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Abstract

In our research, we explore two orthogonal but related methodologies of solving planning

instances: planning algorithms based on direct but lazy, incremental heuristic search over

transition systems and planning as satisfiability. We address numerous challenges associ-

ated with solving large planning instances within practical time and memory constraints.

This is particularly relevant when solving real-world problems, which often have numeric

domains and resources and, therefore, have a large ground representation of the planning

instance. Our first contribution is an approximate novelty search, which introduces two

novel methods. The first approximates novelty via sampling and Bloom filters, and the

other approximates the best-first search using an adaptive policy that decides whether

to forgo the expansion of nodes in the open list. For our second work, we present an

encoding of the partial order causal link (POCL) formulation of the temporal planning

problems into a CP model that handles the instances with required concurrency, which

cannot be solved using sequential planners. Our third significant contribution is on lifted

sequential planning with lazy constraint generation, which scales very well on large in-

stances with numeric domains and resources. Lastly, we propose a novel way of using

novelty approximation as a polynomial reachability propagator, which we use to train

the activity heuristics used by the CP solvers.
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“If you want to be creative, then you will have to get used

to spending most of your time not being creative, to being

becalmed on the ocean of scientific knowledge.”

Steven Weinberg

1
Introduction

AI Planning is a branch of artificial intelligence that concerns the realization of strate-

gies, typically for execution by intelligent agents like autonomous robots and unmanned

vehicles, that are required to make independent decisions. AI Planning aims to solve a

wide range of problems with limited assumptions on the system’s dynamics, allowing for

the general use of computational approaches to planning — independent of the problem

domain. Over time, different classes of assumptions on problem structure have given rise

to sub-fields in planning, from the declarative representations of deterministic transition

systems in classical and temporal planning, describing the initial state, goal states, and

the actions clearly, to Markov Decision Processes (MDPs) with probabilistic outcomes in

the paradigm of planning under uncertainty. Communities in each of these fields develop

and employ specialized computational approaches. However, common touchpoints exist,

and the standard methods are typically generalizable within the dynamic programming

framework. Some planning formalisms also allow us to optimize the overall performance

measures of the system, such as time, cost, and quality.

1
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While the models of AI Planning contain little to no explicit information about the

solutions, they do describe the dynamics of the world, differentiating planning approaches

from reinforcement learning for model-free problems. However, much work has been

done in connecting research in planning on MDPs and reinforcement learning, leading

to model-based reinforcement learning. This has allowed the community to apply AI

Planning approaches in many artificial problems, including single and multiplayer games

with varying degrees of observability and explicit knowledge of the transition system,

like Pacman, Checkers, Go, and Atari 2600 video games, as well as real-world problems

of logistics, motion and task planning, and coordination in a multi-agent setting.

Although planning approaches have achieved remarkable results in various problems,

there are still many challenges that limit their applicability and performance. One of

the main challenges is scalability, which refers to the ability of planning systems to

handle large and complex problems efficiently. Another challenge is the ease of real-

world integration, which refers to the effort required to model the dynamics of real-

world problems in planning systems’ language. These challenges persist even when the

world is modeled in a simplified and deterministic way, as in classical and temporal

planning, where actions have fixed preconditions and effects, and the state of the world

is fully known. Furthermore, the research in the computational approaches to planning

seems to have reached a stagnation point, as evidenced by the last two International

Planning Competitions, where the same technologies or portfolios of dominant methods

have maintained their superiority over the others, with the framework of heuristic-driven

forward search, that uses an estimator of the cost or the quality of a partial plan to guide

the search for a complete plan, being the common denominator.

In this research, we seek to push the boundaries of generating agent behavior for general

problem-solving as planning, focusing our attention on the two main classes of determin-

istic planning problems: sequential and temporally expressive. We explore two different

computational paradigms of planning as heuristic search and planning as constraint pro-

gramming as a basis for developing methods to tackle these challenges, where we aim to

understand and address the inherent limitations of the state-of-the-art heuristic search

methods in the former and develop encodings and planning specific decompositions in the

latter. We explore thoroughly the techniques and progress in various areas of computer

science and operations research and examine how they could enhance the performance of
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planning, including computational methods in heuristic search, stream computing, linear

and mixed-integer programming, satisfiability, and constraint programming.

1.1 Research Challenges

In this section, we describe the difficulties that arise in large and complex planning

domains, and then we elaborate on the specific research questions we address.

1.1.1 Large-scale Problems in Planning

Planning problems involving large-scale scenarios and situations can present themselves

in various forms and sizes, depending on the domain and the context. These planning

problems also have specific attributes and features that make them more challenging to

solve, stressing planning algorithms and search strategies designed to find optimal or sat-

isficing solutions. Therefore, it is essential to understand their nature and characteristics

and to evaluate the performance and suitability of different computational approaches

for solving them.

Hard-to-ground. Consider Letter Boxed, a popular word game that is featured in the

New York Times [43]. It challenges the players to find a sequence of words that connects

the vertices on the edges of a square grid. This word game can be seen as a variation

of the minimum edge cover problem, which is a well-known problem in graph theory

and computer science. The edge cover problem asks for a minimum set of edges that

touch all the vertices of a graph. Similarly, the Letter Boxed game asks for the shortest

sequence of words that touch all the vertices on the edges of the square. The words that

the players can use are constrained by the rules of the game, such as using only English

words and following the order of the letters in the vertices on the grid. Letter Boxed is

fun and challenging and also a surprisingly tricky problem for best-performing classical

planning solvers from International Planning Competitions.

The Letter Boxed game requires the player to choose an initial vertex that fixes the

first letter and the current edge, after which the player must connect it to a vertex on

a different side from the current one. For example, in Figure 1.1, one could start with

the vertex containing the letter ’C’, connecting it to ’L’ on the adjacent edge, and so on,

until the word ’CLINIC’ is composed. The player can make any sequence of vertices in
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Figure 1.1: Diagramatic representation of the Letter Boxed1Transition System.

this manner. However, only a sequence comprising an English word is admissible. Once

the user enters (finalizes) a word, the last letter of the previous word becomes the first

letter of the next word; as we can see in the Figure, the next word, ’CHORDAL’, starts

with a ’C,’ which is the last letter of ’CLINIC’. The player wins when all the vertices on

the square have been visited.
1© New York Times Company
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Figure 1.2: Diagramatic representation of the Letter Boxed Transition System.

The dynamics of the game can be easily captured in any standard input language for

planning, for example, PDDL [60] with begin, connect, and finalize action schemas repre-

senting the act of selecting the first vertex, connecting vertices and entering a sequence

to check admissibility, as shown in Figure 1.2. The game is simple for a human player

with a good vocabulary. Still, it is challenging for planners as the knowledge of words

is only encoded in the initial state, and the planner must use the dependency of action

schemas on this knowledge base to infer the action arguments that constitute admissible

words. This is considerably hard for grounded planners as the English letter words can be

as long as 45 letters, requiring connect action schema with that many arguments, and a

trivial grounding approach would result in an extremely large ground theory. Therefore,

the Letter Boxed domain is hard-to-ground (HTG) for any planner based on planning

approaches that require grounding lifted schematic representation of the problem do-

main. Furthermore, Letter Boxed isn’t the only domain that stresses the grounding

approaches, and many such problems have been captured in the recently released HTG

benchmark [29, 89].

High Width. Many large-scale problems have attributes different from hard-to-ground

that make them complex to solve. One such feature is width. Lipovetzky and Geffner [91,

94] proposed a measure of width of the problem along with a search strategy, Iterated

Width, that guaranteed a runtime complexity exponential in the width of the problem.
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They demonstrated that most benchmark instances appear to have low width when the

goals were restricted to single atoms, resulting in low polynomial complexity. More ad-

vanced approaches of Serialized Iterated Width and Best First Width Search [93, 92]

seek to exploit the width measure to decompose the problem and guide the search strat-

egy, leading to state-of-the-art performance in the International Planning Competitions

(IPCs). Still, many instances with high width remain hard to solve with width-based

search as the computational complexity grows exponentially with the width of the prob-

lem.

Complex system of constraints. Logistics is one of the crucial problems, highly rel-

evant from the applied standpoint, where the complex system of constraints makes the

problem hard to solve. The problem involves moving packages from one location to an-

other using various transportation methods. The problem is challenging because many

factors and limitations affect the optimal solution. Figure 1.3 illustrates the problem

with an example, where the packages ‘Pi’ have to be delivered to different destinations

using airplanes and trucks. The problem combines three types of problems in operations

research: assignment problem, sequencing problem, and routing problems, requiring the

planner to find the best way to assign packages to transportation modes — which pack-

ages should go on which airplane or truck, ordering the package transportation, and

deciding on the routes used to move around the packages to minimize the distance, time,

or cost. The problem requires finding a solution that satisfies all these problems simul-

taneously while also considering the constraints and objectives of the logistics system.

1.1.2 Required Concurrency

While Sequential planning addresses the problems of assignment, sequencing, and rout-

ing, temporal planning adds the concurrency concern. Dealing with temporally expres-

sive languages — durative action schemas with a structure of preconditions and effects

that require concurrent execution of two or more actions to succeed, exploiting paral-

lelism and managing dependencies among actions to optimize the plan metrics, typically

makespan.
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Figure 1.3: Diagramatic representation of a Logistics problem.

1.2 Research Goals

In this research, we aim to explore the different computational approaches for determin-

istic planning, focusing on understanding and adapting technological breakthroughs in

operations research for planning. Furthermore, we aim to investigate decompositions

of planning into operation research problems where efficient solving technology exists

within the framework of Logic-based Benders Decomposition [75], addressing the chal-

lenges posed by large-scale planning problems. In addition to examining the methods

in operations research, we seek to address immediate scalability concerns in planning as
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width-based search — heuristic search framework synonymous with state-of-the-art in

satisficing planning in the past decade.

Our initial goal is to design approximations of width-based planning algorithms [93, 92],

addressing the scalability issue in width-based search, where the challenge is to reduce the

space and time complexity of novelty computation to linear, enabling the planner to solve

high width problem domains. Chakrabati et al. and Vadlamudi et al. [23, 146] seek to

address the issue of scalability by trading off time for space, and Dionne et al. [34] trades-

off optimality for assurance on time while preserving completeness. In this research, we

would instead explore the idea of trading-off accuracy for time and memory guarantees

using approximation methods. We hope to bring about a promising new direction with

probabilistically complete search algorithms that can tackle the increasingly intractable

benchmarks within hard constraints on time and memory.

We aim to develop a scalable CP encoding of classical planning as our second research

objective, seeking to address the challenges posed by large-scale hard-to-ground plan-

ning instances. Our primary objective here is to tap into the groundbreaking technology

of Lazy Clause Generation that allows us to represent a large number of constraints im-

plicitly, considerably reducing the memory overhead. By developing scalable CP encod-

ing of classical planning, we hope to advance the state-of-the-art in automated planning

and constraint programming.

We further explore additional avenues in constraint programming, including planning-

specific decompositions — breaking down a planning problem into smaller and simpler

subproblems that can be solved more efficiently by constraint satisfaction approaches,

designing and implementing custom search strategies that guide the constraint program-

ming solver to find reasonable solutions quickly, and planning specific constraints and

their implementations, propagators.

Lastly, we seek to address the concern of concurrency in temporal planning and develop

an efficient planner that can be used to obtain optimal plans. For this, we will explore

Constraint Programming and Mixed Integer Programming approaches to solving con-

straint satisfaction problems and develop encodings of temporal planning problems that

solve temporally expressive domains — problems requiring concurrent execution of ac-

tions that cannot be solved with the common strategy of relaxing the temporal planning

problem into a sequential planning one [57]. The previous work on the constraint-based
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approach to temporal planning CPT [152] has directly inspired our research direction.

We seek to address the shortcomings of CPT, including the inability to handle problems

with required concurrency [31].

1.3 Contributions

Our research has resulted in four significant contributions that address the obstacles of

large-scale planning problems.

1. In our first contribution, Approximate novelty search, we introduce novel poly-

nomial approximations of state novelty and width-based search. It uses Bloom filters to

efficiently represent the interpretation of the relational predicate and random sampling

of tuples, conjunction of atoms, in the computation of state novelty. It also uses an

adaptive policy which decides to delay the generation of successor states, based on the

analytical solution to an MDP where its cost function determines the distribution of

different novelty levels in the open list.

2. Our contribution on Lifted Sequential Planning with Lazy Clause and Con-

straint generation solvers presents a novel CP encoding that addresses the challenge of

hard-to-ground (HTG) instances. We also demonstrate a planning-specific constraint im-

plementation, propagator, in Google’s CpSat solver that implements the Lazy Clause

Generation approach in the CDCL framework, enabling the solver to scale better on HTG

instances. We also introduce an automated method for concise conversion of planning

problems described in PDDL to FSTRIPS [51] using the hm heuristic over first-order

logic existential formulae.

3. We also examine the two frameworks — the forward search paradigm and LCG CDCL

— and suggest a combined method, integrating planning as search and planning

as CP. Our research shows that blind search methods, such as breadth-first search and

depth-first search, can be easily integrated into planning as Constraint Programming

(CP). This integration is done by simple changes to the variable selection heuristic along

with our encoding for Lifted Sequential Planning. Furthermore, we show that value

selection heuristics in CDCL solvers can be used to select the successor for expansion,

similar to planning heuristics. Finally, we define the concept of novelty as a constraint
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within CP and present an effective implementation of novelty bound using a polynomial-

time reachability propagator. The LCG CDCL-based algorithm, Depth First Novelty

Search, using depth-first search heuristics and novelty propagator, leads to better results

in our Lifted Encoding of Sequential Planning.

4. Lastly, we contribute a novel CP encoding of optimal temporal POCL planning

into CpSat that handles problems with required concurrency . The encoding is

inspired by the CP encoding of the CPT planner which only handles simpler temporal

planning problems, without required concurrency. We apply our CP encoding of POCL

to the CpSat solver, and the resulting planner works very well in the instances with a

high degree of concurrency, as well as in optimal temporal planning.

1.4 Thesis Outline

We start the thesis by reviewing computational approaches to classical planning and the

recent advancements in the field in Chapter 2. In Chapter 3, we introduce the concern

of concurrency along with the formalism of temporal planning. We then introduce our

first contribution on Tractable approximations for width-based algorithms in classical

planning in Chapter 4. We explain in formal detail the underlying scalability issues

in width-based algorithms, including a measure of novelty whose complexity is expo-

nential in the novelty value and the exponential growth of the open list with novelty

bound. We prove the theoretical probability of error in novelty approximation and con-

clude by presenting the Apx Novelty Search planner with impressive performance on

the IPC benchmark. In Chapter 5, we introduce challenges associated with planning in

problems with large ground representation, which focuses on hard-to-ground instances.

These instances feature domain theories of large size that render grounding the lifted

representation into propositional STRIPS intractable. We present a Lifted Encoding of

Sequential Planning in Constraint Programming and its implementation in Google’s

CpSat solver. We present a novel planning-specific user-propagator for persistence con-

straints that implicitly represents a large tract of complex constraints, allowing the solver

to scale better. We show that the planner scales well on hard-to-ground benchmark while

holding its ground on the IPC instances. We then discuss the integration of Planning as

Heuristics Search and Planning as Constraint Programming in Chapter 6. We present

an approach to implement forward search in planning into the framework of LCG CDCL
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in CpSat. We also formalize novelty bound in width-based planning as a constraint and

show an efficient implementation of Novelty propagator in CpSat. Lastly, in Chapter 7,

we present an encoding of temporal planning in CP, which can handle required concur-

rency. We show that the encoding has state-of-the-art performance in instances with

required concurrency. However, solving instances with a high degree of sequencing is a

challenge.





Part I

Background

13





“Ramanujan was an artist. And numbers — and the

mathematical language expressing their relationships —

were his medium.”

Robert Kanigel, The Man Who Knew Infinity :

A Life of the Genius Ramanujan

2
Classical Planning

Classical Planning is a branch of artificial intelligence that deals with the problem of

searching for behaviors in the form of an action sequence that maps the system’s initial

state into a desired goal situation. It provides a general and expressive framework for

representing and solving many problems and sound mechanisms to reason over the space

of plans. It has inspired other forms of planning, such as temporal, probabilistic, and

hierarchical planning. This chapter explains the theory and practice of classical planning,

focusing on the aspects of the classical planning model, description languages, theoretical

properties, and computational methods. We also give an overview of the basic concepts

from optimization theory and operations research relevant to our work, including Boolean

Satisfiability, Constraint Programming, and Lazy Clause Generation.

15
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2.1 Introduction

Classical Planning provides a formal framework for representing and reasoning about

complex transition systems. It uses problem description languages inspired by proposi-

tional and first-order languages to describe states, actions, goals, and the preconditions

and effects of each action. These languages allow for a clear and precise specification

of the problem and the solution, as well as the possibility of verifying and analyzing

the properties of the plan. Finding a plan is usually very hard in the worst case, and

therefore, a lot of the research in this area is about how to make it practical.

Even in the classical sense, with deterministic and instantaneous actions and complete

observability assumptions, many real-world problems can benefit from advancements

in Classical Planning, including Logistics, Robotics, and Games. Solving Logistics, a

complex problem, the intersection of assignment, routing, and sequencing problems,

that comes from operations research, using classical planning allows us to control routes

of packages and vehicles, map packages to modes of transportation, and order packages

for transport. In robotics, we can use classical planning for motion and task planning,

helping a robot plan how to move from one location to another while avoiding obstacles

or picking up and delivering objects using its gripper. Moreover, while games generally

require more expressive models representing partial observability and uncertainty, many

can still be encoded into classical planning, especially Puzzle games, including Sokoban,

Letter Boxed, and Rubik’s Cube.

Not only does Classical Planning provide a rigorous and general framework for repre-

senting and solving deterministic planning problems, but it is also a basis for developing

more realistic and expressive planning models. It has been extended and modified to

accommodate more challenging aspects of real-world domains, such as uncertainty, dura-

tive actions, concurrency, resources, preferences, and multiple agents. These extensions

build upon the basic concepts and methods of classical planning and often require novel

solutions and approaches.

A key concept for Planning, similar to other areas in Artificial Intelligence, is the no-

tion of Knowledge Representation and Reasoning. Knowledge Representation involves

specifying a precise description, a model, of the world and the query about the world

we have. Generally, we use formal languages to express the planning problems, where

we expect the languages’ semantics to be well-defined. On the other hand, methods to
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planning reason over the mathematical description of the problem and attempt to answer

the questions of plan existence and optimality.

Chapter Outline. First, we explain the classical planning model and how classical plan-

ning problems can be expressed using planning languages. The computational complexity

of planning is then briefly discussed. After that, we explain the different computational

approaches of planning, such as Planning as a search and Planning as a constraint sat-

isfaction problem and the relevant algorithms for each. We end with a brief history of

classical planning, as seen in international planning competitions.

2.2 The Model of Classical Planning

We can understand the classical planning model as a transition system, a directed graph

whose vertices denote the set of states and whose edges are actions that force the state

transition from the state represented by the source vertex to the destination state. Clas-

sical Planning is concerned with finding a path between the initial and one of the goal

states in this graph. In other words, a plan, a sequence of actions in classical planning,

is analogous to a path in the graph.

We now present a formal description of the classical planning model, which will help us

explain the semantic interpretation of the planning languages.

Definition 2.1. The transition system for a classical planning problem P is defined

as a tuple, P :“ xS, s0, SG, A, T y, in which

• S is the state space, a finite and discrete set of states,

• s0 P S is the initial state,

• SG Ď S is the set of goal states,

• A is the set of actions,

• T : S ˆAÑ S is the transition function.

We define the set of applicable actions Apsq as the subset of a P A, for which T ps, aq is

defined, and the function T : S ˆ Π, where Π is the set of action sequences, describes
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the state resulting from the application of a sequence of actions π “ xa1, . . . , any which

we define recursively as

T ps, xyq “ s (2.1)

T ps, xa1, . . . , aiyq “

$

’

&

’

%

T pT ps, xa1, . . . , ai´1yq, aiq, if i ą 1

T ps, a1q, otherwise
(2.2)

The above formulation requires that T ps, xa1, . . . , aiyq is defined for all i P t1, . . . , nu.

A solution to P is a sequence π “ xa1, . . . , any mapping the initial state s0 to a goal

state sn P SG, T ps0, πq P SG, such that each action is applicable in the corresponding

state, ai P Apsi´1q, along the induced sequence s0,...,si,...,sn where si “ T psi´1, aiq.

For Optimizing Planning, we would additionally have a cost function, c : A ÞÑ R`
0 , in

the model that maps each action a P A to a non-negative cost. This allows us to define

a total cost function as follows.

costpπq “
n

ÿ

i“1

cpaiq (2.3)

A plan π˚ is in the set of optimal plans iff costpπ˚q “ minπPΠ,T ps0,πqPSG costpπq, i.e, the

plan π˚ has the minimal cost of all feasible plans.

2.3 Problem Description: The Languages of Classical Plan-

ning

Over the years, researchers in the planning community have developed various languages

to describe classical planning instances. Most of these works are connected to the Stan-

ford Research Institute Problem Solver (STRIPS) language [106], one of the most influen-

tial works in classical planning languages, motivated by the need for greater expressivity

and properties that help the underlying computational approaches. In this section, we

summarize the planning languages that the community uses and how they are mapped

to the classical planning model. We describe STRIPS and PDDL, the standard plan-

ning languages in the International Planning Competition benchmarks, followed by a

description of SAS`, an important subset of Finite Domain Representation (FDR) tasks

accepted by Fast Downward planner — a suite of state-of-the-art planning algorithms.
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2.3.1 Stanford Research Institute Problem Solver (STRIPS)

Richard Fikes and Nils Nilsson developed the STRIPS language in 1971 at Stanford

Research Institute [106] for representing and solving planning problems in artificial in-

telligence that involve finding a sequence of actions mapping an initial state of the world

into a desired goal state. The name STRIPS stands for Stanford Research Institute Prob-

lem Solver, which is also the name of the automated planner they developed for solving

planning problems. STRIPS was considered a novel language for modeling planning prob-

lems at the time. However, some thought it to be a specialization of situation-calculus

with lower computational complexity [99]. Situation calculus is shown to be reducible

to theorem-proving in first-order logic [62], which is generally undecidable. This original

formulation of STRIPS lacked a precise formal semantics [45], which was subsequently

refined and improved [90, 20].

The primary purpose of STRIPS is to describe the dynamics of a static world, which

only changes when an operation is performed, as a transition system which is a directed

graph, xS,Ey, where S is the set of world states comprising the nodes and E is the set

of edges between them. In STRIPS, we describe the models of the world (states) as a

collection of well-formed formulas that hold in a state, and a set of operators (actions)

describe the allowed transitions, mapping between the states. An action a is a tuple,

xPrea,Adda,Delay, namely, precondition, additions list, deletions list, which describe the

constraints over the edges in the transition system. The precondition of an action is

a well-formed formula that must hold in the source state, the deletions list is a set of

well-formed formulas in the source model that may not hold in the target state, and the

additions list those that must hold in the destination node.

For example, consider the classical problem of Blocks, illustrated in Figure. 2.1, where

the worlds of Blocks consist of different arrangements of blocks that are possible within

the physical limitations of the real-world and a robot is allowed the change the world

state by executing actions. We can model the dynamics of Blocks world using the action

schemas presented in Figure. 2.4, that model a robot’s ability to move a block into a

new position relative to an another block or table, when initially both blocks are on the

table. We then ask whether a sequence of actions connecting two vertices exists. We

separately capture the initial state as a collection of formulas (facts) that hold in the
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Figure 2.1: Blocks Transition System.�
move( k,m,n ) :

precondition = { c l e a r ( k ) , on ( k , n) , c l e a r (m) , k ‰ m ‰ n }
delete−list = { on ( k,n ) , c l e a r (m) }
add−list = { on (k,m) , c l e a r (n) }

moveToTable ( k,m ) :
precondition = { on ( k , m) , c l e a r ( k ) , k ‰ m }
delete−list = { on ( k , m) }
add−list = { c l e a r ( k ) , on−table ( k ) , c l e a r (m) }

moveFromTable ( k,m ) :
precondition = { c l e a r ( k ) , on−table ( k ) , c l e a r (m) , k ‰ m }
delete−list = { on−table ( k ) , c l e a r (m) }
add−list = { on (k,m) }
� �
Figure 2.2: STRIPS operators, factored representation of the Blocks transitions.

initial state and the facts that must hold in the goal state, along with the set of all facts,

as exemplified in Figure. 2.3.

We must note, however, that the physical constraints on the Blocks’ worlds are only par-

tially imbued in STRIPS description of Blocks. A curious observer would notice that the
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init ial−state : { on−table (A) , on−table (B) }

goal−state : { on (A, B) }

facts : { on−table (A) , on−table (B) , on (A, B) , on ( B, A) ,
c l e a r (A) , c l e a r (B) }

operators : { move(A, B) , move( B, A) ,
moveToTable (A, B) , moveToTable ( B, A) ,
moveFromTable (A, B) , moveFromTable ( B, A) }
� �

Figure 2.3: STRIPS representation of the Blocks problem.

action schemata allow transitions from a state s :“ ton-table(A), on(A, B), on-table(B),

clear(A), clear(B)u to s1 :“ {on-table(A), on(A, B), on(B, A), clear(B)} when move-

FromTable(B, A) is applied, both of which are inconsistent with the physical model of

the Blocks. We could avoid the issue by selecting an initial state consistent with the

world’s physical model, after which the same action schemas ensure that only consistent

states have a directed path from the initial state. A more straightforward approach

would be to specify preconditions in a manner that disallows transitions from invalid

world states of the Blocks, e.g., on-table(k) Ñ Ey, on(k,y). Remediation on a similar

line of thought seems to be adopted by the community later by introducing the timeless

predicates in PDDL [60], but the notion seems to have been discarded likely because the

information is redundant in the mainline computational approaches based on the for-

ward search from the initial state. This highlights the challenge of efficiently modeling

the dynamics of the world in STRIPS, which is not straightforward for many real-world

problems.

Next, we present the definition of the STRIPS problem and explain the precise semantics

of the language with a mapping into the classical planning model.

Definition 2.2. We describe a classical planning problem compactly using STRIPS as

the tuple P :“ xF,O, I,Gy

• F is the collection of Boolean atoms or fluents

• O is the set of operators

• I Ď F is a set of atoms that fully describe the initial state

• G Ď F is a set of atoms in the goal state
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The sets of atoms I and G have different meanings regarding the states in S. The set

I represents only one state, in which the atoms in I hold, and the others are false by

default — following the notion of "negation by failure". On the other hand, the set G

represents a set of states in which the atoms in G hold, irrespective of the truth values

of the other atoms.

We obtain a classical planning transition system SpP q “ xS, s0, SG, A, T y from the

STRIPS problem P as S “ 2|F |, s0 “ I, sG “ ts |G Ď su, and T and A follow from the

effects and preconditions of a P O. Fikes and Nilson described the operator preconditions

as a well-formed formula. However, we use the simplified formulation of propositional

STRIPS presented by Bylander [20], which represents the precondition of actions as a

set, i.e., a STRIPS action a is a tuple, a :“ xPrea,Adda,Delay, where Prea is a set of

atoms that must hold in the source state, Adda the list of atoms that must hold in the

target state, and Dela the list of atoms that may not hold in target state. This allows

for a precise definition of the Transition function using set operators, Eq. 2.4.

T ps, aq “

$

’

&

’

%

psztDelauq YAdda, Prea Ď s

s, otherwise

(2.4a)

Apsq “ ta | a P O,Prea Ď su (2.4b)

An essential benefit of Propositional STRIPS is that it solves the problem of having

to specify a large number of frame axioms, which exists in Situation Calculus, by rep-

resenting a state as a set of facts instead of a logical conjunction of atoms and using

set operators to define actions in STRIPS that also encode the frame axioms implicitly.

However, we note that the state-based encodings of STRIPS into propositional logic,

where the state is represented as propositional formulas, require specifying the frame

axioms. This is avoided in causal encodings of STRIPS into Logic as the states are not

defined explicitly, and therefore, the frame axioms are unnecessary.

2.3.2 Planning Domain Definition Language (PDDL)

The PDDL language [60] was invented to cater to the community’s needs that wanted

a standard but more powerful and concise modeling language for planning competi-

tions. The language of STRIPS, although quite remarkable for its time, is limited in its
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expressive power — not only determinism but also the assumption of sequential (non-

concurrent) execution of instaneous actions, which Fikes and Nilsson found inadequate,

in retrospective [45]. Furthermore, modeling constructs commonly available in other

formal languages, like numeric variables and algebraic functions, are not available in

STRIPS, requiring extensive effort to model specific problems. These challenges led

to a multitude of developments in the field of planning languages, extending the lan-

guage of STRIPS, including Pednault’s Action Description Language [111], adding the

ability to express complex transitions concisely by allowing new syntactic elements in

action-schema definitions, e.g., conditional effects and universal quantification, and other

changes to increase the expressive power of the language, e.g., Temporal-numeric Plan-

ning. Due to these developments, PDDL was born to allow researchers to define and

add new building blocks to the language, facilitating fluid extensions. PDDL is a frame-

work containing a collection of languages, each specified by the combinations of the

requirements tags. This makes PDDL very flexible. However, that comes at the cost of

standardizing the semantics of PDDL.

While there are issues with the semantics of some PDDL requirements [101], the com-

munity understands the commonly used extensions. One such extension is PDDL 1.2,

which is widely used by the community to specify classical planning instances, including

the benchmark instances of the IPCs we use for our experiments.

PDDL 1.2 While STRIPS and PDDL 1.2 represent the same class of problems — query-

ing plans with specified characteristics over deterministic transition systems, syntactic

elements of PDDL allow for a more concise and powerful representation. We present the

semantics of PDDL 1.2 with an example from Blocksworld in, Figure 2.4 and Figure 2.5.

Blocks PDDL. We start by explaining the domain description in Figure 2.4. Note that

the PDDL description is generally split into two components: the domain description,

which specifies the set of possible facts and action schemas, and the instance description,

which describes the initial state and the goal. The domain description includes the :re-

quirements tags that capture the PDDL extensions. For example, the :typing tag enables

many-sorted logic: we no longer assume that the universe is a collection of homogenous

objects. We only need to define objects directly used in the action schema descriptions

as constants. Then comes the predicates, which describe the different relationships that

may exist between objects. We use them to capture invariant relations, and fluent pred-

icates that capture the relationships that may change, like placing a block on the table
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( define (domain blocks −3ops )

( : requirements : e qua l i t y : typing : negat ive−pr e cond i t i on s )
( : types block − ob j e c t )
( : constants nothing − ob j e c t )
( : predicates

( on ?b1 − block ?b2 − block )
( on_table ?b1 − block )
( c l e a r ?b1 − block )

)

( : action move
: parameters (?b_m ?b_from ?b_to − block )
: precondition (and

( c l e a r ?b_m) ( on ?b_from ?b_m) ( c l e a r ?b_to )
(not (= ?b_m ?b_to ) ) (not (= ?b_m ?b_from ) ) )

: ef fect (and
(not ( c l e a r ?b_to ) ) (not ( on ?b_from ?b_m))
( c l e a r ?b_from) ( on ?b_to ?b_m))

)
( : action moveToTable

: parameters (?b_m ?b_from − block )
: precondition (and

( c l e a r ?b_m) ( on ?b_from ?b_m) (not ( on_table ?b_m))
(not (= ?b_m ?b_from ) ) )

: ef fect (and
(not ( on ?b_from ?b_m)) ( on_table ?b_m) ( c l e a r ?b_from)

)
)
( : action moveFromTable

: parameters (?b_m ?b_to − block )
: precondition (and

( c l e a r ?b_m) ( c l e a r ?b_to ) ( on_table ?b_m)
(not (= ?b_m ?b_to ) ) )

: ef fect (and
(not ( on_table ?b_m)) (not ( c l e a r ?b_to ) )
( on ?b_to ?b_m))

)
)
� �

Figure 2.4: Blocks domain description in PDDL.

or on another block. Finally, we describe the action schemas, which define the possible

transitions. In each action description, the precondition is a logical formula, and effects

describe the set of atoms that must hold in the state obtained through the application

of the action. Note that the keyword "not" specifies a negative atom. The instance

PDDL, Figure 2.5, captures instance-specific data, including the set of objects (blocks),
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the initial state of those blocks, and the expected goal state.�
( define (problem blocks−easy )

( :domain blocks −3ops )
( : objects A B − block )
( : in i t ( c l e a r A) ( c l e a r B) ( ontab le B)

( ontab le A) ( handempty ) )
( : goal (and ( on A B) ) )

)
� �
Figure 2.5: Blocks instance description in PDDL.

The other common extensions include PDDL 2.1, which Fox and Long [48] developed

for the 3rd international planning competition, offering support for numeric fluents and

durative actions. PDDL 3.0 and PDDL 3.1 add support for preferences, trajectory

constraints, and function symbols. Another extension, PDDL+, supports process and

continuous changes. In detail, we will look into PDDL 2.1 semantics in Chapter 3. We

will not discuss other extensions as they do not concern with the problems we address

in our work.

2.3.3 SAS`

SAS` [4] is an extension of Simplified Action Structure (SAS), which is like propositional

STRIPS except that it allows for multi-valued variables. While the planning benchmarks

are generally encoded in STRIPS, the SAS` representation has its benefits. The multi-

valued representation implicitly captures exactly one condition over a subset of atoms,

which in certain tasks allows for a more concise representation of a state that is an order

of magnitude smaller. Furthermore, it enables the computation of tighter heuristics

when the domain of variables is non-binary [70]. For this reason, Fast Downward [67]

translates PDDL into a SAS` representation, allowing it to tap into the benefits of the

SAS` formalism.

2.3.4 Complexity of Classical Planning.

Given a classical planning problem, we typically ask two types of questions: one is that

of PlanExists(P ) and the other is that of PlanCost(P , k), associated with satisfic-

ing and optimizing planning, respectively. PlanExists(P) asks: Does a plan π for P

exists?. On the hand, PlanCost(P , k) is concerned with the question: Is there a plan
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π with cost less than or equal to k that satisfies P?. We note that the complexity class

of the problem depends on the modeling language. Hence, the computational complex-

ity varies based on the exact model used to represent the classical planning problems.

