations of the algorithm are considered: a top-k plan-
ner, a top-quality planner, and a diverse planner. Each of the planners
generates a set of plans for up to five drones (i.e. k ≤ 5). The top-
quality planner restricts the plans to a minimum 80% of the quality
of the optimal plan (q = 0.8), while the diverse planner enforces a
minimum 50% plan distance (d = 0.5). For the purposes of these ex-
periments, a relatively simple diversity metric is used, based on state
set difference (Eq. 7). Two baselines are implemented for comparison:
a planner that extracts the single optimum plan for each problem
instance, and a random planner that extracts a set of paths selected
uniformly from the search tree.

For the experiment, 2000 randomised problem instances are gen-
erated across 100 risk levels. The risk level for each instance is con-
trolled by varying the level of hidden information, represented by the
percentage of map locations occupied by enemy combatants. For each
unique problem instance, an MCTS tree is constructed over 20,000
iterations (≈ 1.3 seconds on an Intel Core i7-8650U processor), using
a simulation model with hostile forces removed to reflect the limited
information available to the planners. The plan set generated by each
planner type is then executed in the true environment (Fig. 2) where

(a) Single planner (b) Top-quality planner

(c) Top-k planner (d) Diverse planner

Figure 2: Example of a solution set generated by each planner type.
In this example, with risk level 10%, only the diverse planner is
successful.

Figure 3: Experimental results for each planner type. The environment
risk level is controlled by varying the percentage of map locations
occupied by enemy combatants.

the location of enemy combatants is known. The set of plans is con-
sidered successful if at least one plan in the set reaches the objective
without encountering hostile forces. The average success rate for each
planner is recorded over 20 replications at each risk level.

Figs. 3 and 4 capture the results. For this domain, our algorithm
shows a significant improvement in success rate over each of the
baseline approaches. As expected, the single planner baseline per-
forms well when the risk level is low and the optimal path is unlikely
to encounter hidden enemy combatants. As the risk level increases,
performance for the single planner rapidly decreases relative to the
top-k, top-quality and diverse planners. At medium to high risk levels,
where up to 80% of map locations are occupied by hostile forces,
the diverse planner has a success rate 1.8–3.7× that of the single
planner (95% CI). While the difference in success rate between the
diverse planner and all other planners is statistically significant, the
difference between the top-k and top-quality planners is not. This is
to be expected, as the plan sets generated by these planners differ only
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Figure 4: Comparison of mean success rate for each planner (error
bars denote 95% confidence interval).

when there are fewer than k plans that meet the quality requirement q.
The poor performance of the random planner baseline suggests that
the benefit provided by the top-k, top-quality and diverse planners
is due to effective plan discovery, rather than simply due to greater
coverage of the state space compared to the single planner.

Fig. 5 demonstrates the average path cost for each planner relative
to the shortest unobstructed path between the initial location and
the objective. Our algorithm generates plans in order of expected
return, and does not explicitly minimise path cost. However, it can
be seen that the plans generated by the diverse, top-quality and top-k
planners add minimal additional path length over the optimal plan in
this application.

Although not proposed as an optimised algorithm, we additionally
consider the computational overhead of plan set extraction using our
approach. Given an MCTS tree constructed over 1.5s± 820ms (95%
CI), the time required to generate a plan set during an experiment
run ranges from 312μs± 28.6μs (95% CI) for the single planner, to
1.76ms ± 152.4μs (95% CI) for the diverse planner. Compared to
the cost of generating the MCTS tree, these costs are considered to be
negligible.

7 Discussion

Our experimental results demonstrate that plan extraction from pre-
generated search trees is a viable approach to the generation of
bounded plan sets. However, empirical observation suggests that fur-
ther work is needed to improve the diversity of search trees generated
using MCTS algorithms. Additionally, while a state-set diversity met-
ric was effective for the discrete path-planning domain used for our
experiments, previous work has shown that more sophisticated mea-
sures are needed for general planning problems [7]. In particular, it
has been observed that plans that are distant with respect to state and
action sequences may be fundamentally the same when considered
semantically. A possible solution may lie in sequence comparison
methods used in genomics, repurposed to identify causal patterns in
agent trajectories [31].

As discussed in Section 4.1, our definition of plan quality is based
on expected return rather than plan cost. As a result, while the plans
generated by our approach are guaranteed to have the highest expected
return, they are not guaranteed to be the most efficient with respect to
other measures such as path length, unless these are integrated into the
reward function. Previous work has explored the trade-off between

Figure 5: Average path length generated by each planner, relative to
the shortest unobstructed path to the objective.

efficiency and diversity [25]. Our experiments suggest that where
efficiency is an important consideration, the optimal level of plan di-
versity may be driven by the expected risk level of the environment. If
the risk is low, such as in fully-observable and deterministic domains,
then single planning may be optimal. If the risk is intermediate, and
the successful solution is expected to be close to the optimal plan,
then top-k or top-quality planning may be sufficient. If the risk level
is high or unknown, then the additional cost of diverse planning may
be justified by an increased probability of success.

As a post-processing method, our algorithm provides a novel capa-
bility: regeneration of alternative plan sets without replanning. Previ-
ous approaches have generated multiple plans by repeatedly solving
modified versions of the planning problem, often incurring significant
additional cost over single planning [14, 18, 24, 29]. In contrast, our
approach operates over a pre-generated search tree, and does not re-
quire replanning to produce multiple plans. Once the tree has been
generated, new sets of plans can be extracted with different quality
and diversity constraints for negligible additional cost. This feature
is particularly useful for planning problems requiring long process-
ing times, as it enables the user to experiment with constraints and
diversity measures without incurring the cost of solving the planning
problem anew.

8 Conclusion

In this paper, we have introduced a novel approach to top-k, top-
quality and diverse planning over black-box simulators that removes
the requirement for a symbolic model of the problem. We have pre-
sented a metric for the relative qualities of paths in a search tree, and
an algorithm for extracting sets of plans in best-first order, along with
a theoretical analysis showing that our approach finds exactly the set
of top plans. Further, we have discussed strategies to improve the
diversity of generated plans by modifying the multi-armed bandit
selection policy used during search. Finally, we have provided an
empirical evaluation to demonstrate the practicality of our approach.

There are a number of areas of continuing research, including ex-
tending our algorithm to multi-agent problems, and further developing
our proposed diverse bandit policy. In future work we will explore
more sophisticated diversity measures, such as causal pattern extrac-
tion, to improve the generation of meaningfully diverse sets of plans.
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