The complexity class of these decision problems is PSPACE-complete in the standard

STRIPS representation [20]. Bylander also presents special cases of STRIPS seen as

easily identifiable modifications to the grammar of the language of lower complexity:

NP-complete and polynomial. Another similar work has shown complexity results for

the SAS` planning formalism [4]. Erol et al. [41] presented complexity results for vari-

ation in STRIPS specifications, asserting that the complexity depends on the nature

of the planning operators and ranges from constant time to EXPSPACE-complete. All

these results point to the fact that Classical Planning, in the general case, is intractable.

2.4 Computational Approaches

In this section, we cover two prominent computational approaches: Planning as Search

and Planning as Constraint Satisfaction, to solve planning problems and some major

previous works in this direction related to our research.

2.4.1 Planning as Search

In Planning as Search approach, we think of the model of Planning as a transition system,

a graph with states as vertices and transitions as edges, and hence, planning is reduced

to state-space search, in which an algorithm systematically explores a graph of possible

states and transitions to find a path from the initial state to one of the goal states. Any

graph traversal algorithms could be used for this purpose, including breadth-first search

(BrFS), depth-first search (DFS), and even cost-optimal paths could be found using

Dijkstra’s algorithm [33]. All these algorithms have low polynomial runtime complexity in

the graph’s size; hence, it would seem that we already have performant approaches. But

in planning, we use factored representations like STRIPS to specify the transition system

where the size of the transition system is exponential in the number of fluents in the

representation. This poses a fundamental challenge as the complexity of these algorithms

is not polynomial but exponential in the size of the planning problem. Therefore, these

algorithms do not automatically scale well on planning instances.
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An approach to handle the challenge is using informed search methods in which the

algorithm uses information about the goal to guide the search. The notion of informed

search stands in contrast with algorithms such as BrFS, DFS, and Uniform Cost Search

(Dijkstra’s), which are considered blind, as they do not use additional information. Many

performant informed search algorithms have been designed over the years, most of which

use a heuristic function [110, 38] to guide the search, including A˚ [65], IDA˚ [86],

MA˚ [146] which are complete, and also, incomplete algorithms like hill-climbing [132].

In the next section, we delve deeper into the heuristic search approach to planning, which

is also our research’s primary subject of investigation.

2.4.1.1 Heuristic Search

Incremental heuristic search over transition systems has formed the backbone of many

state-of-the-art planning systems over the years [15, 73, 67, 120, 145]. As the name

suggests, these algorithms use a heuristic measure that estimates the remaining cost to

the goal to guide the search. Of the many frameworks of heuristics search, best-first

search is the most prominent.

Best-First Search is an informed search algorithm that explores a graph by expanding

the most promising node according to a specified ranking function starting from the

initial state s0. A node in Best-First Search (BFS) carries necessary information about

how it was reached. It is typically defined as a tuple ps, gpnq, nparentq capturing the state

s, the cost of the path to the node gpnq, and parent node nparent. A ranking function f is

a linear combination of the accumulation cost to the node gpnq and the estimated cost to

the goal hpnq, i.e., fpnq “ v ¨gpnq`w ¨hpnq. A smaller fpnq value is typically considered

better, and the node with the smallest fpnq value is expended next. BFS maintains an

open and closed list to track the candidate nodes for expansion and already expanded

nodes, respectively. The search executes iteratively, selecting the best candidate from the

open list for expansion and generating its successors by applying all applicable actions,

incrementally developing a spanning tree of the transition system rooted in s0.

Standard search algorithms such as A˚, Greedy Best-First Search, and Uniform Cost

Search are all covered within this framework. They can be obtained by simply substi-

tuting the parameters v and w with suitable constants.
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For the A˚ algorithm, we set v “ 1, w “ 1 as we want to expand the node with the

minimum value of the evaluation function fpnq “ gpnq ` hpnq, breaking ties with the

hpnq value, smaller is better [65]. A˚ is popular in optimizing planning as it returns

optimal plans when provided with a non-negative cost function and a heuristic function

that is admissible. If the heuristic is consistent, the evaluation function f monotoni-

cally increases along the nodes on a path. The condition of admissibility requires that

@n, hpnq ď h˚pnq, where h˚ is the optimal cost to the goal from node n. Consistency

holds iff for all transitions pn, n1q in the transition system, hpnq ď costpn, n1q ` hpn1q,

where costpn, n1q “ cpaq, and a is the action responsible for the transition pn, n1q. More-

over, an extension of A˚ with duplicate detection and reopening produces optimal plans

with only admissible heuristics. A node n is considered a duplicate when the state in

the node is already captured by a node in the closed list. Without a guarantee of f

being monotonic, a shorter path to state in n is possible. Hence, reopening the node in

the closed list and comparing its cost against the path leading to n is necessary to give

an optimality guarantee. In this case, the node n is expanded iff it has a smaller cost,

in contrast to when the heuristic is consistent, where the duplicates can be discarded

immediately.

A common variation of A˚ is the WA˚ algorithm where the weight w ą 1 [115] are al-

lowed, making the method sub-optimal, although the cost of suboptimal plans is bounded

by the factor w. The algorithm is popular in the community when an optimality guar-

antee is unnecessary or near-optimal results are sought, as it empirically results in faster

solutions as the search more greedily targets the goal. An approach to start with a

high value of w and slowly reduce it to 1 [120] is commonly used for anytime planning,

including in our submission to the IPC 2023 satisficing track.

Similarly, Greedy Best-First Search and Uniform Cost Search can be obtained

by setting v “ 0, w “ 1 and v “ 1, w “ 0, respectively. These parameter choices

result in two search algorithms with contrasting properties, as Greedy Best-First Search

(GBFS) is wholly focused on getting closer to the goal at any time in the search without

considering the cost of the path. In contrast, Uniform Cost Search (UCS) only minimizes

the accumulated cost. Hence, GBFS is suited for satisficing planning and is generally

quite performant. UCS is optimal.
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2.4.1.2 Domain Independent Heuristics

Heuristic functions are a crucial factor impacting the performance of the Best-First

Search algorithms. While it is probably preferable to design domain-specific heuristics

when dealing with a particular class of problems, this approach does not work for the gen-

eral set of benchmarks the planning community is interested in, including the planning

competitions. Hence, the research in planning as heuristics search is mainly concerned

with general domain-independent heuristics, which, as the name suggests, do not depend

on the domain of the planning instance. That does not mean that these heuristics aren’t

tailored to specific structures of planning instances, just that no assumptions are made

on the existence of predicates, actions, and objects from a particular domain.

There are two main types of domain-independent heuristics. Analytically derived heuris-

tics, including delete-relaxed, hmax [15], hadd [73], hm [58] and LM-Cut [69], and learning

based heuristics like STRIPS-HGN [138]. Analytically derived heuristics typically use

some form of relaxation or abstraction of the original planning problem, such as ignoring

the deletions list of actions and grouping similar states. On the other hand, learning-

based heuristics are obtained by training a machine learning model on a training set of

solved planning problems using features extracted from the states and the action descrip-

tion. Both form separate fields within the planning community; we are only concerned

with analytical heuristics. Next, we explain the standard domain-independent heuristics

that form the baseline in planning competitions.

Perfect Delete Relaxation heuristic. This heuristic is the most common one and

also easy to understand. We simply forget the deletions list in the STRIPS operators,

resulting in a delete-relaxed problem where a solution can be found in polynomial time.

However, obtaining an optimal plan remains NP-complete [20]. The optimal cost from a

state in the delete-relaxed problem h` comprises the perfect delete relaxation heuristic.

Definition 2.3. A Deleted-relaxed problem of a STRIPS problem, P :“ xF,O, I,Gy,

is P` :“ xF,O`, I, Gy, where the operators O` are derived as

O` “ tPreo,Addo,H | o P Ou

The delete-relaxed heuristic is obtained as h`pnq :“ costpπ˚
`q, where π˚

` is an optimal-

cost solution to P` that uses the state captured by node n as the initial state.
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hmax heuristic. The h` heuristic is NP-complete, which implies that computing it

is likely intractable. This is not ideal for heuristic search, as we want fast heuristics,

much faster than the complexity of planning itself, ideally low polynomial. The hmax

heuristic addresses this issue by estimating the accumulated cost to achieve a state using

the maximal cost to achieve any atom of the state, relaxing the problem even further.

The resulting heuristic function is defined as follows.

hmaxpsq :“ max
qPG

hmaxpq, sq (2.5)

where the function hmax : 2F ˆ 2F ÞÑ R0
` is defined recursively.

hmaxpp, sq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if p Ď s

min
aPO,pPAdda

cpaq ` hmaxpPrea, sq, else if |p| “ 1

max
qPp

hmaxptqu, sq, otherwise

(2.6)

Notably, hmax is admissible, allowing for the construction of an optimizing method with

A˚. It is also computable in polynomial time using a dynamic programming approach.

hadd heuristics. While hmax assumes that the atoms achieved with equal costs are

achieved together, hadd takes a contrary position that atoms are achieved in sequence.

It is defined as follows.

haddpsq :“
ÿ

qPG

haddpq, sq (2.7)

where the function hadd : 2F ˆ 2F ÞÑ R0
` is defined recursively.

haddpp, sq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if p Ď s

min
aPO,pPAdda

cpaq ` haddpPrea, sq, else if |p| “ 1

ř

qPp
haddptqu, sq, otherwise

(2.8)

The hadd heuristic is not guaranteed to be admissible. Therefore, we cannot use it for

optimizing, but it is well suited for satisficing planning.

hm family of heuristics. The hm heuristics generalize the hmax heuristic, considering

the cost of achieving a set of atoms of cardinality less than or equal to m together. When

m “ 1, h1 is the same as hmax. When m “ 2, the highest cost of achieving any atom pair
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is used, and so on. Computing h2 for each node can be impractical in large problems.

However, it is still useful as a preprocessing tool to compute mutex pairs — atoms that

cannot occur together in any state, i.e., pair xp, qy is mutex when h2pxp, qyq “ 8 [2]. The

hm heuristic is defined as follows.

hmpsq :“ max
qĎG

hmpq, sq (2.9)

where the function hadd : 2F ˆ 2F ÞÑ R0
` is a recursively defined.

hmpp, sq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if p Ď s

min
aPO,AddaXp‰H,DelaXp“H

cpaq ` hmppzAdda Y Prea, sq, else if |p| ď m

max
qĎp

hmpq, sq, otherwise

(2.10)

LM-cut heuristic. A landmark is a condition that must hold in all plans. The literature

discusses two types of landmarks: Fluent and Action landmarks, which are formulae

over a set of facts and actions, respectively. The LM-cut heuristic, hLM-cut [69], is an

admissible heuristic that uses the notion of action landmark. It is commonly used for

optimal classical Planning with BFS, and we use it as a baseline to compare our work

on Lifted Sequential Planning. hLM-cut computation uses hmax with hLM-cut “ hmaxpsq

if hmaxpsq is 0 or 8. Otherwise, the cost is non-zero, and the heuristic is computed

using a disjunctive action landmark of the delete-relaxed problem. The action landmark

constitutes a set of actions with non-zero cost, such that every relaxed plan includes at

least one action. The exact computations steps for hLM-cut are non-trivial, and since it is

not a direct subject of our research, we request the reader to refer to work by Helmert [69]

for details.

2.4.1.3 Width-based Search

In this section, we explain, in detail, the family of width-based search algorithms, which

forms an essential subject of our research on tractable approximations discussed in Chap-

ter 4. We begin by explaining the measures of problem width and state novelty that are

central to these algorithms.
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Definition 2.4. The width of a STRIPS planning instance, P :“ xF,O, I,Gy, is defined

as the minimum value m such that the tuple graph Gm contains a tuple of atoms t Ě G,

where Gm “ xV m, Ey, V m is the set of tuples of atoms of size no greater than m, and

there exists an edge pt, t1q iff for each optimal plan π for P ptq :“ xF,O, I, ty, there exists

an action a P O, s.t. the plan obtained by concatenating π and a is optimal for P pt1q.

Lipovetzky and Geffner [91] proved that a planning instance with the width measure m

can be optimally solved in time exponential on m. Next, we explain an algorithm that

exploits these results when m is small.

Iterated Width (IW) The IW algorithm involves iterative calls to IW(k), k “ p1, . . . ,

|F |q until the problem is solved, where a call to IW(k) is guaranteed to produce an

optimal solution if the width of the problem is no greater than k. The time complexity

of IW(k) is Op|F |kq. IW(k) is designed as breadth-first search with a minor difference:

the successor states that do not pass a novelty test are pruned. The test uses the notion

of state novelty.

Definition 2.5. The novelty value of state s is the size of the smallest new tuple in

the set of all possible tuples (conjunctions) of atoms in s. The value is |F | ` 1 if no such

tuple exists. A tuple t is considered new if none of the states generated before s include

the tuple t, i.e., @s1 P Ppsq, t Ę s1, where we denote the set of states generated before s

as Ppsq “ ts1 | eps1q ă epsqu, and the mapping e : S ÞÑ N ranks a state in the order of

expansion.

Theorem 2.6. The time and space complexity of novelty computation for a state s with

novelty value k is Op|F |kq.

Proof. To test whether a tuple t of size k is the smallest new tuple in the set of all

possible tuples of atoms in s, one must enumerate all the tuples of size less than k and

verify it against a database storing the previously seen tuples. The count of tuples of

size no greater than k is
k
ř

i“1

`

|F |

i

˘

. Hence, the count of checks involved and the database

size is Op|F |kq.

In IW(k), the novelty test requires that the novelty value of a state s is no greater than

k. The node is pruned if the test fails, i.e., we treat the states with novelty value greater

than k as duplicates. As an example, if t “ pp, qq is the only new tuple in s, the novelty
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value is 2, but if there is another new tuple t1 “ ppq in s then the novelty value is 1. It is

important to note that in the absence of prior knowledge of the width of a problem, IW

is designed to target problems with a small width. Therefore, perhaps a more important

question is what kind of problems have low width. Lipovetzky and Geffner [91] showed

that when the goal set G is restricted to a single atom, most of the benchmark instances

of the IPCs appear to have low width, empirically. However, since the goals in most

planning problems require many atoms to hold in the final situation, IW generally does

not automatically scale on planning instances in their default specification. Much effort

has been put into research to handle this challenge, including Serialization of the planning

problem [94], and adopting Best-First Search to do exploration using novelty to guide

the search [92, 93].

Serialized Iterated Width. A prominent work addressing the challenge IW faces is

the Serialization of a classical planning problem, which assumes that the goal atoms

could be achieved in a particular sequence, allowing for decomposing the problem P

into a sequence of subproblems. Of course, such an ordering is unknown a priori, so

the question here is how to order the goal atoms. Serialized Iterated Width (SIW)

avoids explicitly answering this question by using IW to both serialize the problem P :“

xF,O, I,Gy and find a path in each of the subproblems. It solves a sequence of problems

Pk :“ xF,O, Ik, Gky, where k “ 1, . . . , |G|, I1 “ I, Ik, k ą 1 is the state in which Gk´1 is

achieved, Gk is the first set of atoms achieved from Ik using IW such thatGk´1 Ă Gk Ď G

and |Gk| “ k. Hence, the problem is decomposed into a sequence of planning problems

where goal atoms are sequenced in the order IW finds them. The kth iteration of IW

finds a path to a goal that contains atoms of Gk´1 and one additional atom from G.

As we can see, SIW does not rely on any heuristic guidance, and it solely depends on

the assumption of the width of the problem structure. Yet, the approach has shown

performance comparable to established heuristic methods [91].

Best-First Width Search. Since the notion of width and novelty is orthogonal to

that of standard heuristics used in planning, it is to no surprise that many works seek

to integrate the two [93, 92, 30]. Best-First Width Search (BFWS) is an effort in that

direction. BFWS is a family of algorithms where the evaluation function of BFS takes a

slightly different form and has shown state-of-the-art performance in the satisficing and

agile track of the IPC [116]. We defer the detailed discussion on BFWS to Chapter 4,

where we showcase our work on Approximate BFWS.
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Figure 2.6: Workflow of Planning as Constraint Satisfaction.

2.4.2 Planning as Constraint Satisfaction

One of the most significant advances in classical planning was the realisation of Green’s

vision for theorem proving [62] as a framework for general problem-solving via the ground-

breaking seminal work of Kautz & Selman [84, 83]. Putting together the insights of Blum

and Furst [12], where Planning becomes the problem of analyzing whether goal states

are reachable in a suitably defined graph, with space efficient solutions to the frame

problem formulated in the Situation Calculus [100, 63], Kautz & Selman showed that

formulating planning problems in terms of the satisfiability of Conjunctive Normal Form

(CNF) formulas was feasible and, at the time, highly scalable. Attention to Planning

as satisfiability has been somewhat eclipsed since then with the development of plan-

ning algorithms based on direct but lazy, incremental heuristic search over transition

systems [15, 73, 67, 120, 145]. Yet deep theoretical connections exist between Plan-

ning as satisfiability and as heuristic search [56, 123] questioning [125, 143] perceptions

of either approach as being parallel or mutually exclusive. In this section, we explain

the notion of planning as constraint satisfaction, covering both Constraint Satisfaction

Problem (CSPs) and its boolean specialization — Boolean satisfiability (SAT), and im-

portant previous works in this direction that have inspired our research on CP Encodings

of Sequential Planning.

Planning as constraint satisfaction is a way of solving planning problems using tech-

niques from the field of constraint satisfaction, which, if considered pedantically, only

involves approaches of Constraint Programming but could also include the approaches

in the fields of Boolean satisfiability, Mixed Integer Linear Programming, Satisfiability
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Modulo Theory, and Answer Set Programming, each of which is a specific field of con-

straint satisfaction. Figure 2.6 illustrates the steps involved in planning as constraint

satisfaction, requiring encoding Planning into CSP/SAT as the first step, which can then

be solved using general-purpose solvers. However, there are many challenges in designing

a planner within this framework. For one, unlike planning languages, the representation

of Constraint Satisfaction Problems does not have a way to encode action schema con-

straints directly, therefore requiring the specification of a complex set of constraints on

variables representing a solution sequence — a plan. Furthermore, since the plan length

is unknown, the encoders tend to bootstrap the encoding with an assumption on the

upper bound on the number of actions (edges in transition system) in the plan, and

increasing the bound when necessary, commonly known as iterated CSP solving. More-

over, it seems that there are many possible encodings of planning into CSP with starkly

different performances, which also vary with the choice of solving technology, usually

treated as black boxes, making developing performant encodings rather tricky.

In this, Kautz & Selman [84], and then Kautz & Selman & McAllester (KSM) [83]

were first to attempt to address these challenges, developing a practical reduction of

Planning into SAT and presenting several encodings for planning problems with STRIPS

description and examining the size complexity of the different encodings in terms of the

number of variables and the resulting SAT formulas, which was quite performant for

those times. They also proposed a new nonlinear causal encoding based on the theory of

causal planning that uses the concept of "lifting" from the theorem-proving, allowing for

further reductions in the number of variables used by the encoding by eliminating either

state or action variables. The authors initially [83] suggested that the causal encoding

strictly dominates the others in terms of asymptotic complexity, but later [135] concluded

that in practice, the performance of the causal encoding appeared to be worse than the

state-based encoding. We request the reader to refer to the original KSM paper [83] to

understand the encoding in detail. We present an encoding of Lifted Planning into CP

in Chapter 5 that is closely related to the KSM encoding.

Afterwards, the approach seems to have been eclipsed by planning as heuristics search [14]

with the many efforts to encode planning as CSP producing mixed results [35, 104, 149]

until Rintanen [128, 125, 123] put it back in the limelight with runner-up award in the

agile track of 8th International Planning Competition [126]. Rintanen accomplished this

through a long and exhaustive research endeavor that spanned over a decade, which
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involved developing efficient encodings of Planning based on D´step semantics [128],

parallelized/interleaved search strategies [127, 128], planning specific heuristics [125], bi-

nary mutex computations [122] and a specialized solver for large planning instances [124].

The work demonstrates that Planning as satisfiability, despite appearing simple after an

encoding is created, requires significant work to be made performant in typical planning

instances found in the IPCs. A later effort to refine Rintanen’s work, FreeLunch [116],

did not achieve the same kind of success.

2.5 Constraint Satisfaction

Constraint satisfaction problems (CSPs) involve finding an answer that satisfies a set

of constraints or relations, widely used to model combinatorial optimization problems

arising in artificial intelligence and operations research. This section introduces the basic

concepts of CSPs, discusses some examples and applications, and reviews prominent

computational approaches for solving CSPs.

Definition 2.7. A Constraint Satisfaction Problem [131] is defined as a triple

xX ,D, Cy, consisting of a finite set of variables X “ tx1, . . . , xnu, where the domain

of the variable xi is defined given by ith element of the tuple D “ pD1, . . . , Dnq, and

C “ pC1, . . . , Cmq is a tuple of constraints. Each constraint Ci is a pair pSi, Riq consist-

ing of a scope and a relation, where the scope Si Ď X defines the dependent variables,

and Ri Ď
Ś

iPrSis
Di

1 is a subset of the Cartesian product of the domains of variables in

the scope.

A solution to a CSP is an assignment to variables xi, σ̄ “ pσ1, . . . , σnq, such that

σi P Di, and each constraint Ci of C is satisfied, in that the projection of σ̄ onto the

scope Si is contained in Ri, i.e.,pσrSis1
, . . . , σrSisp

q P Ri. The CSP is unsatisfiable if no

such assignment exists.

2.5.1 Constraint Programming

Constraint programming (CP) is a paradigm for solving combinatorial problems framed

as a constraint satisfaction problem (CSP) in which the user defines a task as a set of

variables, domains, and constraints and lets a general-purpose search algorithm find a
1We use rX s to denote the ordered indexing of the elements of set X , e.g., rX s “ p1, . . . , nq for

X “ tx1, . . . , xnu
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solution that meets all the constraints. It has been successfully used to solve various

problems in operations research, including scheduling, planning, resource allocation, and

many other optimization problems [142, 131]. We can also view it as a form of declarative

programming where the user specifies the problem in terms of what needs to be satisfied

rather than how to satisfy it. It is strongly influenced by logic programming, rooted in

Constraint logic programming [78] where the user defines the problem as logical relations,

and the solver uses inference rules to derive a solution. This section briefly overviews the

CP approach to solving CSPs, which we use extensively in Chapters 5, 6, and 7.

The CP approach to solving CSPs involves various techniques, such as constraint prop-

agation, domain filtering, branching, backtracking, and heuristics to explore the search

space and prune the infeasible or suboptimal regions. A solver can also use hybrid

methods that combine CP with other paradigms, such as satisfiability, mathematical

programming, local search, or metaheuristics, a few of which we will cover in detail

in Chapter 6. Central to the research in CP is finding efficient methods for enforcing

constraints via propagation methods, where the key is to design fast methods to enforce

the local consistency conditions — for a subset of constraints, typically one constraint.

For example, if two variables x1 P t1, . . . , 10u and x2 P t1, . . . , 100u are in the scope of

constraint x1`x2 “ 10, then, we can prune D1 and D2 to t1, . . . , 9u since the remaining

values are inconsistent. There are different types of constraint propagation, depending

on the level of consistency that they enforce. One of the most basic types of consistency

is node consistency, which ensures that each variable has at least one value in its domain

that satisfies its unary constraints (constraints that involve only one variable). For ex-

ample, given the constraint x ď 1, and that the domain of x is t´2,´1, 1, 2u, we can

infer that 1 and 2 are inconsistent with the constraint and remove them from the domain

of x, assuring node consistency.

A stronger type of consistency is arc consistency, which ensures that for each pair of

variables that share a binary constraint, every value in the domain of one variable has a

compatible value in the domain of the other variable. Arc consistency is generalized into

domain consistency condition or generalized arc consistency, which includes non-binary

constraints. To further strengthen the consistency, we can use path consistency, which

ensures local consistency for each triple of variables that share two binary constraints,

i.e., every pair of values in the domains of two variables has a consistent value in the

domain of the third variable. Other types of consistency, such as k-consistency and
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global consistency, generalize the notion of consistency to larger subsets of variables and

constraints. However, enforcing higher levels of consistency is usually complex, requires

more computation time and memory, and may not be worth the effort if there is only

a slight reduction in search space. Therefore, the choice of the appropriate type of

consistency depends on the characteristics of the problem and the availability of efficient

inference methods.

We also note that while Constraint propagation is a powerful and efficient inference

method for solving CSPs, it is not always sufficient to find a solution or prove unsatis-

fiability. The constraint propagation would often reach a point where no more domain

reduction can occur, but the solution is unknown. In these cases, we must combine con-

straint propagation with a search method, such as backtracking or branch and bound,

that explores the remaining search space, trying different assignment values to the vari-

ables. Generally, the search method invokes constraint propagation at each step to prune

the search space further and improve the performance. For a broader study of typical

constraints in CP and inference methods used for constraint propagation and domain

reduction, we would request the readers to refer to the works of Marriot et al., Hooker,

and Rossi et al. [97, 74, 131].

Another framework for solving combinatorial problems closely related to the CP approach

to solving CSPs is that of Boolean satisfiability (SAT). The problem of SAT is a particular

case of constraint satisfaction, where the variables are all Boolean, and the constraints are

clauses. However, each of these approaches evolved independently until recently, when

the CP community began to compare, contrast, and integrate the two [153, 7, 108, 114].

In the next section, we explain the SAT paradigm, which forms the core of the Google’s

CpSat solver that we extensively study in our research.

2.5.2 Boolean satisfiability

Definition 2.8. A Boolean satisfiability problem determines whether there exists a

truth assignment σ̄ to the set of Boolean variables X “ tx1, . . . , xnu that satisfies the

propositional formula ϕ, where each literal li in ϕ is associated with a Boolean variable

xi such that li holds iff xi “ true.
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An assignment satisfies the formula ϕ, iff the result of substituting the literals li in ϕ

with the truth assignment of variables xi evaluates to true in the model of propositional

logic.

Both CSP and SAT are NP-complete [28, 87], and both can solve many of the same

classes of problems. However, the computation methods in both areas developed sepa-

rately, allowing for orthogonal approaches to emerge over time, leaving a potential for

integration. Indeed, even though the field of satisfiability continues to develop indepen-

dently, researchers in the past two decades have not only identified SAT encodings of

some CSP problems that outperform conventional CSP methods [114] but also integrated

the approaches in satisfiability with those used for CSP solving, benefiting from the best

of both worlds [113, 142]. One of the most prominent approaches towards this end is

Lazy Clause Generation [108], which combines Boolean satisfiability with Finite Domain

propagation.

Lazy Clause Generation (LCG). LCG exploits the advantages of both CP and SAT,

tapping into the efficient inference methods and search procedures in SAT while allow-

ing the users to express the problem as a more flexible CSP. The power of LCG lies

behind its ability to represent a complex system of constraints implicitly — without re-

quiring a large number of equivalent clauses in the SAT formula, significantly reducing

the burden on the SAT engine due to reduced memory footprint, and also, on the mod-

eler. We explain the concept of LCG with a simple example. Consider the constraint

x1 ` x2 ď 1 000 000, where x1, x2 P t0, . . . , 1 000 000u. We could encode this constraint

equivalently in SAT by creating a Boolean variable bij ðñ pxi ą jq for each value

j P Di and adding clauses ␣b1j _ ␣b2p1 000 000´jq. Even this trivial constraint that a

random assignment to the variables could satisfy in 1 out of 4 attempts requires over

a million clauses in the SAT formula. This is where LCG comes into the picture. It

allows the constraint x1 ` x2 ď 1 000 000 to be represented implicitly using a finite do-

main propagator that generates clauses of the form ␣b1j _␣b2p1 000 000´jq lazily, only to

enforce local consistency. The approach has tremendous potential in problems where a

small number of such clauses must be made explicit to find a solution. Indeed, when

integrated into the framework of Conflict-driven clause learning (CDCL), the approach

has shown state-of-the-art performance [142]. We seek to capitalize on this technology in

our experiments, extending the implementation of LCG in CpSat solver from Google’s

OrTools package [113].
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2.6 International Planning Competitions

The International Planning Competition (IPC) is an event that aims to evaluate and

advance the state-of-the-art in automated planning systems. The IPC is organized in

the context of the International Conference on Planning and Scheduling (ICAPS), a

leading venue for researchers and practitioners in Planning and Scheduling, which has

also helped to develop and spread planning technology and discover new challenges and

opportunities for planning research. The IPC has various tracks that target different

aspects or subfields of planning, including the Classical Track, one of the oldest and

most conventional tracks. It started in 1998 and has drawn many participants from

academia and industry.

As the name suggests, the Classical Track focuses on Classical Planning. Its goal is to

promote the advancement and evaluation of planning methods, measuring the state-of-

the-art approaches in planning and finding new challenging benchmarks. It is a significant

event for the community and a valuable source of information and inspiration for anyone

interested. Typically, the track has four sub-tracks: Optimal Track, in which the

planning systems must find an optimal plan for each problem or report that no such

plan exists, scored based on the number of problems solved and the time to solve them,

Bounded-Cost track requires a plan whose cost is below a given threshold or report

that no such plan exists, the systems are scored based on the number of problems solved,

the quality of the plans found, and the time to solve them, Satisficing track in which

the systems are scored based on the number of problems solved, the quality of the

plans found, and the time to solve them, and lastly, Agile track, which focuses on

finding a satisficing plan for each problem as quickly as possible. The diversity of tracks

allows the community to assess the performance of algorithms in various settings of the

environment(computational) and the objective. Next, we present a brief review of the

state-of-the-art approaches in planning over the years through the lens of the IPCs.

IPC 1998, 2000, 2002, 2004. The International Planning Competition grew rapidly

in the first few IPCs, from five contestants in 1998 to twenty in 2004. Heuristic search

planners were the dominant approach for Classical Planning in these competitions, with

HSP, FF, and FD planners [13, 15, 14, 73] performing very well. HSP uses the hill-

climbing search strategy with restarts, using hadd heuristic for guidance and restarting

whenever it gets stuck at local minima. On the other hand, FF, firstly, does an incomplete
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hill-climbing search that only considers helpful actions in the relaxed plan generated

along with hFF. Then, uses a greedy best-first search driven by hFF. Fast Downward

(FD) [67], the winner of the fourth IPC, is also a heuristic search planner. It is a highly

efficient implementation of SAS` formalism extended with axioms and conditional effects

and uses the Causal Graph Heuristic [70] with Greedy Best-First Search.

LPG [59] deviates from this trend and does not follow the forward heuristic search

approach of planning. Instead, it conducts a stochastic local search over partial plans

that are subgraphs of the planning graph [12], using the Walkplan heuristic, inspired by

Walksat [136], that measures constraint violations in the partial plan.

IPC 2011, 2014. Portfolio planners emerged to prominence in the 7th and 8th Inter-

national Planning Competitions, with a total of 10 planners using the approach in IPC

2011, which increased to 29 in IPC 2014 [148]. Stone Soup [71], a portfolio with many

heuristics — blind, hmax, LM-cut, landmarks, and M&S forming the ingredients, won

the optimizing track in IPC 2011, and IBaCOP [21] and MIPlan [107] ranked first, and

third, respectively, in satisficing track of the 2014. MIPlan uses a Mixed integer pro-

gram to select a suitable portfolio with the best achievable performance. On the other

hand, IBaCOP uses a Pareto efficiency technique [22] to select planners.

A noteworthy approach, not using any portfolios, was that of Madagascar [126], which

showed that the approach of planning as satisfiability that previously was unable to scale

on large problems, could be significantly enhanced by better implementation techniques,

allowing for planners that are very different from those following the approach of plan-

ning as heuristics search. Madagascar included several advances in planning as SAT,

including more concise and scalable encodings, parallel/interleaved search methods, and

planning heuristics for satisfiability. Madagascar is quite relevant to our work on plan-

ning as constraint satisfaction as Boolean satisfiability is a particular type of CSP, and we

discuss the empirical performance of Madagascar in Chapter 5. Another successful non-

portfolio approach was that of bi-directional symbolic search, used by SymBA˚ [145]

and cGamer [144], the winners of the optimizing track of IPC 2014. Symbolic search

represents transition functions and world states using binary decision diagrams (BDDs),

potentially achieving exponential savings in memory and runtime consumption and al-

lowing for more efficient integration of progression and regression-based search into ef-

fective bi-directional counterparts. SymBA˚ extends the bi-directional symbolic search
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to perform A˚, using parameter-based abstraction heuristics to guide the search towards

opposite frontiers from both forward and backward directions.

IPC 2018, 2023. In the last two IPCs, the portfolio planners have risen from their ear-

lier position of prominence to dominance in the ranking hierarchy, with all the winners

of IPC 2023 employing some portfolio approach. Delfi [82], an online portfolio planner

that uses a deep learning approach to choose the best planners for a problem, won the

optimizing track of the IPC 2018, and Stone Soup [71], a contender of IPC 2014 as well,

took the first spot in satisficing. Similarly, the winners of IPC 2023 [47] — Ragnarok,

Decstar, FD Remix, Scorpion Maidu, and Levitron, all use sophisticated portfolio ap-

proaches to choose the correct set of algorithms, highlighting the significant interest of

the community. We compare the performance of our work on optimal sequential Plan-

ning against Delfi. However, portfolio techniques can be hard to interpret. In particular,

they do not offer new perspectives on solving classic planning problems, and generally,

there is a limited explanation of the portfolio’s performance. Hence, we do not delve into

those aspects in our work.

We also observe the community acknowledging and addressing the bottleneck of ground-

ing lifted representations, with more efficient grounding approaches based on more effi-

cient general-purpose solvers like Gringo [55, 52], and lifted planning approaches that

do away with grounding as a preprocessing step altogether [29]. The Powerlifted and

Levitron [30] planners used the lifted planning approach, with Levitron finishing as the

runner-up in the satisificing track, and the winner Scorpion Maidu using an efficient

grounding approach based on Gringo. We compare this aspect in detail in the Sec-

tion 4.7.

The other noteworthy approaches include Complementary, a PDB heuristic [54] based

planner which used UCB1 algorithm to determine the size of the pattern database instead

of sequentially increasing it over time, Scorpion, an A˚ planner using Cartesian Abstrac-

tion Heuristics [133] and PDBs selected by saturated cost partitioning [133]. Also, two

width-based planners, BFWS-Preference and DUAL-BFWS, launch the approach into

prominence, as the notion of width finally takes shape in these state-of-the-art algorithms

for satisficing planning with the BFWS-Preference planner winning the Agile track and

the DUAL-BFWS earning the silver medal in the satisficing track. We extensively study

these algorithms in this research, and our work on approximations of novelty search ad-

dresses the challenges associated with the scalability of these algorithms. We submitted
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our work in the IPC 2023, and an extensive evaluation of the performance of the planners

is presented in Chapter 4.

Relevance to this work. For all of our experiments, we rely on the benchmark in-

stances from the classical track in IPC 1998 to IPC 2018. These problem sets offer a

broad range of instances with different dependency structures among the actions in the

possible plans and a variety of features, including domain size and complexity — from

small and simple ones such as Blocksworld and Gripper to large and complex ones such

as Logistics, action representation — actions can have universally quantified conditions

and conditional effects, plan quality — action costs specifications that challenge the

search algorithms differently, plan length — from single action to ones with thousands

of actions. The diversity in characteristics of the IPC instances allows us to report an

unbiased comparative performance of our algorithms in this thesis. Furthermore, it en-

ables us to understand, at a high level, how the structure of domains and properties of

instances affect the planner’s performance.





“If you want to walk fast, walk alone. But if you want to

walk far, walk together.”

Ratan Tata

3
Temporal Planning

In this chapter, we present the formalism of temporal planning and its limitations and

advantages. We also survey the noteworthy computational approaches, many of which,

as we see later, are incomplete, i.e., they strictly cater to a subset of temporal planning

problems and may produce unsound results for temporally expressive languages.

3.1 Introduction

One of the shortcomings of STRIPS is that its semantics is defined in the context of

classical sequential planning, which even Fikes and Nilsson point out in their 1993 retro-

spective [45]. Temporal planning eliminates that restriction, allowing actions to overlap

and execute simultaneously. Hence, while dealing with the sequencing concern in classi-

cal planning, we must also consider concurrency in temporal planning. This changes the

structure of the solution plan, too. Unlike classical planning, where we look for the best

sequence of actions based on their costs, temporal planning looks for the best schedule

that assigns actions to different time points. We also have another way of measuring the

45
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quality of a temporal plan. Instead of only caring about the total cost of actions, we

also care about the makespan, which is the shortest time needed to execute the whole

plan. The value of this increase in expressivity is limited in inherently sequential systems,

e.g., the NYT Letter Boxed and any other single-player game, which, however, becomes

apparent in the case of multi-agent systems.

Figure 3.1: Chronological order of events in Temporal Machine Shop1.

When multiple agents work together on interdependent tasks with temporal constraints,

temporal planning is beneficial for finding a time-efficient solution. This type of plan-

ning problem is often encountered in robotics and industrial settings, where agents must

coordinate their actions to achieve a common goal. Consider the situation of temporal

machine shop (TMS) illustrated in Figure 3.1. The objective of the problem is to create

ceramics with an efficient allocation of resources. The process of making ceramics in-

volves four interdependent tasks or actions: fire kiln, bake, treat, and finish. The chemical

treatment must be done while the pot is baking, and baking requires that the kiln is lit

up. Hence, these durative actions must occur concurrently and cannot be sequenced.

On the other hand, finishing the pot must be sequenced after baking and treating and

is independent of whether the kiln is fired, showing that the concern about sequencing
1This diagram has been designed using images from Flaticon.com
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persists. The TMS problem is a relatively small portion of a large system of machines

with complex dependencies. An actual industry application would require more involved

planning models. Yet, it cannot be expressed in the classical planning model. This high-

lights the importance of developing formal languages to express temporal (concurrent)

planning and computational approaches to solve these problems.

Most of the initial work on computation approaches to temporal planning focused on

extending classical planning, suffering from the same limitations as its parent — being

unable to verify temporally expressive languages that can represent problems requiring

concurrent execution. This sets the context of our work in Chapter 7, where we address

this challenge of required concurrency.

Chapter Outline. First, the temporal planning models are explained. Then, we briefly

discuss the computational complexity results. After this, we present the different com-

putational approaches to temporal planning and the related works. Finally, we present

a brief history of temporal planning from the perspective of international planning com-

petitions.

3.2 Models of Temporal Planning

Standardizing the semantics of temporal planning has been a contentious issue, with mul-

tiple propositions suggesting different semantics. This issue percolates throughout the

planners addressing temporal planning, with many assuming specific semantics accord-

ing to what works for their approach. Throughout our work, we stick to the semantics

of temporal planning as specific in the work of Fox and Long PDDL2.1 [49], limiting

the syntax to the STRIPS fragment — without considering the numeric effects and pro-

cesses. For this, there are two models of temporal planning, one based on dense-time

representation [61] and the other based on discrete-time formulation [121].

3.2.1 Dense formulation

The standard semantics of PDDL 2.1 consider the time domain to be dense, i.e., between

any pair of time points, there will always be a third. In this context, we use the model

of temporal planning presented by Gigante et al. [61] to explain the semantics of PDDL
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2.1. The model incorporates most of the syntactic elements of STRIPS and adds durative

actions to the building blocks.

Definition 3.1. A temporal planning problem is a tuple, P :“ xF,O, I,Gy, where

F is the set of propositional atoms, O is the finite set of operators, I Ď F is the initial

state, G Ď F is the goal condition. An instantaneous operator o P O is a tuple o :“

xPreo,Addo,Deloy, where Preo is a set of atoms, Addo and Delo are the set of positive

and negative effects, respectively. On the other hand, a durative (temporal) action is a

tuple xo$, o $,PreØo , rLo, Uosy, where o$, o $are instantaneous actions, PreØo is the set

of conditions that must hold over the duration of action and rLo, Uos specifies the lower

and upper bound on the duration of actions. When Lo “ Uo, the duration is fixed.

Definition 3.2. A solution or plan to the temporal planning problem is a tuple π :“

xpo1, t1, d1q, po2, t2, d2q . . . y, where oi is a durative actions, ti is a start time of oi and di

is the duration of action.

Plan Validity (Semantics). The model of temporal planning is not as closely asso-

ciated with a transition system (graph) as the classical planning model. The semantics

of durative actions involve conditions over multiple time points, making them harder

to explain. Gigante et al. simplify this by introducing set of time snap actions (TSA)

and induced plan, which allows the authors to explain plan validity in terms of classical

execution of the induced plan.

Definition 3.3. A set of time snap actions of plan π :“ xpo1, t1, d1q, po2, t2, d2q . . . y

is defined as the set of instantaneous actions in the plan.

Hπ :“ xpt1, o1$q, pt1 ` d1, o1 $q, . . . y

Definition 3.4. An induced plan of plan π :“ xpo1, t1, d1q, po2, t2, d2q . . . y is a sequence

πind :“ xpt̂1, ta | pt̂1, aq P Hπuq, . . . y, ordered in terms of increasing time values, i.e.,

@i ă j, t̂i ă t̂j .

The induced plan consists of a set of time snap actions executing simultaneously at the

same time point, but it says nothing about the structure of these actions. This is impor-

tant as the snap actions may contain mutually exclusive atoms in their preconditions and

effects that cannot hold together. Hence, the existence of mutex actions would invalidate

the plan.



List of Tables 49

Definition 3.5. A pair of snap actions pa, a1q are mutex iff Prea X Dela1 ‰ ϕ, or

Prea1 XDela ‰ ϕ, or Adda1 XDela ‰ ϕ, or Adda1 XDela ‰ ϕ.

Definition 3.6. A plan π :“ xpo1, t1, d1q, . . . pon, tn, dnqy is valid if the induced plan

πind maps into goal when executed sequentially, the overall and durative constraints

hold, and any pair of mutually exclusive instantaneous actions do not occur at the same

time. That is, the following conditions are met.

1. The action durations are within limits, Lai ď di ď Uai

2. Mutex actions do not occur at the same time point, @I P t1, . . . ,mu, Epa, a1q P

Bi,mutexpa, a
1q, where πind :“ xpt̂1, B1q, . . . pt̂m, Bmqy

3. For all the actions in any set Bi of the induced plan πind :“ xpt̂1, B1q, . . . pt̂m, Bmqy,

the preconditions hold in the previous state
Ť

aPBi
Prea Ď si´1, where si is defined

as psi´1z
Ť

aPBi
Dela Y

Ť

aPBi
Addaq and s0 “ I

4. The final state achieves the goal, G Ď sm

5. The overall preconditions hold over the duration of the action, i.e., @po, t, dq P π,

@k P t1, . . . ,mu, @â P Bk, t ď t̂k ď t ` d Ñ PreØo Ď sk, where xpt̂1, B1q, . . . ,

pt̂m, Bmqy is the induced plan

ϵ-separation. Mutually exclusive (mutex) events must be separated by a non-zero

amount of time. Historically, there has been ambiguity in the semantics of time difference

in this context. Gigante et al. [61] clarify this by separating it into two classes. One

follows the ϵ-separation semantics where the amount of time separation ϵ is given upfront,

and otherwise, the semantics is that of ą 0-separation.

Complexity of temporal planning with dense-time semantics. Gigante et al. [61]

prove that the complexity of the temporal planning model in Definition. 3.1 with ϵ-

separation is EXPSPACE-complete when self-overlapping of actions is allowed, otherwise

it is PSPACE-complete.

3.2.2 Discrete formulation.

Rintanen [121] presents a different temporal planning model based on discrete-time rep-

resentation. Here, the time domain is N “ t0, 1, . . . u, and the action preconditions and

effects are defined over the set of time points relative to the start time.
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Definition 3.7. A discrete-time temporal planning model is defined as a tuple

P “ xA, I,O,G,R,Dy where, A is the finite set of state variables, O is the finite set

of actions, I : A Ñ t0, 1u is the initial state (a valuation of A), G P L is the goal,

R : O Ñ L, maps actions to their preconditions and D is a finite set of rules.

In this, L is a temporal language with operators ri . . . jsϕ, i, j P t. . . ,´1, 0, 1, . . . u, i ď j

is used to define durative conditions, ri . . . jsϕ means that ϕ holds in all time points

ti ` t, . . . , j ` tu, where t is the current time point. Also, rules are used to define

conditional effects, where a rule is a tuple xp, ey where p “ ri, . . . , jsϕ is in L and e is a

set of atoms, implying that if ϕ holds at points ti` t, j ` tu, then l P e is made true at

t` 1.

The semantics of the model involves defining a valuation function v : NˆpAYOq Ñ t0, 1u

that captures whether an atom holds or an action is taken at a time point. To establish

the relationship between the actions in the plan and the valuation function, a relational

predicate (t is defined

v (t a iff t ě 0^ vpt, aq “ 1 or t ă 0, vp0, aq “ 1,

v (t o iff vpt, oq “ 1,

v (t ␣ϕ iff v *t ϕ,

v ( ϕ^ ϕ1 iff v ( ϕ ^ v ( ϕ1,

v ( ϕ_ ϕ1 iff v ( ϕ _ v ( ϕ1,

v (t ri, . . . , jsϕ iff @h P ti, . . . , ju, v (t`h

where a P A, o P O, ϕ, ϕ1 P L, and i ď j.

Definition 3.8. A plan π : T Ñ 2O is valid iff there exists a valuation such that

1. vp0, aq “ Ipaq

2. Actions in the plan are true in the valuation, vpi, oq “ 1 iff o P πpiq,

3. All conditional effects are applied, vpi, aq “ 1 if xp, ey P D, a P e, v (i´1 p, and

vpi, aq “ 0 if xp, ey P D, ␣a P e, v (i´1 p
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4. Frame axioms hold, vpi, aq “ vpi ´ 1, aq if there is no rule p with effect literals a

or ␣a such that v (i´1 p,

5. Preconditions of actions in the plan are satisfied, v (i Rpoq for all o P πpiq,

6. Mutex effects are separated, i.e., no pair of rules pxp, ey, xp1, e1yq in D ˆ D exist

such that a P e and ␣a P e1 and v (i p^ p1

7. Goal condition is met, t “ max pT q, v (t G

Complexity of temporal planning with discrete-time semantics. Rintanen [121]

proves that the complexity of temporal planning model in Definition. 3.7 is EXPSPACE-

complete.

3.3 Computational Approaches

3.3.1 Search and scheduling

Most common approaches to temporal planning fall under the bracket of techniques

that look at it as an intersection of problems of searching for actions in the plan and

scheduling them such that the temporal constraints hold. The search component typically

borrows methods from the classical planning counterpart, including heuristics repurposed

for concurrent planning and mutex computations. This section explains the typical

variations in how the search and scheduling problems are framed and solved.

STRIPS reduction and rescheduling. Early temporal planners, including LPG [59],

MIPS [37], and YAHSP-MT [151], used the simple approach of compiling the temporal

planning problem into a sequential one and solving it with a classical planning approach,

and then greedily rescheduling the actions in the plan to obtain a temporal plan. Simple

does not mean that these approaches do not perform well. The YAHSP won the temporal

track in IPCs of 2011 and 2014, and LPG and MIPS were winners of the first-ever

temporal track, IPC 2002. However, all of them have two drawbacks. One, they are

incomplete, i.e., they do not cover all the instances with required concurrency, and two,

they cannot be used for optimizing makespan.

Decision Epoch Planning. Another approach is choosing a timestamp first and then

deciding the actions to execute at the timestamp, i.e., the search progresses by choosing
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a new action at the current timestamp or progressing the timestamp. However, this

method has similar drawbacks of inability to handle required concurrency cases [31].

Many planners, including TLPlan[3], TFD [42], and SAPA [36] follow this approach.

Forward-chaining. Planners including CRIKEY [64, 27], COLIN [26], POPF [25],

and OPTIC [8] follow an approach that involves making two different kinds of decisions

during the search — while the plan is being constructed, differentiating it from the trivial

method of STRIPS reduction and rescheduling. The first decision is what action to add

to the plan, and the other is when to execute it. While CRIKEY and COLIN planners

perform a total-ordered search, POPF and OPTIC adopt a forward-chaining strategy

that allows for partial-ordering of actions by delaying the commitment to order. The

temporal constraints are handled by constructing a Simple Temporal Problem (STP) [32]

that can be solved in polynomial time by solving the shortest-path problem within the

directed graph representation of the STP, a Simple Temporal Network (STN).

The forward-chaining planners are suggested to be complete, i.e., they can handle tempo-

rally expressive planning languages and have state-of-the-art performance in optimizing

planning. However, as we will explain in Chapter 7, the approach seems to struggle with

some trivial problems with required concurrency.

Decomposition-based approaches. In contrast to the above methods, TGP [140, 96]

and ITSAT [118] follow a path of one-shot decompositions, in which there is no iteration.

3.3.2 Direct compilations into CSPs

The components of temporal planning, including numeric state variables, durations, in-

tervals, and scheduling constraints, all have the flavor of a CSP. Hence, it is surprising

that there are not as many works in this direction, highlighting the difficulty of for-

mally expressing the semantics of temporal planning, including the temporally expressive

languages. A prominent work demonstrating compilation into CP is CPT [152] that

models the restricted case [140] of temporal planning. It has directly inspired our work

on encoding planning into CP for both temporal and sequential planning. We explain

the encoding of CPT in more detail in Chapter 7. The ITSAT [118] planner is another

candidate in this space. It compiles temporal planning into Boolean Satisfiability (SAT)

— letting the SAT solver handle the logical component, and solves an STP to verify the
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STN. More recently, Panjkovic [109] presented encodings of temporally expressive plan-

ning into Optimal Modulo Theory (OMT) that can handle both required concurrency

and makespan optimal planning.

3.4 Temporal Planning in International Planning Competi-

tions

The first competition to focus on temporal and metric planning was the 3rd planning com-

petition, which was organized in 2002 under the chairmanship of Maria Fox and Derek

Long. The planners were required to deal with more complex domains and problems

involving time and numbers (such as scheduling and resources), and therefore, the com-

petition used the newly proposed language of PDDL 2.1 [48] that builds upon the syntax

of PDDL 1.2 [60], additionally allowing for modeling of temporal and numeric aspects.

Two fully automated planners, LPG [59] and MIPS [37], showed distinguished perfor-

mance of the temporal planning instances, both of which use an approach to reschedule

total order plans and could handle temporally simple planning problems. The 4th plan-

ning competition, held in 2004, saw the rise of planning as constraint satisfaction as a

performant approach for temporal planning, with a reduction of temporally simple plan-

ning into constraint programming, CPT [152] winning the optimal track. CPT extends

the CHOCO CP library [88] with more efficient implementations of certain propagators

and does a lot of reasoning in the preprocessing stage, including reachability using hm

heuristic, to propagate domain constraints on fluent and action variables.

The temporal track, especially the optimal temporal planning track, has received lack-

luster attention since the 5th international planning competition, IPC 2006, which saw

CPT winning the temporal optimizing track again. The optimizing track was canceled

in IPCs held in 2008, 2014, and 2018 due to a lack of submissions, and the temporal

track was entirely absent from the most recent IPC 2023, highlighting a lack of progress

in the field. The temporal satisficing track continued to receive fair attention until

IPC 2018, in which the noteworthy planners were Temporal Fast Downward (TFD) [42],

YAHSP-MT [150, 151], and POPF [25, 8]. TFD is an extension of the Fast Downward

planning system to temporal planning, which implements the decision-epoch approach

and uses context-sensitive additive heuristics hcea [70] to guide the search. YAHSP-MT

uses the same rescheduling approach as LPG and MIPS. POPF comes from the family
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of planners starting with CRIKEY [64], in which the problem is decomposed into the

problem of finding a partial ordering of actions, which could be done by lifting a total

order plan, and the temporal component of when to execute them that is managed using

a simple temporal network (STN).
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“Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear

less.”

Marie Curie

4
Approximate Novelty Search

Width-based search algorithms seek plans by prioritizing states according to a suitably

defined measure of Novelty that maps states into a set of Novelty categories. Space and

time complexity to evaluate state Novelty is known to be exponential on the cardinality of

the set. We present novel methods to obtain polynomial approximations of Novelty and

width-based search. First, we approximate Novelty computation via random sampling

and Bloom filters, reducing the runtime and memory footprint. Second, we approximate

the best-first search using an adaptive policy that decides whether to forgo the expansion

of nodes in the open list. These two techniques are integrated into existing width-based

algorithms, resulting in new planners that perform significantly better than other state-

of-the-art planners over benchmarks from the International Planning Competitions.

57



List of Tables 58

4.1 Introduction

Autonomous systems operating on the edge of computer networks or that only have

occasional, sporadic access to vast, centralized computing resources require decision-

making algorithms that work under those conditions. Not only are low response times

required to seek courses of action that are safe and effective, but also, the memory

available for such computation is limited. The need to adapt existing heuristic search

algorithms, such as A*, to deal with time and space restrictions was recognized early

on [23] and followed-up recently [146, 34].

In this chapter, we look at width-based search methods [91], a family of algorithms that

rely on heuristics that measure the novelty of a state, comparing its information content

with that of states visited in the past. Originally developed in the context of classical

planning [57], when combined with other heuristics [15, 72, 93, 81], width-based planners

become state-of-the-art and competitive with portfolio solvers [116]. A major shortcom-

ing of the latter width-based methods derived from best-first search (BFS) [38, 110],

such as those used by the planner DUAL-BFWS, is that measuring Novelty is expo-

nential on the number of discrete levels or categories used to rank states. Lipovetzky

and Geffner [91] showed that an upper bound exists for any given classical planning in-

stance, yet this result cannot be exploited, as this bound results in impractical runtimes

to evaluate states, a crucial issue for the effectiveness of heuristic search methods.

We address this issue by proposing new methods to obtain polynomial approximations

of Novelty and to control the growth of the memory footprint of BFWS algorithms. The

first contribution is an appraisal approximation of the Novelty of state information by

randomly sampling the space of possible valuations of state variables and using Bloom

filters for efficient but imprecise storage of state information. The second contribution is

a novel form of best-first search, which uses an adaptive policy that decides whether to

delay the generation of successor states. This policy is derived from the analytical solu-

tion to an infinite-horizon Markov Decision Problem (MDP) [9], where its cost function

controls the representation of different Novelty categories in the open list.

Chapter Outline The chapter is structured as follows. We concisely discuss background

material covering classical planning, width-based search, and Bloom filters. Sections 4.3

and 4.4 expound the contributions of this work, approximations of Novelty measurements,
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and search. We evaluate both over every benchmark in the IPC satisficing track. We

finalize with a discussion of our results’ importance and potential impact.

4.2 Understanding Novelty Measure in Classical Planning

The planners discussed in this chapter are instances of the classic heuristic search al-

gorithm named Best-First Search [38, 110] or BFS for short. This algorithm searches

for plans by incrementally extending all paths (nodes) in SpP q starting from s0. The

nodes are visited in the order specified by an evaluation function f defined over paths,

and the algorithm terminates in the first path that ends on a state s P SG. BFS im-

plicitly enumerates the states s in SpP q by assigning to them a natural number, the

expansion order, epsq [34], which is 0 for s0 and increases by one unit for every new state

s extending an existing path. We denote the set of states generated before s as Ppsq “
t s1 | eps1q ă epsqu. As we will see in the next section, this ordering is crucial to define

Novelty measures.

4.2.1 Best-First Width Search (BFWS)

BFWS [93] is a family of BFS algorithms where the evaluation function for a node n,

fpnq is defined as a tuple of functions

fpnq “ pw, h1, . . . , hmq

where w : S Ñ W is the function measuring novelty, that maps states s P S into

categories ω P W, W Ă N, and H “ th1, . . . , hmu is a set of suitably chosen functions.

When inserting nodes n in the open list, BFWS algorithms sort the list in increasing

order according to the first function in fpnq, breaking ties recursively with the provided

hi. These functions can also be used to partition the set of states generated before s as

Pps,Hq “ t s1 | eps1q ă epsq, hpsq “ hps1q @h P Hu.

Definition 4.1. The novelty wpsq “ wxHypsq of a state s given a set of partition functions

H over states s P S is k, iff (1) exists a tuple1 t Ď F of size k, s.t. s ( t ^ @s1 P Pps,Hq,
s1 * t, (2) for all tuples t Ď F of size k1 ă k, s * t _ Ds1 P Pps,Hq, s1 ( t.

1Conjunction of atoms.
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As the introduction notes, BFWS algorithms are state-of-the-art compared to the IPC

classical planning benchmarks. We explain the BFWS framework by discussing one of

the best-performing algorithms in the Agile track (IPC 2018), BFWS(f5), in detail.

The evaluation function f5 “ xw,#gy makes BFWS expand novel states first, breaking

ties with a simple goal counting heuristic [106] #gpsq. The Novelty function uses two

heuristic functions to partition the Novelty space w “ wx#g,#ry, one is goal count, #gpsq,

and the other, #rpsq, counts the atoms p achieved along the path to s, such that p P R,

R Ď F , where R is selected by a relevance analysis procedure. R is meant to contain

atoms which are instrumental to reach the goal efficiently, so for domain-independent

planning, one can instantiate R as a set of landmarks [72], or the set of fluents which

belong to positive effects of actions in the relaxed plan from s0 [73]. Both of the above

definitions of R were used in the planner DUAL-BFWS, and the latter was used in

BFWS(f5).

Evaluating wpsq requires testing states s to belong to the categories ω PW. Lipovetzky

and Geffner [93] define W as the integer interval r1, i`1s where i is the size of the largest

novel tuple generated by optimal plans for P . In this case, the test above requires to

generate exhaustively all tuples t of size i present in state s and determine if they are

present in Pps,Hq. An optimal procedure to implement Definition 4.1 follows. For each

tuple of size 1 ď l ď i, let βlpsq “ tt | t Ď F , s ( t, |t| “ lu2. Starting with l “ 1, we

enumerate tuples t P βlpsq, and then test if t is part of previously observed tuples in the

set N psq =
Ť

s1PPps,Hq βlps
1q.

If the test is negative for at least one tuple, then wpsq :“ l. Otherwise, we must test

the elements of βl`1 until l “ i. If the test is positive for all t P βi, then the state is

considered not novel, and wpsq :“ i ` 1. This leads to the exponential time and space

Op|F |iq requirements to evaluate wpsq that we outlined in Section 4.1. While i is known

to be generally way smaller than |F |, the bound i is usually high enough to render

the Novelty test up to i impractical. In the case of the IPC benchmarks, any value of

i ą 2 leads to very high runtimes to generate states. In practice, wpsq is approximated

by setting i to an arbitrary lower bound, which renders the evaluation of wpsq to be

tractable but may relegate states with valuable information to the back of the open list.
2We note that βl can be iterated by lazily generating its elements.
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4.2.2 Bloom Filters

Bloom filters [11, 95] are a probabilistic data structure to represent sets efficiently, at

the expense of allowing false positives when testing whether the set contains a given

object. Typical implementations of Bloom filters consist of a bit-array v of size r, where

all entries vj are initially set to K, and K independent hash functions η that map objects

into the range r1, rs. To add an object o as a member of the set represented by the Bloom

filter, the K hash functions ηl are evaluated on o, so vηlpoq :“ J for l “ 1,..., K. To test

whether o is in the set, the hash functions ηl are evaluated, and if all vηlpoq :“ J, then o

is considered to be an element of the set. Compared to a traditional hash table whose

size grows with that of the range of possible objects, the Bloom filter has fixed-size r.

The value choice for r determines the probability of obtaining a false positive. That is,

testing o for containment and getting a positive answer when o has not been previously

added as a member. As noted in [18], the probability of a false positive is given by

Pf “
´

1´ e´
Kq
r

¯K
(4.1)

where q is the expected number of different objects to be tested. The analytical solution

to the problem of minimization of false positive rate concerning K shows that Pf is

minimized when K = pr{qq ln 2 [18]. Since the expected number of different objects,

nodes in planning, tends to be larger than the memory, it follows that when pr ln 2q ď q,

then K = 1 minimizes Pf .

4.3 Novelty Approximation

In this Section, we describe an approximate measure of Novelty for newly generated

states, ŵpsq, which is tractable and can be proved equal to wpsq with positive probability.

For that, Definition 4.1 is relaxed as follows.

Definition 4.2. The approximate novelty ŵpsq “ ŵxHypsq of a state s given a set of

partition functions H over states s P S is k, iff (1) exists a tuple t Ď F of size k, s.t.

t P Zkpsq ^ @s
1 P Pps,Hq, Ops1, tq “ K, (2) for all tuples t P Zk1psq of size k1 ă k,

Ds1 P Pps,Hq, Ops1, tq “ J.
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We have changed Definition 4.1 in two ways. First, we only test the tuples from a

randomly sampled set Zlpsq Ď βlpsq, for l “ 1,...,i. We require that the probability of

every tuple in βlpsq being selected is uniformly distributed. For that we sample without

replacement from the discrete uniform distribution over βlpsq, with probability mass

function pXptq = z{|βlpsq| for all t P βlpsq, z = |Zlpsq|, representing the probability of

occurrence of t in Zlpsq. Second, we replace the condition s1 * t for a random variable

Ops1, tq that models the runtime behavior of a Bloom filter. Ops1, tq maps pairs s1, t to J

with probability 1 when s1 ( t and t P Zlps1q, otherwise, it maps s1, t to K with positive

probability. The tractability of ŵpsq follows from requiring r, the number of entries in

the Bloom filter, and |Zlpsq| ď Z̄, where Z̄ is the maximum size of Zlpsq, to be constants,

e.g., Z̄ “ r “ |F |. It is trivial to note that the running time of any reasonable algorithm

for computing ŵxHypsq as per Definition 4.2 is OpiZ̄q and memory requirement is Opirq,

dropping the complexity of tuple membership checks from exponential to linear on i.

These two simple changes suffice to allow measures of Novelty that are much finer than

what can be obtained with highly optimized implementations of wpsq, but certainly, and

as noted at the beginning of the Section, there is a certain probability that ŵpsq and wpsq

will not be in agreement. The rest of this Section is devoted to providing a probabilistic

model of the rate at which approximate and actual Novelty disagrees.

4.3.1 Impact of Sampling

We proceed now to derive the probability of error induced by sampling from βlpsq follow-

ing the discrete uniform distribution. By error we refer to the event of wpsq ‰ ŵpsq, that

is ŵpsq is greater or less than wpsq for a state s. We start by defining the probability

γt, given s and Pps,Hq, of a particular tuple t P βlpsq observed as new in s, that is

t R
Ť

s1PPps,Hq Zlps
1q and t P Zlpsq, as

γt “

¨

˝

ź

s1PP 1
tpsq

ˆ

1´
z

|βlps1q|

˙

˛

‚

z

|βlpsq|
, (4.2)

where P 1
tpsq is defined as the set ts1 | s1 P Pps,Hq, s1 ( tu, z is the sample size, z{|βlpsq|

follows from the probability mass function pX . The event of taking a sample at s is

independent from that of sample at s1 P Pps,Hq, which allows us to use the product rule.

Also, it follows that as z Ñ |βl| the probability γt Ñ 0, when P 1
tpsq‰H, and γt Ñ 1,
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when P 1
tpsq“H. That is, if all tuples t P βlps1q are sampled in each s1 P S, as we do when

computing Novelty exactly, the probability of t being new in s is 0, if t P
Ť

s1PPps,Hq Zlps
1q,

and 1 otherwise.

From Equation 4.2, we follow that the probability of tuple t not being new is r1´ γts.

We use this result to compute the probability that none of the tuples t P βlpsq are new,

assuming independence between different tuples to make the derivation tractable, as

pl “
ź

tPβlpsq

r1´ γts . (4.3)

Using Equation 4.3, we can now define the probability of approximate Novelty measure

to be greater or smaller than actual, PH “ P pŵpsq ą wpsqq, PL “ P pŵpsq ă wpsqq

respectively, as

PH “

wpsq
ź

i“1

pi, PL “

¨

˝1´

wpsq´1
ź

i“1

pi

˛

‚. (4.4)

Finally, the probability of approximate and actual Novelty measures to agree, PC “

P pŵpsq “ wpsqq, is :

PC “

¨

˝

wpsq´1
ź

i“1

pi

˛

‚

`

1´ pwpsq

˘

. (4.5)

In Lemma 4.3 we prove the sum of probabilities in Eqs. 4.4 and 4.5 to be 1, and where

pPL ` PHq is the total probability of sampling-induced error.

Lemma 4.3. The sum of probabilities PL, PH and PC is 1.

Proof. Let q “
śwpsq´1
i“1 pi be the probability of not finding new tuples with Novelty below

wpsq. Then, Equations are rewritten as PL “ 1´ q, PH “ q pwpsq and PC “ q p1´ pwpsqq

for a given Novelty wpsq. Hence, PL ` PH ` PC “ p1 ´ qq ` q pwpsq ` q p1 ´ pwpsqq “

1´ q ` q pwpsq ` q ´ q pwpsq “ 1, proving the correctness of equations.
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4.3.2 Synergies between Sampling and Bloom Filters

Ppsq size is Opbdq, that is, exponential on the branching factor b of the transition system

SpP q and the length d of the path to s from s0. Therefore, replacing N psq =
Ť

s1PPps,Hq

βlps
1q by a Bloom filter with r entries cannot come for free. While the Bloom filter will

always give the correct answer to membership queries for tuples t that are in N psq, it

can produce false positives for membership, as it incorrectly gives a positive answer for

tuples t1 R N psq.

We note that sampling from βl enables the use of Bloom filters to "approximate" N psq.
This is because it leads to a reduction of the probability of false positives Pf given in

Equation 4.1, in comparison with what we would obtain from using βl directly as in the

algorithm for wpsq given in Section 4.2.1. This observation follows from noting that q

in Equation 4.1 is the expected number of distinct tuples t sampled during the search,

and the rate of growth of this random variable is directly proportional to Z̄. The smaller

Z̄ is, the slower q will grow. From Equation 4.1, we can see that the probability of

false positives Pf increases with the ratio q{r, which in turn depends only on q as r is a

constant. Therefore, the rate of growth of Pf depends on Z̄.

Finally, we note that Pf will be maximized when q is exponential on l, the maximum

size of the tuples considered. Then, in principle, the false positive probability increases,

too as l grows larger.

4.3.3 Total probability of error.

To obtain the total probability of erroneously appraising the Novelty of a newly generated

state s, Perror, we incorporate Equation 4.1 into Equation 4.2

γt “

»

–

¨

˝

ź

s1PP 1psq

ˆ

1´
z

|βlps1q|

˙

˛

‚

z

|βlpsq|
p1´ Pf q

fi

fl (4.6)

used to evaluate Equation 4.4, from which then it follows that Perror “ PL ` PH .
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4.3.4 Conjoining BFWS(f5) and Novelty Approximation.

Novelty approximation using sampling and Bloom Filter can be directly applied to

BFWS. We replace the wpsq in BFWS(f5) with the approximation ŵpsq resulting in

f̂5 “ xŵ,#gy.

Additionally, any reasonable implementation to compute ŵx#g,#rypsq for BFWS(f̂5), as

per Definition 4.2, needs to track the evaluations of partition functions H “ t#g,#ru

for all observed tuples. This increases the space complexity by a factor of the number of

possible partitions, |G|ˆ |F |. We manage the increase in space complexity by employing

a set of Bloom filters, a bank V , and then bounding the space available for Novelty

computation by a parameter Dmax. In case Dmax is sufficiently large to track all the

tuples and evaluations of partition functions, we enable exact item membership tests.

Otherwise, we use the bank of Bloom filters. Whenever a new partitioned space is

observed, we assign it a Bloom filter from V . If the number of observed partitions

exceeds |V |, we overlap them randomly, allowing different partitions to use the same

Bloom filter. This results in a gradual decrease in the accuracy of Novelty computation

in exchange for space; the Perror increases as more partitions overlap.

The resulting planner BFWS(f̂5) has the following hyperparameters, namely, the sample

size Z̄, the size of a Bloom filter r and the bound of space Dmax. In Section 4.5, we

present experimental evaluations with different choices of parameter values.

4.3.5 Increasing the Novelty bound

As discussed in Section 4.2.1, any implementation of Definition 4.1 has a complexity

of Op|F |iq, rendering the computation impractical for many instances. Whereas, Defini-

tion 4.2 has linear complexity allowing us to compute ŵpsq for any value of i P r1, |F |s. In

the following section, we describe the impact of increasing W P r1, i`1s in the polynomial

planners: BFWS(f5) with Novelty pruning [92].

Theorem 4.4. Let P “ xF,O, I,Gy be a STRIPS planning problem. The number of

nodes generated for each Novelty category ω PW, when run with P as input, is less than

or equal to
`

|F |

ω

˘

ˆ |G| ˆ |F |.
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Proof. The upper bound on the number of observed state partitions is given by |G|ˆ|F |.

Also, the count of tuples of size ω, of atoms in F , is
`

|F |

ω

˘

. Hence, the number of nodes

with wpsq “ ω cannot exceed
`

|F |

ω

˘

ˆ |G| ˆ |F |.

Corollary 4.5. Let P “ xF,O, I,Gy be a STRIPS planning problem, and BFWS(f̂5)

the polynomial planner using Bloom filters introduced above. When run with P as its

input, BFWS(f̂5) generates at most |V | ˆ r nodes for each Novelty category ω PW.

Proof. A Bloom filter represents
`

|F |

ω

˘

tuples, but the number of true negatives is bound

by the size of Bloom filter r. Also, we create a set of Bloom filters, the bank V , that

represents the set of partitioned spaces of cardinality |G| ˆ |F |. Hence, the above bound

holds.

From Theorem 4.4, we note that the bound on number of nodes with wpsq “ ω ` 1

increases by Op|F |q in comparison to those with wpsq “ ω , which makes nodes with

large value of ŵpsq unlikely candidates for expansion. This leads us to another critical

issue afflicting BFWS algorithms, inherited from BFS, that is only a small fraction of the

nodes that make it into the open list are ever considered for expansion. We can use partial

expansions [154] in BFWS(f5), only adding the successor s1 of s to the open list if ŵps1q

ď ŵpsq. While this reduces the space consumed by the open list, it does not make the

expansion of nodes with large ŵpsq value more likely, which is a key motivation behind

using Novelty approximation. In fact, polynomial BFWS(f5) uses similar methodology,

where a successor s1 of s is added to the open list only if ŵps1q ď ω̄, where ω̄ is an

arbitrary lower bound in i.

Another method to address the above challenge is to choose a small size for r and V , and

from Corollary 4.5 we can deduce that it will bound the nodes in each Novelty category

by |V |ˆr, which makes it seem that nodes with high wpsq are now more likely to expand.

However, in practice, the same set of nodes receive a higher value of ŵpsq because of an

increase in Pf , which is undesirable as it does not result in more problems solved —

novelty approximation is expected to allow the search to explore states of higher novelty

value that are necessary to reach the goal in some instances. In the following section, we

discuss a method that remediates this.
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4.4 Best-First Search with Open List Control

We propose an example of a novel methodology to design BFS algorithms that aim at

controlling the rate of growth of nodes of each category ω P W in the open list. To do

this, we model the search as a discrete-time dynamical system subject to perturbation,

and an optimal control problem [9] is formulated where optimal policies ensure that a rate

of growth less than the branching factor b of SpP q is sustained. With some simplifying

assumptions, the optimal policy for this control problem can be derived analytically, as

shown below, and integrated directly into the search algorithm. We model the evolution

over time of the internal state (i.e., size of open lists) of a BFWS-like algorithm B, subject

to function TB, abstracting the instructions executed in one iteration of the expansion

loop of B, as the dynamical system

xk`1 “ TBpxk, uk, ckq,

where k is the index of the current expansion, xk is a suitably defined abstraction of

the internal state of the search algorithm B at time k, uk P r0, 1q|W| is the control

action, that prescribes the pruning rate for states with wpsq “ ω, and ck P N|W| is the

count of successor states s1 at time k with wps1q “ ω. ck is the perturbation, that is,

an uncontrollable side-effect of node expansion that has been modeled as a uniformly

distributed discrete random variable.

The information we track in xk is given by the tuple xne, nvpωqy, where ne is the number

of expanded nodes so far, and nvpωq is the count of novel states visited for each Novelty

category ω P W. If u “ 0|W|, then TB is deterministic and B behaves like a standard

BFWS algorithm. Otherwise, the successors s1 of state s pointed at by node n in the

open list with min fpnq are generated with probability 1 ´ uω when wps1q “ ω. If

some s1 is pruned, n is kept in a holding queue and re-expanded whenever the open list

becomes empty. A vital implementation detail for B is that it needs to maintain |W|
open lists in parallel, as keeping smaller open lists is often more performant [19], also

greatly facilitating implementation and computation of states xk.

To formulate an optimal control problem, we must first specify a cost function. Con-

sidering a very large number of stages or expansions, we can reasonably assume that

the horizon is infinite and define the average cost per stage function [9], with a policy
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π “ tµ0, µ1, ...u, of the form

Jπ “ lim
NÑ8

1

N
E
ck

«

N´1
ÿ

k“0

gpxk, µkpxkq, ckq

ff

(4.7)

The choice of the cost per stage gpxk, µkpxkq, ckq is dictated by the need to seek a

trade-off between the number of states in the open list with ŵpsq “ ω growing too large

and missing out useful novel states. We define gk as follows

gk “
ÿ

ωPW

„

cωk p1´ µ
ω
k pxkqq `

1

p1´ µωk pxkqq

ȷ

(4.8)

where the expected count of successor nodes, with Novelty ŵpsq “ ω, added to the open

list at time k is given by cωk p1´µ
ω
k pxkqq, and the second term is the inverse rate of node

generation, as we want every possible value of Novelty to be represented in the open list

with positive probability. Using Equation 4.8 we can rewrite Jπ as

Jπ “ lim
NÑ8

1

N
E
ck

«

N´1
ÿ

k“0

gk

ff

(4.9)

We make an assumption to facilitate obtaining the optimal policy, namely, µk will con-

verge to some stationary µ as k Ñ 8, so it can be used to estimate the cost of future

stages accurately. Also, the expected value of uniformly distributed random variable cωk
is calculated from nvpωq and ne, as E rcωk s “ nvpωq{ne. It follows then from Equation 4.9

that

Jπ “
ÿ

ωPW

ˆ

nvpωq p1´ µ
ωpxkqq

ne
`

1

p1´ µωpxkqq

˙

(4.10)

We note that Jπ is strictly convex and differentiable over µω P r0, 1q, and optimal values

for the control inputs correspond with optimal solutions of the optimization problem

min
µPr0,1q|W|

Jπ
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Such a solution is directly obtained from Equation 4.10 from the solution of the differ-

ential equation BJπ{Bµω “ 0,

µωpxkq “

$

’

&

’

%

1´
´

ne
nvpωq

¯
1
2
, if ne{nvpωq ă 1

0, otherwise
(4.11)

Note that the holding queue follows the well-established practice of segmenting the search

frontier into multiple queues [120]. We use the optimal policy we derived above to

control the different queues based on their wpsq values, ensuring each queue represents

every category ω P W with positive probability. The queues are accessed sequentially,

expanding all the nodes in the current queue before switching to the next. Also, the way

we implement it, the queues are generated lazily, following a partial expansion of nodes

whose successor falls in the subsequent queues.

4.5 Empirical Analysis

To evaluate the impact Novelty approximation and open list control have on width-based

planners, we implemented different instantiations of BFWS(f5): complete as described

in Section 4.2, or incomplete if nodes with Novelty greater than a given bound are

pruned [92]. We used the Downward Lab experiment module [134] on a server with

Intel Xeon Processors (2 GHz) with a 1800 sec and 8 GB time and memory limit,

respectively. All BFWS planners are implemented in C++ using the planning modules

from LAPKT [117] and grounder from Tarski [52]. We use every benchmark in the

IPC satisficing track to evaluate the correctness of the Novelty approximation ŵ and

the performance of new planners that use ŵ. If a domain has appeared over multiple

IPCs, we used the problem set from the most recent IPC. We compare our new planners

against notable polynomial planners: BFWS(f5) with Novelty pruning and x1, 2-C-My,

a sequential polynomial planner [92], as well as two state-of-the-art planners DUAL-

BFWS [93] and LAMA-first [120]. We show that the introduction of these methods has

a significant impact on the performance of the BFWS algorithms.
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4.5.1 Correctness of Novelty approximation.

We evaluate the reliability of the Novelty approximation by observing the effect on the

rate of correct and incorrect (lower or higher) approximation of Novelty over varying

sizes of sample Z̄ and Bloom Filter r, scaled by a multiplicative factor δ. The Novelty

approximation ŵ is correct or accurate if ŵpsq“wpsq. We limit the maximum size of the

tuple evaluated to 3, as higher-order computations for exact Novelty w were infeasible

within the practical constraints of time and memory. Thus, w : S ÑW, where W“r1, 4s,
and w“4 represents all nodes with wą3 . To distinguish the impact of sampling from

that of Bloom Filter, we capture the results of Novelty approximation with and without

Bloom Filter, hereafter, represented as ŵ and ŵb̄, respectively. We capture the statistics

from 1200 solved instances in IPC satisficing benchmarks.
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(w < ŵb̄)|(w = 2)
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Figure 4.1: Variation in the rate of accurate (w “ ŵ), lower (w ą ŵ) and higher
(w ă ŵ) approximation of Novelty w over different sizes of sample(Z̄) and Bloom

Filter(r).

From Fig. 4.1, we note that the rate of correct approximate Novelty (w “ ŵb̄) increases

with sample size Z̄, when Bloom Filters are not used. This backs up our analysis in

Section 4.3 that the accuracy of Novelty approximation will likely increase with sample

size. We also observe that the rate does not decrease below 1{2 even for w “ 3, where
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the sample is the order of 1{|F |2 smaller than the exhaustive set. This is a significant

improvement over a trivial method of using a coin toss to determine whether or not

a tuple t of size l is new in state s, which has probability 1{8 of selecting the correct

novelty, given w“3 and guessing wą1, wą2, and w“3 sequentially with a coin toss.

While we note that the Novelty approximation without Bloom Filters performs satis-

factorily in terms of correctness, it is still infeasible to store an exhaustive set of tuples

βlpsq of size Op|F |lq when lě3, for many IPC problems. As discussed in Section 4.3, we

address this by using Bloom Filters to evaluate ŵ ě 3. With this addition, we observe a

slight decrease in the rate of correct Novelty approximation, which is the consequence of

false positives, discussed in Section 4.2.2. Also, we observe that the trend along sample

size is reversed, i.e., the rate of correct Novelty approximation now decreases with an

increase in sample size. The trend aligns with the theoretical analysis in Section 4.3.2.

On the other hand, increasing the size of Bloom Filter r improves the results as the false

positive rate decreases.

4.5.2 Performance over benchmarks

Hereafter, we represent a particular configuration of BFWS planner as ’pI-(P|L)ω̄AC’.

The prefix ’p’ refers to the use of novelty-based pruning for nodes with ŵpsq ą ω̄. ’I-’

refers to BFWS called sequentially until the problem is solved over ω̄ P r1, |F |s. Pω̄

refers to BFWS(f5) planner with the set of possible Novelty categories W “ r1, ω̄ ` 1s.

Lω̄ refers to BFWS(f5) with the goal counting heuristics replaced by landmark counts

[119], that is fL=xw, hLy. ’A’ denotes that ŵpsq is used instead of wpsq, and ’C’ denotes

that BFWS is modified to control open list growth as described in Section 4.4. All ’AC’

planners were run four times with different seeds, so we report the mean and standard

deviation of statistics of interest.

We set the sample size Z̄“|F | so as to maintain a linear time complexity. We found that

Dmax values between 100 MB and 1GB had similarly good results for ’pI-Pω̄AC’, we

show the results for Dmax “ 500 MB. For the Bloom Filters size r, we didn’t observe

much variation between 100 KB { 8 ˆ 105 bits and 10 MB { 8 ˆ 107 bits, with Dmax

“ 1 GB. In our final implementation, we set an initial value of r “ |F |2, subject to

increase when ω̄rˆ|V | ă Dmax ^ |V | “ |G|ˆ |F |, and decrease when ω̄r ą Dmax ^ |V |

“ 1. A total of 103 instances out of 1691 used the bank of Bloom filters V , described in
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Figure 4.2: Pairwise comparison of runtime, over All IPC satisficing benchmarks,
between BFWS(f5) and pI-Pω̄AC.

w̄ “ 1 w̄ “ 2 w̄ “ 3 w̄ ě 4

# Instances 100.00 % 18.92% 3.68% 1.05%

Table 4.1: % of instances across all IPC satisficing benchmarks where a node of
Novelty w̄ was recorded in found plans.

Section 4.2, ensuring that Novelty computation does not exceed Dmax. Lastly, we use

the solution to the problem of minimizing Pf in Equation 4.1 to choose the number of

hash functions as K“ln 2 pr{qq, where q “
`

|F |

ω

˘

.

Looking back at the motivation, a key driver for introducing the Novelty approximation

was to enable Novelty computation for values greater than 2, which was infeasible for

many IPC domains with the exact Novelty definition. The results for p-P3A in Table 4.2,

show that our hypothesis was indeed correct as computing higher novelties with approxi-

mation improves coverage. This is substantiated in Table 4.1, which shows that « 5% of

the solved instances had one or more nodes with w̄psq ě 3 in the solution plan. Moreover,
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the coverage of approximate planners with ω̄ “ 2, P2A and p-P2A, improves in compar-

ison to P2 and p-P2, respectively, which indicates that there is no apparent demerit of

using Novelty approximation. The improvement can be attributed to polynomial time

and space complexity of ŵpsq allowing for additional search capacity.

Though BFWS(f̂5) performs satisfactorily, it has a key shortcoming which impacts the

search within the limited time environment, i.e., for large instances of domains with width

i ą 2, the BFWS search driven by the evaluation function f5 “ xw,#gy exhausts all the

available time in expanding nodes with wpsq ď 2. Moreover, the issue gets compounded

for domains with high branching factors as the open list doesn’t fit within the memory

bounds. We address both issues by applying the open list control discussed in Section 4.4.

In our implementation, the control is not applied to child nodes with Novelty wpsq“1,

as the maximum count of such nodes is small, Op|F |q, and have minimal impact on

space. Note that this method will not cause the search to become incomplete. However,

if we choose not to maintain the holding queue, we get a search that is incomplete and

terminates early. Introducing the open list control in BFWS (f̂5) leads to a noticeable

improvement in coverage of P2AC and P3AC which can be observed in Table 4.2. We

do not report tables on plan length as it remains similar for all configurations.

At this point, we discuss a new planner, where we iteratively run the polynomial BFWS(f̂5)

with novelty-based pruning, sequentially increasing the number of Novelty categories W
at each iteration, W “ r1, ω̄` 1s, over ω̄ P r1, |F |s. We denote the planner as ’pI-Pω̄AC’

where I stands for iterative. Informally, its major advantage is that it taps into the

low polynomial space and time complexity of p-Pω̄AC with small ω̄ values as well as

the greater coverage with larger ω̄. This can be observed in Table 4.2, which shows a

significant jump in coverage compared to BFWS(f5) with novelty-based pruning(p-P2)

and x1, 2-C-My (B3).

The coverage is also higher than the state-of-the-art LAMA-first (B1) and DUAL-BFWS

(B2). Moreover, from Fig. 4.2, we note that the ’pI-Pω̄AC’ planner has better runtime

performance than BFWS(f5), the winner of the Agile track (IPC 2018). It solved 59

more instances than BFWS(f5) across every IPC satisficing benchmarks with a 300 sec

time and 8 GB memory limit. At the same time. Fig. 4.3 confirms that the space and

time consumption is much less than the baseline BFWS planners. It is worth pointing

that ’pI-Pω̄AC’ is probabilistically incomplete. Also, we did not observe any difference
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Figure 4.3: Coverage over memory(MB) and time(seconds) on IPC 2014 and 2018
satisficing benchmarks. The dotted vertical line represents 300 seconds.

in coverage of ’pI-Pω̄AC’ with or without the holding queue, as the nodes pruned at one

iteration get selected in subsequent iterations with positive probability.
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domain B1 B2 P2 P2A P2AC P3A P3AC

agricola (20) 12 8 11 11˘1.0 12˘1.7 15˘0.8 16˘1.3
airport (50) 34 47 46 46˘0.6 46˘0.6 44˘0.0 44˘0.6
assembly (30) 30 30 30 30˘0.6 29˘1.0 30˘0.6 30˘0.6
caldera (20) 16 20 15 16˘1.0 20˘0.5 16˘1.0 18˘0.5
cavediving (20) 7 7 7 7˘0.0 8˘0.6 8˘0.0 8˘0.5
childsnack (20) 6 10 0 4˘1.3 5˘1.7 3˘1.9 6˘0.6
citycar (20) 5 20 5 5˘0.0 20˘0.0 5˘0.0 20˘0.6
data-network (20) 13 11 9 12˘1.7 19˘1.0 11˘2.5 18˘0.5
depot (22) 20 22 22 22˘0.0 22˘0.0 22˘0.0 22˘0.0
flashfill (20) 14 16 12 14˘2.4 14˘0.6 14˘2.2 14˘1.0
floortile (20) 2 2 1 2˘0. 5 2˘0.0 2˘0.0 2˘0.0
hiking (20) 20 12 12 14˘2.1 8˘0.8 18˘1.0 20˘0.5
maintenance (20) 11 17 17 16˘0.5 16˘0.6 16˘0.5 17˘0.5
mprime (35) 35 35 32 30˘0.6 35˘0.0 31˘0.5 34˘0.8
mystery (30) 19 19 19 19˘0.0 19˘0.0 19˘0.5 19˘0.5
nomystery (20) 11 19 13 14˘1.0 12˘1.0 13˘0.5 14˘1.0
nurikabe (20) 9 14 16 14˘0.6 15˘1.3 14˘0.6 15˘2.1
org-synth-split (20) 12 11 5 6˘0.5 3˘0.8 7˘1.0 5˘1.4
parcprinter (20) 20 16 9 5˘1.0 5˘1.9 5˘0.8 6˘1.0
pathways-neg (30) 24 30 23 30˘0.6 29˘1.5 30˘0.6 29˘0.5
pegsol (20) 20 20 20 20˘0.0 20˘0.5 20˘0.0 20˘0.0
pipesworld-nt (50) 43 50 50 50˘0.0 50˘0.0 50˘0.0 50˘0.0
pipesworld-t (50) 43 38 43 42˘0.5 42˘0.6 42˘0.5 43˘0.8
psr-small (50) 50 50 48 49˘0.5 49˘0.5 50˘0.0 50˘0.0
rovers (40) 40 37 39 40˘0.0 40˘0.0 40˘0.0 40˘0.0
satellite (36) 36 31 27 30˘0.8 32˘0.6 30˘0.5 30˘0.0
schedule (150) 150 149 149 149˘1.0 149˘0.8 149˘1.0 150˘0.6
settlers (20) 18 8 7 6˘1.0 12˘0.6 6˘1.3 10˘0.0
snake (20) 5 12 19 16˘0.5 15˘0.8 17˘0.5 17˘0.5
sokoban (20) 19 17 14 15˘0.5 10˘1.0 16˘0.5 14˘0.8
spider (20) 16 14 13 15˘1.0 14˘1.0 15˘1.0 14˘1.3
storage (30) 20 28 29 30˘0.6 30˘0.6 30˘0.6 30˘0.5
termes (20) 16 9 9 10˘0.0 8˘0.6 9˘1.0 8˘1.3
tetris (20) 16 16 20 20˘0.0 20˘0.0 20˘0.0 20˘0.0
thoughtful (20) 15 20 20 20˘0.0 20˘0.0 20˘0.0 20˘0.0
tidybot (20) 17 18 19 20˘0.0 20˘0.5 20˘0.0 20˘0.0
tpp (30) 30 29 29 30˘0.6 30˘0.0 29˘0.0 30˘0.0
transport (20) 16 20 20 20˘0.0 20˘0.0 20˘0.0 20˘0.0
trucks-strips (30) 18 16 9 9˘0.8 9˘1.3 9˘0.8 10˘1.4

Total (1691) 1456 1496 1436 1455˘8.7 1476˘4.2 1463˘8.9 1502˘4.9

Table 4.2: Coverage over all satisficing benchmarks from IPCs: complete — B1:
LAMA-first, B2: DUAL-BFWS, ’P...’. Pω̄ refers to BFWS(f5) planner with W “

r1, ω̄ ` 1s, Lω̄ is BFWS(fL) , which uses Landmarks , ’I-’ stands for Iterative, ’A’ for
approximate, and ’C’ for control over open list. The mean coverage is shown along with
the standard deviation for the planners using random sampling over four different seeds.
Domains which all planners fully solve are omitted. The best results are highlighted in

bold and red.

Discussion. We show that approximate Novelty search greatly improves the perfor-

mance over baseline BFWS planners. The ability to compute ŵ ą 2 using Novelty

approximation, within practical time and memory constraints, allows us to use the ’pI-

Pω̄AC’ configuration that beats the state-of-the-art. This is impressive for a sequential

polynomial planner, which uses simple goal counting heuristics #gpsq and relaxed plan

counter #rpsq along with ŵ to direct the search. Also, we can observe that certain do-

mains were affected more than others. Specifically, the domains citycar, data-network,

hiking, and satellite benefited significantly.
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domain p-P2 B3 p-P2A p-P3A pI-Pω̄AC pI-Lω̄AC

agricola (20) 10 15 10˘0.6 15˘0.8 16˘1.3 12˘0.5
airport (50) 46 47 46˘0.6 45˘1.0 46˘0.6 46˘0.5
assembly (30) 30 30 30˘0.5 30˘0.0 30˘0.0 30˘0.0
caldera (20) 19 20 20˘0.5 18˘0.5 20˘0.5 20˘0.0
cavediving (20) 1 8 2˘2.9 8˘0.5 9˘1.0 8˘0.5
childsnack (20) 0 2 5˘0.5 6˘0.6 8˘1.3 8˘1.3
citycar (20) 20 20 20˘0.5 5˘0.0 20˘0.0 20˘0.0
data-network (20) 16 14 17˘1.0 16˘0.6 18˘0.6 18˘0.6
depot (22) 22 22 22˘0.0 22˘0.0 22˘0.0 22˘0.0
flashfill (20) 15 9 14˘2.4 14˘1.9 14˘1.0 14˘1.0
floortile (20) 0 1 1˘0.0 2˘0.5 2˘0.0 2˘0.0
hiking (20) 9 13 12˘1.8 20˘0.0 20˘0.0 19˘0.5
maintenance (20) 17 17 16˘0.5 16˘0.5 17˘0.5 17˘0.5
mprime (35) 35 35 35˘0.0 32˘0.8 35˘0.0 35˘0.0
mystery (30) 19 18 19˘0.0 19˘0.5 19˘0.5 19˘0.5
nomystery (20) 13 13 12˘1.7 14˘0.6 15˘1.0 18˘1.4
nurikabe (20) 16 16 14˘0.5 14˘0.6 15˘1.0 14˘0.6
org-synth-split (20) 4 3 4˘0.5 6˘1.0 7˘0.0 6˘0.5
parcprinter (20) 9 16 6˘1.0 5˘1.0 8˘0.0 6˘0.5
pathways-neg (30) 24 27 30˘0.5 30˘0.6 30˘0.0 30˘0.0
pegsol (20) 5 20 12˘1.5 18˘0.5 20˘0.0 20˘0.0
pipesworld-nt (50) 50 50 50˘0.0 50˘0.0 50˘0.0 50˘0.0
pipesworld-t (50) 41 39 41˘1.5 42˘0.5 42˘1.2 43˘1.5
psr-small (50) 31 46 34˘1.3 43˘0.8 49˘0.5 48˘0.6
rovers (40) 39 38 40˘0.0 40˘0.0 40˘0.0 40˘0.0
satellite (36) 27 31 32˘0.5 30˘0.5 34˘0.6 34˘0.6
schedule (150) 149 149 149˘1.0 149˘1.0 149˘1.0 149˘1.0
settlers (20) 10 11 9˘1.0 6˘1.0 12˘0.6 17˘1.3
snake (20) 18 3 16˘0.5 17˘0.5 20˘0.5 20˘0.5
sokoban (20) 13 11 15˘1.0 15˘1.0 14˘1.0 15˘0.5
storage (30) 30 29 30˘0.6 30˘0.6 30˘0.5 30˘0.6
termes (20) 1 6 2˘0.5 6˘1.9 7˘1.4 10˘1.3
tetris (20) 20 18 20˘0.0 20˘0.0 20˘0.0 20˘0.0
thoughtful (20) 20 20 20˘0.0 20˘0.0 20˘0.0 20˘0.0
tidybot (20) 20 20 20˘0.0 20˘0.0 20˘0.0 19˘0.5
tpp (30) 30 30 30˘0.0 30˘0.0 30˘0.0 30˘0.0
transport (20) 20 20 20˘0.0 20˘0.0 20˘0.0 20˘0.0
trucks-strips (30) 11 8 12˘1.8 11˘1.3 12˘1.3 12˘0.8

Total (1691) 1414 1456 1438˘5.9 1462˘8.0 1524˘2.5 1516˘5.0

Table 4.3: Coverage over all satisficing benchmarks from IPCs: polynomial incomplete
— B3: x1, 2-C-My and ’p-P...’. Pω̄ refers to BFWS(f5) planner with W “ r1, ω̄`1s, Lω̄

is BFWS(fL) , which uses Landmarks , ’I-’ stands for Iterative, ’A’ for approximate,
and ’C’ for control over open list. The mean coverage is shown along with the standard
deviation over four different seeds for the planners using random sampling. Domains
that all planners fully solve are omitted. The best results are highlighted in bold and

red.

We found that the open list control significantly benefited the domains citycar and data-

network, which have a high branching factor but are solvable with ω̂ ď 2. Citycar

in particular was fully solvable with ω̂ “ 1 and discarding nodes with wpsq ą 1 didn’t

impact the order of expansion. Hiking and satellite on the other hand required expansion

of nodes of wpsq ą 2, and the increased coverage highlights the importance of policy-

based control of different Novelty categories in the open list. Childsnack and Floortile

showed no improvement, which is a combined effect of high width and the fact that our

goal count heuristic #gpsq is not informed enough.
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4.6 Approximate Novelty Search in International Planning

Competition 2023

The International Planning Competition of 2023 included many entirely new domains

not seen in the previous IPCs, including Labyrinth — a game where the agent must es-

cape from a maze, Quantum Circuit — which requires the solver to map logical quantum

circuits to physical qubits, Recharging Robots — a coordination problem that requires

observation robots to schedule their recharging times such that the security levels are

maintained, and lastly, the classic Rubik’s Cube. The varying characteristics of the

domains, hard-to-ground, impractical Novelty value of states in feasible plans, and the

complex structures of dependencies between the fluents of states in feasible plans pre-

sented a challenge to our planners.

We registered two planners in the competition, both implementing Approximate Novelty

Search. One uses the grounder available in the Tarski library, which uses an off-the-

shelf solver (Gringo), and the other the Fast Downward Grounder. We did this to

compare the grounding performance of the two approaches in a blind test for the methods

and highlight the potentially significant impact of efficient grounding methods in the

ever-so-more competitive planning competitions. The size of the ground representation

directly impacts the efficiency of the planners due to the overheads from the management

and processing of a large number of ground actions and fluents. Hence, state-of-the-art

planners that work on ground representations use some method that tries to reduce

the size of the grounding. Both configurations were submitted to the agile track of the

competition, as the tighter time constraints result in grounding time being more valuable.

Furthermore, we also entered the satisficing track, but only with the latter configuration,

to avoid redundant experiments.

Although we did not win the competition, we are happy to report that our planners

performed very well on many of the domains included in the competition. In this section,

we explain the configuration of the Approximate Novelty Search planner submitted in

the IPC, summarize the results, and justify the observed performance in each domain.

Sequential polynomial approximate BFWSpf5q. In this planner, we make sequen-

tial calls to the polynomial approximate BFWSpf5q with novelty-based pruning until we

run out of time. Each polynomial approximate BFWSpf5q is a p-Pω̄AC planner, where
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ApxNovelty (agl) ApxNovelty (sat)

Folding 4 5
Labyrinth 11(0) 15(0)
Quantum Layout 20 20
Recharging Robots 10(6) 11(8)
Ricochet Robots 14 18
Rubik’s Cube 4 5
Slitherlink 3 4

Table 4.4: Coverage of Sequential polynomial approximate BFWS(f5) (ApxNovelty)
in Agile and Satisficing tracks. The numbers in brackets represent the coverage in the

IPC 2023 for domains that encountered preprocessing error3.

the set of Novelty categories considered in the computation of Novelty is W “ r1, ω̄` 1s

and nodes with ŵpnq ą ω̄ are pruned.

Performance in IPC 2023 benchmarks. Table 4.43 shows the coverage of Sequential

polynomial approximate BFWS on the IPC 2023 instances, revealing that increasing the

time limit from 300 seconds in the Agile track to 30 minutes in the satisficing track

only slightly improves the coverage in 5 of the 7 domains. To further examine the

satisficing results, we use two bar plots to illustrate the characteristics of the planning

runs. Figure 4.4 presents the performance profile of the planner in terms of the percentage

of the problems solved in each domain and a breakdown of the reason for failure in

unsolved instances — load memouts(lm%), load timeouts(lt%), search memouts(sm%),

and search timeouts(st%). The figure helps us identify which component of the planner’s

algorithm stack is challenged by a specific domain. Figure 4.5 shows the distribution of

the minimum Novelty bound of the polynomial planner at which it finds a solution to

the instance. We now explain the performance of the planner on individual domains.

Quantum Layout domain received the Outstanding Domain Submission Award out of

all the submitted domains in the IPC 2023. It is an exciting application of planning on

a problem of practical significance. Our planner performs best in this domain among all

the participants of IPC 2023 in the Agile track. A detailed analysis of the planner’s per-

formance reveals this is not a coincidence. Our polynomial planner solved 95% instances

with a Novelty bound of 1. The sole outlier only required one more iteration of the
3Our integration with Fast Downward Grounder failed in Labyrinth and Recharging-robots in-

stances with single-goal atoms, resulting in the planner terminating unexpectedly at the step when the
search engine’s data structures are initialized. The error prevented us from accurately analyzing and
justifying the performance of Approximate Novelty Search in the Satisficing Track using the IPC 2023
results. Hence, we redid the experiments on the two domains. We executed the experiments on a server
using Intel Xeon Processors (2 GHz) with 1800 sec and 8 GB time and memory limit.
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Folding Labyrinth Quantum Recharge. Ricochet. Rubik’s. Slitherlink
sm% 50 0 0 10 10 0 75
lm% 25 25 0 20 0 0 0
st% 0 0 0 15 0 75 5
lt% 0 0 0 0 0 0 0
s% 25 75 100 55 90 25 20
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Figure 4.4: Plot showing the performance profile of the Sequential polynomial approx-
imate BFWS. s% represents the percentage of solved instances, and the exit codes of
unsolved instances are captured as — load memouts(lm%), load timeouts(lt%), search
memouts(sm%), where "load" refer to the preprocessing phase of parsing and grounding.
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Figure 4.5: Plot showing the distribution of minimum Novelty bound in Sequential
polynomial approximate BFWS, necessary to find a feasible plan in the solved instances.

polynomial planner with a bound of 2. Such a consistent finding across all 20 instances

suggests that the structure of the instances — reachability relation between fluents in

plans — exhibits characteristics that align with the concept of problem width [91] in

width-based planning algorithms. Since this is a problem of practical interest, we believe

that further study to explore the possibility of a low upper bound on the value of the
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Novelty measure is warranted.

Ricochet-robots is another domain where the polynomial Novelty planner performs

well. However, in contrast to Quantum Layout, this problem domain requires expanding

nodes of Novelty greater than 2. As noted earlier, the computation of Novelty ą 2

in the IPC instances is generally impractical, except for tiny instances. However, the

fact that we solve 95% of the instances in this domain demonstrates the usefulness of

approximation methods that trade-off accuracy for computational guarantees. Here, the

Novelty approximation enables the planner to compute Novelty measure approximately

but in linear time and consuming a fixed amount of memory when it is practically

infeasible to do so precisely. The observed lower bound on the highest Novelty of a state

in any plan is 3. This finding is noteworthy as Ricochet-robots is the only domain from

the IPCs where most instances require Novelty computation that is impractical to do

exactly. At the same time, the lower bound on the highest Novelty of states in any plan

is reachable with Sequential polynomial approximate BFWS.

Labyrinth is a domain with big instances, also considered to be hard-to-ground, in which

most problems have more than half a million grounded actions. Hence, it is unsurprising

that many instances failed in the grounding phase. The polynomial Novelty planner

solved the remaining instance, which could be grounded, with the Novelty bound of 2.

In the instances of recharging robots, our planner solved 50% of the instances. All

except one instance were solved within the Novelty bound of 2 and the outlier with a

Novelty bound of 3. Most instances that could not be solved ran out of memory, likely

because of the large number of ground actions, which sometimes exceeded a million.

In Folding, Rubik’s Cube, and Slitherlink, many instances ran out of computational

resources of time and memory while searching for a solution at or below the Novelty

bound of 3. This observation points to the possibility that the region of state space that

is reachable at low Novelty bounds of 1, 2, and 3 is very large and stresses the open and

closed lists — data structures that store a representation of the explicit search tree and

the explored state space for us.

Overall, the results show that our planners performed excellently in the IPC 2023 in-

stances, particularly in the Agile Track. Despite the bug that eliminated the coverage

on Labyrinth and significantly reduced the coverage on Recharging Robots, the planner

still managed to rank seventh out of twenty-three planners. Looking at the new results,
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we believe that the planner would have ranked among the top two in the Agile Track if

not for the unfortunate bug that affected the FD Grounding and LAPKT integration.

4.7 Grounding Schematic Representation with Gringo

Lifted representations of planning problems, like PDDL [60] allows using first-order logic

variables to represent actions and fluents compactly. However, most planners, including

width-based planners, work only on grounded representations that require substituting

the first-order logic variables by type consistent constants. A trivial substitution mech-

anism would generate a ground representation that is exponential on the arity of actions

and predicates [68]. The size of the ground representation directly impacts the efficiency

of the planners due to the overheads from the management and processing of a large

number of ground actions and fluents. Hence, state-of-the-art planners that work on

ground representations use some method that tries to reduce the size of the ground-

ing. The grounder available in the Tarski library [52] generates a logic program [17]

and uses it to over-approximate the set of reachable actions based on the compilations

defined by Helmert [67]. However, in contrast to the approach taken by the FastDown-

ward grounder, Tarski uses an off-the-shelf solver (Gringo) [55] that grounds a logic

program whose answer set captures all applicable actions in the delete-free relaxation

[112, 67]. We believe that the generally more efficient grounding of action schemas based

on Gringo would give grounded planners an edge. To confirm this hypothesis, we inte-

grated our planner with both Fast Downward and Tarski grounders and submitted

them both in the agile track. In this section, we analyze and compare the performance

of the two planners in the competition, mainly focusing on the contribution of the more

efficient grounding of Tarski4.

Performance in IPC 2023 benchmarks. Table 4.5 helps us understand the per-

formance based on which particular constraint, either time or memory limits, stresses

out one grounder more quickly than the other. The Fast Downward grounder ex-

ceeded time and memory limits with equal frequency and could not ground 14 instances.

Gringo, on the other hand, grounded more instances than Fast Downward giving
4The Tarski grounder encountered failure on many instances of Folding, Labyrinth, and Recharging

Robots in the IPC 2023 runs. We could not reproduce the error locally, which prevented us from
comparing the performance of the Fast Downward and Tarski(Gringo) grounders. Hence, we redid
the experiments on the three domains for both FD and Tarski Grounders. We executed the experiments
on a server using Intel Xeon Processors (2 GHz) with 1800 sec and 8 GB time and memory limit.
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Tarski
FD Success Timeout Memout

126 7 7

Success 138 126 6 6
Timeout 0 0 0 0
Memout 2 0 1 1

Table 4.5: A pairwise comparison of Tarski and Fast Downward(FD) grounders,
showing the count of instances with the same(diagonal elements) or different(non-
diagonal element) exit status — grounding success and failures, including memouts
and timeouts. The individual profiles of Tarski and FD are shown in different colors.

Folding Labyrinth Quantum L. Recharging. R. Ricochet. R. Rubik’s C. Slitherlink
s% 20 20 55 70 100 100 50 55 70 80 20 25 15 15
st% 15 30 0 0 0 0 0 10 0 0 0 0 10 15
sm% 40 40 20 30 0 0 30 35 30 20 80 75 75 70
lt% 10 10 5 0 0 0 20 0 0 0 0 0 0 0
lm% 15 0 20 0 0 0 0 0 0 0 0 0 0 0
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Figure 4.6: Plot showing the performance profile of the two Approximate Novelty
Search planners using Fast Downward(FD) and Tarski(Gringo) grounders. s%
represents the percentage of solved instances, and the exit codes of unsolved instances
are captured as — load memouts(lm%), load timeouts(lt%), search memouts(sm%),
search timeouts (st%), where "load" refer to the preprocessing phase of parsing and

grounding.

the planner an edge on at least 12 problems. While grounding more instances does not

equate to solving more, it certainly improves the odds. In addition to being able to

ground more instances, Figure 4.7 shows a clear runtime advantage of using Gringo.

Here, we observe that it could ground many problems with less than four times runtime

in a clear win for the Tarski approach to grounding. This observation solidifies our

belief that grounding using Gringo is generally more efficient.

We conclude by looking at Figure 4.6, which presents the overall performance profiles,

including search performance, of the two Approximate Novelty Search planners in the

Agile Track. We observe that the efficient grounding of Tarski allows us to solve three

more instances in Labyrinth, which is a hard-to-ground instance, and a total of seven

additional problems overall. We believe that the 10% improvement in coverage, from 66

to 73, by using a more efficient grounding method based on Gringo, is significant.
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Figure 4.7: A pairwise comparison of the parsing and grounding times of
Tarski(Gringo) and Fast Downward(FD) grounders.

The results confirm the superiority of using off-the-shelf ASP solvers for grounding the

logic program formulated by Helmert [67]. These results also show that grounding is a

critical bottleneck for classical planning methods. Managing the intractability, in general,

of grounding with scalable algorithms provides a significant edge in the ever-so-more

competitive planning competitions. The development of new methods for grounding that

scale up and are better integrated with SAT and heuristic search methods for planning is

a problem that has long been neglected until very recently [29, 76] and requires attention.

4.8 Conclusion

The proposed methods of Novelty approximation and open list control in BFWS not only

have a positive impact on coverage but also on the overall time and space complexity of

the search, resulting in new state-of-the-art planners over satisficing benchmarks from

every IPC. These results strongly suggest that probabilistically complete search algo-

rithms are a promising research direction in classical planning. This is especially crucial
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in limited time and memory environments where the search must work within hard con-

straints on time and memory. However, we must note that approximate Novelty search

is no silver bullet, and specific domains, including Childsnack and Floortile, remain un-

solved. We hope this work brings about the insights to develop the next generation of

classical planners that scale up better as the intractability of the benchmarks ramps up

and tackles the inherent limitations of BFS.
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“Honest disagreement is often a good sign of progress.”

M.K. Gandhi

5
Lifted Sequential Planning with

Lazy Constraint Generation

In this part of the thesis, we study the possibilities that arise from the use of Lazy

Clause Generation (LCG) based approaches to Constraint Programming (CP) for tack-

ling sequential classical planning. We propose a novel CP model based on seminal ideas

on so-called lifted causal encodings for planning as satisfiability, which does not require

grounding, as choosing groundings for functions and action schemas becomes an integral

part of the problem of designing valid plans. This encoding does not require encoding

frame axioms and does not explicitly represent states as decision variables for every plan

step. We also present a propagator procedure that illustrates the possibilities of LCG to

widen the kind of inference methods considered to be feasible in planning as (iterated)

CSP solving. We test encodings and propagators over classic IPC and recently proposed

benchmarks for lifted planning, and report that for planning problem instances requiring

fewer plan steps, our methods compare very well with the state-of-the-art in optimal

sequential planning.

87
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5.1 Introduction

Like R. Frost’s Traveller in the Woods, this work finds its way back to a crossroads in the

development and study of approaches to planning as satisfiability. One way is of so-called

GraphPlan encodings (linear and parallel), the other being that of so-called causal encod-

ings (ground and lifted) invented by Kautz, McAllester, and Selman (KMS) [83]. Unlike

Frost’s poem, though, lifted causal encodings are an approach seldom followed in the

literature in automated planning. Inspired by the formulation of nonlinear or partially-

ordered planning of McAllester and Rosenblitt [98], these encodings have polynomial size

over the lower bound on the number of plan steps in feasible plans. Importantly, they

do away entirely with the need for explanatory frame axioms. Yet these very desirable

properties follow from the premise of not having to ground actions and predicates first,

as otherwise, the unavoidable exponential blowouts obliterate any practical differences

with GraphPlan encodings.

In this research, we realize this potential by tapping into the power of the Lazy Clause

Generation (LCG) [108], a ground-breaking technology that unifies propositional sat-

isfiability (SAT) and Constraint Programming (CP) and allows representing implicitly

large tracts of complex systems of constraints by suitably defined inference procedures or

propagators. These lazily generate new constraints to record violations by assignments

to decision variables and propagate information following the consistency of assignments

and constraints to tighten the domains of variables. This, in addition to very sophisti-

cated and performant modeling tools and solvers [113], provides us with the foundations

to develop scalable planners that follow the path laid by KMS lifted causal encodings.

We have found these planners to outperform state-of-the-art optimal planning algorithms

on benchmarks designed to be hard to ground [29], while standing their ground on the

IPC benchmarks.

Chapter Outline. We begin by explaining a precise formulation of the planning prob-

lems of interest to us and their solutions. We then introduce a formalism to describe

the structure of states and actions that is based on Functional STRIPS [51]. We assume

all atoms in precondition and effects are equality atoms over suitably defined function

symbols and constant terms. These ground domain theories are then lifted [98]. With

these preliminaries in place, we introduce our encoding, proving its validity and char-

acterizing its complexity. After that, we explain how we leverage state-of-the-art CP
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solvers to implement our encoding efficiently. We then present a method to do a concise

transformation of planning instances represented in PDDL to FSTRIPS. We end with

an evaluation of several planners built on top of our encoding and propagators, along

with a brief analysis of related work and a discussion of the significance and potential of

this research.

5.2 Formulation of Planning Problems

A problem planning instance (PPI) is given by a tuple P “ pS,A,Ñ, s0, SGq where S

and A are finite sets of states and actions, Ñ Ă SˆAˆS is the transition relation which

is right-unique, where s Ña s
1 indicates that s1 is reachable from s via a, s0 P S is the

initial state and SG Ă S is the set of designated goal states. We say that a PPI admits a

trajectory σ “ s0, a1, s1, . . . , si´1, ai, si iff si´1 Ñai si for every i ą 0. In this work, the

notion of planning problems is that of optimization problems where we seek sequences σ

“ s0, a1, s1, . . . , sk´1, ak, sk, that minimize lengthpσq :“ k, and satisfies sk P SG. The

set of σ sequences that satisfy sk P SG is referred to as the set of valid plans ΠP . The

optimal cost of P is thus c˚ :“ minσPΠP lengthpσq. When ΠP “ H, we say that P is

infeasible and optimal cost is c˚ “ 8. We observe that |S| ´ 1 is a trivial upper bound

on c˚ when ΠP ‰ H. Non-trivial, feasibly computable upper bounds are known [1] but

only for PPIs with special structure.

5.2.1 Factored Planning Problems

A long-recognised and adopted strategy to deal with large |S| is that of factoring states

and actions in PPIs as a preliminary step to develop algorithms that can deal with large

scale problems [110, 5]. We now present an account of FSTRIPS, a formalism to define

such factors, where a domain theory expresses assumptions on the structure of states

and actions [50, Section 2.1].

A PPI P in Functional Strips is defined over a many-sorted first-order logic theory with

equality, which we denote as LpP q “ pT,Φ,Πq. The constituents of such a theory capture

relevant properties of and relations between objects and provide the basic building blocks

to factorize states s P S. T is a finite non-empty set of finite sets called types, or sorts,

with a possibly infinite set of variables xt1, xt2, . . . for each type t P T . The universe is
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the set U “ YtPT t. Φ is a set of function symbols f P Φ, each of which is said to have

a domain Domf Ă t1 ˆ . . . ti ˆ ˆtdf where ti P T , and a range Cof P T . Π is a set

of relation symbols. In this work, Π contains the standard relations of arithmetic, i.e.,

“ă”, “ď”, “ą”, “ě ” in addition to equality ““”. Some PPIs may specify as well domain

specific relations, along with their denotation, in addition to the former standard ones.

We denote the maximum function arity of the domain, maxfPΦ df , as Kf . States s P S

in an Fstrips problem P are semantic structures that set the interpretation of formulas

over LpP q with fixed universe U . Thus each s contains the graph [16] of each function

f P Φ, providing the denotation for functional terms fpt̄q, where t̄ P Domf . We note

that SpP q is a finite set since types t P T are finite sets too.

The transition relation Ñ is specified via suitably defined action schemas α P Act. α

is a non-logical symbol such that α R Φ Y Π. Actions αpx̄q capture sets of transitions

in Ñ parameterized by a tuple of typed variables x̄ “ pxt11 , . . . , x
tdα
dα
q. τpαq denotes the

tuple of types of parameters of α, τpαq “ pt1, . . . , tdαq. For each action schema αpx̄q we

are given Preαpx̄q, a precondition formula over LpP q and variables x̄. In this work we

consider a fragment of the formulas considered by [50], defined by the following grammar

in Backus-Naur form

Preαpx̄q :“ J |

cardpPreαq
ľ

i“1

fipȳiq “ zi (5.1)

where J is the tautology, cardpPreαq denotes the number of equality atoms in the formula

Preα, ȳi Ă x̄, and zi P U . Additionally, we are given an effect formula Effα of the form

Effαpx̄q :“

cardpEffαq
ľ

j“1

fjpȳjq “ zj (5.2)

where cardpEffαq denotes the number of equality atoms in the formula Effα, ȳj Ă x̄ and

zi P U .

We now explain the FSTRIPS representation for the visitall problem domain from the

IPCs [77] in which an agent must visit all the cells in an n ˆ n square grid starting

from the center of the grid. In Visitall, we only have one type, T :“ tCu, where C is

a set of cells in the grid, the set of function symbols is Φ :“ tat, visitedu, and it has a

domain specific relation Π :“ tconnectedu. It has one action schema move, which allows

the agent to move between two connected grid cells. Thus, Act “ tmoveu. The move
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schema takes two parameters which we denote by x̄ :“ px1, x2q, where x1 is the current

position of the agent and x2 is the target position. The precondition and effect formulas

of move are defined as follows

Premovepx̄q :“ atpq “ x1 ^ connectedpx1, x2q “ J (5.3a)

Effmovepx̄q :“ atpq “ x2 ^ visitedpx2q “ J (5.3b)

The goal condition of visitall requires the agent to visit all cells in C

Goalmove :“
ľ

cPC

visitedpcq “ J (5.4)

A set of action schemas Act is systematic [98, 129] for a PPI P if and only if, for every

ps, a, s1q PÑ there is an action schema αpx̄q such that there exists a vector v̄ P t1ˆ¨ ¨ ¨ˆtdα

and the following conditions hold:

s ( Preαpx̄q{v̄ (5.5a)

s1 ( Effαpx̄q{v̄ (5.5b)

s1 ( gpv̄q “ w, when s ( gpv̄q “ w ^ Ew1,Effαpx̄q{v̄ ( gpv̄q “ w1 (5.5c)

where φpx̄q{v̄ is the (ground) formula that results from replacing every occurrence of

xi P x̄ by that of vi P v̄. The satisfiability relation in (5.5a)–(5.5c) is defined in a

standard way [50]. In other words, a set of action schemas Act is systematic whenever

these capture every possible reachability (or accessibility) relation between states s and

s1. We note that one action schema αpx̄q can satisfy the above for many ps1, a1, s1
1q,

ps2, a2, s
1
2q, ..., each of these tuples providing the semantics of ground action αpv̄q. In

this work, we further assume that action schemas do not change the denotation of any

symbol in Π (see section 5.5 for a discussion of their treatment in our encoding).

We denote the maximal arity of action schemas in Act asKα“maxαPAct dα. The maximal

number of equality atoms in precondition formulas is written as Kpre“maxαPAct cardp

Preαq (resp. Keff“maxαPAct cardpEffαq for effects).
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Symbol Description

acti Action assigned to slot i, i “ 1, . . . , Nπ

activeik Pin is active
argij Value of j-th argument of slot i, j “ 1, . . . ,Kα

inik k-th input pin data of slot i
outil l-th output pin data of slot i
sptjk Output pin supporting k-th input pin of slot j

Table 5.1: Quick reference table for the decision variables in the model. Nπ is the
number of slots, Kα is the (constant) maximal number of arguments in any action

schema α P Act.

5.3 Planning as Satisfiability

The approach known as planning as satisfiability [84] proceeds by considering a sequence

of instances for a related decision problem, that of plan existence. We state the latter

simply as follows: given some PPI P and parameter Nπ, with actions and states defined

in terms of some domain theory, the task is to prove that a feasible trajectory σ exists

such that lengthpσq “ Nπ, or alternatively, certify that no such σ exists. The classic

algorithm for optimal planning in this framework thus considers the sequence of CSPs

TP,n0 , TP,n1 , . . ., TP,nk , . . . each of these a reduction of the plan existence problem for

P and Nπ “ nk into that of the satisfiability of a CSP TP,nk with suitably defined

decision variables and constraints. The sequence of natural numbers n0, n1, . . . , nk, . . .

is typically, but not necessarily [141], defined as n0 “ 0, n1 “ 1, and so on. When

defined in this manner, as soon as TP,nk is satisfiable, we have proven that c˚ “ nk.

Scalable certification of infeasibility in this framework has been an open problem until

recently [39], yet remains challenging.

5.4 Lifted Causal CP Model

We start by giving a high-level account of our proposed encoding of CSPs TP,Nπ and

explain the roles played by the decision variables in Table 5.1. Central to our encoding is

the notion of plan step or slot, of which we have one for each action in a plan. In contrast

with the causal encoding of KMS, slots are totally ordered thus greatly simplifying the

definition of persistence that we use to deal with the frame axioms. To each slot exactly

one action schema α P Act needs to be assigned (variables acti), which in turn restricts

choices on the possible values for the arguments (variables argij) of the schema α as
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per τpαq. The assignments to the variables acti and argij determine the choices of

input and output pins for a slot. A pin is a vector of decision variables that we use to

represent equality atoms fpȳq “ z. These variables choose the function symbol f , terms

(constants in U) ȳ (a vector) and z. Input pins of slot i thus encode the equality atoms

in Preαpx̄q{v̄ required to be true in state si´1, and output pins the atoms in Effαpx̄q{v̄

required to be true in si, where αpv̄q is the ground action selected by the assigned schema

and (possibly partially) assigned values to arguments. These dependencies between the

variables of a slot are depicted in Figure 5.1(a), and Figure 5.1(b) illustrates the active

constraints between variables when the move action schema is chosen at slot i in the

visitall problem domain. The move schema has two arguments representing an agent’s

current and target positions in an nˆ n grid. Thus, when acti “ move, we require that

argi1 P C and argi2 P C, the input pin ini1 is assigned the function symbol at and the

variable yi1 holds an equality relation with argi1.

We note that we create upfront variables for arguments and pins following from Kα,

Kf , Kpre and Keff , all constants given by the data in an instance P . For a given

slot i, argument variables argij that are not used by the schema assigned are set to a

special null constant. To turn off pins not needed to represent atoms in preconditions

or effect formulas, we have a Boolean variable activeik that indicates if they are being

used. Finally, variables sptjk allow choosing what output pin supports a given input pin.

These variables allow encoding causal links [98] without referring explicitly to atoms.

5.4.1 Variables and Constraints

We now give a formal and precise account of the variables and constraints in the model.

Let Nπ be the maximal number of slots in a valid plan. For every slot i “ 1, . . . , Nπ

we have integer variables acti P rActs1 to choose the action schema α P Act assigned to

it. Argument variables argij select the values of the variables introduced by lifting and

their domains correspond to the types τjpαq, whenever acti “ α

pacti “ αq Ñ argij P rτjpαqs, j “ 1, . . . , dα (5.6)

1We use the notation rSs to designate the indexing of the elements of a set, e.g. rSs “ 1, 2, . . . for
S “ te1, e2, . . .u.
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Figure 5.1: paq Constraint graph depicting dependencies between the decision vari-
ables to model slots (plan steps). There is one vertex for every decision variable, and
there is an edge between two variables whenever they appear together in the definition
of at least one constraint. pbq Active constraints when the move action schema is chosen

in visitall.

The choice of action schema assigned to a slot restricts the choices of (ground) precondi-

tion and effect formulas. As introduced above, the input and output pins of a slot i are

the vectors of decision variables that select function symbols, arguments, and values inik

:“ pgik, xik1, . . . , xikN̄f , yikq and outil :“ phil, xil1, . . . , xilN̄f , yilq. Consistency of schema,

preconditions, and effects assigned to slot i is enforced by

pacti “ αq Ñ pgik “ fkq ^ bindpfk, x̄ik, yik, argiq (5.7a)

pacti “ αq Ñ phil “ flq ^ bindpfl, x̄il, yil, argiq (5.7b)

for k “ 1, . . . , cardpPreαq and l “ 1, . . . , cardpEffαq. argi is the vector of argument

variables for slot i. The predicate bind in (5.7a) and (5.7b) ensures that subterms x̄

and y of equality atoms in preconditions and effects are consistent with the definition of

schema α, expanding into the following

df
ľ

j“1

ˆ Kα
ł

j2“1

pxj “ argij2q

˙

^

Kα
ł

j2“1

py “ argij2q (5.8)

The dependencies induced by constraints (5.6)–(5.8) are depicted in Figure 5.1,

States are represented implicitly in our model, and to ensure that no change in the initial

state s0 is allowed without an event in the plan that explains any changes we rely on the

notion of causal consistency or persistence.
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Definition 5.1. Let fpx̄q be a functional term f P Φ and y a valid value in Cof . We

say that the truth of atom fpx̄q “ y persists between slots i and j, 0 ď i ă j ď Nπ, if (1)

f : x̄ ÞÑsi y, and (2) for every slot j1, i ă j1 ă j, there is no pin outj1l “ phj1l, x̄j1l, yj1lq

such that hj1l “ f , x̄j1l “ x̄, and yj1l ‰ y.

This ensures that states sj are given either by 1) function and value assignments in the

initial state s0 that have persisted through (ground) actions ai encoded in slots i, 0 ă

i ă j, or 2) an assignment made by some action ai encoded in some slot i, 0 ă i ă j,

that has persisted through the actions aj1 encoded by slots j1, i ă j1 ă j. For example,

in visitall, an atom atpq “ c1 in the initial state, where c1 is the initial position of the

agent, is said to have persisted until slot 3 iff the atom holds at slot 1 and 2.

The many possible cause-and-effect relations between output and input pins that may

justify the causal consistency of a plan are modeled via so-called (causal) support vari-

ables, sptjk P
`

r0, j´ 1sˆ r1,Keff s
˘

Ytnullu, for each slot 0 ă j ď Nπ and input pin 1 ď

k ď Kpre. The domain of these variables is the set of two-dimensional vectors whose first

element is the index of the slot i and the second the index l of the output pin supporting

injk, plus a dummy vector null that indicates that input pin injk does not have causal

support assigned. The following constraints enforce that every active pin has a matching

supporting one

sptjk “ nullÑ ␣activejk (5.9a)

sptjk “ pi, lq Ñ outil “ injk (5.9b)

sptjk “ pi, lq Ñ
ľ

iăj1ăj

persistspoutj1l, injkq (5.9c)

for each 1 ď j ď Nπ and 0 ď i ă j. Constraint (5.9a) excuses input pins that are

inactive from having a causally supporting output pin. Constraint (5.9b) ensures that

the values for functions, domain, and valuation set by pins injk and outil are matching.

Constraint (5.9c) encodes the requirement of causal supports to not be interfered with

by any ground action set for intermediate slots i ă j1 ă j. persistspoutil, injkq in

constraint (5.9c) expands into the formula

phil ‰ gjkq _ px̄il ‰ x̄jkq _ pyil “ yjkq (5.10)
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In the specific case of visitall, the constraints (5.9) and (5.10) impose additional con-

straints on the input and output pin variables than the ones depicted in Figure 5.1(b),

thus, restricting the choices of acti and argi as well. For example, if spt31 “ p1, 3q, then

the constraint (5.9b) requires that the assignment to out13 :“ pat, y13q matches that of

in31 :“ pat, y31q, i.e., y13 “ y31, and the constraints (5.9c) and (5.10) ensure that the

assignment to out13 persists through slot 2, i.e., the (ground) action a2 does not affect

the interpretation of at. It is easy to see that when spt31 “ p1, 3q, the choice of y13 in

turn affects arg31 since arg31 holds an equality relation with y31.

Additionally, whenever we assign action schemas α to slots i we mark input and output

pins as being active

acti “ αÑ activeik, acti “ αÑ ␣activeik1 (5.11a)

acti “ αÑ activeil, acti “ αÑ ␣activeil1 (5.11b)

with indices ranging as follows: 1 ď k ď cardpPreαq, cardpPreαq ă k1 ď Kpre, 1 ď l ď

cardpEffαq, cardpEffαq ă l1 ď Keff .

Initial and goal states are accounted for in the following way. To model the initial state,

we define slot 0 to consist exclusively of a set of (output) pins out0l where l ranges over

the indexing of the set

F :“
ď

fPΦ

Domf (5.12)

and each pin is set as per constraints, for each l P rFs

out0l “ pfl, x̄l, yq (5.13)

and y P Cof such that fl : x̄l ÞÑs0 y. Goal states are modeled too by having the slot

Nπ have a special structure, in this case by only having input pins inNπk with k ranging

over the indexing of the set of equality atoms φk ” fkpx̄kq “ yk in the goal formula

ľ

φkPGoal

inNπk “ pfk, x̄k, ykq ^ activeNπk (5.14)
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5.4.2 Analysis: Systematicity and Complexity

We first establish as fact that our encoding is systematic [98].

Theorem 5.2 (Systematicity). Let TP,Nπ “ pX , Cq be the CSP given by the decision

variables X in Table 5.1 and set of constraints C (5.6)–(5.14), for some suitable choice

of Nπ. There exists an assignment ξ onto variables X that satisfies every constraint in

C if and only if there exists a feasible solution σ to the PPI P , whose actions are given

by slots, argument, input, and output pin variables values.

Proof. It follows trivially from the definitions given in the previous sections that assign-

ments ξ encode finite trajectories σ “ s0a1s1 . . . sNπ . To prove the forward direction, it

suffices to observe that (1) constraints p5q on input and output pins for a slot i define

implicitly sets of pairs of states psi´1, siq PÑacti , the set of transitions corresponding

to the schema acti “ α assigned to the slot, (2) constraints p11q ensure that for i “ 1

the predecessor of s1 corresponds with the initial state s0 given in the definition of the

PPI P , and (3) the last state in the trajectory given by ξ the equality atoms in Goal.

To prove the reverse direction, we note that each pair of consecutive states si´1 and si

must belong to exactly one of the transition sets Ñα. From the definition of this set, the

schema, argument, and pins assignments follow directly.

Giving bounds on the number of variables generated for a CP model is not as informative

as doing so for CNF formulas due to the advanced pre-solving techniques that state-of-

the-art CP solvers employ [113], that may introduce auxiliary Boolean variables and

eliminate variables whose values can be determined without searching. Assuming that

no such transformations are applied to the CSP, the set of sptjk variables and their

domain constraints, which are required to be encoded explicitly by LCG solvers [108], is

the largest and is OpN2
πKmaxq whereKmax “max tKpre, Keff u. In the IPC benchmarks,

this often results in just a quadratic rate of growth as Kmax is usually much smaller than

Nπ for optimal plans. Yet, as we will see in our Evaluation, this is not always the case,

and we get cubic rates.
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5.5 Programming the Model with CpSat

To implement the CP model introduced in the previous section, we have used the LCG

solver bundled in Google’s Or-Tools package, CpSat [113]. At the time of writing

this, CpSat is the state-of-the-art LCG solver as adjudicated by the latest results of the

Minizinc challenge [142]. A key feature of CpSat we rely on is the extensive support for

different variants of so-called elementp¨q constraints [74]. These constraints implement

variable indexing, a key modeling feature in CP, and correspond with the statement

v̄x “ z, that reads as “the element at position x of vector v̄ must be equal to z”. The

power of these constraints lies in the possibility of elements of v̄ “ pv1, . . . , vmq, x and z

being all decision variables. We write elementp¨q constraints using Hooker’s [74] notation

elementpx, z | v̄q (5.15a)

elementppx1, x2q, z | V q (5.15b)

where (5.15a) implements the statement v̄x “ z, and (5.15b) implements V px1, x2q “ z

that reads as “the element of matrix V at coordinates x1, x2 must be equal to z”. x, x1

and x2 are thus index variables that locate one decision variable within a collection.

In our implementation, the action assigned to slot i, acti is an index variable, which

depends on the data assigned to input and output pins as per constraints (5.7) and

(5.8). Both of these constraints can be encoded compactly using (5.15a)

elementpacti, gik | pf1, f2, . . . , fj , . . . , f|Act|qq (5.16a)

elementpacti, xikl | pν1, ν2, . . . , νj . . . , ν|Act|qq (5.16b)

elementpacti, yik | pµ1, µ2, . . . , µj . . . , µ|Act|qq (5.16c)

Where fj is a function symbol, νj and µj are the argument variables of slot i or constants

consistent with the definition of action schema when acti “ j. fj is assigned a special

function when the input pin is inactive in the action schema, thus accounting for literals

␣activeik.

To give the readers a better intuition of the element constraints above, we revisit the

example of visitall. Visitall only has one action schema move, and hence, the element
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constraints are uncomplicated. Consider the input pin ini1 in Figure (5.1)(b), the con-

straint (5.16a) for the pin is written as elementpacti, gi1 | patqq, the constraint 5.16b as

elementpacti, xi1l | plqq, and lastly the constraint (5.16c) as elementpacti, yi1 | pargi1qq,

where l is a dummy symbol which accounts for inactive variables These constraints then

ensure that the variables of the slot i are internally consistent for all possible assignments

to acti.

The support variables sptjk are index variables with two elements, pi, lq, the first being

the index of a slot and the second the index of an output pin. As discussed in the

previous section, variables sptjk depend on the data of input pin injk. Output pins outjl

and constraints (5.9a) and (5.9b) can be accounted for using elementp¨q in its matrix

form (5.15b)

elementppi, lq, injk | Hq (5.17)

where H is the data of all output pins in a 2-dimensional grid. Constraint (5.17) thus

requires that the data of the output pin at the row i (slot i) and column l (l-th pin) of H

is equal to that in injk. The matrix H includes a specially defined element, containing

the data used to represent inactive pins, whose index is assigned to sptjk when the k-th

input pin at slot j is inactive, thereby encoding constraint (5.9a).

We exploit other modeling features offered by CpSat to implement the persistp¨q predi-

cate given in Equation (5.10)

u_ v1 _ . . ._ vo _ . . ._ vdf _ w (5.18a)

uÑphil ‰ gjkq (5.18b)

vo Ñpxilo ‰ xjkoq (5.18c)

w Ñpyil “ yjkq (5.18d)

where u, vo and w are auxiliary Boolean variables created for each poutj1l, injkq pair,

and 1 ď o ď Kf . CpSat does not represent explicitly constraints (5.18b), (5.18c) and

(5.18d). Instead, it collects them into a precedences propagator as inequalities between

integer variables. The precedences propagator uses the Bellman-Ford algorithm to detect

negative cycles in the constraint graph of inequalities, and propagates bounds on the

integer variables [105]. Still, OpN2
πKpreKeffKf q variables are generated in the worst-case
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scenario, e.g., Opn5q if all these quantities belong to the same order of magnitude. In

most of the benchmarks we use to test planners using these encodings, the number of

preconditions, effects and arity of functions are much smaller than Nπ, thus generating

Opn2q variables.

Encoding static relations with table constraints. Some PPIs contain domain

specific relations unaffected by the action schemas. For example, in visitall, the relation

connected is static, and the specification of the initial state fixes its interpretation. We

encode the dependency of the input pin variables on these static relations using table

constraints, which allow us to specify a set of allowed (or forbidden) assignments to a

tuple of variables, i.e., for a static relation R, we encode the constraint as tablepinik, Rq,

where the pin inik is specially designed to represent a tuple in R. This is more efficient

than using the element constraints (5.17) since CpSat translates them into a concise

CNF formulation.

Propagator for Required Persistence. We recall constraint (5.9c) that enforces the

requirement that whenever an output pin outil is to provide a causal explanation for an

input pin injk, the atom described by the former is not interfered with by any other

output pins in intermediate slots. Clearly, the number of variables and clauses (5.18a) is

proportional to j ´ i, bringing the potential number of variables generated to be Opn6q.

While such a rate of growth seems unsustainable for non-trivial instances, the empirical

results we obtain clearly show that this worst-case does not always follow for many

domains widely used to evaluate planning algorithms.

To avoid this blow-up, yet keep the strong inference offered by the system of con-

straints (5.18), we introduce a specific propagator that interfaces with CpSat precedences

propagator and checks whether constraint (5.9c) is satisfied. The propagator activates

whenever an assignment in the CDCL search fully decides the variables in input pin

injk. We then check, for every slot j1, 0 ă j1 ă j, whether the current assignment has

fully decided some output pin outj1l, and proceed to evaluate the persistence predicate

in Equation (5.9) on the assignment. If the former evaluates to false, we have a conflict

between the assignment and constraint (5.9c). We then generate the following blocking

clause or reason to explain it

␣pφoutj1l
^ φinjkq _

`

LBpsptjk1q ą j1q (5.19)
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where φ formulae are the conjunction of equality atoms that bind variables in pins to the

values in the current assignment. sptjk1 is the first element (variable) in sptjk and LB

is a function provided by CpSat that allows access to the lower bound of the domain of

a variable in constant time.

Searching for plans. Our algorithm for planning as satisfiability uses a strategy to

find plans that are analogous to the notion of lookaheads in Approximate Dynamic Pro-

gramming. As in the classic algorithm described earlier, we generate a sequence of CSPs

TP,k1 , TP,k2 , . . ., TP,ki , . . . with k0 “ 0 and ki ´ ki´1 ě 1 for i ą 0.

To each TP,ki we impose the Pseudo-Boolean objective

min
ki
ÿ

j“1

enabledj (5.20)

where enabledj are auxiliary Boolean variables which we use to “switch off” slots via

constraints ␣enabledj Ñ actj ą |Act|. If CpSat proves that the resulting optimization

problem has finite optimal value z then we know that c˚ “ z and the search terminates

as we have found an optimal plan. If CpSat finds an upper bound z, that is, a sequence

of feasible solutions is found, but it is not possible to prove the optimality of the last one

within the time limit set, then we know that c˚ ď z. If CpSat proves the tightest upper

bound to be 8 (e.g., the problem is unsatisfiable), then we have established a deductive

lower bound [56], as we know that c˚ ą ki. In this last case, we repeat the process above

with TPki`1
until a solution is found or the allowed time to search for plans is exhausted.

5.6 Functional transformation of a PDDL task

Benchmarks in planning are not expressed in FSTRIPS directly but in PDDL [66], a

defacto abstract representation of a PPI used by the research community. PDDL is

defined by the tuple P “ ⟨U, T,P, Act, s0, γ⟩, where U is a set of objects, T P 2U is a

collection of types, P is a set of predicates, Act is a set of action schemas, s0 is the

initial state, and γ is the goal formula. For a given predicate P P P of arity dP, there

are two associated literals, the positive atom Ppx̄q and negative atom ␣Ppx̄q, where x̄ is

tuple of variables px1, x2, . . . , xdPq, the domain of xi corresponds to a type ti P T . We

denote maxPPP dP as KP. A simple reformulation of PDDL planning task into FSTRIPS

representation is to treat each predicate P P P as a Boolean function or a mapping,
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fP : DomfP ÞÑ CofP , DomfP Ď t1 ˆ t2ˆ, . . . ,ˆtdP , CofP “ tJ,Ku. Thus, pfPpx̄q “ Jq

denotes Ppx̄q and pfPpx̄q “ Kq denotes ␣Ppx̄q. Mappings beyond Boolean functions can

yield a more compact FSTRIPS representation for CP. Hence, in this section, we present

a novel method to derive a more concise functional transformation of predicates P.

Any function f : Domf ÞÑ Cof has an associated binary relation, a mapping, Rf :“

tpx, yq | fpxq “ y, x P Domf , y P Cofu. A predicate P P P of arity 2 also has an

associated binary relation, RP :“ tpx, yq | Ppx, yq, x P Domf , y P Cofu. If the relation RP

is a mapping, then we can create a more concise transformation, i.e. fP : Domf ÞÑ Cof ,

instead of fP : DomfˆCof ÞÑ tJ,Ku. Moreover, 0-ary, 1-ary, and n-ary predicates can all

be mapped into the binary case without loss of generality, i.e., Ppq can be substituted by

Ppc1, c2q, c1, c2 P Domc,Domc X U “ H, Ppyq by Ppc, yq, and for n ě 2, Ppx, yq replaces

the predicate Ppu1, . . . , unq, where x is a tuple in the set of combinations of parameters of

length n´1 and y is the parameter which is excluded from x. For example, in the PDDL

specification of visitall, at is a 1-ary predicate representing the agent’s current position.

We can map at into the binary case by introducing a constant A, then transform it into a

function as at : tAu ÞÑ C since the agent can take at most one position on the grid. Thus,

for each predicate P P P, there is an associated binary relation RP :“ tpx, yq | Ppx, yqu.

There are two necessary and sufficient conditions for a binary relation to be a mapping,

p1q it is right-unique, and p2q it is left-total. A binary relation RP is right unique iff

@ x1, x2 P Domx, y1, y2 P Domy, Ppx1, y1q ^Ppx2, y2q ^ px1 “ x2q Ñ py1 “ y2q. It is left-

total iff @ x P Domx, D y P Domy, Ppx, yq. Since the states s P S set the interpretation

of predicate P, we have to at least prove that the right-unique and left-total conditions

hold in SRP , the set of states reachable from s0, to make a case for the more concise

functional transformation.

Theorem 5.3. If RP is a mapping in all possible interpretations s P SRP , then P 1,

the transformation of the problem P which encodes the predicate P as a function fP :

Domx ÞÑ Domy, has the same set of reachable states as P , i.e. SRP “ SRP 1

Proof. If the right-unique and left-total properties hold for RP in all s P SRΠ , then

applying the functional transformation would not alter the reachable state space since

the functional transformation implicitly enforces the same conditions, i.e. @ x1, x2 P

Domx, y1, y2 P Domy, pfP px1q “ y1q ^ pfP px2q “ y2q ^ px1 “ x2q Ñ py1 “ y2q and

@ x P Domx, D y P Domy, pfP pxq “ yq.
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A sufficient condition for the right-unique property to hold in all interpretations s P

SRP is that the negation of the right-unique condition is false in SRPr Ě SRP , where Pr

is a relaxation of P . Thus, we can do a relaxed reachability analysis of the formula

ψP :“ Dx1, x2, y1, y2, Ppx1, y1q ^ Ppx2, y2q ^ px1 “ x2q ^ py1 ‰ y2q to test whether the

right-unique condition holds for all s P SRPr , i.e. the right-unique property holds if ψP

is unreachable in Pr. The relaxation is important since checking the reachability of the

condition in P is as complex as solving the problem itself. To this end, we extend the

hm heuristic [58], which is an admissible approximation of the optimal heuristic function

h˚, to the first-order logic existential formula of the form ψ :“ Dx̄, ψL ^ ψEQ, where

x̄ :“ px1, x2, . . . , xnq is a vector of parameters, ψL is a conjunction of literals whose

interpretation is set by the states s P SRP , and ψEQ is an equality-logic formula. We then

use the extension of hm to test the reachability of the formula ψP, i.e., if hmpψPq “ 8,

then ψP is unreachable, and hence, the right unique condition holds in all interpretations

s P SRP of P. Also, we note that, if RP is right-unique, the left-total property is trivial

to satisfy. For each x P Domx, if Ey P Domy, Ppx, yq, then we map x to l, a dummy

constant symbol.

5.7 hm heuristic over first-order logic existential formulae

In this section, we present an account of the hm admissible heuristic [58] and its extension

to the first-order logic existential formulas, which we then use to test the reachability of a

first-order logic formula. The heuristic function hm is an admissible approximation of the

optimal heuristic function h˚ : A ÞÑ N, defined over a conjunction of positive and negative

ground atoms A :“ P ˆ t1 ˆ . . .ˆ tKP ˆ tJ,Ku. h
˚ is defined using the regression model

of the planning problem, in which we regress backward from a goal formula using a

regression function rga : A ÞÑ A with respect to a ground action a P Actˆ UKα [122].

We extend the regression function rga to the first-order logic existential formulas and

use it to define hm for first-order logic formulas.

Let ψ be a first-order logic existential formula, ψ :“ Dx̄, ψL^ψEQ, where x̄ :“ px1, x2, . . . ,

xnq is a vector of parameters, ψL is a conjunction of literals whose interpretation is set

by the states s P SRP , and ψEQ is an equality-logic formula. We denote the set of literals

in a formula ϕ by litsϕ, the predicate and the argument variables of a literal l P litsϕ by

predicatel and argl, respectively, and the polarity of l by polarityl.
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The regression of formula ψ with respect to an action schema α :“ ⟨Preα,Effα⟩ involves

identifying the supporter-supportee pairs and the inconsistent literal pairs between Effα

and ψL. A supporter-supportee relationship holds between l P litsEffα and l1 P litsψL iff

the predicate and the arguments of l match that of l1 and they have the same polarity.

On the other hand, a literal l P litsEffα is inconsistent with l1 P litsψL iff the predicate

and the arguments of l match that of l1 but they have the opposite polarity.

While regressing with respect to action schema α, we need to consider every possible

combination of supporter-supportee pairs, i.e. all subsets of the set of potential supporter-

supportee pairs SP :“ tpl, l1q | polarityl “ polarityl1 , predicatel “ predicatel1 , l P

litsEffα , l1 P litsψLu. Then for each literal pair pl, l1q in the set we add the constraint
ŹKP
i“1 argli “ argl1i to the formula obtained through regression. Thus, the regression of

ψ using α produces a set of formulas. Similarly, for each pair in the set of potential incon-

sistent pairs IP :“ tpl, l1q | polarityl ‰ polarityl1 , predicatel “ predicatel1 , l P litsEffα , l1 P

litsψLu, we add the constraint
ŽKP
i“1 argli ‰ argl1i to the regression formula of ψ. We

now present the definition of the regression function over first-order logic formulas.

rgαpψq :“ tDx̄, prgαpψ
L, ĂSPq ^ qrgαpψ

EQ, ĂSPq | ĂSP Ď SPu (5.21a)

prgαpψ
L, ĂSPq :“ Preα ^

ľ

lPtlits
ψL

ztl1|pl,l1qP ĂSPuu

l (5.21b)

qrgαpψ
EQ, ĂSPq :“ ψ1EQ ^

ľ

pl,l1qP ĂSP

^
KP
i“1argli “ argl1i ^

ľ

pl,l1qPIP

_
KP
i“1argli ‰ argl1i (5.21c)

where we obtain the regression of ψL by removing the supportees in the set ĂSP from ψL

and adding the precondition of α. The regression of ψEQ involves a reduction into a

canonical form ψ1EQ by setting the equality atoms whose arguments do not appear in

the arguments of the regression prgαpψ
L, ĂSPq to true. Then, we add two equality logic

formulas, the first of which binds the arguments of supporter-supportee pairs in ĂSP and

the second disallows inconsistent assignments to the arguments of literals pairs in IP.

The hm heuristics for ψ :“ Dx̄, ψL ^ ψEQ is defined using regression as follows
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hmpψq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

0, s0 ( ψ

minψ1Prgαpψq,αPActh
mpψ1q ` costpαq, |litspψLq| ď m

maxψ$ψ1,|litspψ1Lq|ďmh
mpψ1q, otherwise

(5.22)

hmpψPq can be efficiently computed using dynamic programming with memoization, and

s0 ( ψ can be encoded as a CP program with equality and table constraints. For a fixed

value of m, the complexity of the above procedure is low polynomial in the number of

nodes, i.e., the number of first-order logic formulas Op|P|m ¨2KP q. An important property

of the above procedure is that it is entirely lifted, i.e., no ground atom would occur in

the formulas obtained through regression if no action schema has ground atoms. This

is especially useful in hard-to-ground(HTG) domains where the size of ground theory

renders the translation methods [67] used by most planners intractable.

5.8 Empirical Analysis

Our experiments consist of running a given planner on a PPI, ensuring that the solver

process runs on a single CPU core (Intel Xeon running at 2GHz). We impose resource

usage limits both on runtime (1800 s) and memory (8 GBytes). We used the Downward

Lab module [134] to manage the parallel execution of the experiments.

We compare the performance of CpSat solving our model, with and without propa-

gators for persistence constraints, with that of notable optimal and satisficing domain-

independent planners. The former include, in no particular order, lmcut [69], symbolic-

bidirectional(sbd) [145], the baseline at the optimal track of the International Planning

Competition (IPC) 2018, cpddl [46], a very efficient implementation of symbolic dynamic

programming and many other pre-solving techniques that analyze the structure of actions

in the instance, delfi1, a portfolio solver [82] and winner of the optimal planning track

in IPC 2018, and lisat [76], a recently proposed lifted planner which has state-of-the-art

performance on hard-to-ground (HTG) benchmark tasks. It solves an encoding of lifted

classical planning in propositional logic using a highly efficient SAT solver Kissat [10]

written in C. Satisficing planners include the satisficing variant of lisat, Madagascar

[126], a SAT planner which was the runner-up in the Agile track in IPC 2014, and lifted
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implementations of BFWS planners, BFWS([RX, h
add]) and BFWS([RX, h

ff ]) [29] which

have state-of-the-art satisficing performance on HTG benchmark tasks [29, 89]. We

use PLadd
Rx

and PLff
Rx

to denote the lifted implementations of BFWS planners, and lisat

and lisat to denote the satisficing implementation of lisat with and without londex [24]

constraints. All optimal planners were configured to minimize the plan length.

We evaluate all planners on the HTG benchmarks and the instances from the optimal

track of the IPC [77]. Testing the planners on the HTG instances is significant as the size

of U is very large, and as a result, explicit grounding is either infeasible or greatly stresses

the implementation of key techniques (match trees, compilation into finite-domain repre-

sentations) [67] that heuristic search planners rely on to be competitive. Comparing the

performance with IPC instances allows us to control for implementation-dependent fac-

tors and see how CpSat copes with quickly growing numbers of variables and constraints.

This is so because instances in the IPC benchmark tend to require a significantly higher

number of plan steps for some domains (like logistics). We also tested a 3-action lifted

formulation of blocksworld where actions are move(x,y,z), move-to-table(x,y), and move-

from-table(x,y), which we think is significant as it measures the sensitivity of planners to

long-studied formulations of the same domain.

In addition to the IPC instances, we evaluate the planners on the multi-modal project

scheduling problems (MMPSP) from the ’j10’ set in PSPLIB [85]. The scheduling bench-

marks are particularly interesting to us since they exercise a different combinatorial struc-

ture than the IPC instances. While the IPC instances have smaller and non-numeric

sorts, the scheduling instances usually have numeric duration and resources. To test

the sensitivity of the planners to the distinguishing features of scheduling problems, we

performed an ablation study by scaling up the duration of the jobs in MMPSP by a

factor of 2, 8, and 16, respectively.

CpSat Hyperparameters. CpSat offers great flexibility to configure what pre-solving

techniques, restarting policies, and branching heuristics are used. In our experiments,

we used the default branching heuristic settings and chose the luby policy for managing

restarts. CpSat default branching heuristic settings try first to fix values of literals

appearing in CNF clauses (which may have been lazily generated by some propagator),

selecting the former with classical activity-based variable selection heuristics [113]. In-

teger variables are only considered after all Boolean literals are fixed. We use the linear

scan algorithm of Perron et al. [113] to optimize Eq. (5.20).
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Implementations of Lifted Causal Encodings. We have tested two implementations

of constraints (5.9c). The first uses the formulation in Eqs. 5.18. The second one uses

the persistence propagator. We will refer to them as CP0 and CPPP, respectively. We

set k1 to goal count for the CSP TP,k1 in our experiments, then used a luby sequence to

set ki for i ą 1. We use the same strategy for satisficing planning except we scale the

luby sequence by a factor of 5 and allocate a time-budget Bi for the CSP TP,ki . Bi is set

such that the planner has sufficient time to explore a sliding window over plan-lengths,

Bi :“ mintr, r ¨ pki´ lbi´1q{W u, where r is the total remaining time-budget, lbi´1 is the

lower bound on the plan-length returned by the CSP TP,ki´1
, and W is the size of the

sliding window which is a planner parameter. We set W “ 50 in our experiments.

To assess the effectiveness of the functional transformation, we generated the functional

representation using the method described at the end of the previous section. We refer

to the encoding using functional representation as CPfn
0 and CPfn

PP.

Hard-to-ground Optimal Solution Satisficing Solution

Domain CP0 CPfn
0 CPPP CPfn

PP lisat lmcut sbd cpddl delfi1 CPfn
0 CPfn

PP lisat lisat MpC PLadd
Rx

PLff
Rx

blocks-3ops(40) 40 40 40 40 40 0 0 0 0 40 40 40 12 0 10 10
blocks-4ops(40) 40 40 40 40 40 10 0 1 0 40 40 40 20 4 19 17
childsnack(144) 48 48 48 48 49 7 73 81 58 144 144 144 144 66 94 96
ged(156) 23 30 22 31 35 18 12 14 18 37 29 58 28 30 156 156
ged-split(156) 22 24 22 24 26 18 22 30 22 40 38 46 28 150 154 153
logistics(40) 27 35 22 36 28 7 12 0 8 40 40 40 0 0 40 40
org-syn-MIT(18) 18 18 18 18 18 2 2 13 2 18 18 18 10 0 18 18
org-syn-alk(18) 18 18 18 18 18 18 18 18 18 18 18 18 18 0 18 18
org-syn-orig(20) 13 13 15 15 20 0 1 2 1 5 9 14 1 0 13 13
pipes-tkg(50) 15 15 15 17 20 8 12 13 10 23 25 10 23 10 45 46
rovers(40) 3 7 3 8 3 7 2 0 2 11 10 4 0 0 39 40
visitall3D(60) 25 25 24 34 35 33 12 12 24 33 49 46 39 12 57 57
visitall4D(60) 23 23 23 35 34 16 6 6 6 30 44 48 36 6 42 41
visitall5D(60) 27 26 26 33 33 11 0 0 0 32 44 54 38 0 40 40

Total(902) 342 362 336 397 399 155 172 190 169 511 548 580 397 278 745 745

Table 5.2: Coverage of planners on hard-to-ground benchmark domains.

Performance over benchmarks We now discuss the observed performance (see Ta-

ble 5.2)measured as coverage or the number of instances solved optimally (or sub-

optimally) per problem domain in each benchmark. Also, we look closely at the sen-

sitivity of lisat and CPfnPP when increasing the duration of jobs in Figure 5.2.

The CP Planners perform very well on all formulations of the HTG instances of the

blocksworld domain. Table 5.2 reveals that every configuration of the CP planner solves

the full set of HTG instances. Comparing the results on blocksworld to the IPC instance
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Figure 5.2: Ablation study on the runtime performance of lisat and CPfn
PP by scaling

up the duration of the jobs in MMPSP by a factor of 2, 8 and 16, respectively.

set5.3, we see the CPfn
PP planner performs strongly, too, even when the IPC instances

require a much higher number of plan steps than the HTG ones.

The CP planners and baseline lisat planners find feasible plans for many HTG childsnack

instances, significantly more than the state-of-the-art PL baselines, but have trouble

finding optimal plans. For any given childsnack instance, there are many possible optimal

plans that are simply permutations of each other. Without specific guidance, our planners

struggle with symmetries to obtain proofs of optimality quickly. Another structural

feature of optimal plans that is revealed to be problematic is the plan length. Domains

where plans require many actions (HTG ged) are very challenging for our planners, with

lisat performing better and the PL baseline having excellent performance in all of these

instances, and Madagascar too when its techniques to bundle several actions apply.

In rovers, the concise encoding of dependency of preconditions on static relations using

the table constraints (see Section 5.5) helps the CPfn
PP achieve better optimizing perfor-

mance than the baselines. The initial states of HTG rovers instances may have 10, 000s

of atoms to specify the static relations, which otherwise would make the number of

constraints (5.13) and (5.10) to blow up.

The satisficing performance of lisat with londex constraints against lisat which does not

use londex shows impressive gains in coverage by exploiting the structure of feasible plans

to guide the search. The londex implementation of lisat restricts the supporter-supportee

distance to 1, initially. If UNSAT, it increases the distance limit by 1 and solves again.

It repeats the procedure until timeout or finds a solution. This indicates a potential for

improving the satisficing performance of the CP encoding by designing and integrating

planning-specific heuristics into the CP solvers.
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Overall, all optimizing configurations of the CP planners perform much better than the

baseline heuristic search planners on the HTG benchmark. The functional transforma-

tion of the PDDL tasks shows impressive performance gains, thereby highlighting the

importance of a concise encoding of the planning problems. The performance of CP

encoding with simple transformation of the PDDL task lags slightly behind lisat. With

the functional transformation CPfn
PP, the planner catches up to lisat, and their coverage

is about the same.

However, in the MMPSP instances, the CP approach shows its advantage over all other

baseline planners. As we can see in Figure 5.2, while the CPfn
PP is slightly ahead of

lisat for the original problems, scaling the durations only slowly degrades CPfn
PP, but

immediately makes a significant difference to lisat since it must encode much larger time

domains, while CpSat only lazily grounds the integers encoding times. We note that all

the baseline heuristic planners exceeded the memory limit on the original problem set

itself.

Lastly, in the IPC instances, Table 5.3, the CPfn
PP planner performs much better than

the baseline lisat. However, all CP planners, as well as lisat, do not perform as well as

the baseline heuristic search planners. With the exception of blocks-3ops and organic-

synthesis, the coverage of the CP planners is lower than that of heuristic search planners.

Heuristic search planners work well with features showcased in the IPC instances, includ-

ing significantly longer plans. On the other hand, their performance suffers in problem

domains with large numeric types, especially over Resource-constrained planning(RCP)

problems [103].

5.9 Related Work

While causal encodings are the road less traveled in planning as satisfiability, there is

a related work worth mentioning. Formulations based on the event calculus [137] exist

yet are rarely acknowledged. We note that the event calculus Initiates predicate corre-

sponds to our notion of output pins, Holds corresponds to our notion of input pin, and

Terminates is very much equivalent to our persistence predicate in Eq. (5.9). Constraint

Programming was a natural target for research seeking more compact encodings very

early [149], yet our most direct inspiration was the Cpt planning system [152], which in
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IPCs(opt) Optimal Solution

Domain #Instances CP0 CPPP CPfn
PP LiSAT lmcut sbd cpddl delfi1

Not-grounded — action schemas do not have ground atoms

barman-opt11 20 0 0 0 0 4 9 12 7
barman-opt14 14 0 0 0 0 0 3 6 2
blocks 35 17 19 28 26 28 30 31 27
blocks-3ops 35 19 23 35 5 26 25 30 20
childsnack-opt14 20 0 0 0 0 0 4 4 6
data-network-opt18 20 14 15 15 0* 20 17 17 17
depot 22 1 1 2 2 7 5 7 12
driverlog 20 4 4 4 5 14 12 12 15
elevators-opt08 30 2 3 5 6 20 22 23 20
elevators-opt11 20 1 1 3 4 17 18 18 16
floortile-opt11 20 0 0 0 0 6 14 14 12
floortile-opt14 20 0 0 0 0 5 20 20 17
freecell 80 6 6 6 12 15 21 22 18
ged-opt14 20 19 19 20 20 20 20 20 20
grid 5 1 1 2 1 2 2 2 3
gripper 20 1 2 2 2 7 20 20 20
hiking-opt14 20 4 4 4 8 9 14 15 19
logistics00 28 2 2 3 6 20 18 19 21
logistics98 35 0 0 1 1 6 5 5 8
miconic 150 22 23 30 32 141 104 104 136
mprime 35 31 32 33 33 22 23 25 25
mystery 30 18 18 18 19 17 13 15 17
nomystery-opt11 20 6 6 6 10 14 13 14 14
organic-synthesis-opt18 20 20 20 20 20 7 7 13 8
organic-synthesis-split-opt18 20 8 12 12 10 16 13 8 12
parking-opt11 20 1 1 1 1 2 1 1 5
parking-opt14 20 0 0 0 0 3 0 1 7
pegsol-08 30 9 8 11 20 27 28 29 28
pegsol-opt11 20 1 1 1 6 17 18 19 18
pipesworld-notankage 50 12 12 12 14 17 15 15 25
pipesworld-tankage 50 9 10 11 11 12 16 17 22
rovers 40 4 4 4 4 8 14 14 12
satellite 36 3 3 4 5 7 10 11 14
scanalyzer-08 30 10 9 13 12 9 13 13 17
scanalyzer-opt11 20 7 6 10 9 6 10 10 13
sokoban-opt08 30 0 0 0 2 24 25 28 28
sokoban-opt11 20 0 0 0 0 19 20 20 20
spider-opt18 20 0 0 0 0 6 6 6 8
storage 30 12 11 13 0* 15 14 15 17
termes-opt18 20 0 0 0 0 5 16 16 12
tetris-opt14 17 2 2 3 3 5 10 12 13
tidybot-opt11 20 1 3 3 0* 14 12 11 17
tidybot-opt14 20 0 0 0 0* 9 5 7 13
tpp 30 4 4 4 5 7 8 8 11
transport-opt08 30 6 6 6 6 12 14 14 13
transport-opt11 20 1 1 1 1 8 10 11 10
transport-opt14 20 1 1 1 2 7 9 10 9
visitall-opt11 20 8 9 11 11 10 12 12 17
visitall-opt14 20 2 3 5 5 5 6 6 13
woodworking-opt08 30 7 7 7 10 17 30 29 28
woodworking-opt11 20 2 2 2 5 12 20 20 20
zenotravel 20 7 7 8 9 13 9 0 12

Partially-grounded — action schemas have a few ground atoms

agricola-opt18 20 0 0 0 3 0 14 12 10
airport 50 6 7 7 7 28 23 24 23
movie 30 30 30 30 0* 30 30 30 30
openstacks-opt08 30 0 1 1 2 8 30 30 30
openstacks-opt11 20 0 0 0 0 3 20 20 20
openstacks-opt14 20 0 0 0 0 0 15 16 12
parcprinter-08 30 6 6 6 0* 22 30 30 30
parcprinter-opt11 20 3 3 3 0* 16 20 20 20
pathways 30 3 4 4 0* 5 5 5 5
snake-opt18 20 3 3 6 0* 7 3 5 11

Fully-grounded — action schemas only have ground atoms

openstacks 30 0 0 0 0 7 18 17 11
petri-net-alignment-opt18 20 0 0 0 0 3 18 20 20
psr-small 50 44 46 46 0* 49 50 50 50
trucks 30 2 2 2 0* 10 11 14 9

Total 1862 402 423 485 375 927 1090 1124 1195

Table 5.3: Coverage of planners on IPCs – optimal track benchmark domains. *
indicates the domains in which the preprocessing (parsing and encoding) step of lisat

rendered the instances unsolvable.
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some of its later versions2 used a notion of propagator for its causal link constraints, very

close to that later formalized by Ohrimenko et al. Previous work have proposed grounded

encodings that used KMS notion of operator splitting [40, 130], which are structurally

similar to our constraints for representing ground actions. Our formulation is entirely

lifted, and the only ground atoms we are forced to use are those present in initial and

goal state formulas. We end acknowledging that the power of elementp¨q constraints and

their applications to automated planning was revealed to us after the careful study of

Francis et al. [53] and Francès and Geffner [51].

5.10 Conclusion

Our research demonstrates that the KMS notion of lifted causal encodings is an approach

to planning as satisfiability that has become viable thanks to the notable advances in CP

over the last decade. We have clearly barely scratched the surface of what is possible, as

more propagator procedures follow directly from the formulation in this work, seeking

powerful synergistic relations between “planning-specific” ones and general propagation

algorithms. The clear limit to this approach lies in the number of variables that need

to be created. We also have not really looked into the possibility of integrating or

reformulating existing work that is known to enhance notably the scalability of planning

as satisfiability [126].

Alternatively, and perhaps ultimately too, we need to consider PDR-like formulations [143,

39], where we only need to construct a CP model covering two plan steps. We observe

that Suda’s expedient of reimplementing the obligation propagation mechanism as a

“Graphplan-like” algorithm strongly suggests that a CP formulation with suitably de-

fined propagators could perform well across PPIs with diverse structures. Also, PDR

formulations seem to be key for certifying unsolvability [39].

2Personal communication with Hector Geffner.





“An equation for me has no meaning unless it expresses a

thought of God.”

Srinivasa Ramanujan

6
Integrating Planning as Search

and Planning as CP

Planning as search is currently the dominant approach in sequential planning. It allows

the algorithms to exploit the optimal substructure of the shortest path while generating

the graph incrementally. When coupled with suitable heuristics, these planners have

shown state-of-the-art performance in optimizing and satisficing planning benchmarks of

the International Planning Competition. On the other hand, planners based on planning

as (iterated) CSP solving have recently shown state-of-the-art performance on hard-to-

ground instances, which demonstrates the scalability of Conflict Driven Clause Learning

(CDCL) in solving suitably designed SAT encodings of classical planning. Furthermore,

the innovative technique of Lazy Clause Generation (LCG), which combines SAT solving

and Finite Domain propagation, has enabled further generalization of CDCL with FD

propagators. The resulting framework of LCG CDCL extends the usefulness of CDCL-

based SAT solvers to the domain of CSP solving. In this chapter, we show how LCG

113
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CDCL can accommodate various forward search methods with little or no modification,

and possibly all of them with further research in this direction.

6.1 Introduction

CDCL [139] is an extension of the Davis-Putnam-Logemann-Loveland (DPLL) frame-

work that allows the solver to learn a set of clauses that capture explanations of failure

with the potential to reduce the search space significantly. The framework is highly

adaptable, and researchers have extended it to solve a sequence of related incremental

SAT problems such that the information learned is preserved in successive iterations

of the CDCL loop. Moreover, Google’s CpSat solver demonstrates an integration

of groundbreaking Lazy Clause Generation (LCG) technology into the framework of

CDCL, enabling state-of-the-art performance with a suitably designed implementation

of constraints (propagators) [142]. Further generalization of the approach has been re-

cently proposed and demonstrated in the CaDiCaL SAT solver, allowing for external

user-propagators without modifying the internal working of the SAT-solver [44]. On

the other hand, planning as search algorithms, including the suite of algorithms in the

framework of width-based search, have dominated the satisficing planning landscape in

the competitions [77].

It is crucial to recognize that the fundamental techniques driving the success of both for-

ward search and CDCL-based approaches are not mutually exclusive. On the contrary,

the framework of planning as search and that of clause learning and lazy constraint gen-

eration appear complementary. Indeed, researchers have previously combined planning-

specific heuristics, based on fundamental principles related to plan properties, into the

framework of CDCL in SAT solvers [123, 125]. Such integrations have been shown to

consistently outperform the generic variable selection heuristics like VSIDS (Variable

State Independent Decaying Sum). Furthermore, they are found to reach the same level

of performance as forward search methods using heuristic guidance for many planning

instances in the International Planning Competition benchmark instances [126]. How-

ever, none of these studies have explicitly compared and contrasted, or fully integrated,

the two approaches: planning as search and planning as CSP solving.

This study thoroughly compares the forward search paradigm and LCG CDCL frame-

works, proposing an integrated approach. For our integration, we adapt Google’s
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CpSat solver, which implements LCG CDCL. Our research demonstrates that blind

search techniques, such as breadth-first search and depth-first search, can be seamlessly

incorporated into planning as CP. This integration is achieved through adjustments to

the variable selection heuristic for Lifted Sequential Planning CP encodings. Moreover,

we demonstrate that value selection heuristics in CDCL solvers can be employed to

choose the successor for expansion, akin to planning heuristics. Lastly, we incorporate

the concept of Novelty as a constraint within CP and introduce an efficient implementa-

tion of Novelty using a polynomial-time reachability propagator. Our Lifted Encoding

demonstrates enhanced performance when solved using Depth-First Novelty Search, an

LCG CDCL-based algorithm incorporating forward search with novelty-based pruning.

6.2 Juxtaposing Planning as Forward Search and Planning

as CSP solving

Planning as Search Planning as CSP solving

Search
Framework

Best-First Search (BFS)1 CDCL, LCG CDCL2

Knowledge
Base

Open List, Closed List, Transition
Function

Constraints (Boolean, Linear),
User-propagators

Heuristics
Novelty, Landmarks,
Delete-relaxation

VSIDS, Activity-based,
LP-heuristic

Assumptions
Novelty-Bound3 Plan-length4

Table 6.1: Examining the characteristics of Planning as Forward Search and Planning
as Constraint Programming.

In Table 6.1, we present a side-by-side comparison of the approach of planning as search

and planning as CSP solving, give examples of common search approaches in each, and

how the knowledge base comprising of knowledge encoded in the problem description

and that obtained during the search differ between the two. This is significant as the

methods involved in deducing further knowledge from the knowledge bases depend on the
1Predominant search framework in state-of-the-art heuristic planners
2Framework implemented by Google’s CpSat solver
3A novelty Bound k is assumed in width-based algorithms including IW(k) [91] and k-BFWS [92]
4An assumption on plan-length is made in planning as (iterated) CSP solving
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languages representing the knowledge. Hence, comparing them allows us to understand

the orthogonality and complementarity of the approaches. In that sense, the advantage

of the CDCL framework used by CpSat lies in its representation of knowledge, SAT

clauses, and constraints, which are more general when compared to the data structures

of open and closed list in BFS, enabling it to capture large tracts of unreachable search

space concisely. However, we must note that the value of a more expressive language of

the knowledge base is limited without powerful and efficient inference procedures.

The following sections detail these approaches, explaining the procedures and discussing

their strengths and weaknesses.

6.2.1 Forward Search Framework

Forward search is a technique for solving problems by exploring the possible states that

can be reached from the given initial state until one of the goal states is reached or the

search space is exhausted. It does so by incrementally generating sequences of the form

ps0, a1, . . . , anq where the preconditions of all the actions in the sequence are satisfied,

@i P t1, . . . , nu, T ps0, pa1, . . . , ai´1qq ( Preai , and then testing whether the resulting state

sn “ T ps0, pa1, . . . , anqq meets the goal specification, i.e. sn Ď SG. Overall, the forward

search strategy adheres to the following constraints.

1. The sub-sequence pa1, ..., akq is tested prior to pa1, ..., ak`1q , where ai is a ground

action.

2. The sequence of actions is internally consistent, i.e., no action threatens the pre-

condition of another.

3. All the preconditions of actions in the sequence are supported.

Thus, each sequence is chained from the initial state to the last action.

The order in which the sub-sequences are tested is further specified by the specific imple-

mentation of the forward search algorithms, and they use appropriate methods and data

structures to achieve this. These algorithms have two main components: a knowledge

base and a search strategy.

Knowledge Base. In forward search, the Knowledge Base contains all the necessary

information to generate the next sub-sequence and perform a goal check. This includes
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the transition function, which produces the successor states that can be reached from a

given state by applying an action, a goal test to check whether a given action sequence

results in a state that is a subset of goal states, and data structures that record the state

of the search. Implementing the knowledge base, including the representation of the sub-

sequences, e.g., nodes in a search tree, is implementation-specific, and the developers try

to engineer a design that synergizes well. For example, the Fast Downward Planner [67]

implements the successor generator using a match tree data structure, and its best-first

search implementation also uses efficient data structures for maintaining open and closed

lists, which represent the state of the search.

Search Strategy. The search strategy determines the next sub-sequence pa1, ..., akq to

try under the given constraints of forward search. In other words, it is a way of choosing

which node to expand next from the set of successors of the leaf nodes in the explicit

search tree — a tree formed by sub-sequences that have been explored during the search

in which actions of the sequence are edges, and a sequence compose a path in the tree.

The method of ordering these sub-sequences gives rise to two important classes of Forward

Search: blind search and informed search. The former, blind search, uses a pre-specified

ordering, e.g., lexicographic, of actions, and the choice of length of the following sequence

of exploration (depth), k, makes for different variants of blind search, including breadth-

first search, and depth-first search, and many others. On the other hand, the informed

search uses heuristic methods that analyze the knowledge base to make a meaningful

recommendation on the ordering of the sequences, generally under some assumptions

of relaxation, e.g., delete relaxation, landmarks, etc. The possible arrangements of se-

quences in an informed search are a strict superset of the orderings that can be seen in

a blind search, which means that the state of the explicit search tree, at a point in the

search, can be much more complex than in a blind search. Hence, the algorithm requires

more comprehensive data structures to record the state of the search.

6.2.2 Lazy Clause Generation CDCL Framework

Lazy Clause Generation, or LCG, is a groundbreaking technique for solving hard combi-

natorial problems, combining the advantages of Boolean Satisfiability (SAT) solving and

Finite Domain (FD) propagation solving that forms the basis of constraint programming

solvers. LCG allows us to use the expressive modeling capabilities of CP, such as global
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constraints, user-defined constraints, and variables with finite domains (not limited to

Boolean variables). Furthermore, it taps into the latest advancements in SAT-solving

technology, such as watched literals, conflict analysis, and learning. Boolean Satisfiability

solvers equip us with efficient data structures and procedures to generate effective no-

goods to record failures during the search. The inference procedure of the SAT solvers,

unit propagation, allows us to infer new information from the learned no-goods and the

original CNF formula that prevents the search from exploring redundant portions of the

search space. Moreover, the search engine of the LCG solvers can use heuristics of both

solving technologies, including activity-based variable selection like VSIDS and restarts.

The result is a powerful hybrid solver that can solve many more problems than SAT or

FD solvers alone. Advancements in symmetry detection and breaking seek to improve

this advantage further.

Google’s CpSat solver implements lazy-clause generation within the framework of

CDCL, more precisely, it extends the CDCL framework to account for propagators that

implement the CP constraints whose interpretation as well as efficient implementations

are well-defined. While CpSat does not provide an API to add user-propagators, it

does define an internal interface for the propagators in its object-oriented design, which

makes adding a new propagator cleaner as developers must stick to the interface. The

Algorithm 1 describes the outline of Lazy Clause Generation CDCL.

The central principle behind LCG CDCL is to treat the FD propagators — inference pro-

cedures — that implement the CP constraints as lazy clause generators. Each propagator

is associated with clauses representing the underlying relation, which are not explicitly

specified. That is, the initial CNF formula does not contain them. Instead, the infer-

ence procedures tied to the constraint propagate when the trail of assignments updates

such that the domain of the set of variables in the constraint changes and the change

meets its trigger condition. In doing so, they restrict the possible values that a set of

variables can take based on the relation enforced by the constraint. Upon reaching the

failure condition, the conflict clauses are added to the pure SAT part of the CSP. This

is made possible by efficiently modeling the finite set of choices for the integer variables

in the CSP as Boolean variables, enabling the propagator to specify and propagate new

conditions on integer variables as clauses. For example, we can model a variable x with

finite domain Domx :“ t1, 11u with two Boolean variables such that x “ 1 iff b1 is true,

and x “ 11 iff b2 is true. Thus, the clausal description of the problem grows during the
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Algorithm 1: Lazy Clause Generation CDCL
Input: CSP, decision-heuristic
Output: satpCSPq /* satpCSPq “ true iff the CSP is satisfiable */

1 Procedure CDCL(CSP, decision-heuristic):
2 φÐ PureSatpCSPq
3 C Ð CpConstraintspCSPq
4 levelÐ 0
5 ν Ð tu /* Initialize the set of unit clauses */
6 decisionsÐ tu

7 while true do
8 flag-conflictÐ false
9 do

10 ν 1 Ð ν
11 foreach propagate P tunit-propagateu Y PropagatorspCq do
12 flag-conflict, ν̂, cÐ propagatepφ, νq
13 if flag-conflict “ true then
14 if level “ 0 then
15 return false
16 else
17 φÐ φ^ c

/* backjump to a previous level such that c holds */
18 ν Ð undo-assignmentspc, νq
19 levelÐ compute-levelpν, decisionsq
20 flag-conflictÐ true
21 break
22 end
23 else
24 ν Ð ν Y ν̂
25 end
26 end
27 until ν 1 “ ν or flag-conflict
28

29 lÐ decision-heuristicpφ, νq /* such that tlu X ν “ H */
30 if l “ nill then

/* all propositional variables are assigned */
31 return true
32 else
33 levelÐ level` 1
34 ν Ð ν Y tlu
35 decisionsÐ decisionsY tplevel, lqu
36 end
37 end
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search, until a fixed point is reached where all the Boolean variables are assigned and all

the constraints are satisfied, line 31 in the Algorithm.

While the framework of clause generation isn’t set in stone, the propagator implemen-

tations should at least detect any conflicts — a contradiction or an inconsistency in

the variable assignment, and generate a clause that explains the cause of the failure,

adding it to the CNF formula. FD propagators can be designed to propagate more

aggressively and eagerly add clauses to reduce the search space. A good example of

lazy clause generation is the propagator for the all-different constraint, which is a global

constraint that ensures that no two variables in the specified set are assigned the same

values. The all-different constraint can be implemented as a maximum bipartite match-

ing problem [74], which checks whether the constraint is feasible by finding a maximum

cardinality matching. If the matching does not cover all the variables in the set, then

a conflict clause is generated and added to the CNF. Additional inference procedures

can be employed to eagerly reduce the domain of the variables, including domain consis-

tency checks and bound consistency checks [74] that can be propagated as unit clauses

specifying disallowed assignments.

LCG CDCL has its challenges and limitations, and although the approach to lazily

generate clauses reduces the computational burden on the SAT solver, it may also prevent

the solver from benefitting from combined inference over the whole set of clauses made

implicit through FD propagators. Furthermore, it is possible that for specific constraint

satisfaction problems, the propagators need to incrementally generate clauses of the

same order of magnitude (in count) as the set of clauses represented by the propagator,

in which case the lazy clause generation loses its advantage. Hence, the question of how

to design and implement efficient clause generators is quite essential and challenging.

Some constraints for which efficient inference procedures are already known are more

accessible to implement as lazy propagators, such as linear arithmetic and cardinality

constraints. Designing efficient inference propagators for user-defined constraints is more

complex and sometimes intractable. Another concern is balancing the trade-off between

eagerly adding clauses and navigating a more extensive search space. Eagerly generating

clauses can reduce the search space due to inference methods employed by the SAT

solver. Still, it increases the overhead associated with more significant memory usage

and slows down the clause manager. On the other hand, lazily adding clauses may have
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the opposite effect. All these concerns must be carefully considered and addressed to

allow the components and propagators to synergize well in the framework of LCG CDCL.

6.3 Planning as Forward Search LCG CDCL

In this section, we explain an approach to emulate forward search in the framework of

planning as (iterated) CSP solving by simply modifying the CP search heuristics. The

idea is not unprecedented; Rintanen has previously shown simulations of IDA˚ with SAT

search [123].

Typically, a CP search heuristic consists of two components: a Variable Selection

Heuristic and a Value Selection Heuristic. Variable selection heuristics decide the

order in which the variables are selected for branching, and the value selection heuris-

tics fix the value of a selected variable. There are two popular approaches to designing

such heuristics: autonomous search heuristics and programmed search heuristics. Au-

tonomous decision strategies alter their behavior as the search progresses using some

method and are better suited to complex systems of constraints where the solution struc-

ture is not apparent. Examples of autonomous heuristics include activity-based search

heuristics (VSIDS) and impact-based search strategy. On the other hand, programmed

search is used to exploit human knowledge of the structure of the solution set. In design-

ing forward-search in CP, we substitute the autonomous search, employed by CpSat,

with programmed search strategies.

We view the forward search strategy in planning as a programmed variable selection

heuristics, in which we branch upon the CP model variables in the forward direction,

i.e., the assignment to variables representing the sequence pa1, ¨ ¨ ¨ , akq occurs before

pa1, ¨ ¨ ¨ , ak`1q. We note that in our CP encoding of Lifted Sequential Planning, de-

scribed in Section 5.4, the sequence pa1, ¨ ¨ ¨ , akq is represented by values assigned to the

variables pact1parg1q ¨ ¨ ¨ , actnpargnqq. Hence, we must branch upon the action variables

in the forward direction, from slot 1 to slot Nπ to ensure the constraints discussed in

Section 6.2.1 are met, that is:

1. A variable of slot j ` 1 is selected if and only if the necessary variables of the slot

1 to j have been branched on and assigned fixed values.
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2. Fixing the variables actj and injk5are necessary to reveal threats to the precondi-

tions injk.

3. The variables sptjk are necessary, guaranteeing that all preconditions are sup-

ported.

Forward search planners generally maintain an explicit representation of the state, which

allows them to use efficient methods to ensure that the preconditions of the suffix ak`1

are supported and without any threats, e.g., match-tree to compute the set of applicable

actions. On the other hand, in planning with CP, we depend on the general infer-

ence methods and propagators to remove inapplicable actions from the domain variables

actk`1pargk`1q. Hence, we are required to branch on and fix the necessary variables that

reveal potential inconsistencies — unsupported preconditions and threats to supported

preconditions to prevent any inconsistency in the prefix.

Next, we explain our approach to implement the paradigms of Depth-First Search and

Breadth First Search as Depth-first LCG CDCL and Breadth-First LCG CDCL, respec-

tively, in a manner that is consistent with the forward-search requirements discussed in

this section.

6.3.1 Depth-First Search in LCG CDCL

Depth-first search is a Blind search algorithm that does not depend on heuristic guid-

ance. The Algorithm not only tries the prefixes ps0, a1, . . . , akq before ps0, a1, . . . , ak`1q

in the forward direction but also does so sequentially until it finds a sequence that maps

into a goal or a dead-end is reached, equivalently T ps, xa1, a2, . . . , akyq Ď SG or Eak`1,

(T ps, xa1, a2, . . . , akyq, ak`1q P DomT . If a path to a goal is found, we have found an

upper bound; otherwise, a dead-end is encountered, and the search backtracks to the pre-

vious level. In this section, we explain a programmed search strategy that implements

the notion of Depth-first Forward Search by ensuring that the CP variables are assigned

to that effect.

In our CP encoding, the prefix ps0, a0, . . . , akq is captured by the assignment to CP

variables pVpin0q,Vpact1qpVparg1qq, . . . ,VpactkqpVpargkqq, where V : X ÞÑ Z is partial

function that encodes variable assignments during the CP search, V is total and defined
5Data of output pins outjk is fixed based on the the assignments to injk and actj .
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Algorithm 2: Depth-first(Blind-lexicographic value selection) Search Heuristic
Input: act, Arg, rActs, rU s
/* act is a vector of size Nπ, and Arg is a matrix of size Nπ ˆKα,
representing action-schema and argument variables, respectively, in
the Lifted CP Encoding, Table 5.1. */

Output: decision
/* A literal implying variable-value assignment */

1 dÐ 0 /* length of the prefix ps0, a1, . . . , adq */
2 actionÐ pp0qˆKα`1q /* zero-vector of size Kα ` 1 */
3 rowÐ pp0qˆNπq /* row-indexes of the matrix lexprActs ˆ rU sKαq */

/* representing action sequence pa1, . . . , aNπq */
4 colÐ 0 /* column-index in the vector lexprActs ˆ rU sKαqrowd */
5

6 Procedure dfs-decision():
7 if col ă Kα /* There exists a partially applied action choice */
8 then
9 colÐ col` 1

10 return pargdpcol´1q “ actiond,colq
11 else
12 colÐ 0
13 dÐ d` 1
14 rowd Ð rowd ` 1

15 actiond Ð lexprActs ˆ rU sKαqrowd
16 return pactd “ actiond,colq
17 end

for all X when a solution has been found. Hence, our programmed search heuristics must

ensure that the variables acti and argij are fixed sequentially in the forward direction.

Algorithm 2 does precisely that in CpSat. Given the variables acti and argij , and

the domain of action schema Act and universe of objects O, the Algorithm returns a

literal associated with px “ Vpxqq, where x P X and Vpxq are a CP variable and its

value, respectively, selected by the Depth-first search decision heuristic. The literal is

then added to the set of unit clauses in the LCG CDCL, followed by recursive calls to

the propagators until a fixed point is reached. The decision heuristic increments the

length of the prefix once the literals associated with sequence VpactkqpVpargdqq are set

to true, exploring the search tree in the forward direction. It does so by selecting the

next action at depth d ` 1 from the lexicographic ordering of the set rActs ˆ rU sKα .

Whenever a dead-end is reached, the CDCL algorithm backtracks the state of the search

to the previous level(of the CP search), which is exactly the expected behavior of the

Depth-first forward search in planning. We encode the variables d, action, row, col in

the state of the CP search, which allows them to be reversible, i.e., revert to the previous
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Algorithm 3: Breadth-first(Blind-lexicographic value selection) Search Heuristic
Input: act, Arg, rActs, rU s
Output: decision
/* line 1 to 4 from Algorithm 2 */

1 . . .
2 max-rowÐ num-rowsplexprActs ˆ rU sKαqq
3 Procedure bfs-decision():

/* line 7 to 10 from Algorithm 2 */
4 . . .
5 else if row ă max-row then
6 backtrack(d-1)
7 return bfs-decision()
8

/* line 11 to 16 from Algorithm 2 */
9 . . .

assignment upon backtrack. Thus, we achieve Depth-first forward search in CpSat with

programmed search heuristics without additional adjustments.

We can also adjust the depth-first forward search heuristic to explore the search tree in the

Breadth-first order of exploration by setting a depth limit and performing an iterative

deepening search. However, this requires us to implement an additional backtrack

procedure, which allows the heuristic to fix a depth limit. As described in Algorithm 3,

the heuristic backtracks the state of the CP search whenever the depth limit is reached.

In LCG CDCL, backtracking the search is a standard procedure, which can be used as

building blocks to implement the backtrack method.

6.4 Depth-First Novelty Search

Width-based algorithms using the general notion of state novelty have been shown to have

state-of-the-art performance in the classical planning benchmarks. Moreover, we can

apply these algorithms to model-free problems where the transition system is encoded as

a black box simulator [6]. Novelty-based planning algorithms, including Iterated-Width,

which involves sequential calls to novelty-bounded IW(k), and polynomial Best-First

Width search, k-BFWS, [91, 92] use the Novelty bound to prune the nodes in the search

tree, assuming that the goal is reachable from the nodes of novelty value lower than

this bound. These search algorithms are especially well-suited for problems where the

lower bound on the maximum state novelty of states in solution plans is small, as these
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algorithms are polynomial on this lower bound on the novelty measure. The state novelty

measure has also been used as a heuristic measure to guide exploration in BFWS [93]

in tandem with heuristics that exploit distance to the goal, e.g., goal counting, enabling

the algorithm to achieve state-of-the-art performance.

This section defines the concept of Novelty bound in width-based algorithms as a CP con-

straint. Then, we present an efficient procedure for the user-propagator that implements

it. The proposed algorithm Depth-first Novelty search applies the novelty constraint

along with the depth-first search strategy. Furthermore, the prefixes ps0, a1, . . . , akq

mapping into states with lower Novelty are prioritized.

6.4.1 Defining Novelty Bound in Planning as a CP Constraint

As per the vanilla definition of novelty [91], the Novelty wpsq of the newly generated

state s is the size of the smallest new tuple in the set of all possible tuples (conjunctions)

of atoms in s. A tuple t is considered new if none of the states generated before s model

the tuple t, i.e. @s1 P Ppsq, s1 * t, where we denote the set of states generated before s

as Ppsq “ t s1 | eps1q ă epsqu, and the mapping e : S ÞÑ N ranks a state in the order of

expansion. Equation 6.1 presents a precise definition of the novelty measure.

wpsq :“ mintcardptq | s ( t, Es1 P S, eps1q ă epsq ^ s1 ( tu (6.1)

A keen eye would notice that the definition of Novelty depends on the expansion order of

the states. Hence, the state novelty measure has an implicit parameter e, the expansion

order determined by the search strategy, apart from the evaluated state. In blind search

algorithms, the expansion order is pre-determined, e.g., lexicographic. On the other hand,

in informed/heuristic search algorithms, the expansion order is implicit and revealed as

the search progresses.

Width-based search algorithms with Novelty bound k, e.g., IW (k), require that the high-

est novelty value of a state in an admissible path is bounded by k. That is, wpsiq ď k

in the sequence ps0, . . . , si, . . . , snq induced by a solution plan π “ pa1, . . . , anq, where

si “ T ps0, xa1, . . . aiyq, i ą 0. Next, we explain how we define this constraint for our CP

encoding of Lifted Sequential Planning.
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Novelty bound as a CP constraint

Our CP encoding only implicitly encodes the states in the sequence ps0, a1, s1, . . . , sgq.

Hence, we generalize the definition of novelty measure to prefix ps0, a1, . . . , aiq, which is

explicitly represented by in0j , acti and argij CP model variables.

wpπq “ mintCardptq | T ps0, πq ( t, Eπ1, epπ1q ă epπq ^ T ps0, π1q ( tu (6.2)

where π “ pa1, . . . , akq is an admissible sequence of actions that meets the Constraints 2.2,

and the expansion order e is defined on the set of all admissible sequences.

In the Iterated-width(IW) search that uses the breadth-first search strategy, the expan-

sion order could be defined lexicographically6.

eBrFSpxa1, . . . aiyq ă eBrFSpxs0, a
1
1, . . . a

1
jyq

ðñ Lexpxa1, . . . , aiyq ă Lexpxa1
1, . . . , a

1
jyq (6.3)

Similarly, for Depth-first search.

eDFSpxa1, . . . aiyq ă eDFSpxa
1
1, . . . a

1
jyq

ðñ Lexpxa1, . . . , akyq ă Lexpxa1
1, . . . , a

1
kyq,

_ pLexpxa1, . . . , akyq “ Lexpxa1
1, . . . , a

1
kyq ^ i ă jq, k “ minti, ju (6.4)

We use the definition of novelty measure in Eq. 6.2 to define the novelty bound as a CP

Constraint, where e P teBrFS , eDFSu.

Definition 6.1. The Novelty bound on the solution sequence to the CP Encoding of

Sequential Classical Planning is defined as a constraint that enforces an upper bound on

the novelty value of every subsequence of the plan π “ pa1, ..., aiq, Eq. 6.1.

@i P t1, ..., Nπu, wpxa1, ..., aiyq ď ω̄ (6.5)

6Lex rank is defined by the lexicographic ordering of sequences. Order between two sequences is
decided by the first non-coincident pair pak, a

1
kq for equal-length sequences, otherwise ordered by the

length.
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Extended definition of Novelty given partition functions. In implementing the

Depth-first novelty search, we used an extended definition of Novelty, shown to have an

empirical advantage [92, 93].

Definition 6.2. The novelty given partition functions H, wpπq “ wxHypπq, of an ad-

missible sequence π “ pa1, . . . , anq is k, iff (1) exists a tuple7 t of minimum size k, s.t.

T ps0, πq ( t, (2) @π1 P Ppπ,Hq, T ps0, π1q * t.

wpπq “ mintCardptq | T ps0, πq ( t, Eπ1 P Ppπ,Hq, T ps0, π1q ( tu (6.6)

where Ppπ,Hq “ t pi1 | π1, @h P H,hpπ1q “ hpπq^ epπ1q ă epπqu is the set of admissible

sequences of action, partitioned by the evaluation of functions in H.

6.4.2 Novelty Constraint as a polynomial reachability propagator

We implement the constraint of Novelty bound defined in Eq. 6.1 as a user-propagator in

the framework of LCG CDCL, following the extended definition of the novelty measure,

Definition 6.2. For this, we assume that the admissible sequences are explored in lexico-

graphic order, eDFS , defined in Eq. 6.4, which allows us to implement the constraint with

an efficient propagator which we describe in Algorithm 5. The propagator implementa-

tion exploits the fact that the lexicographic order of exploration of admissible sequences,

eDFS , holds when we use the Depth-first search heuristic, which allows us to do away

with the explicit computation of the set Ppπ,Hq for novelty computation. Moreover,

we approximate the novelty measure using the method described in Section 4.3, which

gives us strong complexity guarantees for the computation of state novelty — linear time

and consuming a fixed amount of memory. Now, we explain the inner workings of the

Novelty propagator.

In implementing novelty propagator in CpSat, we introduce an auxiliary variable varw

that records the current Novelty bound. The propagator fixes the varw to the Novelty

bound w̄ at the beginning of the CP search. This step is especially vital when we wish to

explore the plan prefixes in the order of their Novelty, for which we sequentially increase

the Novelty bound ω̄ from 1 to an upper bound k. Fixing the varw to the Novelty bound

as an assumption at the current iteration ensures that the learned clauses are still valid

when the search restarts with a higher novelty bound, allowing us to avoid reinitializing
7Conjunction of atoms.
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Algorithm 4: Novelty Computation
Parameter: T : S ˆΠ ÞÑ S, the transition function
Parameter: H “ thgu, goal count used for partitioning
Parameter: N “ |Cohg |, number of partitions

1 novetly-tableÐ pBloomFilter()ˆN q
2 Procedure w(π):

Output: Novelty value of π
3 sÐ T ps0, πq
4 pÐ hgpsq
5 k Ð8

6 tuple-sampleÐ random sample of tuples of s
7 foreach t in tuple-sample do
8 if t exists in novetly-tablep then
9 novetly-table.addptq

10 k Ð mintk, |t|u

11 end
12 end
13 return k

Algorithm 5: Implementation of the Novelty Propagator
Parameter: acti and argij , CP variables that represent an action sequence
Parameter: ω̄, the novelty bound
Parameter: V, mapping that captures the assignment at any point in the search

1 Procedure novetly-bound-propatator():
Output: conflict-clause, unit clauses

2 if V is undefined for all acti and argij variables then
3 return pnil, tvarwq “ ω̄uq

/* Auxiliary variable varw captures the novelty bound */
4 end
5 dÐ current depth of the depth-first forward search
6 if V is defined for all acti and argij variables, i ď d then

/* V maps variables to values, d is the length of the prefix */
7 π Ð pVpact1qpVparg1qq, . . . ,VpactdqpVpargdqqq
8 if wpπq ą ω̄ then
9 cÐ ␣

´

Źd
i“1pacti “ Vpact1qq ^ ^Kαj“1pargij “ Vpargijqq ^ pvarw ą ω̄qq

¯

10 return pc, tuq
11 end
12 end
13 return pnil, tuq

the CpSat solver and preserve the learned clauses and the state of activity-based SAT

heuristic.

Whenever we encounter a plan prefix π whose novelty value exceeds the Novelty bound,

ω̄, we add a conflict-clause that is a conjunction of literal associated with assignment to

the acti and argij action variables, that encode the plan prefix π, and varw, enabling us
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to capture the fact that the novelty value of π exceeds ω̄. The LCG CDCL algorithm

automatically backtracks to the previous decision level upon observing the conflict, and

the depth-first decision heuristics presents it with the choice plan prefix to try next.

6.5 Empirical Results

We experimented with our algorithms by extending Google’s CpSat solver, integrating

the Depth-first search strategy and novelty propagator into the CDCL loop, as described

in Algorithm 1. We tested the two implementations of forward search strategies: depth-

first search (blind) and depth-first novelty search. We will refer to them as DFSfnPP and

DFNSfnPP , respectively. We compare them against the CPfnPP planner, which solves the

model of CP with our implementation of persistence proopagator, explained in Chapter 5.

All planners are tested on the HTG benchmarks and the problems from the optimal track

of the IPC [77].

Implementations of Planners. The DFSfnPP is same as CPfnPP , except that it follows

the blind search strategy of depth-first forward search, Algorithm 2, instead of the au-

tonomous activity-based heuristics. On the other hand, we configure DFNSfnPP to run

depth-first novelty search (DFNS) with a novelty bound of 1. DFNS is incomplete, and

many IPC instances, barring visitall, cannot be solved within bound 1. However, our

main aim here is to use novelty search as a guidance measure to train the activities of

the variables for activity-based heuristics. That is, the DFNSfnPP planner hands over the

control to activity-based heuristics after the DFNS terminates without finding a solution,

carrying over the activity weights of the variables. For the small Novelty bound of 1, the

algorithm terminates quickly, whether or not it finds a solution, making it suitable as a

quick pre-processing step.

Performance over benchmarks. From Table 6.2, we gather that the DFNSfn
PP planner

performs better than its autonomous heuristic counterpart, CPfn
PP in the IPC instances,

solving 36 additional instances, improving the coverage to 521 from 485. There are

multiple reasons for the performance gain. Firstly, we highlight the visitall domain, where

we solve 10 more problems than CPfn
PP out of the 40 total. Here, many instances are

solved within the Novelty bound of 1. The planner also sees improvements in coverage of

Blocks, freecell, and pegsol domains, which are not directly related to the novelty search;

instead, novelty search contributes to training the weights of activity-based heuristic
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IPCs(opt) Optimal Solution

Domain #Instances DFSfn
PP DFNSfn

PP CPfn
PP

Not-grounded — action schemas do not have ground atoms

barman-opt11-strips 20 0 0 0
barman-opt14-strips 14 0 0 0
blocks 35 16 35 28
blocks-3ops 35 17 35 35
childsnack-opt14-strips 20 0 0 0
data-network-opt18-strips 20 11 15 15
depot 22 1 2 2
driverlog 20 3 4 4
elevators-opt08-strips 30 1 5 5
elevators-opt11-strips 20 0 3 3
floortile-opt11-strips 20 0 0 0
floortile-opt14-strips 20 0 0 0
freecell 80 6 12 6
ged-opt14-strips 20 19 20 20
grid 5 1 1 2
gripper 20 1 2 2
hiking-opt14-strips 20 2 4 4
logistics00 28 1 3 3
logistics98 35 0 1 1
miconic 150 26 30 30
mprime 35 24 33 33
mystery 30 16 18 18
nomystery-opt11-strips 20 6 6 6
organic-synthesis-opt18-strips 20 18 20 20
organic-synthesis-split-opt18-strips 20 9 10 12
parking-opt11-strips 20 0 1 1
parking-opt14-strips 20 0 0 0
pegsol-08-strips 30 8 18 11
pegsol-opt11-strips 20 1 3 1
pipesworld-notankage 50 8 12 12
pipesworld-tankage 50 6 11 11
rovers 40 4 4 4
satellite 36 3 4 4
scanalyzer-08-strips 30 11 13 13
scanalyzer-opt11-strips 20 8 10 10
sokoban-opt08-strips 30 0 1 0
sokoban-opt11-strips 20 0 0 0
spider-opt18-strips 20 0 0 0
storage 30 11 13 13
termes-opt18-strips 20 0 0 0
tetris-opt14-strips 17 2 3 3
tidybot-opt11-strips 20 1 3 3
tidybot-opt14-strips 20 0 0 0
tpp 30 4 5 4
transport-opt08-strips 30 5 6 6
transport-opt11-strips 20 0 1 1
transport-opt14-strips 20 1 1 1
visitall-opt11-strips 20 9 16 11
visitall-opt14-strips 20 3 10 5
woodworking-opt08-strips 30 5 8 7
woodworking-opt11-strips 20 0 3 2
zenotravel 20 7 8 8

Partially-grounded — action schemas have a few ground atoms

agricola-opt18-strips 20 0 0 0
airport 50 7 7 7
movie 30 30 30 30
openstacks-opt08-strips 30 0 1 1
openstacks-opt11-strips 20 0 0 0
openstacks-opt14-strips 20 0 0 0
parcprinter-08-strips 30 5 6 6
parcprinter-opt11-strips 20 2 3 3
pathways 30 1 4 4
snake-opt18-strips 20 2 8 6

Fully-grounded — action schemas only have ground atoms

openstacks-strips 30 0 1 0
petri-net-alignment-opt18-strips 20 0 0 0
psr-small 50 29 46 46
trucks-strips 30 1 2 2

Total 1862 352 521 485

Table 6.2: Coverage of planners on IPCs – optimal track benchmark domains. *
indicates the domains in which the preprocessing (parsing and encoding) step of lisat

rendered the instances unsolvable.
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Hard-to-ground Optimal Solution Satisficing Solution

Domain DFSfn
PP DFNSfn

PP CPfn
PP DFSfn

PP DFNSfn
PP CPfn

PP

blocks-3ops(40) 36 40 40 34 40 40
blocks-4ops(40) 40 40 40 40 40 40
childsnack(144) 0 48 48 4 144 144
ged(156) 22 34 31 22 39 29
ged-split(156) 22 26 24 19 47 38
logistics(40) 15 35 36 15 24 40
org-syn-MIT(18) 17 16 18 17 18 18
org-syn-alk(18) 18 18 18 18 18 18
org-syn-orig(20) 8 13 15 4 14 9
pipes-tkg(50) 11 17 17 10 34 25
rovers(40) 2 8 8 1 9 10
visitall3D(60) 34 35 34 29 49 49
visitall4D(60) 30 33 35 26 44 44
visitall5D(60) 38 31 33 25 43 44

Total 293 394 397 264 563 548

Table 6.3: Coverage of planners on hard-to-ground benchmark domains.

search, which is then able to solve more problem optimally. However, this notion does

not seem to work every time. As we observe in Table 6.3, the coverage over hard-to-

ground instances reduces slightly, indicating that the weights learned have some element

of luck involved.

On the other hand, the coverage of DFSfn
PP is impressive in both IPC and HTG, given

that it involves a straightforward complete blind depth-first search without any heuristic

guidance, and solving this many instances highlights the power of clause learning com-

bined with unit propagation. The planner solves 352 and 293 instances in IPC and HTG

instances, respectively.

6.6 Conclusion

This work demonstrates that integrating methods from planning as a search paradigm

is viable by customizing LCG CDCL heuristics and introducing planning-specific prop-

agators in the LCG CDCL loop. We formalize the notion of Novelty bound from width-

based planning as a CP constraint and showcase that programmed heuristics that emulate

depth-first search in planning and propagator implementation of Novelty bound can help

improve the planner’s performance while maintaining the advantages of clause-learning

in CDCL. Yet, we have barely scratched the surface here. Potentially, informed search
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heuristics, like best-first search and hill-climbing, could be integrated into the LCG CDCL

framework with suitably defined, planning-specific, heuristics and propagators.



“You could never convince a monkey to give you a banana

by promising him limitless bananas after death in monkey

heaven.”

Yuval Noah Harari

7
CP encodings for Temporal Planning with

Required Concurrency

Temporal Planning problems add the concern of concurrency on top of assignment, rout-

ing, and sequencing, which exist in sequential planning. However, most temporal plan-

ners do not fully address the concern of concurrency. Indeed, many focus on a smaller

set of simple temporal planning instances, where given the partial ordering of actions in

the temporal plan or schedule, a total order can always be obtained using a straightfor-

ward topological sort. Within this viewpoint, the temporal planning problems can be

classified into simple and required concurrency instances. Unlike simple problem that

can be reduced to a STRIPS problem and solved using sequential planning algorithms,

instances with required concurrency necessitate concurrent (overlapping) execution of

actions, where the structural dependencies between actions in the set of plans drive this

need for concurrency. In this work, we address the challenge posed by problems with re-

quired concurrency, taking direct inspiration from the CPT planner’s POCL formulation

of temporal planning and extending CPT’s CP encoding to handle temporally expressive

133
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planning languages. We are happy to report that the resulting planner performs very well

on the instances with required concurrency requirements in optimal planning. However,

the approach performs poorly in problems requiring long, totally ordered (sequential)

execution of actions in plans.

7.1 Introduction

Most early works in temporal planning addressed temporally simple problems, repur-

posing classical planning approaches for temporal planning [59, 37, 42]. However, this

approach cannot handle the general class of temporal planning, as many problems re-

quire actions to execute concurrently that go beyond the expressivity of temporally

simple languages. Also, while minimizing the total cost of actions is the primary objec-

tive in optimal classical planning, we include makespan optimality as an essential new

criterion to determine plan quality in temporal planning. Overall, the two problems are,

in essence, different, requiring different computational approaches to solve. Many works

have attempted to address this issue over the past two decades, including the notewor-

thy work on forward-chaining planners starting with CRIKEY [64, 27]. The subsequent

works on POPF [25] and OPTIC [8] are asserted to be complete for temporally expressive

languages. However, these planners are unable to scale up on small instances of Cushing

domain from IPC 2018, highlighting a need for new approaches. In this work, we attempt

to address the issue from a CP standpoint, using the partial order causal link (POCL)

formulation of temporal planning.

The primary appeal of partial order causal link (POCL) planning [98] for temporal plan-

ning is its expressive power. It contains more expressive search nodes that capture local

constraints over a set of steps (actions), compared to a search node in planning as search

that only consists of true atoms at a single step of the progression and regression search.

Many researchers have shown interest in adopting partial-order plans in the temporal

context, including the current state-of-the-art optimizing planner, OPTIC [8], which im-

plements the forward-chaining search strategy for partial-order planning. Another work

on the constraint-based approach to Temporal POCL planning, CPT [152], has inspired

our research. However, CPT is unable to handle problems with required concurrency [31].

In our work, we extend CPT’s POCL formulation of the temporal planning problem to

accommodate instances with required concurrency. We develop CP encodings of this
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extended POCL formulation, extending the POCL encoding of CPT, tapping into the

recent advancements in CP technology for makespan optimal planning [49]. We im-

plement the encoding in the CpSat [113] solver, which implements the Lazy Clause

Generation (LCG) approach to CP [108] and has shown state-of-the-art performance in

scheduling benchmarks [142].

Chapter Outline. We begin by explaining the structural relationship between durative

actions that results in required concurrency requirement. After this, we discuss POCL

planning and the temporal POCL formulation used by the CPT planner. Then, we

present our extended CP encoding of Temporal POCL planning that handles required

concurrency. We implement the encoding in the CpSat solver and present an empirical

analysis of the planner performance.

7.2 Required Concurrency in temporal planning

A set of durative actions in a temporal planning problem can have dependencies that

may necessarily require them to have overlapping execution. Such problems are said

to have a property of Required Concurrency [31]. This is explained with the help of

Figure 7.1, which illustrates scenarios in which pairs of actions must execute concurrently.

In the first case, two actions a1 and a2 must overlap in time to avoid interfering with

each other’s at start preconditions, i.e., a1 deletes p2 required by a2 and a2 deletes p1

required by a1. Assuming that a1 and a2 are the only actions in the instance, then in

no circumstances (feasible plans) can the two be separated, and hence, the instance has

required concurrency. Similarly, in the second example, the two actions achieve each

other’s at end preconditions with at start effects, and hence each must start before the

other ends. The third case is that of mutex effects requiring that deletions be carried

out before additions. The fourth and final case is concerned with actions that manage

the life cycle of a process, for example, a kiln in our temporal machine shop example in

Figure 3.1, requiring the action dependent on the process to finish before the process ends.

More importantly, required concurrency exists in makespan optimal planning, where all

optimal plans require one or more actions to execute concurrently.

Definition 7.1. A temporal planning instance is considered to have Required Con-

currency, iff all solutions to the problem have concurrent plans.
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Figure 7.1: Illustration of required concurrency scenarios. Each example consists of a
temporal planning instance with operator set O :“ ta1, a2u and goal set G :“ tg1, g2u.
Each operator ai is defined as a tuple xo$, o $,PreØi , diy, where o$ and o$ are classical
snap actions that execute at ti and ti ` di, respectively, and PreØi are the overall

conditions. A snap action is a tuple o :“ pPreo,Addo,Deloq.

A plan π :“ xpo1, t1, d1q, po2, t2, d2q, . . . y is concurrent iff there exists a pair pi, jq for

which ti ď tj ď ti ` di. Otherwise, the plan is sequential.

Definition 7.2. A planning language L is Temporally Expressive iff it can represent

problems with required concurrency. Otherwise, it is Temporally Simple.

7.3 POCL Planning

POCL Planning originates in classical planning [98, 80]. It works on the principle of

least commitment, in which commitment on the ordering is delayed until forced by the

need to satisfy action preconditions. A state in POCL planning is designed around this

notion, defined as σ :“ xSteps,Order, CL,Openy, in which Steps are the actions in the



List of Tables 137

partial plan, Order captures the sequencing of the actions, CL are the causal links of

the form a1rpsa stating action a1 supports precondition p of a, and Open is the set of

action preconditions waiting to be supported. The ordering is captured as a constraint

a1 ă a, specifying that the execution of action a1 precedes a. The initial state of the POCL

search is given as xtstart, endu, tstart ă endu,H, tpg1, endq, . . . , pgm, endquy, where start

and end are dummy actions bringing into effect the initial state and enforcing the goal

conditions G “ tg1, . . . , gmu, respectively.

Typically, POCL search proceeds by branching on a flaw and repairing it. Two types of

flaws exist: Open preconditions and threats. Open preconditions are fixed by adding a

causal link of the form a1rpsa to CL, and action a1 to Steps. Threats are actions that can

delete the precondition of another action, which are resolved by adding a1 ă a2 or a ă a1

for each STRIPS operator a1 P O that threatens a precondition of a that is supported by

a2. A state is invalid and terminal if the ordering is inconsistent. A satisficing solution

is found when the state is valid and there are no open conditions, Open “ H.

7.4 Simple POCL formulation of Temporal Planning

CPT considers a simple extension of temporal planning by adding time variables de-

noting the timestamp of temporal actions, start time. A temporal planning problem

is Π “ xF,O, I,Gy, where Π is the STRIPS extension to temporal planning in which

a P O is a durative action consisting of Prea,Adda,Dela,Dura, where Dura is the du-

ration of the action, and Prea,Adda,Dela are suitably defined for the temporal set-

ting. The state σ in POCL planning is redefined to include the time variables as

σ1 “ xSteps,Ord1, CL,Open, T y where T :“ tt1, . . . , tmu is the set of temporal vari-

ables where ti is the start time of the action oi in Steps :“ to1, . . . , omu. Ord11 is slightly

modified to capture the temporal constraints over variables T . In the altered state rep-

resentation, the ordering oi ă oj is captured using a temporal constraint ti `Duri ă tj .

The start time associated with the dummy start and end actions are represented by t0

and t1, respectively. The initial state in the temporal extension of POCL planning is

xtstart, endu, tt0 ď t1u,H, tpg0, endq, . . . , pgm, endqu, tt0, t1uy.

We have the same types of flaws as in the original POCL setting, which are similarly

resolved. Open preconditions flaws rpsoj are resolved by adding a causal link oirpsoj to
1Henceforth, for simplicity, we use σ and Ord in place of σ1 and Ord1.
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CL, and adding a temporal constraint pti `Duri ă tjq to Ord. If oi R Steps, it is added

to Steps, and a new time variable is created in T . Threats to causal link oirpsoj are

addressed by either adding a temporal constraint ti ` Duri ă tj or tj ` Durj ă ti. The

temporal constraints in Ord collectively compose a Simple Temporal Problem (STP) [32],

which can be easily verified using the Bellman-Ford algorithm to detect negative cycles

in the constraint graph of inequalities.

A search state σ is valid if the STP obtained from T is consistent. Furthermore, a

solution has been found if the set of open preconditions is empty and no flaws remain.

On the other hand, the state σ is invalid and terminal if the STP is inconsistent. Using

the assignments to variable T in the STP’s solution with the smallest makespan, a

temporal plan can be obtained. The CPT planner encodes this temporal POCL planning

formulation into CP, which we present next.

7.4.1 CP Encoding of Temporal POCL Planning

Symbol Description

ti Start time of an action i, i “ 1, . . . , |Steps|
yi Boolean variables capturing presence of action oi in Steps of the

terminal state
bpij Boolean variables denoting active causal links oirpsoj
tpj Start time of action supporting open condition rpsoj

Table 7.1: Quick reference table for the decision variables in the CP model.

We begin by giving a high-level account of the CP encoding of temporal planning from

the planner and explain the roles played by the decision variables in Table 7.1. Central

to the CPT encoding is the notion of steps, S2 :“ to0, . . . , omu, the set of instances of

temporal actions in the encoding, S Ď OˆN. S includes two dummy actions for the start

and end actions, o0 and o1, respectively. Only a subset of actions in S will be present

in a solution plan. In-plan Boolean variables yi capture the presence of an action in the

solution plan. Also, for each action instance, a time variable ti denotes the start time

of the action. The set of atoms in the conjunctive precondition formula of an action oi

is represented by Prei, and the positive and negative effect atoms of an action by Addi

2We use rX s to denote the ordered indexing of the elements of set X , e.g., rX s “ p0, . . . , nq for
X “ tx0, . . . , xnu.
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and Deli. We represent the set of possible supporters of an atom p with Sp3, and the

potential threats that interfere with an atom p by S̄p, both of which can be pre-computed

as Sp :“ ta | a P S, p P Addau and S̄p :“ ta | a P S, p P Delau. Lastly, we create Boolean

variables bpij enabling us to capture the active causal links in the plan, and variable tpj to

capture the start time of the action supporting the open condition.

Throughout all the encodings discussed in this chapter, we are always concerned with the

makespan objective. We define it as the time difference between the start and the end

actions, Eq. 7.1. With some trivial modifications, the same encoding could be adopted

for minimizing the total cost objective.

Makespan objective: min t1 ´ t0 (7.1)

Constraints. We define the constraints in the CP model of temporal POCL planning,

beginning with Constraints 7.2 defined over the start and the end actions. A fundamental

requirement in any solution is that both o0 and o1 are in the plan, a condition enforced

by Eq. 7.2a. Additionally, executing o0, which brings the initial state into effect, must

precede all other actions; similarly, action o0 must not start before all other actions have

finished. Both these conditions are enforced by Eq. 7.2b and Eq. 7.2c. In this context, the

CPT planner precomputes the minimal distance between two actions with oj preceding

oi as distpoj , oiq using h1T heuristics4, an extension of h1 heuristics for makespan optimal

temporal planning. We define δji as Durj ` distpoj , oiq, which allows CPT to specify

tighter temporal constraints.

y0 ^ y1 (7.2a)

t0 ` δ0i ď ti, @i ą 0 (7.2b)

ti ` δi1 ď t1, @i ą 1 (7.2c)

Another essential requirement from the POCL formulation is that the preconditions of

every action added to the Steps of a state must be inserted into the Open precondition,

which is encoded by the constraints given in Eq. 7.3. The constraints ensure that all

the preconditions of active actions, denoted by yi, are supported by at least one step,
3We use rX s to denote the ordered indexing of the elements of set X , e.g. rX s “ p1, . . . , nq for

X “ tx1, . . . , xnu.
4We request the readers to refer to the original CPT paper [152] for a detailed explanation of the h1

T

heuristics and dist.
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resolving the open precondition flaws.

yi Ñ
ľ

pPPrei

«

ł

jPSq

bpji

ff

(7.3a)

bpji Ñ yi ^ yj (7.3b)

When resolving an open precondition flaw by adding a causal link, we must also add

a temporal constraint, setting the temporal precedence relation between the supporter

and the supported action. We describe these constraints in Eq. 7.4.

bpji Ñ rtj ` δji ď tis (7.4a)

bpji Ñ rtpi “ tjs (7.4b)

In addition to the open condition flaws, we must also resolve the interference situations

by threats to the causal links. The constraint described in Eq. 7.5 resolves the interference

flaw, where oi P Sp and oj P S
p̄, specifying a disjunctive constraint over the ti and tpi

time variables.

yi ^ yj Ñ pti ` δij ď tjq _

ˆ

tj `Durj ` min
kPSq

distpoj , okq ď tqi

˙

(7.5)

CPT also specifies mutex constraints, described in Eq. 7.6 to address mutex threats be-

tween actions. It defines mutex threats as a pair poi, ojq where the actions interfere, i.e.,

one deletes the add effects of another, and neither e-deletes each other’s preconditions.

yi ^ yj Ñ pti ` δij ď tjq _ ptj ` δji ď tiq (7.6)

Tightening constraints. In addition to the necessary constraints specified above, CPT

adds additional tightening constraints to reduce the search space size explicitly. The first

set of constraints discussed in Eq 7.7 specify tighter bounds of time variables.

ti ě min
jPrSs,pPPrei,jPrSps

tj ` δij (7.7a)

ti ě tpi ` min
jPrSps

δji (7.7b)

min
jPrSps

tj ď tpi ď max
jPrSps

tj (7.7c)
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7.5 Extended POCL Formulation

The POCL formulation of temporal planning presented in CPT and the resulting CP

encoding does not cover all the temporal planning problems specified in PDDL 2.1, a

fact noted by the authors themselves [152]. It is also easy to point to this from the

CP encoding discussed in Section 7.4.1 as it has no notion of at start, at end, and

overall specifications of the durative actions in PDDL 2.1. It appears that the authors

consciously considered temporally simple instances in which all the preconditions are

at start of the action, and all action effects occur at the end, after a time difference

equal to the duration of the action. We change this assumption in our extended POCL

formulation of temporal planning, addressing the cases of required concurrency. For this,

we capture additional information about the preconditions and effects in the search state

of the POCL planning. The set of Open preconditions is denoted by rpspa, tstampq

where p and a take the original meaning of open precondition flaw rpsa and tstamp P

tat start, at end, overallu specify the temporal aspects of the action, according to the

semantics of PDDL 2.1.

The open precondition flaws rpspoj , tstampq in Open are resolved by adding a causal

link poi, tstamp1qrpspoj , tstampq and adding the action oi to Steps if not already present.

Adding the temporal constraints to Ord to preserve the sequencing requirement of a

causal link is much harder for the temporally expressive case as we have to consider

the actual time stamp of the supported precondition and supporting effect. We do this

by considering the tat start, at end, overallu preconditions and tat start, at endu effects

case-by-case. For the case when tstamp1 is at end, and tstamp is overall, we add the

constraint ti ` Duri ď tj , as in the CPT formulation. When tstamp1 is at end, and

tstamp is at start, we add the constraint ti ` Duri ă tj . Similarly, when both, tstamp1

and tstamp, are at end, we add the constraint ti ` Duri ă tj ` Durj . The temporal

constraints when tstamp1 is at start can be obtained by removing Duri from the above

constraints.

We must also prevent threats from interfering with the causal links that resolve the open

conditions. This is also done on a case-to-case basis, the same as above. We provide the

details of temporal constraints added into Ord to resolve threats in Section 7.6
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7.6 Modeling Extended POCL Formulation in CP

Symbol Description

ti Start time of an action i, i “ 1, . . . , |Steps|
yi Boolean variables capturing presence of action oi in Steps of the

terminal state
b
prt,t1s
ij Boolean variables denoting active causal links poi, tqrpspoj , t1q
t
prts
j Start time of action supporting open condition rpspoj , tq

Table 7.2: Quick reference table for the decision variables in the CP model.

We use the same set of variables described in Table 7.1, with minor changes, for our

extended POCL formulation, see Table 7.2. The only difference is an increase in the

number of bpij variables to account for timing information pat start, at end, and overallq

in the causal links and open preconditions. The primary change in the encoding is

the temporal constraints for the updated representation of causal links and associated

threats. In addition, we are forced to throw away most of the tightening constraints

discussed in Section 7.4.1 as they do not generalize to the required concurrency cases.

Here too, we optimize for makespan as defined in Eq. 7.8.

Makespan objective: min t1 ´ t0 (7.8)

Constraints. A major difference in this encoding is that we do not use the preprocessing

methods used by the CPT planner to obtain the minimum distance between two actions

distpa, a1q, as its preprocessing is bound to the assumption of temporally simple problems

which we remove to handle required concurrency. Hence, we forgo most of the tightening

constraints of the original CPT encoding. We only use the minimum distance from

the initial state computed using the h1T heuristics, obtaining distpo0, a1q. We set δ0i as

distpo0, a
1q. We reuse constraints enforcing the basic conditions on the dummy start and

end action in Equations 7.9.

y0 ^ y1 (7.9a)

t0 ` δ0i ď ti, @i ą 0 (7.9b)

ti `Duri ď t1, @i ą 1 (7.9c)

The requirement of supporters for open preconditions is managed by the constraints



List of Tables 143

described in Equations. 7.10. Here, too, the constraints remain the same as in the

original encoding.

yi Ñ
ľ

pPPrei

˜

ł

jPSq

b
prt,t1s
ji

¸

(7.10a)

b
prt,t1s
ji Ñ yi ^ yj (7.10b)

On the other hand, enforcing the temporal constraints associated with the causal links

in the POCL formulation of temporally expressive planning is not only different but also

quite challenging compared to the original encoding. We present the constraints, case-

by-case, in Equations 7.11. Here, we use $, $, and Ø, to denote the set of at start, at

end, and overall preconditions5, respectively.

b
pr$,$s

ji Ñ ptj ă tiq (7.11a)

b
pr$,Øs

ji Ñ ptj` ď tiq (7.11b)

b
pr$,

$

s

ji Ñ ptj ă ti `Duriq (7.11c)

b
pr

$

,$s

ji Ñ ptj `Durj ă tiq (7.11d)

b
pr

$
,Øs

ji Ñ ptj `Durj ď tiq (7.11e)

b
pr

$

,

$

s

ji Ñ ptj `Durj ă ti `Duriq (7.11f)

b
pr$,ts
ji Ñ

´

t
prts
i “ tj

¯

(7.11g)

b
pr

$

,ts
ji Ñ

´

t
prts
i “ tj `Durj

¯

(7.11h)

Similarly, we address the threats that can potentially interfere with the preconditions on

a case-to-case basis, as described in the Equations 7.12, considering each combination of

threats pj, tq P S̄p that delete the atom p and open preconditions rpspi, t1q, t P t$,Ø, $

u

5The semantics of at start, at end, and overall preconditions is as per PDDL 2.1 [49]
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and t1 P t$, $

u

yi ^ yj Ñ pti ă tj `Durjq _
´

tj `Durj ă t
pr$s

i

¯

, poj ,

$

q P S̄p (7.12a)

yi ^ yj Ñ pti `Duri ă tj `Durjq _
´

tj `Durj ă t
pr

$

s

i

¯

, poj ,

$

q P S̄p (7.12b)

yi ^ yj Ñ pti `Duri ď tj `Durjq _
´

tj `Durj ď t
prØs

i

¯

, poj ,

$

q P S̄p (7.12c)

yi ^ yj Ñ pti ă tjq _
´

tj ă t
pr$s

i

¯

, poj ,$q P S̄
p (7.12d)

yi ^ yj Ñ pti `Duri ă tjq _
´

tj ă t
pr

$

s

i

¯

, poj ,$q P S̄
p (7.12e)

yi ^ yj Ñ pti `Duri ď tjq _
´

tj ď t
prØs

i

¯

, poj ,$q P S̄
p (7.12f)

Finally, the Eq. 7.13 encodes the mutex constraints for effect interfering actions.

yi ^ yj Ñ pti ă tjq _ ptj ă tiq , poi,$q P S
p, poj ,$q P S̄

p (7.13a)

yi ^ yj Ñ pti ă tj `Durjq _ ptj `Durj ă tiq , poi,$q P S
p, poj ,

$

q P S̄p (7.13b)

yi ^ yj Ñ pti `Duri ă tjq _ ptj ă ti `Duriq , poi,

$

q P Sp, poj ,$q P S̄
p (7.13c)

yi ^ yj Ñ pti `Duri ă tj `Durjq _ ptj `Durj ă ti `Duriq

, poi,
$

q P Sp, poj ,
$

q P S̄p (7.13d)

7.7 Empirical Analysis

Our experiments consist of running a given planner on a temporal planning instance,

where the solver process runs on a single CPU core (Intel Xeon running at 2GHz). We

impose resource usage limits on each run, 1800 seconds on runtime, and 8 GBytes on

memory. We solve our CP model using Google’s CpSat solver, which provides typical

CP constraints out of the box. Minor modifications are made to the CP encoding to

accommodate the API of Google’s CpSat solver. Also, we note that the temporal

action set in the encoding, S, was bootstrapped with a single instance of each operator

in the grounded representation of PDDL 2.1.

We compare the performance of CpSat solving our model with notable optimal and

satisficing temporal planners. The former includes, in no particular order, Temporal Fast

Downward (TFD) [42], an extension of Fast Downward, which was the runner-up in

IPC 2011 and 2014, the TPSHE [79] planner, which addresses the required concurrency

concern using classical planning but is only able to cover a subset of temporally expressive
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cases, and two forward-chaining planners POPF [25] and OPTIC [8], both of which

are claimed to be complete for temporal planning, covering all the cases of required

concurrency. All optimal planners were configured to minimize the makespan.

For satisficing planning, we additionally compare ITSAT [118], which is conceptually

closer to CpSat than other baseline planners. ITSAT follows the strategy known as

Logic-based Benders Decomposition [75], decomposing the temporal planning problem

into a SAT master and a sub-problem that takes the form of a Simple Temporal Problem

(STP) [32]. When the STP is inconsistent, i.e., it has negative cycles, a procedure adds

an explanatory clause to the SAT master, removing a set of previously valid parallel

atemporal plans. We also include TAMER [147] in the set of baseline satisficing planners.

TAMER is a recent Temporal Planner, included in the Unified Planning Framework

(UPF) [102], part of a larger AIPlan4EU6 initiative to deliver on-demand AI Planning

services to Europe, which makes it attractive to study.

We evaluate the planners on IPC 2011, 2014, and 2018 instances. This enables us to test

the planners on various cases with different structures, including both simple and required

concurrency domains. Additionally, in match-cellar-14, we modified the PDDL action

schemas to break symmetry by sequencing the usages of matches and fuses, making it

different from match-cellar-11.

Optimizing Planning. We first discuss the performance of the planners in terms of op-

timal coverage, which is the count of instances for which the planner successfully proves

optimality. From Table 7.3, we observe that while, overall, none of the planners scale up

when it comes to searching for optimal plans, our extended CpSat encoding performs

remarkably well on domains with required concurrency. The results are particularly

notable for the Cushing domain that has complex dependencies between three action

schemas, requiring them to overlap in a particular manner. We note that the only other

complete planner OPTIC runs out of memory during the search for the vast majority of

Cushing instances before finding an optimal solution. Our planner also performs well on

the temporal machine shop (TMS) instances. In comparison, no planner performs well

on the two required concurrency domains, match-cellar and turn-and-open, which can be

attributed to the existence of symmetrical solutions and long sequential dependencies.

The match-cellar domain requires that a fuse is fixed while the match is lit, hence, it

requires the fix-fuse action to run while the light-match action is executing. However, the
6https://www.ai4europe.eu/ai-community/projects/aiplan4eu
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IPC-2014, 2018 Optimizing Solution

Domain Count CpSat TFD TPSHE OPTIC POPF
Required Concurrency Domains
matchcellar-11 20 1 1 4 0 0
matchcellar-14 20 0 0 0 0 0
tms-11 20 20 0 0 0 0
tms-14 20 20 0 0 0 0
cushing-18 10 10 0 0 2 0
turn-and-open-11 20 0 0 0 0 0
turn-and-open-14 20 0 0 0 0 0
Total (Req. Conc.) 130 51 1 4 8 2
Temporally Simple Domains
crew-planning-11 20 5 0 4 0 0
elevator-11 20 0 0 0 0 0
floor-tile-11 20 0 0 5 0 0
openstacks-11 20 0 0 0 0 0
parc-printer-11 20 1 0 0 0 0
parking-11 20 0 0 0 0 0
peg-solitaire-11 20 18 10 18 6 7
sokoban-11 20 0 2 4 0 0
storage-11 20 0 0 0 0 0
driver-log-14 20 0 0 0 0 0
floor-tile-14 20 0 0 0 0 0
map-analyzer-14 20 0 0 0 0 0
parking-14 20 0 0 0 0 0
road-traffic-14 20 0 0 0 0 0
storage-14 20 0 0 0 0 0
satellite-14 20 0 0 0 0 0
airport-18 10 7 5 8 2 0
floortile-18 10 0 0 0 0 0
mapanalyser-18 10 0 0 0 0 0
parking-18 10 0 0 0 0 0
quantum-circuit-18 10 0 2 5 2 0
road-traffic-18 10 0 0 0 0 0
sokoban-18 10 0 1 2 0 0
trucks-18 10 1 1 3 0 0
Total (T. Simple) 400 32 21 49 10 7
Total 530 83 22 53 12 7

Table 7.3: Optimizing Planing Results.

domain assumes that exactly one agent is repairing the fuses, hence requiring sequenc-

ing of all fix-fuse actions. Turn-and-open, similarly, is a domain with mixed required

concurrency and sequencing requirements.

Our planner has shown mixed results in optimizing temporally simple instances, most

of which are adopted from classical planning, requiring planners to find long sequencing

of actions. This is the Achilles heel of our CP encoding. Though quite performant on

optimal scheduling benchmarks, the default activity-based heuristics used by CpSat do

not seem to scale on instances requiring long action sequences. This is similar to what we

observe in our work on CP encodings of Lifted Sequential Planning in Chapter 5, pointing

to a common challenge in solving CP encodings of planning with general purpose solvers.
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The TPSHE planner performs best in these instances. However, it cannot handle all cases

of required concurrency, including Cushing instances. The TFD planner, another planner

that repurposes the classical planning approaches for temporal planning, shows the next

best performance, strengthening our belief that sequencing actions is an important and

challenging aspect of most temporal planning benchmark instances.

IPC-2014, 2018 Satisficing Solution

Domain Count CpSat TFD TPSHE OPTIC POPF ITSAT TAMER

Required Concurrency Domains

match-cellar-11 20 1 20 20 6 20 20 2
match-cellar-14 20 0 1 0 16 15 0* 0*
tms-11 20 20 0 12 5 6 20 0*
tms-14 20 20 0 7 0 1 20 0*
turn-and-open-11 20 0 19 20 9 9 6 0*
turn-and-open-14 20 0 18 19 10 9 6 0*
Cushing-18 10 10 0 0 10 10 0 1
Total (Req. Conc.) 130 51 58 78 56 70 72 3

Temporally Simple Domains

quantum-circuit-18 10 0 8 10 8 8 5 5
crew-planning-11 20 9 20 20 20 20 20 0*
elevator-11 20 0 20 20 2 2 0 0*
floor-tile-11 20 5 5 7 0 0 20 0*
openstacks 20 0 20 20 20 20 0 0*
parc-printer-11 20 1 10 6 0 0 18 0
parking-11 20 0 19 20 20 20 0 0
peg-solitaire-11 20 18 19 20 19 19 20 15
sokoban-11 20 0 3 12 4 4 6 0*
storage-11 20 0 0 7 0 0 0* 0*
driver-log-14 20 0 0 18 0 0 2 0*
floor-tile-14 20 0 0 3 0 0 20 0*
map-analyzer-14 20 0 16 20 0 0 0 0*
parking-14 20 0 20 20 14 13 12 0
road-traffic-14 20 0 0 16 0 0 0 0*
storage-14 20 0 0 9 0 0 0* 0*
satellite-14 20 0 17 18 4 3 0* 0
airport-18 10 8 9 9 3 3 8 3
floortile-18 10 0 0 1 0 0 10 0
mapanalyser-18 10 0 8 10 0 0 0 0*
parking-18 10 0 10 10 7 7 6 0
road-traffic-18 10 0 0 7 0 0 0 0*
sokoban-18 10 0 1 6 1 1 3 0*
trucks-18 10 1 10 10 8 10 0* 0
Total (T. Simple) 400 42 215 299 130 130 150 23

Total 530 93 273 377 186 200 222 26

Table 7.4: Satisficing Planning Results. ‘*’ indicates domains where the planner failed
to instantiate the planner due to runtime error when loading the PDDL representation.

Satisficing Planning. While our CpSat encoding is the best performer in optimizing,

it lacks significantly in satisficing planning, especially on the instances for which valid

plans include long sequences of actions. This points to a lack of proper search guidance,

which may allow the planner to find an upper bound quickly. All baseline planners,

except TAMER, perform better than our encoding in the satisficing planning. TPSHE
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leads the rankings with 100 additional solved tasks compared to the nearest competitor

TFD, which solves 273 instances out of 530. This points to the advantage of strategies

that sequence the actions well, driven by classical planning strategies. ITSAT also per-

formed well and solved more problems than OPTIC and POPF. It failed to process the

PDDL on a few domains and, more importantly, returned invalid plans for 5 instances of

Mapanalyser and 3 instances of Road-traffic. This suggests there are underlying problems

with the implementation or perhaps with the problem decomposition, indicating that an

in-depth analysis of the ITSAT planner is required, which is beyond the scope of this

thesis. Finally, TAMER failed to parse and translate many PDDLs, which are indicated

with a ‘*’ in Table 7.4, significantly reducing its coverage. Furthermore, it returned

invalid plans for 6 Parking instances and 1 Trucks instances. These issues suggest that

TAMER is not fully compatible with PDDL.

7.8 Conclusion

We show that the CP approach to temporal planning can handle instances with required

concurrency described in temporally expressive languages. Furthermore, the CP encod-

ing of extended temporal POCL planning is quite performant on benchmark instances

with the primary concern of concurrency, particularly the Cushing instances that are

difficult or infeasible for other planners. However, the advantage quickly disappears with

the degree of sequencing required in plans. The CpSat solver struggles to find a solution

to these instances. This leaves both an open question and a potential research question

on customizing the CP search strategies and encodings to address the concern of sequenc-

ing better, allowing the CP solver to find an upper bound quickly. Another concern that

requires attention is symmetry breaking, which is important in optimal temporal plan-

ning, as many planning instances like match-cellar and turn-and-open have large tracts

of search space that are symmetrical, making it difficult to improve the lower bound. We

note that automated symmetry detection methods used by CpSat did not help in these

instances.
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“To succeed in life and achieve results, you must under-

stand and master three mighty forces— desire, belief, and

expectation." Iyadurai.”

A.P.J. Abdul Kalam

8
Conclusions and Future Work

In this chapter, we present a synopsis of our contributions, their limitations, and future

work in the direction we pursued here. We highlight the challenges we encountered, the

things that worked and did not work, and the promising paths for future research that we

did not have time to follow but wish to see happen.

8.1 Summary

Our research explored many approaches to solve two classes of deterministic planning

problems, sequential and temporal, addressing the challenges posed by large-scale plan-

ning problems, dealing with concerns of high width in width-based search algorithms

and scalability concerns in large problems with a significant number of objects and large

complex systems of constraints. We also tackled the concern of required concurrency

in temporal planning. We explored the paradigm of planning as search and approxi-

mation approaches from stream computing in Internet-Of-Things (IOT), the knowledge

of which enabled us to design tractable approximation of novelty search, allowing us to
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handle computations in problems with high state novelty values, which were previously

impractical.

We also surveyed the field of Constraint Satisfaction Problems (CSPs), focusing not

only on the Constraint Programming (CP) approach to CSPs but also on sub-fields of

Mixed Integer Linear Programming (MILP) and Boolean Satisfiability (SAT), looking

for methods and techniques in those areas that intersect in some way with the planning

problems. We also explored the possibility of using decomposition approaches within

the Logic-based and Generalized Benders Decomposition frameworks. We eventually

pursued the Lazy Clause and Constraint generation (LCG) framework to address the

scalability issues arising from the need to define explicit constraints in memory, where

planning models usually have several thousands of constraints. LCG, which implicitly

allows us to represent large tracts of complex constraints using propagators, presents a

way to address this.

Overall, within all the branches we explored in our research, a few resulted in remark-

able success, many gave mixed results, and a few failed despite all the effort. We note

that the state-of-the-art CSP-solving technology as of 2023 could not compare against

the established methods in planning as heuristics search, in satisficing setting, both in

sequential and temporal planning instances of the IPCs. In our assessment, the CP

planners we developed struggled with instances requiring a long chain of actions with

sequential dependencies in the plan. This is still significant, as we acquired valuable

insights from this work, including opportunities for improvement, which we believe is a

successful outcome. We discuss our insights in more detail in the following sections.

Chapter Outline. We give an overview of our work in parts, starting with the impact

and challenges of our work on Tractable Approximation of Novelty Search, followed by the

merit of our work in Sequential Planning with LCG and its limitations, and concluding

with an account of the importance and restriction of our work on CP Approach to

Temporal Planning with required concurrency.

8.2 Approximate Novelty Search

The computation of state novelty is integral to the width-based search algorithms. How-

ever, its runtime and space computation is exponential in the novelty values, becoming
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impractical to compute for value ą 2 for all except tiny planning instances. The primary

contribution of our approach is the approximation of state novelty, which reduces the

complexity from exponential to linear in the size of the instance. We address the chal-

lenge by designing approximations based on random sampling and Bloom filters, trading

off measurement accuracy for computational guarantees.

The novelty approximation has the potential to impact all works using width-based

search. The approach only requires the factored representation of a state as input and

can, hence, be easily incorporated into other variants.

Limitations. We trade-off accuracy for computational guarantees in our Sampling and

Bloom Filter based approximation of novelty measure. This trade-off follows a theoretical

probability of error, which we prove in Section 4.3. That is to say, the accuracy of Bloom

filters in representing the relational predicate capturing the existence of a tuple of atoms

decreases as the ratio of tuples to the Bloom filter size increases. Similarly, the accuracy

of inference made using a random sample of tuples instead of an exhaustive set depends

on the sample size. Hence, a main limitation of the approach is the low accuracy of

novelty approximation for states with high novelty values, where the number of tuple

combinations that we need to evaluate for exact computation is significant, much larger

than the sample and Bloom filter size. While these methods are parameterized by the

sample size and size of the Bloom filters, which can be modified to fine-tune the accuracy,

typically, the amount of memory available is fixed, and a sample of tuples that is cubic

in the size of the problem is already too big and impractical to enumerate, except for

tiny instances.

Future Work. With limitations come opportunities. One such option is to sample

from a weighted collection of tuples instead of choosing randomly. This would lower the

frequency at which distinct tuples are observed by the Bloom filter, as tuples with higher

weights are more probable to be selected, increasing its accuracy. The key challenge here

is prioritizing and assigning weights to the tuples, which remains an open question. How-

ever, possibilities exist as only a subset of tuples are relevant to admitting a particular

sequence of actions in the novelty search. This leaves an option of discarding the irrele-

vant tuples, assuming they have been seen in the initial state. Even if this information is

available with low confidence, the latter could be assigned lower weights than the former

and used in approximate novelty with weighted sampling.
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Additionally, we have only looked at specific approximate methods from the field of

stream computing, and we note that other approaches to compute the novelty measure

efficiently and accurately may exist. So, that line of thinking remains open as well.

8.3 Lifted Sequential Planning with Lazy Clause and Con-

straint Generation

This work demonstrates the opportunities the lazy clause generation approach to con-

straint programming opens up, including user-propagators for planning. We present a

CP encoding of Lifted Sequential Planning that by itself performs very well on hard-to-

ground benchmarks when implemented in CpSat. However, it improves further when

paired with a planning-specific propagator that implements the persistence constraints,

improving the LCG CDCL’s scalability. The resulting planner scales very well in prob-

lems with large numbers of objects and numeric domains, including the multi-modal

project scheduling problems (MMPSP) with numeric time domain.

Additionally, we demonstrate that the planning as search strategies, including depth-first

search and novelty search, can be integrated into the framework of LCG CDCL. For this,

we extended the CpSat solver with programmed search heuristics emulating depth-first

search, enabling us to implement the notion of novelty given depth as a user-propagator

efficiently. While the work only slightly improves the performance of the Lifted CP

encoding, it highlights that the LCG CDCL framework is general enough to capture

interesting search paradigms in planning.

Limitations. Our causal encoding performs well on problems with small plan lengths

and scales well in situations with large numbers of objects and numeric domains. How-

ever, our approach is not suited for problems with long plans. There are multiple po-

tential reasons for it, including the number of variables in the encoding, which follows a

quadratic growth rate along with plan length, the implementation of element constraints

by CpSat, and the choice of search space explored by activity-based heuristics. Cp-

Sat reduces the element constraints to equalities, transforming them into inequalities

encoded in a precedences propagator, which implements integer difference logic using the

Bellman-Ford algorithm. While this helps us in problems with numeric domains, like

MMPSP, there is no clear advantage of the approach when the instance size is smaller
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than what is seen in the hard-to-ground instances, and the size of the universe does not

impact the scalability of the planner.

Another limitation of our planner is that it only optimizes plan length and does not con-

sider plan costs. General (positive) action costs can be added to the current encoding by

implicitly representing functions mapping ground actions to costs from the assignments

to the acti and argij variables as integer variables bound by element constraints, then

setting the objective to minimize their accumulated sum. However, we note that the

search for "globally" optimal plans cannot end with the first cost-optimal plan found

when solving CSPs: T pP, k1q, T pP, k2q...T pP, kiq, ki ´ ki´1 ą“ 1, sequentially, as there

may exist a plan with smaller cost but inducing a trajectory in the transition system with

more steps. Algorithms for searching optimal plans in this setting are an open research

question.

Future Work. Our work on integrating planning approaches into the LCG CDCL

framework, including planning-specific propagators for persistence constraints and nov-

elty bound, highlights a novel avenue of research in planning. We believe that the encoding

performance is tightly coupled to procedures implementing constraints, and significant

opportunities exist to improve performance by designing and incorporating planning-

specific propagators and heuristics.

8.4 CP Approach to Temporal Planning with Required Con-

currency

Our work extends Temporal POCL Planning to address concurrency concerns in in-

stances with required concurrency, taking direct inspiration from CPT’s [152] POCL

encoding, which made some simplifying assumptions and did not precisely address the

STRIPS fragment of PDDL 2.1. Our planner can find makespan optimal plans for in-

stances with required concurrency and performs very well on such problems. This is

significant as not many planners can handle all classes of temporal planning problems

with different structures of dependencies between actions in the plan.

Limitations. Our CP encoding of extended Temporal POCL Planning has two note-

worthy limitations. One, it does not scale well on problems that require planners to

sequence many actions to find a plan. For example, consider the problems of temporal
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machine shop and match cellar, both of which have required concurrency that our plan-

ner handles well. However, while the planner solves all the instances of temporal machine

shop, it can only solve one of match cellar. The planner struggles in both optimizing

and satisficing planning in this domain. Here, the difference between the two domains

lies in the sequential dependencies between the plan’s actions. In match cellar, it is

assumed that there is only one agent. Hence, it requires that fuses are fixed one at a

time, sequentially. In comparison, the temporal machine shop instances have minimum

sequencing requirements. The same concern exists in the turn-and-open instances where

our planner is unable to solve any instances.

Another limitation is that the encoding requires the planner to estimate a set of operator

instances from the collection of durative operators in the problem description and then

construct the CP model that only allows those instances in the plan. This set is unknown

beforehand. Choosing too many action instances would increase the encoding size, adding

much overhead to the solving process. We configured the planner to select one instance

of each action. However, this limits the planner to instances with at most one copy of

each operator in the plan. Choosing the number of instances in this setting remains an

open question.

Future Work. While the planner performs well in optimizing planning, it struggles

to find an upper bound on makespan (satisficing plan) quickly. This highlights the

need to adopt the CDCL heuristics to a planning-specific one, much like the planning as

satisfiability heuristic [125] for classical planning. Also, more work is required to improve

lower bounds quickly in problems like match cellar where large tracts of symmetrical

plans exist. While many baseline planners successfully find an upper bound, they struggle

to prove optimality due to the symmetry.
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